1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "AMDGPUSubtarget.h" 13 #include "SIInstrInfo.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 16 #include "llvm/ADT/DepthFirstIterator.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/CodeGen/MachineFunctionPass.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "si-fold-operands" 26 using namespace llvm; 27 28 namespace { 29 30 struct FoldCandidate { 31 MachineInstr *UseMI; 32 union { 33 MachineOperand *OpToFold; 34 uint64_t ImmToFold; 35 int FrameIndexToFold; 36 }; 37 int ShrinkOpcode; 38 unsigned UseOpNo; 39 MachineOperand::MachineOperandType Kind; 40 bool Commuted; 41 42 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 43 bool Commuted_ = false, 44 int ShrinkOp = -1) : 45 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 46 Kind(FoldOp->getType()), 47 Commuted(Commuted_) { 48 if (FoldOp->isImm()) { 49 ImmToFold = FoldOp->getImm(); 50 } else if (FoldOp->isFI()) { 51 FrameIndexToFold = FoldOp->getIndex(); 52 } else { 53 assert(FoldOp->isReg() || FoldOp->isGlobal()); 54 OpToFold = FoldOp; 55 } 56 } 57 58 bool isFI() const { 59 return Kind == MachineOperand::MO_FrameIndex; 60 } 61 62 bool isImm() const { 63 return Kind == MachineOperand::MO_Immediate; 64 } 65 66 bool isReg() const { 67 return Kind == MachineOperand::MO_Register; 68 } 69 70 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 71 72 bool isCommuted() const { 73 return Commuted; 74 } 75 76 bool needsShrink() const { 77 return ShrinkOpcode != -1; 78 } 79 80 int getShrinkOpcode() const { 81 return ShrinkOpcode; 82 } 83 }; 84 85 class SIFoldOperands : public MachineFunctionPass { 86 public: 87 static char ID; 88 MachineRegisterInfo *MRI; 89 const SIInstrInfo *TII; 90 const SIRegisterInfo *TRI; 91 const GCNSubtarget *ST; 92 const SIMachineFunctionInfo *MFI; 93 94 void foldOperand(MachineOperand &OpToFold, 95 MachineInstr *UseMI, 96 int UseOpIdx, 97 SmallVectorImpl<FoldCandidate> &FoldList, 98 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 99 100 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 101 102 const MachineOperand *isClamp(const MachineInstr &MI) const; 103 bool tryFoldClamp(MachineInstr &MI); 104 105 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 106 bool tryFoldOMod(MachineInstr &MI); 107 108 public: 109 SIFoldOperands() : MachineFunctionPass(ID) { 110 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 111 } 112 113 bool runOnMachineFunction(MachineFunction &MF) override; 114 115 StringRef getPassName() const override { return "SI Fold Operands"; } 116 117 void getAnalysisUsage(AnalysisUsage &AU) const override { 118 AU.setPreservesCFG(); 119 MachineFunctionPass::getAnalysisUsage(AU); 120 } 121 }; 122 123 } // End anonymous namespace. 124 125 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 126 "SI Fold Operands", false, false) 127 128 char SIFoldOperands::ID = 0; 129 130 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 131 132 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 133 static unsigned macToMad(unsigned Opc) { 134 switch (Opc) { 135 case AMDGPU::V_MAC_F32_e64: 136 return AMDGPU::V_MAD_F32; 137 case AMDGPU::V_MAC_F16_e64: 138 return AMDGPU::V_MAD_F16; 139 case AMDGPU::V_FMAC_F32_e64: 140 return AMDGPU::V_FMA_F32; 141 case AMDGPU::V_FMAC_F16_e64: 142 return AMDGPU::V_FMA_F16_gfx9; 143 case AMDGPU::V_FMAC_LEGACY_F32_e64: 144 return AMDGPU::V_FMA_LEGACY_F32; 145 } 146 return AMDGPU::INSTRUCTION_LIST_END; 147 } 148 149 // Wrapper around isInlineConstant that understands special cases when 150 // instruction types are replaced during operand folding. 151 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 152 const MachineInstr &UseMI, 153 unsigned OpNo, 154 const MachineOperand &OpToFold) { 155 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 156 return true; 157 158 unsigned Opc = UseMI.getOpcode(); 159 unsigned NewOpc = macToMad(Opc); 160 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 161 // Special case for mac. Since this is replaced with mad when folded into 162 // src2, we need to check the legality for the final instruction. 163 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 164 if (static_cast<int>(OpNo) == Src2Idx) { 165 const MCInstrDesc &MadDesc = TII->get(NewOpc); 166 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 167 } 168 } 169 170 return false; 171 } 172 173 // TODO: Add heuristic that the frame index might not fit in the addressing mode 174 // immediate offset to avoid materializing in loops. 175 static bool frameIndexMayFold(const SIInstrInfo *TII, 176 const MachineInstr &UseMI, 177 int OpNo, 178 const MachineOperand &OpToFold) { 179 if (!OpToFold.isFI()) 180 return false; 181 182 if (TII->isMUBUF(UseMI)) 183 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 184 AMDGPU::OpName::vaddr); 185 if (!TII->isFLATScratch(UseMI)) 186 return false; 187 188 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 189 AMDGPU::OpName::saddr); 190 if (OpNo == SIdx) 191 return true; 192 193 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 194 AMDGPU::OpName::vaddr); 195 return OpNo == VIdx && SIdx == -1; 196 } 197 198 FunctionPass *llvm::createSIFoldOperandsPass() { 199 return new SIFoldOperands(); 200 } 201 202 static bool updateOperand(FoldCandidate &Fold, 203 const SIInstrInfo &TII, 204 const TargetRegisterInfo &TRI, 205 const GCNSubtarget &ST) { 206 MachineInstr *MI = Fold.UseMI; 207 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 208 assert(Old.isReg()); 209 210 if (Fold.isImm()) { 211 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 212 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 213 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 214 ST.hasInv2PiInlineImm())) { 215 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 216 // already set. 217 unsigned Opcode = MI->getOpcode(); 218 int OpNo = MI->getOperandNo(&Old); 219 int ModIdx = -1; 220 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 221 ModIdx = AMDGPU::OpName::src0_modifiers; 222 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 223 ModIdx = AMDGPU::OpName::src1_modifiers; 224 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 225 ModIdx = AMDGPU::OpName::src2_modifiers; 226 assert(ModIdx != -1); 227 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 228 MachineOperand &Mod = MI->getOperand(ModIdx); 229 unsigned Val = Mod.getImm(); 230 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 231 // Only apply the following transformation if that operand requries 232 // a packed immediate. 233 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 234 case AMDGPU::OPERAND_REG_IMM_V2FP16: 235 case AMDGPU::OPERAND_REG_IMM_V2INT16: 236 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 237 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 238 // If upper part is all zero we do not need op_sel_hi. 239 if (!isUInt<16>(Fold.ImmToFold)) { 240 if (!(Fold.ImmToFold & 0xffff)) { 241 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 242 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 243 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 244 return true; 245 } 246 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 247 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 248 return true; 249 } 250 break; 251 default: 252 break; 253 } 254 } 255 } 256 } 257 258 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 259 MachineBasicBlock *MBB = MI->getParent(); 260 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 261 if (Liveness != MachineBasicBlock::LQR_Dead) { 262 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 263 return false; 264 } 265 266 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 267 int Op32 = Fold.getShrinkOpcode(); 268 MachineOperand &Dst0 = MI->getOperand(0); 269 MachineOperand &Dst1 = MI->getOperand(1); 270 assert(Dst0.isDef() && Dst1.isDef()); 271 272 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 273 274 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 275 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 276 277 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 278 279 if (HaveNonDbgCarryUse) { 280 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 281 .addReg(AMDGPU::VCC, RegState::Kill); 282 } 283 284 // Keep the old instruction around to avoid breaking iterators, but 285 // replace it with a dummy instruction to remove uses. 286 // 287 // FIXME: We should not invert how this pass looks at operands to avoid 288 // this. Should track set of foldable movs instead of looking for uses 289 // when looking at a use. 290 Dst0.setReg(NewReg0); 291 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 292 MI->RemoveOperand(I); 293 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 294 295 if (Fold.isCommuted()) 296 TII.commuteInstruction(*Inst32, false); 297 return true; 298 } 299 300 assert(!Fold.needsShrink() && "not handled"); 301 302 if (Fold.isImm()) { 303 Old.ChangeToImmediate(Fold.ImmToFold); 304 return true; 305 } 306 307 if (Fold.isGlobal()) { 308 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 309 Fold.OpToFold->getTargetFlags()); 310 return true; 311 } 312 313 if (Fold.isFI()) { 314 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 315 return true; 316 } 317 318 MachineOperand *New = Fold.OpToFold; 319 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 320 Old.setIsUndef(New->isUndef()); 321 return true; 322 } 323 324 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 325 const MachineInstr *MI) { 326 for (auto Candidate : FoldList) { 327 if (Candidate.UseMI == MI) 328 return true; 329 } 330 return false; 331 } 332 333 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 334 MachineInstr *MI, unsigned OpNo, 335 MachineOperand *FoldOp, bool Commuted = false, 336 int ShrinkOp = -1) { 337 // Skip additional folding on the same operand. 338 for (FoldCandidate &Fold : FoldList) 339 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 340 return; 341 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 342 << " operand " << OpNo << "\n " << *MI << '\n'); 343 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 344 } 345 346 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 347 MachineInstr *MI, unsigned OpNo, 348 MachineOperand *OpToFold, 349 const SIInstrInfo *TII) { 350 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 351 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 352 unsigned Opc = MI->getOpcode(); 353 unsigned NewOpc = macToMad(Opc); 354 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 355 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 356 // to fold the operand. 357 MI->setDesc(TII->get(NewOpc)); 358 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 359 if (FoldAsMAD) { 360 MI->untieRegOperand(OpNo); 361 return true; 362 } 363 MI->setDesc(TII->get(Opc)); 364 } 365 366 // Special case for s_setreg_b32 367 if (OpToFold->isImm()) { 368 unsigned ImmOpc = 0; 369 if (Opc == AMDGPU::S_SETREG_B32) 370 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 371 else if (Opc == AMDGPU::S_SETREG_B32_mode) 372 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 373 if (ImmOpc) { 374 MI->setDesc(TII->get(ImmOpc)); 375 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 376 return true; 377 } 378 } 379 380 // If we are already folding into another operand of MI, then 381 // we can't commute the instruction, otherwise we risk making the 382 // other fold illegal. 383 if (isUseMIInFoldList(FoldList, MI)) 384 return false; 385 386 unsigned CommuteOpNo = OpNo; 387 388 // Operand is not legal, so try to commute the instruction to 389 // see if this makes it possible to fold. 390 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 391 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 392 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 393 394 if (CanCommute) { 395 if (CommuteIdx0 == OpNo) 396 CommuteOpNo = CommuteIdx1; 397 else if (CommuteIdx1 == OpNo) 398 CommuteOpNo = CommuteIdx0; 399 } 400 401 402 // One of operands might be an Imm operand, and OpNo may refer to it after 403 // the call of commuteInstruction() below. Such situations are avoided 404 // here explicitly as OpNo must be a register operand to be a candidate 405 // for memory folding. 406 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 407 !MI->getOperand(CommuteIdx1).isReg())) 408 return false; 409 410 if (!CanCommute || 411 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 412 return false; 413 414 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 415 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 416 Opc == AMDGPU::V_SUB_CO_U32_e64 || 417 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 418 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 419 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 420 421 // Verify the other operand is a VGPR, otherwise we would violate the 422 // constant bus restriction. 423 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 424 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 425 if (!OtherOp.isReg() || 426 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 427 return false; 428 429 assert(MI->getOperand(1).isDef()); 430 431 // Make sure to get the 32-bit version of the commuted opcode. 432 unsigned MaybeCommutedOpc = MI->getOpcode(); 433 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 434 435 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 436 return true; 437 } 438 439 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 440 return false; 441 } 442 443 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 444 return true; 445 } 446 447 // Check the case where we might introduce a second constant operand to a 448 // scalar instruction 449 if (TII->isSALU(MI->getOpcode())) { 450 const MCInstrDesc &InstDesc = MI->getDesc(); 451 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 452 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 453 454 // Fine if the operand can be encoded as an inline constant 455 if (OpToFold->isImm()) { 456 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 457 !TII->isInlineConstant(*OpToFold, OpInfo)) { 458 // Otherwise check for another constant 459 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 460 auto &Op = MI->getOperand(i); 461 if (OpNo != i && 462 TII->isLiteralConstantLike(Op, OpInfo)) { 463 return false; 464 } 465 } 466 } 467 } 468 } 469 470 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 471 return true; 472 } 473 474 // If the use operand doesn't care about the value, this may be an operand only 475 // used for register indexing, in which case it is unsafe to fold. 476 static bool isUseSafeToFold(const SIInstrInfo *TII, 477 const MachineInstr &MI, 478 const MachineOperand &UseMO) { 479 if (UseMO.isUndef() || TII->isSDWA(MI)) 480 return false; 481 482 switch (MI.getOpcode()) { 483 case AMDGPU::V_MOV_B32_e32: 484 case AMDGPU::V_MOV_B32_e64: 485 case AMDGPU::V_MOV_B64_PSEUDO: 486 // Do not fold into an indirect mov. 487 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 488 } 489 490 return true; 491 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 492 } 493 494 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 495 // for each subreg, tracking it to foldable inline immediate if possible. 496 // Returns true on success. 497 static bool getRegSeqInit( 498 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 499 Register UseReg, uint8_t OpTy, 500 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 501 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 502 if (!Def || !Def->isRegSequence()) 503 return false; 504 505 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 506 MachineOperand *Sub = &Def->getOperand(I); 507 assert (Sub->isReg()); 508 509 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 510 SubDef && Sub->isReg() && !Sub->getSubReg() && 511 TII->isFoldableCopy(*SubDef); 512 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 513 MachineOperand *Op = &SubDef->getOperand(1); 514 if (Op->isImm()) { 515 if (TII->isInlineConstant(*Op, OpTy)) 516 Sub = Op; 517 break; 518 } 519 if (!Op->isReg()) 520 break; 521 Sub = Op; 522 } 523 524 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 525 } 526 527 return true; 528 } 529 530 static bool tryToFoldACImm(const SIInstrInfo *TII, 531 const MachineOperand &OpToFold, 532 MachineInstr *UseMI, 533 unsigned UseOpIdx, 534 SmallVectorImpl<FoldCandidate> &FoldList) { 535 const MCInstrDesc &Desc = UseMI->getDesc(); 536 const MCOperandInfo *OpInfo = Desc.OpInfo; 537 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 538 return false; 539 540 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 541 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 542 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 543 return false; 544 545 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 546 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 547 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 548 return true; 549 } 550 551 if (!OpToFold.isReg()) 552 return false; 553 554 Register UseReg = OpToFold.getReg(); 555 if (!UseReg.isVirtual()) 556 return false; 557 558 if (llvm::any_of(FoldList, [UseMI](const FoldCandidate &FC) { 559 return FC.UseMI == UseMI; 560 })) 561 return false; 562 563 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 564 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 565 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 566 return false; 567 568 int32_t Imm; 569 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 570 const MachineOperand *Op = Defs[I].first; 571 if (!Op->isImm()) 572 return false; 573 574 auto SubImm = Op->getImm(); 575 if (!I) { 576 Imm = SubImm; 577 if (!TII->isInlineConstant(*Op, OpTy) || 578 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 579 return false; 580 581 continue; 582 } 583 if (Imm != SubImm) 584 return false; // Can only fold splat constants 585 } 586 587 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 588 return true; 589 } 590 591 void SIFoldOperands::foldOperand( 592 MachineOperand &OpToFold, 593 MachineInstr *UseMI, 594 int UseOpIdx, 595 SmallVectorImpl<FoldCandidate> &FoldList, 596 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 597 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 598 599 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 600 return; 601 602 // FIXME: Fold operands with subregs. 603 if (UseOp.isReg() && OpToFold.isReg()) { 604 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 605 return; 606 } 607 608 // Special case for REG_SEQUENCE: We can't fold literals into 609 // REG_SEQUENCE instructions, so we have to fold them into the 610 // uses of REG_SEQUENCE. 611 if (UseMI->isRegSequence()) { 612 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 613 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 614 615 MachineRegisterInfo::use_nodbg_iterator Next; 616 for (MachineRegisterInfo::use_nodbg_iterator 617 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end(); 618 RSUse != RSE; RSUse = Next) { 619 Next = std::next(RSUse); 620 621 MachineInstr *RSUseMI = RSUse->getParent(); 622 623 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 624 RSUse.getOperandNo(), FoldList)) 625 continue; 626 627 if (RSUse->getSubReg() != RegSeqDstSubReg) 628 continue; 629 630 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 631 CopiesToReplace); 632 } 633 634 return; 635 } 636 637 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 638 return; 639 640 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 641 // Sanity check that this is a stack access. 642 // FIXME: Should probably use stack pseudos before frame lowering. 643 644 if (TII->isMUBUF(*UseMI)) { 645 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 646 MFI->getScratchRSrcReg()) 647 return; 648 649 // Ensure this is either relative to the current frame or the current 650 // wave. 651 MachineOperand &SOff = 652 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 653 if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) && 654 (!SOff.isImm() || SOff.getImm() != 0)) 655 return; 656 657 // If this is relative to the current wave, update it to be relative to 658 // the current frame. 659 if (SOff.isImm()) 660 SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false); 661 } 662 663 // A frame index will resolve to a positive constant, so it should always be 664 // safe to fold the addressing mode, even pre-GFX9. 665 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 666 667 if (TII->isFLATScratch(*UseMI) && 668 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 669 AMDGPU::OpName::vaddr) != -1) { 670 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 671 UseMI->setDesc(TII->get(NewOpc)); 672 } 673 674 return; 675 } 676 677 bool FoldingImmLike = 678 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 679 680 if (FoldingImmLike && UseMI->isCopy()) { 681 Register DestReg = UseMI->getOperand(0).getReg(); 682 Register SrcReg = UseMI->getOperand(1).getReg(); 683 assert(SrcReg.isVirtual()); 684 685 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 686 687 // Don't fold into a copy to a physical register with the same class. Doing 688 // so would interfere with the register coalescer's logic which would avoid 689 // redundant initalizations. 690 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 691 return; 692 693 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 694 if (!DestReg.isPhysical()) { 695 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 696 MachineRegisterInfo::use_nodbg_iterator NextUse; 697 SmallVector<FoldCandidate, 4> CopyUses; 698 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg), 699 E = MRI->use_nodbg_end(); 700 Use != E; Use = NextUse) { 701 NextUse = std::next(Use); 702 // There's no point trying to fold into an implicit operand. 703 if (Use->isImplicit()) 704 continue; 705 706 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(), 707 &UseMI->getOperand(1)); 708 CopyUses.push_back(FC); 709 } 710 for (auto &F : CopyUses) { 711 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 712 } 713 } 714 715 if (DestRC == &AMDGPU::AGPR_32RegClass && 716 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 717 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 718 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 719 CopiesToReplace.push_back(UseMI); 720 return; 721 } 722 } 723 724 // In order to fold immediates into copies, we need to change the 725 // copy to a MOV. 726 727 unsigned MovOp = TII->getMovOpcode(DestRC); 728 if (MovOp == AMDGPU::COPY) 729 return; 730 731 UseMI->setDesc(TII->get(MovOp)); 732 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 733 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 734 while (ImpOpI != ImpOpE) { 735 MachineInstr::mop_iterator Tmp = ImpOpI; 736 ImpOpI++; 737 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 738 } 739 CopiesToReplace.push_back(UseMI); 740 } else { 741 if (UseMI->isCopy() && OpToFold.isReg() && 742 UseMI->getOperand(0).getReg().isVirtual() && 743 !UseMI->getOperand(1).getSubReg()) { 744 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 745 << "\n into " << *UseMI << '\n'); 746 unsigned Size = TII->getOpSize(*UseMI, 1); 747 Register UseReg = OpToFold.getReg(); 748 UseMI->getOperand(1).setReg(UseReg); 749 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 750 UseMI->getOperand(1).setIsKill(false); 751 CopiesToReplace.push_back(UseMI); 752 OpToFold.setIsKill(false); 753 754 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 755 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 756 // its initializers right here, so we will rematerialize immediates and 757 // avoid copies via different reg classes. 758 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 759 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 760 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 761 *MRI)) { 762 const DebugLoc &DL = UseMI->getDebugLoc(); 763 MachineBasicBlock &MBB = *UseMI->getParent(); 764 765 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 766 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 767 UseMI->RemoveOperand(I); 768 769 MachineInstrBuilder B(*MBB.getParent(), UseMI); 770 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 771 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 772 for (unsigned I = 0; I < Size / 4; ++I) { 773 MachineOperand *Def = Defs[I].first; 774 TargetInstrInfo::RegSubRegPair CopyToVGPR; 775 if (Def->isImm() && 776 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 777 int64_t Imm = Def->getImm(); 778 779 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 780 BuildMI(MBB, UseMI, DL, 781 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addImm(Imm); 782 B.addReg(Tmp); 783 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 784 auto Src = getRegSubRegPair(*Def); 785 Def->setIsKill(false); 786 if (!SeenAGPRs.insert(Src)) { 787 // We cannot build a reg_sequence out of the same registers, they 788 // must be copied. Better do it here before copyPhysReg() created 789 // several reads to do the AGPR->VGPR->AGPR copy. 790 CopyToVGPR = Src; 791 } else { 792 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 793 Src.SubReg); 794 } 795 } else { 796 assert(Def->isReg()); 797 Def->setIsKill(false); 798 auto Src = getRegSubRegPair(*Def); 799 800 // Direct copy from SGPR to AGPR is not possible. To avoid creation 801 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 802 // create a copy here and track if we already have such a copy. 803 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 804 CopyToVGPR = Src; 805 } else { 806 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 807 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 808 B.addReg(Tmp); 809 } 810 } 811 812 if (CopyToVGPR.Reg) { 813 Register Vgpr; 814 if (VGPRCopies.count(CopyToVGPR)) { 815 Vgpr = VGPRCopies[CopyToVGPR]; 816 } else { 817 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 818 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 819 VGPRCopies[CopyToVGPR] = Vgpr; 820 } 821 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 822 BuildMI(MBB, UseMI, DL, 823 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32), Tmp).addReg(Vgpr); 824 B.addReg(Tmp); 825 } 826 827 B.addImm(Defs[I].second); 828 } 829 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 830 return; 831 } 832 833 if (Size != 4) 834 return; 835 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 836 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 837 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); 838 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 839 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 840 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); 841 return; 842 } 843 844 unsigned UseOpc = UseMI->getOpcode(); 845 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 846 (UseOpc == AMDGPU::V_READLANE_B32 && 847 (int)UseOpIdx == 848 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 849 // %vgpr = V_MOV_B32 imm 850 // %sgpr = V_READFIRSTLANE_B32 %vgpr 851 // => 852 // %sgpr = S_MOV_B32 imm 853 if (FoldingImmLike) { 854 if (execMayBeModifiedBeforeUse(*MRI, 855 UseMI->getOperand(UseOpIdx).getReg(), 856 *OpToFold.getParent(), 857 *UseMI)) 858 return; 859 860 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 861 862 if (OpToFold.isImm()) 863 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 864 else 865 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 866 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 867 return; 868 } 869 870 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 871 if (execMayBeModifiedBeforeUse(*MRI, 872 UseMI->getOperand(UseOpIdx).getReg(), 873 *OpToFold.getParent(), 874 *UseMI)) 875 return; 876 877 // %vgpr = COPY %sgpr0 878 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 879 // => 880 // %sgpr1 = COPY %sgpr0 881 UseMI->setDesc(TII->get(AMDGPU::COPY)); 882 UseMI->getOperand(1).setReg(OpToFold.getReg()); 883 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 884 UseMI->getOperand(1).setIsKill(false); 885 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 886 return; 887 } 888 } 889 890 const MCInstrDesc &UseDesc = UseMI->getDesc(); 891 892 // Don't fold into target independent nodes. Target independent opcodes 893 // don't have defined register classes. 894 if (UseDesc.isVariadic() || 895 UseOp.isImplicit() || 896 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 897 return; 898 } 899 900 if (!FoldingImmLike) { 901 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 902 903 // FIXME: We could try to change the instruction from 64-bit to 32-bit 904 // to enable more folding opportunites. The shrink operands pass 905 // already does this. 906 return; 907 } 908 909 910 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 911 const TargetRegisterClass *FoldRC = 912 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 913 914 // Split 64-bit constants into 32-bits for folding. 915 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 916 Register UseReg = UseOp.getReg(); 917 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 918 919 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 920 return; 921 922 APInt Imm(64, OpToFold.getImm()); 923 if (UseOp.getSubReg() == AMDGPU::sub0) { 924 Imm = Imm.getLoBits(32); 925 } else { 926 assert(UseOp.getSubReg() == AMDGPU::sub1); 927 Imm = Imm.getHiBits(32); 928 } 929 930 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 931 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 932 return; 933 } 934 935 936 937 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 938 } 939 940 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 941 uint32_t LHS, uint32_t RHS) { 942 switch (Opcode) { 943 case AMDGPU::V_AND_B32_e64: 944 case AMDGPU::V_AND_B32_e32: 945 case AMDGPU::S_AND_B32: 946 Result = LHS & RHS; 947 return true; 948 case AMDGPU::V_OR_B32_e64: 949 case AMDGPU::V_OR_B32_e32: 950 case AMDGPU::S_OR_B32: 951 Result = LHS | RHS; 952 return true; 953 case AMDGPU::V_XOR_B32_e64: 954 case AMDGPU::V_XOR_B32_e32: 955 case AMDGPU::S_XOR_B32: 956 Result = LHS ^ RHS; 957 return true; 958 case AMDGPU::S_XNOR_B32: 959 Result = ~(LHS ^ RHS); 960 return true; 961 case AMDGPU::S_NAND_B32: 962 Result = ~(LHS & RHS); 963 return true; 964 case AMDGPU::S_NOR_B32: 965 Result = ~(LHS | RHS); 966 return true; 967 case AMDGPU::S_ANDN2_B32: 968 Result = LHS & ~RHS; 969 return true; 970 case AMDGPU::S_ORN2_B32: 971 Result = LHS | ~RHS; 972 return true; 973 case AMDGPU::V_LSHL_B32_e64: 974 case AMDGPU::V_LSHL_B32_e32: 975 case AMDGPU::S_LSHL_B32: 976 // The instruction ignores the high bits for out of bounds shifts. 977 Result = LHS << (RHS & 31); 978 return true; 979 case AMDGPU::V_LSHLREV_B32_e64: 980 case AMDGPU::V_LSHLREV_B32_e32: 981 Result = RHS << (LHS & 31); 982 return true; 983 case AMDGPU::V_LSHR_B32_e64: 984 case AMDGPU::V_LSHR_B32_e32: 985 case AMDGPU::S_LSHR_B32: 986 Result = LHS >> (RHS & 31); 987 return true; 988 case AMDGPU::V_LSHRREV_B32_e64: 989 case AMDGPU::V_LSHRREV_B32_e32: 990 Result = RHS >> (LHS & 31); 991 return true; 992 case AMDGPU::V_ASHR_I32_e64: 993 case AMDGPU::V_ASHR_I32_e32: 994 case AMDGPU::S_ASHR_I32: 995 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 996 return true; 997 case AMDGPU::V_ASHRREV_I32_e64: 998 case AMDGPU::V_ASHRREV_I32_e32: 999 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1000 return true; 1001 default: 1002 return false; 1003 } 1004 } 1005 1006 static unsigned getMovOpc(bool IsScalar) { 1007 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1008 } 1009 1010 /// Remove any leftover implicit operands from mutating the instruction. e.g. 1011 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1012 /// anymore. 1013 static void stripExtraCopyOperands(MachineInstr &MI) { 1014 const MCInstrDesc &Desc = MI.getDesc(); 1015 unsigned NumOps = Desc.getNumOperands() + 1016 Desc.getNumImplicitUses() + 1017 Desc.getNumImplicitDefs(); 1018 1019 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1020 MI.RemoveOperand(I); 1021 } 1022 1023 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1024 MI.setDesc(NewDesc); 1025 stripExtraCopyOperands(MI); 1026 } 1027 1028 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1029 MachineOperand &Op) { 1030 if (Op.isReg()) { 1031 // If this has a subregister, it obviously is a register source. 1032 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1033 return &Op; 1034 1035 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1036 if (Def && Def->isMoveImmediate()) { 1037 MachineOperand &ImmSrc = Def->getOperand(1); 1038 if (ImmSrc.isImm()) 1039 return &ImmSrc; 1040 } 1041 } 1042 1043 return &Op; 1044 } 1045 1046 // Try to simplify operations with a constant that may appear after instruction 1047 // selection. 1048 // TODO: See if a frame index with a fixed offset can fold. 1049 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1050 const SIInstrInfo *TII, 1051 MachineInstr *MI, 1052 MachineOperand *ImmOp) { 1053 unsigned Opc = MI->getOpcode(); 1054 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1055 Opc == AMDGPU::S_NOT_B32) { 1056 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1057 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1058 return true; 1059 } 1060 1061 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1062 if (Src1Idx == -1) 1063 return false; 1064 1065 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1066 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1067 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1068 1069 if (!Src0->isImm() && !Src1->isImm()) 1070 return false; 1071 1072 // and k0, k1 -> v_mov_b32 (k0 & k1) 1073 // or k0, k1 -> v_mov_b32 (k0 | k1) 1074 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1075 if (Src0->isImm() && Src1->isImm()) { 1076 int32_t NewImm; 1077 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1078 return false; 1079 1080 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1081 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1082 1083 // Be careful to change the right operand, src0 may belong to a different 1084 // instruction. 1085 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1086 MI->RemoveOperand(Src1Idx); 1087 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1088 return true; 1089 } 1090 1091 if (!MI->isCommutable()) 1092 return false; 1093 1094 if (Src0->isImm() && !Src1->isImm()) { 1095 std::swap(Src0, Src1); 1096 std::swap(Src0Idx, Src1Idx); 1097 } 1098 1099 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1100 if (Opc == AMDGPU::V_OR_B32_e64 || 1101 Opc == AMDGPU::V_OR_B32_e32 || 1102 Opc == AMDGPU::S_OR_B32) { 1103 if (Src1Val == 0) { 1104 // y = or x, 0 => y = copy x 1105 MI->RemoveOperand(Src1Idx); 1106 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1107 } else if (Src1Val == -1) { 1108 // y = or x, -1 => y = v_mov_b32 -1 1109 MI->RemoveOperand(Src1Idx); 1110 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1111 } else 1112 return false; 1113 1114 return true; 1115 } 1116 1117 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1118 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1119 MI->getOpcode() == AMDGPU::S_AND_B32) { 1120 if (Src1Val == 0) { 1121 // y = and x, 0 => y = v_mov_b32 0 1122 MI->RemoveOperand(Src0Idx); 1123 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1124 } else if (Src1Val == -1) { 1125 // y = and x, -1 => y = copy x 1126 MI->RemoveOperand(Src1Idx); 1127 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1128 stripExtraCopyOperands(*MI); 1129 } else 1130 return false; 1131 1132 return true; 1133 } 1134 1135 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1136 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1137 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1138 if (Src1Val == 0) { 1139 // y = xor x, 0 => y = copy x 1140 MI->RemoveOperand(Src1Idx); 1141 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1142 return true; 1143 } 1144 } 1145 1146 return false; 1147 } 1148 1149 // Try to fold an instruction into a simpler one 1150 static bool tryFoldInst(const SIInstrInfo *TII, 1151 MachineInstr *MI) { 1152 unsigned Opc = MI->getOpcode(); 1153 1154 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1155 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1156 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1157 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1158 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1159 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1160 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1161 if (Src1->isIdenticalTo(*Src0) && 1162 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1163 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1164 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1165 auto &NewDesc = 1166 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1167 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1168 if (Src2Idx != -1) 1169 MI->RemoveOperand(Src2Idx); 1170 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1171 if (Src1ModIdx != -1) 1172 MI->RemoveOperand(Src1ModIdx); 1173 if (Src0ModIdx != -1) 1174 MI->RemoveOperand(Src0ModIdx); 1175 mutateCopyOp(*MI, NewDesc); 1176 LLVM_DEBUG(dbgs() << *MI << '\n'); 1177 return true; 1178 } 1179 } 1180 1181 return false; 1182 } 1183 1184 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1185 MachineOperand &OpToFold) const { 1186 // We need mutate the operands of new mov instructions to add implicit 1187 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1188 // this. 1189 SmallVector<MachineInstr *, 4> CopiesToReplace; 1190 SmallVector<FoldCandidate, 4> FoldList; 1191 MachineOperand &Dst = MI.getOperand(0); 1192 1193 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1194 if (FoldingImm) { 1195 unsigned NumLiteralUses = 0; 1196 MachineOperand *NonInlineUse = nullptr; 1197 int NonInlineUseOpNo = -1; 1198 1199 MachineRegisterInfo::use_nodbg_iterator NextUse; 1200 for (MachineRegisterInfo::use_nodbg_iterator 1201 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1202 Use != E; Use = NextUse) { 1203 NextUse = std::next(Use); 1204 MachineInstr *UseMI = Use->getParent(); 1205 unsigned OpNo = Use.getOperandNo(); 1206 1207 // Folding the immediate may reveal operations that can be constant 1208 // folded or replaced with a copy. This can happen for example after 1209 // frame indices are lowered to constants or from splitting 64-bit 1210 // constants. 1211 // 1212 // We may also encounter cases where one or both operands are 1213 // immediates materialized into a register, which would ordinarily not 1214 // be folded due to multiple uses or operand constraints. 1215 1216 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1217 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1218 1219 // Some constant folding cases change the same immediate's use to a new 1220 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1221 // again. The same constant folded instruction could also have a second 1222 // use operand. 1223 NextUse = MRI->use_nodbg_begin(Dst.getReg()); 1224 FoldList.clear(); 1225 continue; 1226 } 1227 1228 // Try to fold any inline immediate uses, and then only fold other 1229 // constants if they have one use. 1230 // 1231 // The legality of the inline immediate must be checked based on the use 1232 // operand, not the defining instruction, because 32-bit instructions 1233 // with 32-bit inline immediate sources may be used to materialize 1234 // constants used in 16-bit operands. 1235 // 1236 // e.g. it is unsafe to fold: 1237 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1238 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1239 1240 // Folding immediates with more than one use will increase program size. 1241 // FIXME: This will also reduce register usage, which may be better 1242 // in some cases. A better heuristic is needed. 1243 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1244 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1245 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1246 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1247 CopiesToReplace); 1248 } else { 1249 if (++NumLiteralUses == 1) { 1250 NonInlineUse = &*Use; 1251 NonInlineUseOpNo = OpNo; 1252 } 1253 } 1254 } 1255 1256 if (NumLiteralUses == 1) { 1257 MachineInstr *UseMI = NonInlineUse->getParent(); 1258 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1259 } 1260 } else { 1261 // Folding register. 1262 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess; 1263 for (MachineRegisterInfo::use_nodbg_iterator 1264 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1265 Use != E; ++Use) { 1266 UsesToProcess.push_back(Use); 1267 } 1268 for (auto U : UsesToProcess) { 1269 MachineInstr *UseMI = U->getParent(); 1270 1271 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1272 FoldList, CopiesToReplace); 1273 } 1274 } 1275 1276 MachineFunction *MF = MI.getParent()->getParent(); 1277 // Make sure we add EXEC uses to any new v_mov instructions created. 1278 for (MachineInstr *Copy : CopiesToReplace) 1279 Copy->addImplicitDefUseOperands(*MF); 1280 1281 SmallPtrSet<MachineInstr *, 16> Folded; 1282 for (FoldCandidate &Fold : FoldList) { 1283 assert(!Fold.isReg() || Fold.OpToFold); 1284 if (Folded.count(Fold.UseMI)) 1285 continue; 1286 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1287 Register Reg = Fold.OpToFold->getReg(); 1288 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1289 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1290 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1291 continue; 1292 } 1293 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1294 // Clear kill flags. 1295 if (Fold.isReg()) { 1296 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1297 // FIXME: Probably shouldn't bother trying to fold if not an 1298 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1299 // copies. 1300 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1301 } 1302 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1303 << static_cast<int>(Fold.UseOpNo) << " of " 1304 << *Fold.UseMI << '\n'); 1305 if (tryFoldInst(TII, Fold.UseMI)) 1306 Folded.insert(Fold.UseMI); 1307 } else if (Fold.isCommuted()) { 1308 // Restoring instruction's original operand order if fold has failed. 1309 TII->commuteInstruction(*Fold.UseMI, false); 1310 } 1311 } 1312 } 1313 1314 // Clamp patterns are canonically selected to v_max_* instructions, so only 1315 // handle them. 1316 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1317 unsigned Op = MI.getOpcode(); 1318 switch (Op) { 1319 case AMDGPU::V_MAX_F32_e64: 1320 case AMDGPU::V_MAX_F16_e64: 1321 case AMDGPU::V_MAX_F64: 1322 case AMDGPU::V_PK_MAX_F16: { 1323 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1324 return nullptr; 1325 1326 // Make sure sources are identical. 1327 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1328 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1329 if (!Src0->isReg() || !Src1->isReg() || 1330 Src0->getReg() != Src1->getReg() || 1331 Src0->getSubReg() != Src1->getSubReg() || 1332 Src0->getSubReg() != AMDGPU::NoSubRegister) 1333 return nullptr; 1334 1335 // Can't fold up if we have modifiers. 1336 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1337 return nullptr; 1338 1339 unsigned Src0Mods 1340 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1341 unsigned Src1Mods 1342 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1343 1344 // Having a 0 op_sel_hi would require swizzling the output in the source 1345 // instruction, which we can't do. 1346 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1347 : 0u; 1348 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1349 return nullptr; 1350 return Src0; 1351 } 1352 default: 1353 return nullptr; 1354 } 1355 } 1356 1357 // We obviously have multiple uses in a clamp since the register is used twice 1358 // in the same instruction. 1359 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1360 int Count = 0; 1361 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1362 I != E; ++I) { 1363 if (++Count > 1) 1364 return false; 1365 } 1366 1367 return true; 1368 } 1369 1370 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1371 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1372 const MachineOperand *ClampSrc = isClamp(MI); 1373 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1374 return false; 1375 1376 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1377 1378 // The type of clamp must be compatible. 1379 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1380 return false; 1381 1382 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1383 if (!DefClamp) 1384 return false; 1385 1386 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1387 << '\n'); 1388 1389 // Clamp is applied after omod, so it is OK if omod is set. 1390 DefClamp->setImm(1); 1391 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1392 MI.eraseFromParent(); 1393 return true; 1394 } 1395 1396 static int getOModValue(unsigned Opc, int64_t Val) { 1397 switch (Opc) { 1398 case AMDGPU::V_MUL_F32_e64: { 1399 switch (static_cast<uint32_t>(Val)) { 1400 case 0x3f000000: // 0.5 1401 return SIOutMods::DIV2; 1402 case 0x40000000: // 2.0 1403 return SIOutMods::MUL2; 1404 case 0x40800000: // 4.0 1405 return SIOutMods::MUL4; 1406 default: 1407 return SIOutMods::NONE; 1408 } 1409 } 1410 case AMDGPU::V_MUL_F16_e64: { 1411 switch (static_cast<uint16_t>(Val)) { 1412 case 0x3800: // 0.5 1413 return SIOutMods::DIV2; 1414 case 0x4000: // 2.0 1415 return SIOutMods::MUL2; 1416 case 0x4400: // 4.0 1417 return SIOutMods::MUL4; 1418 default: 1419 return SIOutMods::NONE; 1420 } 1421 } 1422 default: 1423 llvm_unreachable("invalid mul opcode"); 1424 } 1425 } 1426 1427 // FIXME: Does this really not support denormals with f16? 1428 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1429 // handled, so will anything other than that break? 1430 std::pair<const MachineOperand *, int> 1431 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1432 unsigned Op = MI.getOpcode(); 1433 switch (Op) { 1434 case AMDGPU::V_MUL_F32_e64: 1435 case AMDGPU::V_MUL_F16_e64: { 1436 // If output denormals are enabled, omod is ignored. 1437 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1438 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1439 return std::make_pair(nullptr, SIOutMods::NONE); 1440 1441 const MachineOperand *RegOp = nullptr; 1442 const MachineOperand *ImmOp = nullptr; 1443 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1444 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1445 if (Src0->isImm()) { 1446 ImmOp = Src0; 1447 RegOp = Src1; 1448 } else if (Src1->isImm()) { 1449 ImmOp = Src1; 1450 RegOp = Src0; 1451 } else 1452 return std::make_pair(nullptr, SIOutMods::NONE); 1453 1454 int OMod = getOModValue(Op, ImmOp->getImm()); 1455 if (OMod == SIOutMods::NONE || 1456 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1457 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1458 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1459 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1460 return std::make_pair(nullptr, SIOutMods::NONE); 1461 1462 return std::make_pair(RegOp, OMod); 1463 } 1464 case AMDGPU::V_ADD_F32_e64: 1465 case AMDGPU::V_ADD_F16_e64: { 1466 // If output denormals are enabled, omod is ignored. 1467 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1468 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1469 return std::make_pair(nullptr, SIOutMods::NONE); 1470 1471 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1472 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1473 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1474 1475 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1476 Src0->getSubReg() == Src1->getSubReg() && 1477 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1478 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1479 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1480 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1481 return std::make_pair(Src0, SIOutMods::MUL2); 1482 1483 return std::make_pair(nullptr, SIOutMods::NONE); 1484 } 1485 default: 1486 return std::make_pair(nullptr, SIOutMods::NONE); 1487 } 1488 } 1489 1490 // FIXME: Does this need to check IEEE bit on function? 1491 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1492 const MachineOperand *RegOp; 1493 int OMod; 1494 std::tie(RegOp, OMod) = isOMod(MI); 1495 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1496 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1497 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1498 return false; 1499 1500 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1501 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1502 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1503 return false; 1504 1505 // Clamp is applied after omod. If the source already has clamp set, don't 1506 // fold it. 1507 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1508 return false; 1509 1510 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1511 1512 DefOMod->setImm(OMod); 1513 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1514 MI.eraseFromParent(); 1515 return true; 1516 } 1517 1518 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1519 if (skipFunction(MF.getFunction())) 1520 return false; 1521 1522 MRI = &MF.getRegInfo(); 1523 ST = &MF.getSubtarget<GCNSubtarget>(); 1524 TII = ST->getInstrInfo(); 1525 TRI = &TII->getRegisterInfo(); 1526 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1527 1528 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1529 // correctly handle signed zeros. 1530 // 1531 // FIXME: Also need to check strictfp 1532 bool IsIEEEMode = MFI->getMode().IEEE; 1533 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1534 1535 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1536 MachineBasicBlock::iterator I, Next; 1537 1538 MachineOperand *CurrentKnownM0Val = nullptr; 1539 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1540 Next = std::next(I); 1541 MachineInstr &MI = *I; 1542 1543 tryFoldInst(TII, &MI); 1544 1545 if (!TII->isFoldableCopy(MI)) { 1546 // Saw an unknown clobber of m0, so we no longer know what it is. 1547 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1548 CurrentKnownM0Val = nullptr; 1549 1550 // TODO: Omod might be OK if there is NSZ only on the source 1551 // instruction, and not the omod multiply. 1552 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1553 !tryFoldOMod(MI)) 1554 tryFoldClamp(MI); 1555 1556 continue; 1557 } 1558 1559 // Specially track simple redefs of m0 to the same value in a block, so we 1560 // can erase the later ones. 1561 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1562 MachineOperand &NewM0Val = MI.getOperand(1); 1563 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1564 MI.eraseFromParent(); 1565 continue; 1566 } 1567 1568 // We aren't tracking other physical registers 1569 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1570 nullptr : &NewM0Val; 1571 continue; 1572 } 1573 1574 MachineOperand &OpToFold = MI.getOperand(1); 1575 bool FoldingImm = 1576 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1577 1578 // FIXME: We could also be folding things like TargetIndexes. 1579 if (!FoldingImm && !OpToFold.isReg()) 1580 continue; 1581 1582 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1583 continue; 1584 1585 // Prevent folding operands backwards in the function. For example, 1586 // the COPY opcode must not be replaced by 1 in this example: 1587 // 1588 // %3 = COPY %vgpr0; VGPR_32:%3 1589 // ... 1590 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1591 MachineOperand &Dst = MI.getOperand(0); 1592 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1593 continue; 1594 1595 foldInstOperand(MI, OpToFold); 1596 } 1597 } 1598 return true; 1599 } 1600