1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIMachineFunctionInfo.h" 14 #include "llvm/ADT/DepthFirstIterator.h" 15 #include "llvm/CodeGen/MachineFunctionPass.h" 16 17 #define DEBUG_TYPE "si-fold-operands" 18 using namespace llvm; 19 20 namespace { 21 22 struct FoldCandidate { 23 MachineInstr *UseMI; 24 union { 25 MachineOperand *OpToFold; 26 uint64_t ImmToFold; 27 int FrameIndexToFold; 28 }; 29 int ShrinkOpcode; 30 unsigned UseOpNo; 31 MachineOperand::MachineOperandType Kind; 32 bool Commuted; 33 34 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 35 bool Commuted_ = false, 36 int ShrinkOp = -1) : 37 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 38 Kind(FoldOp->getType()), 39 Commuted(Commuted_) { 40 if (FoldOp->isImm()) { 41 ImmToFold = FoldOp->getImm(); 42 } else if (FoldOp->isFI()) { 43 FrameIndexToFold = FoldOp->getIndex(); 44 } else { 45 assert(FoldOp->isReg() || FoldOp->isGlobal()); 46 OpToFold = FoldOp; 47 } 48 } 49 50 bool isFI() const { 51 return Kind == MachineOperand::MO_FrameIndex; 52 } 53 54 bool isImm() const { 55 return Kind == MachineOperand::MO_Immediate; 56 } 57 58 bool isReg() const { 59 return Kind == MachineOperand::MO_Register; 60 } 61 62 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 63 64 bool isCommuted() const { 65 return Commuted; 66 } 67 68 bool needsShrink() const { 69 return ShrinkOpcode != -1; 70 } 71 72 int getShrinkOpcode() const { 73 return ShrinkOpcode; 74 } 75 }; 76 77 class SIFoldOperands : public MachineFunctionPass { 78 public: 79 static char ID; 80 MachineRegisterInfo *MRI; 81 const SIInstrInfo *TII; 82 const SIRegisterInfo *TRI; 83 const GCNSubtarget *ST; 84 const SIMachineFunctionInfo *MFI; 85 86 void foldOperand(MachineOperand &OpToFold, 87 MachineInstr *UseMI, 88 int UseOpIdx, 89 SmallVectorImpl<FoldCandidate> &FoldList, 90 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 91 92 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 93 94 const MachineOperand *isClamp(const MachineInstr &MI) const; 95 bool tryFoldClamp(MachineInstr &MI); 96 97 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 98 bool tryFoldOMod(MachineInstr &MI); 99 100 public: 101 SIFoldOperands() : MachineFunctionPass(ID) { 102 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 103 } 104 105 bool runOnMachineFunction(MachineFunction &MF) override; 106 107 StringRef getPassName() const override { return "SI Fold Operands"; } 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.setPreservesCFG(); 111 MachineFunctionPass::getAnalysisUsage(AU); 112 } 113 }; 114 115 } // End anonymous namespace. 116 117 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 118 "SI Fold Operands", false, false) 119 120 char SIFoldOperands::ID = 0; 121 122 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 123 124 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 125 static unsigned macToMad(unsigned Opc) { 126 switch (Opc) { 127 case AMDGPU::V_MAC_F32_e64: 128 return AMDGPU::V_MAD_F32_e64; 129 case AMDGPU::V_MAC_F16_e64: 130 return AMDGPU::V_MAD_F16_e64; 131 case AMDGPU::V_FMAC_F32_e64: 132 return AMDGPU::V_FMA_F32_e64; 133 case AMDGPU::V_FMAC_F16_e64: 134 return AMDGPU::V_FMA_F16_gfx9_e64; 135 case AMDGPU::V_FMAC_LEGACY_F32_e64: 136 return AMDGPU::V_FMA_LEGACY_F32_e64; 137 } 138 return AMDGPU::INSTRUCTION_LIST_END; 139 } 140 141 // Wrapper around isInlineConstant that understands special cases when 142 // instruction types are replaced during operand folding. 143 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 144 const MachineInstr &UseMI, 145 unsigned OpNo, 146 const MachineOperand &OpToFold) { 147 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 148 return true; 149 150 unsigned Opc = UseMI.getOpcode(); 151 unsigned NewOpc = macToMad(Opc); 152 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 153 // Special case for mac. Since this is replaced with mad when folded into 154 // src2, we need to check the legality for the final instruction. 155 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 156 if (static_cast<int>(OpNo) == Src2Idx) { 157 const MCInstrDesc &MadDesc = TII->get(NewOpc); 158 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 159 } 160 } 161 162 return false; 163 } 164 165 // TODO: Add heuristic that the frame index might not fit in the addressing mode 166 // immediate offset to avoid materializing in loops. 167 static bool frameIndexMayFold(const SIInstrInfo *TII, 168 const MachineInstr &UseMI, 169 int OpNo, 170 const MachineOperand &OpToFold) { 171 if (!OpToFold.isFI()) 172 return false; 173 174 if (TII->isMUBUF(UseMI)) 175 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 176 AMDGPU::OpName::vaddr); 177 if (!TII->isFLATScratch(UseMI)) 178 return false; 179 180 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 181 AMDGPU::OpName::saddr); 182 if (OpNo == SIdx) 183 return true; 184 185 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 186 AMDGPU::OpName::vaddr); 187 return OpNo == VIdx && SIdx == -1; 188 } 189 190 FunctionPass *llvm::createSIFoldOperandsPass() { 191 return new SIFoldOperands(); 192 } 193 194 static bool updateOperand(FoldCandidate &Fold, 195 const SIInstrInfo &TII, 196 const TargetRegisterInfo &TRI, 197 const GCNSubtarget &ST) { 198 MachineInstr *MI = Fold.UseMI; 199 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 200 assert(Old.isReg()); 201 202 if (Fold.isImm()) { 203 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 204 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 205 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 206 ST.hasInv2PiInlineImm())) { 207 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 208 // already set. 209 unsigned Opcode = MI->getOpcode(); 210 int OpNo = MI->getOperandNo(&Old); 211 int ModIdx = -1; 212 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 213 ModIdx = AMDGPU::OpName::src0_modifiers; 214 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 215 ModIdx = AMDGPU::OpName::src1_modifiers; 216 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 217 ModIdx = AMDGPU::OpName::src2_modifiers; 218 assert(ModIdx != -1); 219 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 220 MachineOperand &Mod = MI->getOperand(ModIdx); 221 unsigned Val = Mod.getImm(); 222 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 223 // Only apply the following transformation if that operand requries 224 // a packed immediate. 225 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 226 case AMDGPU::OPERAND_REG_IMM_V2FP16: 227 case AMDGPU::OPERAND_REG_IMM_V2INT16: 228 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 229 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 230 // If upper part is all zero we do not need op_sel_hi. 231 if (!isUInt<16>(Fold.ImmToFold)) { 232 if (!(Fold.ImmToFold & 0xffff)) { 233 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 234 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 235 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 236 return true; 237 } 238 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 239 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 240 return true; 241 } 242 break; 243 default: 244 break; 245 } 246 } 247 } 248 } 249 250 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 251 MachineBasicBlock *MBB = MI->getParent(); 252 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 253 if (Liveness != MachineBasicBlock::LQR_Dead) { 254 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 255 return false; 256 } 257 258 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 259 int Op32 = Fold.getShrinkOpcode(); 260 MachineOperand &Dst0 = MI->getOperand(0); 261 MachineOperand &Dst1 = MI->getOperand(1); 262 assert(Dst0.isDef() && Dst1.isDef()); 263 264 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 265 266 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 267 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 268 269 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 270 271 if (HaveNonDbgCarryUse) { 272 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 273 .addReg(AMDGPU::VCC, RegState::Kill); 274 } 275 276 // Keep the old instruction around to avoid breaking iterators, but 277 // replace it with a dummy instruction to remove uses. 278 // 279 // FIXME: We should not invert how this pass looks at operands to avoid 280 // this. Should track set of foldable movs instead of looking for uses 281 // when looking at a use. 282 Dst0.setReg(NewReg0); 283 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 284 MI->RemoveOperand(I); 285 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 286 287 if (Fold.isCommuted()) 288 TII.commuteInstruction(*Inst32, false); 289 return true; 290 } 291 292 assert(!Fold.needsShrink() && "not handled"); 293 294 if (Fold.isImm()) { 295 Old.ChangeToImmediate(Fold.ImmToFold); 296 return true; 297 } 298 299 if (Fold.isGlobal()) { 300 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 301 Fold.OpToFold->getTargetFlags()); 302 return true; 303 } 304 305 if (Fold.isFI()) { 306 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 307 return true; 308 } 309 310 MachineOperand *New = Fold.OpToFold; 311 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 312 Old.setIsUndef(New->isUndef()); 313 return true; 314 } 315 316 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 317 const MachineInstr *MI) { 318 for (auto Candidate : FoldList) { 319 if (Candidate.UseMI == MI) 320 return true; 321 } 322 return false; 323 } 324 325 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 326 MachineInstr *MI, unsigned OpNo, 327 MachineOperand *FoldOp, bool Commuted = false, 328 int ShrinkOp = -1) { 329 // Skip additional folding on the same operand. 330 for (FoldCandidate &Fold : FoldList) 331 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 332 return; 333 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 334 << " operand " << OpNo << "\n " << *MI << '\n'); 335 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 336 } 337 338 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 339 MachineInstr *MI, unsigned OpNo, 340 MachineOperand *OpToFold, 341 const SIInstrInfo *TII) { 342 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 343 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 344 unsigned Opc = MI->getOpcode(); 345 unsigned NewOpc = macToMad(Opc); 346 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 347 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 348 // to fold the operand. 349 MI->setDesc(TII->get(NewOpc)); 350 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 351 if (FoldAsMAD) { 352 MI->untieRegOperand(OpNo); 353 return true; 354 } 355 MI->setDesc(TII->get(Opc)); 356 } 357 358 // Special case for s_setreg_b32 359 if (OpToFold->isImm()) { 360 unsigned ImmOpc = 0; 361 if (Opc == AMDGPU::S_SETREG_B32) 362 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 363 else if (Opc == AMDGPU::S_SETREG_B32_mode) 364 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 365 if (ImmOpc) { 366 MI->setDesc(TII->get(ImmOpc)); 367 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 368 return true; 369 } 370 } 371 372 // If we are already folding into another operand of MI, then 373 // we can't commute the instruction, otherwise we risk making the 374 // other fold illegal. 375 if (isUseMIInFoldList(FoldList, MI)) 376 return false; 377 378 unsigned CommuteOpNo = OpNo; 379 380 // Operand is not legal, so try to commute the instruction to 381 // see if this makes it possible to fold. 382 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 383 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 384 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 385 386 if (CanCommute) { 387 if (CommuteIdx0 == OpNo) 388 CommuteOpNo = CommuteIdx1; 389 else if (CommuteIdx1 == OpNo) 390 CommuteOpNo = CommuteIdx0; 391 } 392 393 394 // One of operands might be an Imm operand, and OpNo may refer to it after 395 // the call of commuteInstruction() below. Such situations are avoided 396 // here explicitly as OpNo must be a register operand to be a candidate 397 // for memory folding. 398 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 399 !MI->getOperand(CommuteIdx1).isReg())) 400 return false; 401 402 if (!CanCommute || 403 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 404 return false; 405 406 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 407 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 408 Opc == AMDGPU::V_SUB_CO_U32_e64 || 409 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 410 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 411 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 412 413 // Verify the other operand is a VGPR, otherwise we would violate the 414 // constant bus restriction. 415 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 416 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 417 if (!OtherOp.isReg() || 418 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 419 return false; 420 421 assert(MI->getOperand(1).isDef()); 422 423 // Make sure to get the 32-bit version of the commuted opcode. 424 unsigned MaybeCommutedOpc = MI->getOpcode(); 425 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 426 427 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 428 return true; 429 } 430 431 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 432 return false; 433 } 434 435 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 436 return true; 437 } 438 439 // Check the case where we might introduce a second constant operand to a 440 // scalar instruction 441 if (TII->isSALU(MI->getOpcode())) { 442 const MCInstrDesc &InstDesc = MI->getDesc(); 443 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 444 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 445 446 // Fine if the operand can be encoded as an inline constant 447 if (OpToFold->isImm()) { 448 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 449 !TII->isInlineConstant(*OpToFold, OpInfo)) { 450 // Otherwise check for another constant 451 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 452 auto &Op = MI->getOperand(i); 453 if (OpNo != i && 454 TII->isLiteralConstantLike(Op, OpInfo)) { 455 return false; 456 } 457 } 458 } 459 } 460 } 461 462 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 463 return true; 464 } 465 466 // If the use operand doesn't care about the value, this may be an operand only 467 // used for register indexing, in which case it is unsafe to fold. 468 static bool isUseSafeToFold(const SIInstrInfo *TII, 469 const MachineInstr &MI, 470 const MachineOperand &UseMO) { 471 if (UseMO.isUndef() || TII->isSDWA(MI)) 472 return false; 473 474 switch (MI.getOpcode()) { 475 case AMDGPU::V_MOV_B32_e32: 476 case AMDGPU::V_MOV_B32_e64: 477 case AMDGPU::V_MOV_B64_PSEUDO: 478 // Do not fold into an indirect mov. 479 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 480 } 481 482 return true; 483 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 484 } 485 486 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 487 // for each subreg, tracking it to foldable inline immediate if possible. 488 // Returns true on success. 489 static bool getRegSeqInit( 490 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 491 Register UseReg, uint8_t OpTy, 492 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 493 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 494 if (!Def || !Def->isRegSequence()) 495 return false; 496 497 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 498 MachineOperand *Sub = &Def->getOperand(I); 499 assert (Sub->isReg()); 500 501 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 502 SubDef && Sub->isReg() && !Sub->getSubReg() && 503 TII->isFoldableCopy(*SubDef); 504 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 505 MachineOperand *Op = &SubDef->getOperand(1); 506 if (Op->isImm()) { 507 if (TII->isInlineConstant(*Op, OpTy)) 508 Sub = Op; 509 break; 510 } 511 if (!Op->isReg()) 512 break; 513 Sub = Op; 514 } 515 516 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 517 } 518 519 return true; 520 } 521 522 static bool tryToFoldACImm(const SIInstrInfo *TII, 523 const MachineOperand &OpToFold, 524 MachineInstr *UseMI, 525 unsigned UseOpIdx, 526 SmallVectorImpl<FoldCandidate> &FoldList) { 527 const MCInstrDesc &Desc = UseMI->getDesc(); 528 const MCOperandInfo *OpInfo = Desc.OpInfo; 529 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 530 return false; 531 532 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 533 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 534 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 535 return false; 536 537 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 538 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 539 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 540 return true; 541 } 542 543 if (!OpToFold.isReg()) 544 return false; 545 546 Register UseReg = OpToFold.getReg(); 547 if (!UseReg.isVirtual()) 548 return false; 549 550 if (llvm::any_of(FoldList, [UseMI](const FoldCandidate &FC) { 551 return FC.UseMI == UseMI; 552 })) 553 return false; 554 555 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 556 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 557 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 558 return false; 559 560 int32_t Imm; 561 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 562 const MachineOperand *Op = Defs[I].first; 563 if (!Op->isImm()) 564 return false; 565 566 auto SubImm = Op->getImm(); 567 if (!I) { 568 Imm = SubImm; 569 if (!TII->isInlineConstant(*Op, OpTy) || 570 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 571 return false; 572 573 continue; 574 } 575 if (Imm != SubImm) 576 return false; // Can only fold splat constants 577 } 578 579 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 580 return true; 581 } 582 583 void SIFoldOperands::foldOperand( 584 MachineOperand &OpToFold, 585 MachineInstr *UseMI, 586 int UseOpIdx, 587 SmallVectorImpl<FoldCandidate> &FoldList, 588 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 589 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 590 591 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 592 return; 593 594 // FIXME: Fold operands with subregs. 595 if (UseOp.isReg() && OpToFold.isReg()) { 596 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 597 return; 598 } 599 600 // Special case for REG_SEQUENCE: We can't fold literals into 601 // REG_SEQUENCE instructions, so we have to fold them into the 602 // uses of REG_SEQUENCE. 603 if (UseMI->isRegSequence()) { 604 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 605 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 606 607 MachineRegisterInfo::use_nodbg_iterator Next; 608 for (MachineRegisterInfo::use_nodbg_iterator 609 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end(); 610 RSUse != RSE; RSUse = Next) { 611 Next = std::next(RSUse); 612 613 MachineInstr *RSUseMI = RSUse->getParent(); 614 615 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 616 RSUse.getOperandNo(), FoldList)) 617 continue; 618 619 if (RSUse->getSubReg() != RegSeqDstSubReg) 620 continue; 621 622 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 623 CopiesToReplace); 624 } 625 626 return; 627 } 628 629 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 630 return; 631 632 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 633 // Sanity check that this is a stack access. 634 // FIXME: Should probably use stack pseudos before frame lowering. 635 636 if (TII->isMUBUF(*UseMI)) { 637 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 638 MFI->getScratchRSrcReg()) 639 return; 640 641 // Ensure this is either relative to the current frame or the current 642 // wave. 643 MachineOperand &SOff = 644 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 645 if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) && 646 (!SOff.isImm() || SOff.getImm() != 0)) 647 return; 648 649 // If this is relative to the current wave, update it to be relative to 650 // the current frame. 651 if (SOff.isImm()) 652 SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false); 653 } 654 655 // A frame index will resolve to a positive constant, so it should always be 656 // safe to fold the addressing mode, even pre-GFX9. 657 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 658 659 if (TII->isFLATScratch(*UseMI) && 660 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 661 AMDGPU::OpName::vaddr) != -1) { 662 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 663 UseMI->setDesc(TII->get(NewOpc)); 664 } 665 666 return; 667 } 668 669 bool FoldingImmLike = 670 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 671 672 if (FoldingImmLike && UseMI->isCopy()) { 673 Register DestReg = UseMI->getOperand(0).getReg(); 674 Register SrcReg = UseMI->getOperand(1).getReg(); 675 assert(SrcReg.isVirtual()); 676 677 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 678 679 // Don't fold into a copy to a physical register with the same class. Doing 680 // so would interfere with the register coalescer's logic which would avoid 681 // redundant initalizations. 682 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 683 return; 684 685 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 686 if (!DestReg.isPhysical()) { 687 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 688 MachineRegisterInfo::use_nodbg_iterator NextUse; 689 SmallVector<FoldCandidate, 4> CopyUses; 690 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg), 691 E = MRI->use_nodbg_end(); 692 Use != E; Use = NextUse) { 693 NextUse = std::next(Use); 694 // There's no point trying to fold into an implicit operand. 695 if (Use->isImplicit()) 696 continue; 697 698 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(), 699 &UseMI->getOperand(1)); 700 CopyUses.push_back(FC); 701 } 702 for (auto &F : CopyUses) { 703 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 704 } 705 } 706 707 if (DestRC == &AMDGPU::AGPR_32RegClass && 708 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 709 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 710 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 711 CopiesToReplace.push_back(UseMI); 712 return; 713 } 714 } 715 716 // In order to fold immediates into copies, we need to change the 717 // copy to a MOV. 718 719 unsigned MovOp = TII->getMovOpcode(DestRC); 720 if (MovOp == AMDGPU::COPY) 721 return; 722 723 UseMI->setDesc(TII->get(MovOp)); 724 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 725 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 726 while (ImpOpI != ImpOpE) { 727 MachineInstr::mop_iterator Tmp = ImpOpI; 728 ImpOpI++; 729 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 730 } 731 CopiesToReplace.push_back(UseMI); 732 } else { 733 if (UseMI->isCopy() && OpToFold.isReg() && 734 UseMI->getOperand(0).getReg().isVirtual() && 735 !UseMI->getOperand(1).getSubReg()) { 736 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 737 << "\n into " << *UseMI << '\n'); 738 unsigned Size = TII->getOpSize(*UseMI, 1); 739 Register UseReg = OpToFold.getReg(); 740 UseMI->getOperand(1).setReg(UseReg); 741 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 742 UseMI->getOperand(1).setIsKill(false); 743 CopiesToReplace.push_back(UseMI); 744 OpToFold.setIsKill(false); 745 746 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 747 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 748 // its initializers right here, so we will rematerialize immediates and 749 // avoid copies via different reg classes. 750 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 751 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 752 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 753 *MRI)) { 754 const DebugLoc &DL = UseMI->getDebugLoc(); 755 MachineBasicBlock &MBB = *UseMI->getParent(); 756 757 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 758 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 759 UseMI->RemoveOperand(I); 760 761 MachineInstrBuilder B(*MBB.getParent(), UseMI); 762 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 763 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 764 for (unsigned I = 0; I < Size / 4; ++I) { 765 MachineOperand *Def = Defs[I].first; 766 TargetInstrInfo::RegSubRegPair CopyToVGPR; 767 if (Def->isImm() && 768 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 769 int64_t Imm = Def->getImm(); 770 771 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 772 BuildMI(MBB, UseMI, DL, 773 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 774 B.addReg(Tmp); 775 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 776 auto Src = getRegSubRegPair(*Def); 777 Def->setIsKill(false); 778 if (!SeenAGPRs.insert(Src)) { 779 // We cannot build a reg_sequence out of the same registers, they 780 // must be copied. Better do it here before copyPhysReg() created 781 // several reads to do the AGPR->VGPR->AGPR copy. 782 CopyToVGPR = Src; 783 } else { 784 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 785 Src.SubReg); 786 } 787 } else { 788 assert(Def->isReg()); 789 Def->setIsKill(false); 790 auto Src = getRegSubRegPair(*Def); 791 792 // Direct copy from SGPR to AGPR is not possible. To avoid creation 793 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 794 // create a copy here and track if we already have such a copy. 795 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 796 CopyToVGPR = Src; 797 } else { 798 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 799 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 800 B.addReg(Tmp); 801 } 802 } 803 804 if (CopyToVGPR.Reg) { 805 Register Vgpr; 806 if (VGPRCopies.count(CopyToVGPR)) { 807 Vgpr = VGPRCopies[CopyToVGPR]; 808 } else { 809 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 810 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 811 VGPRCopies[CopyToVGPR] = Vgpr; 812 } 813 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 814 BuildMI(MBB, UseMI, DL, 815 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 816 B.addReg(Tmp); 817 } 818 819 B.addImm(Defs[I].second); 820 } 821 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 822 return; 823 } 824 825 if (Size != 4) 826 return; 827 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 828 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 829 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 830 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 831 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 832 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 833 return; 834 } 835 836 unsigned UseOpc = UseMI->getOpcode(); 837 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 838 (UseOpc == AMDGPU::V_READLANE_B32 && 839 (int)UseOpIdx == 840 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 841 // %vgpr = V_MOV_B32 imm 842 // %sgpr = V_READFIRSTLANE_B32 %vgpr 843 // => 844 // %sgpr = S_MOV_B32 imm 845 if (FoldingImmLike) { 846 if (execMayBeModifiedBeforeUse(*MRI, 847 UseMI->getOperand(UseOpIdx).getReg(), 848 *OpToFold.getParent(), 849 *UseMI)) 850 return; 851 852 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 853 854 if (OpToFold.isImm()) 855 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 856 else 857 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 858 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 859 return; 860 } 861 862 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 863 if (execMayBeModifiedBeforeUse(*MRI, 864 UseMI->getOperand(UseOpIdx).getReg(), 865 *OpToFold.getParent(), 866 *UseMI)) 867 return; 868 869 // %vgpr = COPY %sgpr0 870 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 871 // => 872 // %sgpr1 = COPY %sgpr0 873 UseMI->setDesc(TII->get(AMDGPU::COPY)); 874 UseMI->getOperand(1).setReg(OpToFold.getReg()); 875 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 876 UseMI->getOperand(1).setIsKill(false); 877 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 878 return; 879 } 880 } 881 882 const MCInstrDesc &UseDesc = UseMI->getDesc(); 883 884 // Don't fold into target independent nodes. Target independent opcodes 885 // don't have defined register classes. 886 if (UseDesc.isVariadic() || 887 UseOp.isImplicit() || 888 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 889 return; 890 } 891 892 if (!FoldingImmLike) { 893 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 894 895 // FIXME: We could try to change the instruction from 64-bit to 32-bit 896 // to enable more folding opportunites. The shrink operands pass 897 // already does this. 898 return; 899 } 900 901 902 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 903 const TargetRegisterClass *FoldRC = 904 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 905 906 // Split 64-bit constants into 32-bits for folding. 907 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 908 Register UseReg = UseOp.getReg(); 909 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 910 911 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 912 return; 913 914 APInt Imm(64, OpToFold.getImm()); 915 if (UseOp.getSubReg() == AMDGPU::sub0) { 916 Imm = Imm.getLoBits(32); 917 } else { 918 assert(UseOp.getSubReg() == AMDGPU::sub1); 919 Imm = Imm.getHiBits(32); 920 } 921 922 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 923 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 924 return; 925 } 926 927 928 929 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 930 } 931 932 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 933 uint32_t LHS, uint32_t RHS) { 934 switch (Opcode) { 935 case AMDGPU::V_AND_B32_e64: 936 case AMDGPU::V_AND_B32_e32: 937 case AMDGPU::S_AND_B32: 938 Result = LHS & RHS; 939 return true; 940 case AMDGPU::V_OR_B32_e64: 941 case AMDGPU::V_OR_B32_e32: 942 case AMDGPU::S_OR_B32: 943 Result = LHS | RHS; 944 return true; 945 case AMDGPU::V_XOR_B32_e64: 946 case AMDGPU::V_XOR_B32_e32: 947 case AMDGPU::S_XOR_B32: 948 Result = LHS ^ RHS; 949 return true; 950 case AMDGPU::S_XNOR_B32: 951 Result = ~(LHS ^ RHS); 952 return true; 953 case AMDGPU::S_NAND_B32: 954 Result = ~(LHS & RHS); 955 return true; 956 case AMDGPU::S_NOR_B32: 957 Result = ~(LHS | RHS); 958 return true; 959 case AMDGPU::S_ANDN2_B32: 960 Result = LHS & ~RHS; 961 return true; 962 case AMDGPU::S_ORN2_B32: 963 Result = LHS | ~RHS; 964 return true; 965 case AMDGPU::V_LSHL_B32_e64: 966 case AMDGPU::V_LSHL_B32_e32: 967 case AMDGPU::S_LSHL_B32: 968 // The instruction ignores the high bits for out of bounds shifts. 969 Result = LHS << (RHS & 31); 970 return true; 971 case AMDGPU::V_LSHLREV_B32_e64: 972 case AMDGPU::V_LSHLREV_B32_e32: 973 Result = RHS << (LHS & 31); 974 return true; 975 case AMDGPU::V_LSHR_B32_e64: 976 case AMDGPU::V_LSHR_B32_e32: 977 case AMDGPU::S_LSHR_B32: 978 Result = LHS >> (RHS & 31); 979 return true; 980 case AMDGPU::V_LSHRREV_B32_e64: 981 case AMDGPU::V_LSHRREV_B32_e32: 982 Result = RHS >> (LHS & 31); 983 return true; 984 case AMDGPU::V_ASHR_I32_e64: 985 case AMDGPU::V_ASHR_I32_e32: 986 case AMDGPU::S_ASHR_I32: 987 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 988 return true; 989 case AMDGPU::V_ASHRREV_I32_e64: 990 case AMDGPU::V_ASHRREV_I32_e32: 991 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 992 return true; 993 default: 994 return false; 995 } 996 } 997 998 static unsigned getMovOpc(bool IsScalar) { 999 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1000 } 1001 1002 /// Remove any leftover implicit operands from mutating the instruction. e.g. 1003 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1004 /// anymore. 1005 static void stripExtraCopyOperands(MachineInstr &MI) { 1006 const MCInstrDesc &Desc = MI.getDesc(); 1007 unsigned NumOps = Desc.getNumOperands() + 1008 Desc.getNumImplicitUses() + 1009 Desc.getNumImplicitDefs(); 1010 1011 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1012 MI.RemoveOperand(I); 1013 } 1014 1015 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1016 MI.setDesc(NewDesc); 1017 stripExtraCopyOperands(MI); 1018 } 1019 1020 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1021 MachineOperand &Op) { 1022 if (Op.isReg()) { 1023 // If this has a subregister, it obviously is a register source. 1024 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1025 return &Op; 1026 1027 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1028 if (Def && Def->isMoveImmediate()) { 1029 MachineOperand &ImmSrc = Def->getOperand(1); 1030 if (ImmSrc.isImm()) 1031 return &ImmSrc; 1032 } 1033 } 1034 1035 return &Op; 1036 } 1037 1038 // Try to simplify operations with a constant that may appear after instruction 1039 // selection. 1040 // TODO: See if a frame index with a fixed offset can fold. 1041 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1042 const SIInstrInfo *TII, 1043 MachineInstr *MI, 1044 MachineOperand *ImmOp) { 1045 unsigned Opc = MI->getOpcode(); 1046 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1047 Opc == AMDGPU::S_NOT_B32) { 1048 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1049 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1050 return true; 1051 } 1052 1053 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1054 if (Src1Idx == -1) 1055 return false; 1056 1057 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1058 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1059 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1060 1061 if (!Src0->isImm() && !Src1->isImm()) 1062 return false; 1063 1064 // and k0, k1 -> v_mov_b32 (k0 & k1) 1065 // or k0, k1 -> v_mov_b32 (k0 | k1) 1066 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1067 if (Src0->isImm() && Src1->isImm()) { 1068 int32_t NewImm; 1069 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1070 return false; 1071 1072 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1073 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1074 1075 // Be careful to change the right operand, src0 may belong to a different 1076 // instruction. 1077 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1078 MI->RemoveOperand(Src1Idx); 1079 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1080 return true; 1081 } 1082 1083 if (!MI->isCommutable()) 1084 return false; 1085 1086 if (Src0->isImm() && !Src1->isImm()) { 1087 std::swap(Src0, Src1); 1088 std::swap(Src0Idx, Src1Idx); 1089 } 1090 1091 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1092 if (Opc == AMDGPU::V_OR_B32_e64 || 1093 Opc == AMDGPU::V_OR_B32_e32 || 1094 Opc == AMDGPU::S_OR_B32) { 1095 if (Src1Val == 0) { 1096 // y = or x, 0 => y = copy x 1097 MI->RemoveOperand(Src1Idx); 1098 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1099 } else if (Src1Val == -1) { 1100 // y = or x, -1 => y = v_mov_b32 -1 1101 MI->RemoveOperand(Src1Idx); 1102 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1103 } else 1104 return false; 1105 1106 return true; 1107 } 1108 1109 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1110 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1111 MI->getOpcode() == AMDGPU::S_AND_B32) { 1112 if (Src1Val == 0) { 1113 // y = and x, 0 => y = v_mov_b32 0 1114 MI->RemoveOperand(Src0Idx); 1115 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1116 } else if (Src1Val == -1) { 1117 // y = and x, -1 => y = copy x 1118 MI->RemoveOperand(Src1Idx); 1119 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1120 stripExtraCopyOperands(*MI); 1121 } else 1122 return false; 1123 1124 return true; 1125 } 1126 1127 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1128 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1129 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1130 if (Src1Val == 0) { 1131 // y = xor x, 0 => y = copy x 1132 MI->RemoveOperand(Src1Idx); 1133 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1134 return true; 1135 } 1136 } 1137 1138 return false; 1139 } 1140 1141 // Try to fold an instruction into a simpler one 1142 static bool tryFoldInst(const SIInstrInfo *TII, 1143 MachineInstr *MI) { 1144 unsigned Opc = MI->getOpcode(); 1145 1146 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1147 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1148 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1149 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1150 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1151 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1152 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1153 if (Src1->isIdenticalTo(*Src0) && 1154 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1155 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1156 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1157 auto &NewDesc = 1158 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1159 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1160 if (Src2Idx != -1) 1161 MI->RemoveOperand(Src2Idx); 1162 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1163 if (Src1ModIdx != -1) 1164 MI->RemoveOperand(Src1ModIdx); 1165 if (Src0ModIdx != -1) 1166 MI->RemoveOperand(Src0ModIdx); 1167 mutateCopyOp(*MI, NewDesc); 1168 LLVM_DEBUG(dbgs() << *MI << '\n'); 1169 return true; 1170 } 1171 } 1172 1173 return false; 1174 } 1175 1176 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1177 MachineOperand &OpToFold) const { 1178 // We need mutate the operands of new mov instructions to add implicit 1179 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1180 // this. 1181 SmallVector<MachineInstr *, 4> CopiesToReplace; 1182 SmallVector<FoldCandidate, 4> FoldList; 1183 MachineOperand &Dst = MI.getOperand(0); 1184 1185 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1186 if (FoldingImm) { 1187 unsigned NumLiteralUses = 0; 1188 MachineOperand *NonInlineUse = nullptr; 1189 int NonInlineUseOpNo = -1; 1190 1191 MachineRegisterInfo::use_nodbg_iterator NextUse; 1192 for (MachineRegisterInfo::use_nodbg_iterator 1193 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1194 Use != E; Use = NextUse) { 1195 NextUse = std::next(Use); 1196 MachineInstr *UseMI = Use->getParent(); 1197 unsigned OpNo = Use.getOperandNo(); 1198 1199 // Folding the immediate may reveal operations that can be constant 1200 // folded or replaced with a copy. This can happen for example after 1201 // frame indices are lowered to constants or from splitting 64-bit 1202 // constants. 1203 // 1204 // We may also encounter cases where one or both operands are 1205 // immediates materialized into a register, which would ordinarily not 1206 // be folded due to multiple uses or operand constraints. 1207 1208 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1209 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1210 1211 // Some constant folding cases change the same immediate's use to a new 1212 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1213 // again. The same constant folded instruction could also have a second 1214 // use operand. 1215 NextUse = MRI->use_nodbg_begin(Dst.getReg()); 1216 FoldList.clear(); 1217 continue; 1218 } 1219 1220 // Try to fold any inline immediate uses, and then only fold other 1221 // constants if they have one use. 1222 // 1223 // The legality of the inline immediate must be checked based on the use 1224 // operand, not the defining instruction, because 32-bit instructions 1225 // with 32-bit inline immediate sources may be used to materialize 1226 // constants used in 16-bit operands. 1227 // 1228 // e.g. it is unsafe to fold: 1229 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1230 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1231 1232 // Folding immediates with more than one use will increase program size. 1233 // FIXME: This will also reduce register usage, which may be better 1234 // in some cases. A better heuristic is needed. 1235 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1236 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1237 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1238 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1239 CopiesToReplace); 1240 } else { 1241 if (++NumLiteralUses == 1) { 1242 NonInlineUse = &*Use; 1243 NonInlineUseOpNo = OpNo; 1244 } 1245 } 1246 } 1247 1248 if (NumLiteralUses == 1) { 1249 MachineInstr *UseMI = NonInlineUse->getParent(); 1250 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1251 } 1252 } else { 1253 // Folding register. 1254 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess; 1255 for (MachineRegisterInfo::use_nodbg_iterator 1256 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1257 Use != E; ++Use) { 1258 UsesToProcess.push_back(Use); 1259 } 1260 for (auto U : UsesToProcess) { 1261 MachineInstr *UseMI = U->getParent(); 1262 1263 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1264 FoldList, CopiesToReplace); 1265 } 1266 } 1267 1268 MachineFunction *MF = MI.getParent()->getParent(); 1269 // Make sure we add EXEC uses to any new v_mov instructions created. 1270 for (MachineInstr *Copy : CopiesToReplace) 1271 Copy->addImplicitDefUseOperands(*MF); 1272 1273 SmallPtrSet<MachineInstr *, 16> Folded; 1274 for (FoldCandidate &Fold : FoldList) { 1275 assert(!Fold.isReg() || Fold.OpToFold); 1276 if (Folded.count(Fold.UseMI)) 1277 continue; 1278 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1279 Register Reg = Fold.OpToFold->getReg(); 1280 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1281 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1282 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1283 continue; 1284 } 1285 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1286 // Clear kill flags. 1287 if (Fold.isReg()) { 1288 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1289 // FIXME: Probably shouldn't bother trying to fold if not an 1290 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1291 // copies. 1292 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1293 } 1294 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1295 << static_cast<int>(Fold.UseOpNo) << " of " 1296 << *Fold.UseMI << '\n'); 1297 if (tryFoldInst(TII, Fold.UseMI)) 1298 Folded.insert(Fold.UseMI); 1299 } else if (Fold.isCommuted()) { 1300 // Restoring instruction's original operand order if fold has failed. 1301 TII->commuteInstruction(*Fold.UseMI, false); 1302 } 1303 } 1304 } 1305 1306 // Clamp patterns are canonically selected to v_max_* instructions, so only 1307 // handle them. 1308 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1309 unsigned Op = MI.getOpcode(); 1310 switch (Op) { 1311 case AMDGPU::V_MAX_F32_e64: 1312 case AMDGPU::V_MAX_F16_e64: 1313 case AMDGPU::V_MAX_F64_e64: 1314 case AMDGPU::V_PK_MAX_F16: { 1315 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1316 return nullptr; 1317 1318 // Make sure sources are identical. 1319 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1320 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1321 if (!Src0->isReg() || !Src1->isReg() || 1322 Src0->getReg() != Src1->getReg() || 1323 Src0->getSubReg() != Src1->getSubReg() || 1324 Src0->getSubReg() != AMDGPU::NoSubRegister) 1325 return nullptr; 1326 1327 // Can't fold up if we have modifiers. 1328 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1329 return nullptr; 1330 1331 unsigned Src0Mods 1332 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1333 unsigned Src1Mods 1334 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1335 1336 // Having a 0 op_sel_hi would require swizzling the output in the source 1337 // instruction, which we can't do. 1338 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1339 : 0u; 1340 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1341 return nullptr; 1342 return Src0; 1343 } 1344 default: 1345 return nullptr; 1346 } 1347 } 1348 1349 // We obviously have multiple uses in a clamp since the register is used twice 1350 // in the same instruction. 1351 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1352 int Count = 0; 1353 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1354 I != E; ++I) { 1355 if (++Count > 1) 1356 return false; 1357 } 1358 1359 return true; 1360 } 1361 1362 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1363 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1364 const MachineOperand *ClampSrc = isClamp(MI); 1365 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1366 return false; 1367 1368 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1369 1370 // The type of clamp must be compatible. 1371 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1372 return false; 1373 1374 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1375 if (!DefClamp) 1376 return false; 1377 1378 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1379 << '\n'); 1380 1381 // Clamp is applied after omod, so it is OK if omod is set. 1382 DefClamp->setImm(1); 1383 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1384 MI.eraseFromParent(); 1385 return true; 1386 } 1387 1388 static int getOModValue(unsigned Opc, int64_t Val) { 1389 switch (Opc) { 1390 case AMDGPU::V_MUL_F32_e64: { 1391 switch (static_cast<uint32_t>(Val)) { 1392 case 0x3f000000: // 0.5 1393 return SIOutMods::DIV2; 1394 case 0x40000000: // 2.0 1395 return SIOutMods::MUL2; 1396 case 0x40800000: // 4.0 1397 return SIOutMods::MUL4; 1398 default: 1399 return SIOutMods::NONE; 1400 } 1401 } 1402 case AMDGPU::V_MUL_F16_e64: { 1403 switch (static_cast<uint16_t>(Val)) { 1404 case 0x3800: // 0.5 1405 return SIOutMods::DIV2; 1406 case 0x4000: // 2.0 1407 return SIOutMods::MUL2; 1408 case 0x4400: // 4.0 1409 return SIOutMods::MUL4; 1410 default: 1411 return SIOutMods::NONE; 1412 } 1413 } 1414 default: 1415 llvm_unreachable("invalid mul opcode"); 1416 } 1417 } 1418 1419 // FIXME: Does this really not support denormals with f16? 1420 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1421 // handled, so will anything other than that break? 1422 std::pair<const MachineOperand *, int> 1423 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1424 unsigned Op = MI.getOpcode(); 1425 switch (Op) { 1426 case AMDGPU::V_MUL_F32_e64: 1427 case AMDGPU::V_MUL_F16_e64: { 1428 // If output denormals are enabled, omod is ignored. 1429 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1430 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1431 return std::make_pair(nullptr, SIOutMods::NONE); 1432 1433 const MachineOperand *RegOp = nullptr; 1434 const MachineOperand *ImmOp = nullptr; 1435 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1436 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1437 if (Src0->isImm()) { 1438 ImmOp = Src0; 1439 RegOp = Src1; 1440 } else if (Src1->isImm()) { 1441 ImmOp = Src1; 1442 RegOp = Src0; 1443 } else 1444 return std::make_pair(nullptr, SIOutMods::NONE); 1445 1446 int OMod = getOModValue(Op, ImmOp->getImm()); 1447 if (OMod == SIOutMods::NONE || 1448 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1449 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1450 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1451 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1452 return std::make_pair(nullptr, SIOutMods::NONE); 1453 1454 return std::make_pair(RegOp, OMod); 1455 } 1456 case AMDGPU::V_ADD_F32_e64: 1457 case AMDGPU::V_ADD_F16_e64: { 1458 // If output denormals are enabled, omod is ignored. 1459 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1460 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1461 return std::make_pair(nullptr, SIOutMods::NONE); 1462 1463 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1464 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1465 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1466 1467 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1468 Src0->getSubReg() == Src1->getSubReg() && 1469 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1470 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1471 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1472 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1473 return std::make_pair(Src0, SIOutMods::MUL2); 1474 1475 return std::make_pair(nullptr, SIOutMods::NONE); 1476 } 1477 default: 1478 return std::make_pair(nullptr, SIOutMods::NONE); 1479 } 1480 } 1481 1482 // FIXME: Does this need to check IEEE bit on function? 1483 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1484 const MachineOperand *RegOp; 1485 int OMod; 1486 std::tie(RegOp, OMod) = isOMod(MI); 1487 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1488 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1489 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1490 return false; 1491 1492 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1493 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1494 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1495 return false; 1496 1497 // Clamp is applied after omod. If the source already has clamp set, don't 1498 // fold it. 1499 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1500 return false; 1501 1502 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1503 1504 DefOMod->setImm(OMod); 1505 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1506 MI.eraseFromParent(); 1507 return true; 1508 } 1509 1510 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1511 if (skipFunction(MF.getFunction())) 1512 return false; 1513 1514 MRI = &MF.getRegInfo(); 1515 ST = &MF.getSubtarget<GCNSubtarget>(); 1516 TII = ST->getInstrInfo(); 1517 TRI = &TII->getRegisterInfo(); 1518 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1519 1520 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1521 // correctly handle signed zeros. 1522 // 1523 // FIXME: Also need to check strictfp 1524 bool IsIEEEMode = MFI->getMode().IEEE; 1525 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1526 1527 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1528 MachineBasicBlock::iterator I, Next; 1529 1530 MachineOperand *CurrentKnownM0Val = nullptr; 1531 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1532 Next = std::next(I); 1533 MachineInstr &MI = *I; 1534 1535 tryFoldInst(TII, &MI); 1536 1537 if (!TII->isFoldableCopy(MI)) { 1538 // Saw an unknown clobber of m0, so we no longer know what it is. 1539 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1540 CurrentKnownM0Val = nullptr; 1541 1542 // TODO: Omod might be OK if there is NSZ only on the source 1543 // instruction, and not the omod multiply. 1544 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1545 !tryFoldOMod(MI)) 1546 tryFoldClamp(MI); 1547 1548 continue; 1549 } 1550 1551 // Specially track simple redefs of m0 to the same value in a block, so we 1552 // can erase the later ones. 1553 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1554 MachineOperand &NewM0Val = MI.getOperand(1); 1555 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1556 MI.eraseFromParent(); 1557 continue; 1558 } 1559 1560 // We aren't tracking other physical registers 1561 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1562 nullptr : &NewM0Val; 1563 continue; 1564 } 1565 1566 MachineOperand &OpToFold = MI.getOperand(1); 1567 bool FoldingImm = 1568 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1569 1570 // FIXME: We could also be folding things like TargetIndexes. 1571 if (!FoldingImm && !OpToFold.isReg()) 1572 continue; 1573 1574 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1575 continue; 1576 1577 // Prevent folding operands backwards in the function. For example, 1578 // the COPY opcode must not be replaced by 1 in this example: 1579 // 1580 // %3 = COPY %vgpr0; VGPR_32:%3 1581 // ... 1582 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1583 MachineOperand &Dst = MI.getOperand(0); 1584 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1585 continue; 1586 1587 foldInstOperand(MI, OpToFold); 1588 } 1589 } 1590 return true; 1591 } 1592