1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned char UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Wrapper around isInlineConstant that understands special cases when 133 // instruction types are replaced during operand folding. 134 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 135 const MachineInstr &UseMI, 136 unsigned OpNo, 137 const MachineOperand &OpToFold) { 138 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 139 return true; 140 141 unsigned Opc = UseMI.getOpcode(); 142 switch (Opc) { 143 case AMDGPU::V_MAC_F32_e64: 144 case AMDGPU::V_MAC_F16_e64: 145 case AMDGPU::V_FMAC_F32_e64: 146 case AMDGPU::V_FMAC_F16_e64: { 147 // Special case for mac. Since this is replaced with mad when folded into 148 // src2, we need to check the legality for the final instruction. 149 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 150 if (static_cast<int>(OpNo) == Src2Idx) { 151 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 152 Opc == AMDGPU::V_FMAC_F16_e64; 153 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 154 Opc == AMDGPU::V_FMAC_F32_e64; 155 156 unsigned Opc = IsFMA ? 157 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 158 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 159 const MCInstrDesc &MadDesc = TII->get(Opc); 160 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 161 } 162 return false; 163 } 164 default: 165 return false; 166 } 167 } 168 169 // TODO: Add heuristic that the frame index might not fit in the addressing mode 170 // immediate offset to avoid materializing in loops. 171 static bool frameIndexMayFold(const SIInstrInfo *TII, 172 const MachineInstr &UseMI, 173 int OpNo, 174 const MachineOperand &OpToFold) { 175 return OpToFold.isFI() && 176 (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && 177 OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); 178 } 179 180 FunctionPass *llvm::createSIFoldOperandsPass() { 181 return new SIFoldOperands(); 182 } 183 184 static bool updateOperand(FoldCandidate &Fold, 185 const SIInstrInfo &TII, 186 const TargetRegisterInfo &TRI, 187 const GCNSubtarget &ST) { 188 MachineInstr *MI = Fold.UseMI; 189 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 190 assert(Old.isReg()); 191 192 if (Fold.isImm()) { 193 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 194 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 195 AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), 196 ST.hasInv2PiInlineImm())) { 197 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 198 // already set. 199 unsigned Opcode = MI->getOpcode(); 200 int OpNo = MI->getOperandNo(&Old); 201 int ModIdx = -1; 202 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 203 ModIdx = AMDGPU::OpName::src0_modifiers; 204 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 205 ModIdx = AMDGPU::OpName::src1_modifiers; 206 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 207 ModIdx = AMDGPU::OpName::src2_modifiers; 208 assert(ModIdx != -1); 209 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 210 MachineOperand &Mod = MI->getOperand(ModIdx); 211 unsigned Val = Mod.getImm(); 212 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 213 return false; 214 // Only apply the following transformation if that operand requries 215 // a packed immediate. 216 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 217 case AMDGPU::OPERAND_REG_IMM_V2FP16: 218 case AMDGPU::OPERAND_REG_IMM_V2INT16: 219 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 220 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 221 // If upper part is all zero we do not need op_sel_hi. 222 if (!isUInt<16>(Fold.ImmToFold)) { 223 if (!(Fold.ImmToFold & 0xffff)) { 224 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 225 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 226 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 227 return true; 228 } 229 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 230 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 231 return true; 232 } 233 break; 234 default: 235 break; 236 } 237 } 238 } 239 240 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 241 MachineBasicBlock *MBB = MI->getParent(); 242 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 243 if (Liveness != MachineBasicBlock::LQR_Dead) { 244 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 245 return false; 246 } 247 248 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 249 int Op32 = Fold.getShrinkOpcode(); 250 MachineOperand &Dst0 = MI->getOperand(0); 251 MachineOperand &Dst1 = MI->getOperand(1); 252 assert(Dst0.isDef() && Dst1.isDef()); 253 254 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 255 256 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 257 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 258 259 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 260 261 if (HaveNonDbgCarryUse) { 262 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 263 .addReg(AMDGPU::VCC, RegState::Kill); 264 } 265 266 // Keep the old instruction around to avoid breaking iterators, but 267 // replace it with a dummy instruction to remove uses. 268 // 269 // FIXME: We should not invert how this pass looks at operands to avoid 270 // this. Should track set of foldable movs instead of looking for uses 271 // when looking at a use. 272 Dst0.setReg(NewReg0); 273 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 274 MI->RemoveOperand(I); 275 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 276 277 if (Fold.isCommuted()) 278 TII.commuteInstruction(*Inst32, false); 279 return true; 280 } 281 282 assert(!Fold.needsShrink() && "not handled"); 283 284 if (Fold.isImm()) { 285 Old.ChangeToImmediate(Fold.ImmToFold); 286 return true; 287 } 288 289 if (Fold.isGlobal()) { 290 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 291 Fold.OpToFold->getTargetFlags()); 292 return true; 293 } 294 295 if (Fold.isFI()) { 296 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 297 return true; 298 } 299 300 MachineOperand *New = Fold.OpToFold; 301 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 302 Old.setIsUndef(New->isUndef()); 303 return true; 304 } 305 306 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 307 const MachineInstr *MI) { 308 for (auto Candidate : FoldList) { 309 if (Candidate.UseMI == MI) 310 return true; 311 } 312 return false; 313 } 314 315 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 316 MachineInstr *MI, unsigned OpNo, 317 MachineOperand *OpToFold, 318 const SIInstrInfo *TII) { 319 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 320 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 321 unsigned Opc = MI->getOpcode(); 322 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 323 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) && 324 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 325 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64 || 326 Opc == AMDGPU::V_FMAC_F16_e64; 327 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64 || 328 Opc == AMDGPU::V_FMAC_F32_e64; 329 unsigned NewOpc = IsFMA ? 330 (IsF32 ? AMDGPU::V_FMA_F32 : AMDGPU::V_FMA_F16_gfx9) : 331 (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 332 333 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 334 // to fold the operand. 335 MI->setDesc(TII->get(NewOpc)); 336 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 337 if (FoldAsMAD) { 338 MI->untieRegOperand(OpNo); 339 return true; 340 } 341 MI->setDesc(TII->get(Opc)); 342 } 343 344 // Special case for s_setreg_b32 345 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 346 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 347 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 348 return true; 349 } 350 351 // If we are already folding into another operand of MI, then 352 // we can't commute the instruction, otherwise we risk making the 353 // other fold illegal. 354 if (isUseMIInFoldList(FoldList, MI)) 355 return false; 356 357 unsigned CommuteOpNo = OpNo; 358 359 // Operand is not legal, so try to commute the instruction to 360 // see if this makes it possible to fold. 361 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 362 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 363 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 364 365 if (CanCommute) { 366 if (CommuteIdx0 == OpNo) 367 CommuteOpNo = CommuteIdx1; 368 else if (CommuteIdx1 == OpNo) 369 CommuteOpNo = CommuteIdx0; 370 } 371 372 373 // One of operands might be an Imm operand, and OpNo may refer to it after 374 // the call of commuteInstruction() below. Such situations are avoided 375 // here explicitly as OpNo must be a register operand to be a candidate 376 // for memory folding. 377 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 378 !MI->getOperand(CommuteIdx1).isReg())) 379 return false; 380 381 if (!CanCommute || 382 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 383 return false; 384 385 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 386 if ((Opc == AMDGPU::V_ADD_I32_e64 || 387 Opc == AMDGPU::V_SUB_I32_e64 || 388 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 389 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 390 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 391 392 // Verify the other operand is a VGPR, otherwise we would violate the 393 // constant bus restriction. 394 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 395 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 396 if (!OtherOp.isReg() || 397 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 398 return false; 399 400 assert(MI->getOperand(1).isDef()); 401 402 // Make sure to get the 32-bit version of the commuted opcode. 403 unsigned MaybeCommutedOpc = MI->getOpcode(); 404 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 405 406 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 407 Op32)); 408 return true; 409 } 410 411 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 412 return false; 413 } 414 415 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 416 return true; 417 } 418 419 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 420 return true; 421 } 422 423 // If the use operand doesn't care about the value, this may be an operand only 424 // used for register indexing, in which case it is unsafe to fold. 425 static bool isUseSafeToFold(const SIInstrInfo *TII, 426 const MachineInstr &MI, 427 const MachineOperand &UseMO) { 428 return !UseMO.isUndef() && !TII->isSDWA(MI); 429 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 430 } 431 432 static bool tryToFoldACImm(const SIInstrInfo *TII, 433 const MachineOperand &OpToFold, 434 MachineInstr *UseMI, 435 unsigned UseOpIdx, 436 SmallVectorImpl<FoldCandidate> &FoldList) { 437 const MCInstrDesc &Desc = UseMI->getDesc(); 438 const MCOperandInfo *OpInfo = Desc.OpInfo; 439 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 440 return false; 441 442 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 443 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 444 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 445 return false; 446 447 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 448 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 449 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 450 return true; 451 } 452 453 if (!OpToFold.isReg()) 454 return false; 455 456 Register UseReg = OpToFold.getReg(); 457 if (!Register::isVirtualRegister(UseReg)) 458 return false; 459 460 if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { 461 return FC.UseMI == UseMI; }) != FoldList.end()) 462 return false; 463 464 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 465 const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 466 if (!Def || !Def->isRegSequence()) 467 return false; 468 469 int64_t Imm; 470 MachineOperand *Op; 471 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 472 const MachineOperand &Sub = Def->getOperand(I); 473 if (!Sub.isReg() || Sub.getSubReg()) 474 return false; 475 MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg()); 476 while (SubDef && !SubDef->isMoveImmediate() && 477 !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef)) 478 SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg()); 479 if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm()) 480 return false; 481 Op = &SubDef->getOperand(1); 482 auto SubImm = Op->getImm(); 483 if (I == 1) { 484 if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy)) 485 return false; 486 487 Imm = SubImm; 488 continue; 489 } 490 if (Imm != SubImm) 491 return false; // Can only fold splat constants 492 } 493 494 if (!TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 495 return false; 496 497 FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op)); 498 return true; 499 } 500 501 void SIFoldOperands::foldOperand( 502 MachineOperand &OpToFold, 503 MachineInstr *UseMI, 504 int UseOpIdx, 505 SmallVectorImpl<FoldCandidate> &FoldList, 506 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 507 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 508 509 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 510 return; 511 512 // FIXME: Fold operands with subregs. 513 if (UseOp.isReg() && OpToFold.isReg()) { 514 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 515 return; 516 } 517 518 // Special case for REG_SEQUENCE: We can't fold literals into 519 // REG_SEQUENCE instructions, so we have to fold them into the 520 // uses of REG_SEQUENCE. 521 if (UseMI->isRegSequence()) { 522 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 523 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 524 525 MachineRegisterInfo::use_iterator Next; 526 for (MachineRegisterInfo::use_iterator 527 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 528 RSUse != RSE; RSUse = Next) { 529 Next = std::next(RSUse); 530 531 MachineInstr *RSUseMI = RSUse->getParent(); 532 533 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 534 RSUse.getOperandNo(), FoldList)) 535 continue; 536 537 if (RSUse->getSubReg() != RegSeqDstSubReg) 538 continue; 539 540 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 541 CopiesToReplace); 542 } 543 544 return; 545 } 546 547 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 548 return; 549 550 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 551 // Sanity check that this is a stack access. 552 // FIXME: Should probably use stack pseudos before frame lowering. 553 MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 554 if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && 555 SOff->getReg() != MFI->getStackPtrOffsetReg())) 556 return; 557 558 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 559 MFI->getScratchRSrcReg()) 560 return; 561 562 // A frame index will resolve to a positive constant, so it should always be 563 // safe to fold the addressing mode, even pre-GFX9. 564 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 565 SOff->setReg(MFI->getStackPtrOffsetReg()); 566 return; 567 } 568 569 bool FoldingImmLike = 570 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 571 572 if (FoldingImmLike && UseMI->isCopy()) { 573 Register DestReg = UseMI->getOperand(0).getReg(); 574 575 // Don't fold into a copy to a physical register. Doing so would interfere 576 // with the register coalescer's logic which would avoid redundant 577 // initalizations. 578 if (DestReg.isPhysical()) 579 return; 580 581 const TargetRegisterClass *DestRC = MRI->getRegClass(DestReg); 582 583 Register SrcReg = UseMI->getOperand(1).getReg(); 584 if (SrcReg.isVirtual()) { // XXX - This can be an assert? 585 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 586 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 587 MachineRegisterInfo::use_iterator NextUse; 588 SmallVector<FoldCandidate, 4> CopyUses; 589 for (MachineRegisterInfo::use_iterator 590 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 591 Use != E; Use = NextUse) { 592 NextUse = std::next(Use); 593 FoldCandidate FC = FoldCandidate(Use->getParent(), 594 Use.getOperandNo(), &UseMI->getOperand(1)); 595 CopyUses.push_back(FC); 596 } 597 for (auto & F : CopyUses) { 598 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 599 FoldList, CopiesToReplace); 600 } 601 } 602 } 603 604 if (DestRC == &AMDGPU::AGPR_32RegClass && 605 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 606 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 607 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 608 CopiesToReplace.push_back(UseMI); 609 return; 610 } 611 612 // In order to fold immediates into copies, we need to change the 613 // copy to a MOV. 614 615 unsigned MovOp = TII->getMovOpcode(DestRC); 616 if (MovOp == AMDGPU::COPY) 617 return; 618 619 UseMI->setDesc(TII->get(MovOp)); 620 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 621 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 622 while (ImpOpI != ImpOpE) { 623 MachineInstr::mop_iterator Tmp = ImpOpI; 624 ImpOpI++; 625 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 626 } 627 CopiesToReplace.push_back(UseMI); 628 } else { 629 if (UseMI->isCopy() && OpToFold.isReg() && 630 Register::isVirtualRegister(UseMI->getOperand(0).getReg()) && 631 TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) && 632 TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) && 633 !UseMI->getOperand(1).getSubReg()) { 634 unsigned Size = TII->getOpSize(*UseMI, 1); 635 UseMI->getOperand(1).setReg(OpToFold.getReg()); 636 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 637 UseMI->getOperand(1).setIsKill(false); 638 CopiesToReplace.push_back(UseMI); 639 OpToFold.setIsKill(false); 640 if (Size != 4) 641 return; 642 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 643 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 644 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 645 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 646 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 647 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 648 return; 649 } 650 651 unsigned UseOpc = UseMI->getOpcode(); 652 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 653 (UseOpc == AMDGPU::V_READLANE_B32 && 654 (int)UseOpIdx == 655 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 656 // %vgpr = V_MOV_B32 imm 657 // %sgpr = V_READFIRSTLANE_B32 %vgpr 658 // => 659 // %sgpr = S_MOV_B32 imm 660 if (FoldingImmLike) { 661 if (execMayBeModifiedBeforeUse(*MRI, 662 UseMI->getOperand(UseOpIdx).getReg(), 663 *OpToFold.getParent(), 664 *UseMI)) 665 return; 666 667 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 668 669 // FIXME: ChangeToImmediate should clear subreg 670 UseMI->getOperand(1).setSubReg(0); 671 if (OpToFold.isImm()) 672 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 673 else 674 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 675 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 676 return; 677 } 678 679 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 680 if (execMayBeModifiedBeforeUse(*MRI, 681 UseMI->getOperand(UseOpIdx).getReg(), 682 *OpToFold.getParent(), 683 *UseMI)) 684 return; 685 686 // %vgpr = COPY %sgpr0 687 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 688 // => 689 // %sgpr1 = COPY %sgpr0 690 UseMI->setDesc(TII->get(AMDGPU::COPY)); 691 UseMI->getOperand(1).setReg(OpToFold.getReg()); 692 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 693 UseMI->getOperand(1).setIsKill(false); 694 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 695 return; 696 } 697 } 698 699 const MCInstrDesc &UseDesc = UseMI->getDesc(); 700 701 // Don't fold into target independent nodes. Target independent opcodes 702 // don't have defined register classes. 703 if (UseDesc.isVariadic() || 704 UseOp.isImplicit() || 705 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 706 return; 707 } 708 709 if (!FoldingImmLike) { 710 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 711 712 // FIXME: We could try to change the instruction from 64-bit to 32-bit 713 // to enable more folding opportunites. The shrink operands pass 714 // already does this. 715 return; 716 } 717 718 719 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 720 const TargetRegisterClass *FoldRC = 721 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 722 723 // Split 64-bit constants into 32-bits for folding. 724 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 725 Register UseReg = UseOp.getReg(); 726 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 727 728 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 729 return; 730 731 APInt Imm(64, OpToFold.getImm()); 732 if (UseOp.getSubReg() == AMDGPU::sub0) { 733 Imm = Imm.getLoBits(32); 734 } else { 735 assert(UseOp.getSubReg() == AMDGPU::sub1); 736 Imm = Imm.getHiBits(32); 737 } 738 739 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 740 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 741 return; 742 } 743 744 745 746 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 747 } 748 749 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 750 uint32_t LHS, uint32_t RHS) { 751 switch (Opcode) { 752 case AMDGPU::V_AND_B32_e64: 753 case AMDGPU::V_AND_B32_e32: 754 case AMDGPU::S_AND_B32: 755 Result = LHS & RHS; 756 return true; 757 case AMDGPU::V_OR_B32_e64: 758 case AMDGPU::V_OR_B32_e32: 759 case AMDGPU::S_OR_B32: 760 Result = LHS | RHS; 761 return true; 762 case AMDGPU::V_XOR_B32_e64: 763 case AMDGPU::V_XOR_B32_e32: 764 case AMDGPU::S_XOR_B32: 765 Result = LHS ^ RHS; 766 return true; 767 case AMDGPU::V_LSHL_B32_e64: 768 case AMDGPU::V_LSHL_B32_e32: 769 case AMDGPU::S_LSHL_B32: 770 // The instruction ignores the high bits for out of bounds shifts. 771 Result = LHS << (RHS & 31); 772 return true; 773 case AMDGPU::V_LSHLREV_B32_e64: 774 case AMDGPU::V_LSHLREV_B32_e32: 775 Result = RHS << (LHS & 31); 776 return true; 777 case AMDGPU::V_LSHR_B32_e64: 778 case AMDGPU::V_LSHR_B32_e32: 779 case AMDGPU::S_LSHR_B32: 780 Result = LHS >> (RHS & 31); 781 return true; 782 case AMDGPU::V_LSHRREV_B32_e64: 783 case AMDGPU::V_LSHRREV_B32_e32: 784 Result = RHS >> (LHS & 31); 785 return true; 786 case AMDGPU::V_ASHR_I32_e64: 787 case AMDGPU::V_ASHR_I32_e32: 788 case AMDGPU::S_ASHR_I32: 789 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 790 return true; 791 case AMDGPU::V_ASHRREV_I32_e64: 792 case AMDGPU::V_ASHRREV_I32_e32: 793 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 794 return true; 795 default: 796 return false; 797 } 798 } 799 800 static unsigned getMovOpc(bool IsScalar) { 801 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 802 } 803 804 /// Remove any leftover implicit operands from mutating the instruction. e.g. 805 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 806 /// anymore. 807 static void stripExtraCopyOperands(MachineInstr &MI) { 808 const MCInstrDesc &Desc = MI.getDesc(); 809 unsigned NumOps = Desc.getNumOperands() + 810 Desc.getNumImplicitUses() + 811 Desc.getNumImplicitDefs(); 812 813 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 814 MI.RemoveOperand(I); 815 } 816 817 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 818 MI.setDesc(NewDesc); 819 stripExtraCopyOperands(MI); 820 } 821 822 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 823 MachineOperand &Op) { 824 if (Op.isReg()) { 825 // If this has a subregister, it obviously is a register source. 826 if (Op.getSubReg() != AMDGPU::NoSubRegister || 827 !Register::isVirtualRegister(Op.getReg())) 828 return &Op; 829 830 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 831 if (Def && Def->isMoveImmediate()) { 832 MachineOperand &ImmSrc = Def->getOperand(1); 833 if (ImmSrc.isImm()) 834 return &ImmSrc; 835 } 836 } 837 838 return &Op; 839 } 840 841 // Try to simplify operations with a constant that may appear after instruction 842 // selection. 843 // TODO: See if a frame index with a fixed offset can fold. 844 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 845 const SIInstrInfo *TII, 846 MachineInstr *MI, 847 MachineOperand *ImmOp) { 848 unsigned Opc = MI->getOpcode(); 849 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 850 Opc == AMDGPU::S_NOT_B32) { 851 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 852 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 853 return true; 854 } 855 856 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 857 if (Src1Idx == -1) 858 return false; 859 860 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 861 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 862 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 863 864 if (!Src0->isImm() && !Src1->isImm()) 865 return false; 866 867 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 868 if (Src0->isImm() && Src0->getImm() == 0) { 869 // v_lshl_or_b32 0, X, Y -> copy Y 870 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 871 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 872 MI->RemoveOperand(Src1Idx); 873 MI->RemoveOperand(Src0Idx); 874 875 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 876 return true; 877 } 878 } 879 880 // and k0, k1 -> v_mov_b32 (k0 & k1) 881 // or k0, k1 -> v_mov_b32 (k0 | k1) 882 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 883 if (Src0->isImm() && Src1->isImm()) { 884 int32_t NewImm; 885 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 886 return false; 887 888 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 889 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 890 891 // Be careful to change the right operand, src0 may belong to a different 892 // instruction. 893 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 894 MI->RemoveOperand(Src1Idx); 895 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 896 return true; 897 } 898 899 if (!MI->isCommutable()) 900 return false; 901 902 if (Src0->isImm() && !Src1->isImm()) { 903 std::swap(Src0, Src1); 904 std::swap(Src0Idx, Src1Idx); 905 } 906 907 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 908 if (Opc == AMDGPU::V_OR_B32_e64 || 909 Opc == AMDGPU::V_OR_B32_e32 || 910 Opc == AMDGPU::S_OR_B32) { 911 if (Src1Val == 0) { 912 // y = or x, 0 => y = copy x 913 MI->RemoveOperand(Src1Idx); 914 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 915 } else if (Src1Val == -1) { 916 // y = or x, -1 => y = v_mov_b32 -1 917 MI->RemoveOperand(Src1Idx); 918 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 919 } else 920 return false; 921 922 return true; 923 } 924 925 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 926 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 927 MI->getOpcode() == AMDGPU::S_AND_B32) { 928 if (Src1Val == 0) { 929 // y = and x, 0 => y = v_mov_b32 0 930 MI->RemoveOperand(Src0Idx); 931 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 932 } else if (Src1Val == -1) { 933 // y = and x, -1 => y = copy x 934 MI->RemoveOperand(Src1Idx); 935 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 936 stripExtraCopyOperands(*MI); 937 } else 938 return false; 939 940 return true; 941 } 942 943 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 944 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 945 MI->getOpcode() == AMDGPU::S_XOR_B32) { 946 if (Src1Val == 0) { 947 // y = xor x, 0 => y = copy x 948 MI->RemoveOperand(Src1Idx); 949 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 950 return true; 951 } 952 } 953 954 return false; 955 } 956 957 // Try to fold an instruction into a simpler one 958 static bool tryFoldInst(const SIInstrInfo *TII, 959 MachineInstr *MI) { 960 unsigned Opc = MI->getOpcode(); 961 962 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 963 Opc == AMDGPU::V_CNDMASK_B32_e64 || 964 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 965 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 966 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 967 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 968 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 969 if (Src1->isIdenticalTo(*Src0) && 970 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 971 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 972 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 973 auto &NewDesc = 974 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 975 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 976 if (Src2Idx != -1) 977 MI->RemoveOperand(Src2Idx); 978 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 979 if (Src1ModIdx != -1) 980 MI->RemoveOperand(Src1ModIdx); 981 if (Src0ModIdx != -1) 982 MI->RemoveOperand(Src0ModIdx); 983 mutateCopyOp(*MI, NewDesc); 984 LLVM_DEBUG(dbgs() << *MI << '\n'); 985 return true; 986 } 987 } 988 989 return false; 990 } 991 992 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 993 MachineOperand &OpToFold) const { 994 // We need mutate the operands of new mov instructions to add implicit 995 // uses of EXEC, but adding them invalidates the use_iterator, so defer 996 // this. 997 SmallVector<MachineInstr *, 4> CopiesToReplace; 998 SmallVector<FoldCandidate, 4> FoldList; 999 MachineOperand &Dst = MI.getOperand(0); 1000 1001 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1002 if (FoldingImm) { 1003 unsigned NumLiteralUses = 0; 1004 MachineOperand *NonInlineUse = nullptr; 1005 int NonInlineUseOpNo = -1; 1006 1007 MachineRegisterInfo::use_iterator NextUse; 1008 for (MachineRegisterInfo::use_iterator 1009 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1010 Use != E; Use = NextUse) { 1011 NextUse = std::next(Use); 1012 MachineInstr *UseMI = Use->getParent(); 1013 unsigned OpNo = Use.getOperandNo(); 1014 1015 // Folding the immediate may reveal operations that can be constant 1016 // folded or replaced with a copy. This can happen for example after 1017 // frame indices are lowered to constants or from splitting 64-bit 1018 // constants. 1019 // 1020 // We may also encounter cases where one or both operands are 1021 // immediates materialized into a register, which would ordinarily not 1022 // be folded due to multiple uses or operand constraints. 1023 1024 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1025 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1026 1027 // Some constant folding cases change the same immediate's use to a new 1028 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1029 // again. The same constant folded instruction could also have a second 1030 // use operand. 1031 NextUse = MRI->use_begin(Dst.getReg()); 1032 FoldList.clear(); 1033 continue; 1034 } 1035 1036 // Try to fold any inline immediate uses, and then only fold other 1037 // constants if they have one use. 1038 // 1039 // The legality of the inline immediate must be checked based on the use 1040 // operand, not the defining instruction, because 32-bit instructions 1041 // with 32-bit inline immediate sources may be used to materialize 1042 // constants used in 16-bit operands. 1043 // 1044 // e.g. it is unsafe to fold: 1045 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1046 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1047 1048 // Folding immediates with more than one use will increase program size. 1049 // FIXME: This will also reduce register usage, which may be better 1050 // in some cases. A better heuristic is needed. 1051 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1052 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1053 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1054 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1055 CopiesToReplace); 1056 } else { 1057 if (++NumLiteralUses == 1) { 1058 NonInlineUse = &*Use; 1059 NonInlineUseOpNo = OpNo; 1060 } 1061 } 1062 } 1063 1064 if (NumLiteralUses == 1) { 1065 MachineInstr *UseMI = NonInlineUse->getParent(); 1066 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1067 } 1068 } else { 1069 // Folding register. 1070 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 1071 for (MachineRegisterInfo::use_iterator 1072 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 1073 Use != E; ++Use) { 1074 UsesToProcess.push_back(Use); 1075 } 1076 for (auto U : UsesToProcess) { 1077 MachineInstr *UseMI = U->getParent(); 1078 1079 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1080 FoldList, CopiesToReplace); 1081 } 1082 } 1083 1084 MachineFunction *MF = MI.getParent()->getParent(); 1085 // Make sure we add EXEC uses to any new v_mov instructions created. 1086 for (MachineInstr *Copy : CopiesToReplace) 1087 Copy->addImplicitDefUseOperands(*MF); 1088 1089 for (FoldCandidate &Fold : FoldList) { 1090 if (Fold.isReg() && Register::isVirtualRegister(Fold.OpToFold->getReg())) { 1091 Register Reg = Fold.OpToFold->getReg(); 1092 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1093 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1094 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1095 continue; 1096 } 1097 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1098 // Clear kill flags. 1099 if (Fold.isReg()) { 1100 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1101 // FIXME: Probably shouldn't bother trying to fold if not an 1102 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1103 // copies. 1104 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1105 } 1106 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1107 << static_cast<int>(Fold.UseOpNo) << " of " 1108 << *Fold.UseMI << '\n'); 1109 tryFoldInst(TII, Fold.UseMI); 1110 } else if (Fold.isCommuted()) { 1111 // Restoring instruction's original operand order if fold has failed. 1112 TII->commuteInstruction(*Fold.UseMI, false); 1113 } 1114 } 1115 } 1116 1117 // Clamp patterns are canonically selected to v_max_* instructions, so only 1118 // handle them. 1119 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1120 unsigned Op = MI.getOpcode(); 1121 switch (Op) { 1122 case AMDGPU::V_MAX_F32_e64: 1123 case AMDGPU::V_MAX_F16_e64: 1124 case AMDGPU::V_MAX_F64: 1125 case AMDGPU::V_PK_MAX_F16: { 1126 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1127 return nullptr; 1128 1129 // Make sure sources are identical. 1130 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1131 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1132 if (!Src0->isReg() || !Src1->isReg() || 1133 Src0->getReg() != Src1->getReg() || 1134 Src0->getSubReg() != Src1->getSubReg() || 1135 Src0->getSubReg() != AMDGPU::NoSubRegister) 1136 return nullptr; 1137 1138 // Can't fold up if we have modifiers. 1139 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1140 return nullptr; 1141 1142 unsigned Src0Mods 1143 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1144 unsigned Src1Mods 1145 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1146 1147 // Having a 0 op_sel_hi would require swizzling the output in the source 1148 // instruction, which we can't do. 1149 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1150 : 0u; 1151 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1152 return nullptr; 1153 return Src0; 1154 } 1155 default: 1156 return nullptr; 1157 } 1158 } 1159 1160 // We obviously have multiple uses in a clamp since the register is used twice 1161 // in the same instruction. 1162 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1163 int Count = 0; 1164 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1165 I != E; ++I) { 1166 if (++Count > 1) 1167 return false; 1168 } 1169 1170 return true; 1171 } 1172 1173 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1174 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1175 const MachineOperand *ClampSrc = isClamp(MI); 1176 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1177 return false; 1178 1179 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1180 1181 // The type of clamp must be compatible. 1182 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1183 return false; 1184 1185 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1186 if (!DefClamp) 1187 return false; 1188 1189 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1190 << '\n'); 1191 1192 // Clamp is applied after omod, so it is OK if omod is set. 1193 DefClamp->setImm(1); 1194 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1195 MI.eraseFromParent(); 1196 return true; 1197 } 1198 1199 static int getOModValue(unsigned Opc, int64_t Val) { 1200 switch (Opc) { 1201 case AMDGPU::V_MUL_F32_e64: { 1202 switch (static_cast<uint32_t>(Val)) { 1203 case 0x3f000000: // 0.5 1204 return SIOutMods::DIV2; 1205 case 0x40000000: // 2.0 1206 return SIOutMods::MUL2; 1207 case 0x40800000: // 4.0 1208 return SIOutMods::MUL4; 1209 default: 1210 return SIOutMods::NONE; 1211 } 1212 } 1213 case AMDGPU::V_MUL_F16_e64: { 1214 switch (static_cast<uint16_t>(Val)) { 1215 case 0x3800: // 0.5 1216 return SIOutMods::DIV2; 1217 case 0x4000: // 2.0 1218 return SIOutMods::MUL2; 1219 case 0x4400: // 4.0 1220 return SIOutMods::MUL4; 1221 default: 1222 return SIOutMods::NONE; 1223 } 1224 } 1225 default: 1226 llvm_unreachable("invalid mul opcode"); 1227 } 1228 } 1229 1230 // FIXME: Does this really not support denormals with f16? 1231 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1232 // handled, so will anything other than that break? 1233 std::pair<const MachineOperand *, int> 1234 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1235 unsigned Op = MI.getOpcode(); 1236 switch (Op) { 1237 case AMDGPU::V_MUL_F32_e64: 1238 case AMDGPU::V_MUL_F16_e64: { 1239 // If output denormals are enabled, omod is ignored. 1240 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1241 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1242 return std::make_pair(nullptr, SIOutMods::NONE); 1243 1244 const MachineOperand *RegOp = nullptr; 1245 const MachineOperand *ImmOp = nullptr; 1246 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1247 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1248 if (Src0->isImm()) { 1249 ImmOp = Src0; 1250 RegOp = Src1; 1251 } else if (Src1->isImm()) { 1252 ImmOp = Src1; 1253 RegOp = Src0; 1254 } else 1255 return std::make_pair(nullptr, SIOutMods::NONE); 1256 1257 int OMod = getOModValue(Op, ImmOp->getImm()); 1258 if (OMod == SIOutMods::NONE || 1259 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1260 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1261 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1262 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1263 return std::make_pair(nullptr, SIOutMods::NONE); 1264 1265 return std::make_pair(RegOp, OMod); 1266 } 1267 case AMDGPU::V_ADD_F32_e64: 1268 case AMDGPU::V_ADD_F16_e64: { 1269 // If output denormals are enabled, omod is ignored. 1270 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1271 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1272 return std::make_pair(nullptr, SIOutMods::NONE); 1273 1274 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1275 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1276 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1277 1278 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1279 Src0->getSubReg() == Src1->getSubReg() && 1280 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1281 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1282 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1283 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1284 return std::make_pair(Src0, SIOutMods::MUL2); 1285 1286 return std::make_pair(nullptr, SIOutMods::NONE); 1287 } 1288 default: 1289 return std::make_pair(nullptr, SIOutMods::NONE); 1290 } 1291 } 1292 1293 // FIXME: Does this need to check IEEE bit on function? 1294 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1295 const MachineOperand *RegOp; 1296 int OMod; 1297 std::tie(RegOp, OMod) = isOMod(MI); 1298 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1299 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1300 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1301 return false; 1302 1303 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1304 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1305 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1306 return false; 1307 1308 // Clamp is applied after omod. If the source already has clamp set, don't 1309 // fold it. 1310 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1311 return false; 1312 1313 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1314 1315 DefOMod->setImm(OMod); 1316 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1317 MI.eraseFromParent(); 1318 return true; 1319 } 1320 1321 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1322 if (skipFunction(MF.getFunction())) 1323 return false; 1324 1325 MRI = &MF.getRegInfo(); 1326 ST = &MF.getSubtarget<GCNSubtarget>(); 1327 TII = ST->getInstrInfo(); 1328 TRI = &TII->getRegisterInfo(); 1329 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1330 1331 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1332 // correctly handle signed zeros. 1333 // 1334 // FIXME: Also need to check strictfp 1335 bool IsIEEEMode = MFI->getMode().IEEE; 1336 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1337 1338 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1339 MachineBasicBlock::iterator I, Next; 1340 1341 MachineOperand *CurrentKnownM0Val = nullptr; 1342 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1343 Next = std::next(I); 1344 MachineInstr &MI = *I; 1345 1346 tryFoldInst(TII, &MI); 1347 1348 if (!TII->isFoldableCopy(MI)) { 1349 // TODO: Omod might be OK if there is NSZ only on the source 1350 // instruction, and not the omod multiply. 1351 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1352 !tryFoldOMod(MI)) 1353 tryFoldClamp(MI); 1354 1355 // Saw an unknown clobber of m0, so we no longer know what it is. 1356 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1357 CurrentKnownM0Val = nullptr; 1358 continue; 1359 } 1360 1361 // Specially track simple redefs of m0 to the same value in a block, so we 1362 // can erase the later ones. 1363 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1364 MachineOperand &NewM0Val = MI.getOperand(1); 1365 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1366 MI.eraseFromParent(); 1367 continue; 1368 } 1369 1370 // We aren't tracking other physical registers 1371 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1372 nullptr : &NewM0Val; 1373 continue; 1374 } 1375 1376 MachineOperand &OpToFold = MI.getOperand(1); 1377 bool FoldingImm = 1378 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1379 1380 // FIXME: We could also be folding things like TargetIndexes. 1381 if (!FoldingImm && !OpToFold.isReg()) 1382 continue; 1383 1384 if (OpToFold.isReg() && !Register::isVirtualRegister(OpToFold.getReg())) 1385 continue; 1386 1387 // Prevent folding operands backwards in the function. For example, 1388 // the COPY opcode must not be replaced by 1 in this example: 1389 // 1390 // %3 = COPY %vgpr0; VGPR_32:%3 1391 // ... 1392 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1393 MachineOperand &Dst = MI.getOperand(0); 1394 if (Dst.isReg() && !Register::isVirtualRegister(Dst.getReg())) 1395 continue; 1396 1397 foldInstOperand(MI, OpToFold); 1398 } 1399 } 1400 return false; 1401 } 1402