1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 /// \file 9 //===----------------------------------------------------------------------===// 10 // 11 12 #include "AMDGPU.h" 13 #include "AMDGPUSubtarget.h" 14 #include "SIInstrInfo.h" 15 #include "SIMachineFunctionInfo.h" 16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 17 #include "llvm/ADT/DepthFirstIterator.h" 18 #include "llvm/CodeGen/LiveIntervals.h" 19 #include "llvm/CodeGen/MachineFunctionPass.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Target/TargetMachine.h" 25 26 #define DEBUG_TYPE "si-fold-operands" 27 using namespace llvm; 28 29 namespace { 30 31 struct FoldCandidate { 32 MachineInstr *UseMI; 33 union { 34 MachineOperand *OpToFold; 35 uint64_t ImmToFold; 36 int FrameIndexToFold; 37 }; 38 int ShrinkOpcode; 39 unsigned char UseOpNo; 40 MachineOperand::MachineOperandType Kind; 41 bool Commuted; 42 43 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 44 bool Commuted_ = false, 45 int ShrinkOp = -1) : 46 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 47 Kind(FoldOp->getType()), 48 Commuted(Commuted_) { 49 if (FoldOp->isImm()) { 50 ImmToFold = FoldOp->getImm(); 51 } else if (FoldOp->isFI()) { 52 FrameIndexToFold = FoldOp->getIndex(); 53 } else { 54 assert(FoldOp->isReg()); 55 OpToFold = FoldOp; 56 } 57 } 58 59 bool isFI() const { 60 return Kind == MachineOperand::MO_FrameIndex; 61 } 62 63 bool isImm() const { 64 return Kind == MachineOperand::MO_Immediate; 65 } 66 67 bool isReg() const { 68 return Kind == MachineOperand::MO_Register; 69 } 70 71 bool isCommuted() const { 72 return Commuted; 73 } 74 75 bool needsShrink() const { 76 return ShrinkOpcode != -1; 77 } 78 79 int getShrinkOpcode() const { 80 return ShrinkOpcode; 81 } 82 }; 83 84 class SIFoldOperands : public MachineFunctionPass { 85 public: 86 static char ID; 87 MachineRegisterInfo *MRI; 88 const SIInstrInfo *TII; 89 const SIRegisterInfo *TRI; 90 const GCNSubtarget *ST; 91 92 void foldOperand(MachineOperand &OpToFold, 93 MachineInstr *UseMI, 94 unsigned UseOpIdx, 95 SmallVectorImpl<FoldCandidate> &FoldList, 96 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 97 98 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 99 100 const MachineOperand *isClamp(const MachineInstr &MI) const; 101 bool tryFoldClamp(MachineInstr &MI); 102 103 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 104 bool tryFoldOMod(MachineInstr &MI); 105 106 public: 107 SIFoldOperands() : MachineFunctionPass(ID) { 108 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 109 } 110 111 bool runOnMachineFunction(MachineFunction &MF) override; 112 113 StringRef getPassName() const override { return "SI Fold Operands"; } 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.setPreservesCFG(); 117 MachineFunctionPass::getAnalysisUsage(AU); 118 } 119 }; 120 121 } // End anonymous namespace. 122 123 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 124 "SI Fold Operands", false, false) 125 126 char SIFoldOperands::ID = 0; 127 128 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 129 130 // Wrapper around isInlineConstant that understands special cases when 131 // instruction types are replaced during operand folding. 132 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 133 const MachineInstr &UseMI, 134 unsigned OpNo, 135 const MachineOperand &OpToFold) { 136 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 137 return true; 138 139 unsigned Opc = UseMI.getOpcode(); 140 switch (Opc) { 141 case AMDGPU::V_MAC_F32_e64: 142 case AMDGPU::V_MAC_F16_e64: 143 case AMDGPU::V_FMAC_F32_e64: { 144 // Special case for mac. Since this is replaced with mad when folded into 145 // src2, we need to check the legality for the final instruction. 146 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 147 if (static_cast<int>(OpNo) == Src2Idx) { 148 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 149 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 150 151 unsigned Opc = IsFMA ? 152 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 153 const MCInstrDesc &MadDesc = TII->get(Opc); 154 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 155 } 156 return false; 157 } 158 default: 159 return false; 160 } 161 } 162 163 FunctionPass *llvm::createSIFoldOperandsPass() { 164 return new SIFoldOperands(); 165 } 166 167 static bool updateOperand(FoldCandidate &Fold, 168 const SIInstrInfo &TII, 169 const TargetRegisterInfo &TRI) { 170 MachineInstr *MI = Fold.UseMI; 171 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 172 assert(Old.isReg()); 173 174 if (Fold.isImm()) { 175 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked) { 176 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 177 // already set. 178 unsigned Opcode = MI->getOpcode(); 179 int OpNo = MI->getOperandNo(&Old); 180 int ModIdx = -1; 181 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 182 ModIdx = AMDGPU::OpName::src0_modifiers; 183 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 184 ModIdx = AMDGPU::OpName::src1_modifiers; 185 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 186 ModIdx = AMDGPU::OpName::src2_modifiers; 187 assert(ModIdx != -1); 188 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 189 MachineOperand &Mod = MI->getOperand(ModIdx); 190 unsigned Val = Mod.getImm(); 191 if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) 192 return false; 193 // If upper part is all zero we do not need op_sel_hi. 194 if (!isUInt<16>(Fold.ImmToFold)) { 195 if (!(Fold.ImmToFold & 0xffff)) { 196 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 197 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 198 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 199 return true; 200 } 201 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 202 } 203 } 204 205 if (Fold.needsShrink()) { 206 MachineBasicBlock *MBB = MI->getParent(); 207 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI); 208 if (Liveness != MachineBasicBlock::LQR_Dead) 209 return false; 210 211 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 212 int Op32 = Fold.getShrinkOpcode(); 213 MachineOperand &Dst0 = MI->getOperand(0); 214 MachineOperand &Dst1 = MI->getOperand(1); 215 assert(Dst0.isDef() && Dst1.isDef()); 216 217 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 218 219 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 220 unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC); 221 const TargetRegisterClass *Dst1RC = MRI.getRegClass(Dst1.getReg()); 222 unsigned NewReg1 = MRI.createVirtualRegister(Dst1RC); 223 224 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 225 226 if (HaveNonDbgCarryUse) { 227 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 228 .addReg(AMDGPU::VCC, RegState::Kill); 229 } 230 231 // Keep the old instruction around to avoid breaking iterators, but 232 // replace the outputs with dummy registers. 233 Dst0.setReg(NewReg0); 234 Dst1.setReg(NewReg1); 235 236 if (Fold.isCommuted()) 237 TII.commuteInstruction(*Inst32, false); 238 return true; 239 } 240 241 Old.ChangeToImmediate(Fold.ImmToFold); 242 return true; 243 } 244 245 assert(!Fold.needsShrink() && "not handled"); 246 247 if (Fold.isFI()) { 248 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 249 return true; 250 } 251 252 MachineOperand *New = Fold.OpToFold; 253 if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) && 254 TargetRegisterInfo::isVirtualRegister(New->getReg())) { 255 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 256 257 Old.setIsUndef(New->isUndef()); 258 return true; 259 } 260 261 // FIXME: Handle physical registers. 262 263 return false; 264 } 265 266 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 267 const MachineInstr *MI) { 268 for (auto Candidate : FoldList) { 269 if (Candidate.UseMI == MI) 270 return true; 271 } 272 return false; 273 } 274 275 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 276 MachineInstr *MI, unsigned OpNo, 277 MachineOperand *OpToFold, 278 const SIInstrInfo *TII) { 279 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 280 281 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 282 unsigned Opc = MI->getOpcode(); 283 if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || 284 Opc == AMDGPU::V_FMAC_F32_e64) && 285 (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { 286 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; 287 bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; 288 unsigned NewOpc = IsFMA ? 289 AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); 290 291 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 292 // to fold the operand. 293 MI->setDesc(TII->get(NewOpc)); 294 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 295 if (FoldAsMAD) { 296 MI->untieRegOperand(OpNo); 297 return true; 298 } 299 MI->setDesc(TII->get(Opc)); 300 } 301 302 // Special case for s_setreg_b32 303 if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { 304 MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); 305 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 306 return true; 307 } 308 309 // If we are already folding into another operand of MI, then 310 // we can't commute the instruction, otherwise we risk making the 311 // other fold illegal. 312 if (isUseMIInFoldList(FoldList, MI)) 313 return false; 314 315 unsigned CommuteOpNo = OpNo; 316 317 // Operand is not legal, so try to commute the instruction to 318 // see if this makes it possible to fold. 319 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 320 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 321 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 322 323 if (CanCommute) { 324 if (CommuteIdx0 == OpNo) 325 CommuteOpNo = CommuteIdx1; 326 else if (CommuteIdx1 == OpNo) 327 CommuteOpNo = CommuteIdx0; 328 } 329 330 331 // One of operands might be an Imm operand, and OpNo may refer to it after 332 // the call of commuteInstruction() below. Such situations are avoided 333 // here explicitly as OpNo must be a register operand to be a candidate 334 // for memory folding. 335 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 336 !MI->getOperand(CommuteIdx1).isReg())) 337 return false; 338 339 if (!CanCommute || 340 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 341 return false; 342 343 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 344 if ((Opc == AMDGPU::V_ADD_I32_e64 || 345 Opc == AMDGPU::V_SUB_I32_e64 || 346 Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME 347 OpToFold->isImm()) { 348 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 349 350 // Verify the other operand is a VGPR, otherwise we would violate the 351 // constant bus restriction. 352 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 353 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 354 if (!OtherOp.isReg() || 355 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 356 return false; 357 358 assert(MI->getOperand(1).isDef()); 359 360 int Op32 = AMDGPU::getVOPe32(Opc); 361 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, 362 Op32)); 363 return true; 364 } 365 366 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 367 return false; 368 } 369 370 FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); 371 return true; 372 } 373 374 FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); 375 return true; 376 } 377 378 // If the use operand doesn't care about the value, this may be an operand only 379 // used for register indexing, in which case it is unsafe to fold. 380 static bool isUseSafeToFold(const SIInstrInfo *TII, 381 const MachineInstr &MI, 382 const MachineOperand &UseMO) { 383 return !UseMO.isUndef() && !TII->isSDWA(MI); 384 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 385 } 386 387 void SIFoldOperands::foldOperand( 388 MachineOperand &OpToFold, 389 MachineInstr *UseMI, 390 unsigned UseOpIdx, 391 SmallVectorImpl<FoldCandidate> &FoldList, 392 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 393 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 394 395 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 396 return; 397 398 // FIXME: Fold operands with subregs. 399 if (UseOp.isReg() && OpToFold.isReg()) { 400 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 401 return; 402 403 // Don't fold subregister extracts into tied operands, only if it is a full 404 // copy since a subregister use tied to a full register def doesn't really 405 // make sense. e.g. don't fold: 406 // 407 // %1 = COPY %0:sub1 408 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> 409 // 410 // into 411 // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> 412 if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) 413 return; 414 } 415 416 // Special case for REG_SEQUENCE: We can't fold literals into 417 // REG_SEQUENCE instructions, so we have to fold them into the 418 // uses of REG_SEQUENCE. 419 if (UseMI->isRegSequence()) { 420 unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); 421 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 422 423 for (MachineRegisterInfo::use_iterator 424 RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); 425 RSUse != RSE; ++RSUse) { 426 427 MachineInstr *RSUseMI = RSUse->getParent(); 428 if (RSUse->getSubReg() != RegSeqDstSubReg) 429 continue; 430 431 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 432 CopiesToReplace); 433 } 434 435 return; 436 } 437 438 439 bool FoldingImm = OpToFold.isImm(); 440 441 if (FoldingImm && UseMI->isCopy()) { 442 unsigned DestReg = UseMI->getOperand(0).getReg(); 443 const TargetRegisterClass *DestRC 444 = TargetRegisterInfo::isVirtualRegister(DestReg) ? 445 MRI->getRegClass(DestReg) : 446 TRI->getPhysRegClass(DestReg); 447 448 unsigned SrcReg = UseMI->getOperand(1).getReg(); 449 if (TargetRegisterInfo::isVirtualRegister(DestReg) && 450 TargetRegisterInfo::isVirtualRegister(SrcReg)) { 451 const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); 452 if (TRI->isSGPRClass(SrcRC) && TRI->hasVGPRs(DestRC)) { 453 MachineRegisterInfo::use_iterator NextUse; 454 SmallVector<FoldCandidate, 4> CopyUses; 455 for (MachineRegisterInfo::use_iterator 456 Use = MRI->use_begin(DestReg), E = MRI->use_end(); 457 Use != E; Use = NextUse) { 458 NextUse = std::next(Use); 459 FoldCandidate FC = FoldCandidate(Use->getParent(), 460 Use.getOperandNo(), &UseMI->getOperand(1)); 461 CopyUses.push_back(FC); 462 } 463 for (auto & F : CopyUses) { 464 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, 465 FoldList, CopiesToReplace); 466 } 467 } 468 } 469 470 // In order to fold immediates into copies, we need to change the 471 // copy to a MOV. 472 473 unsigned MovOp = TII->getMovOpcode(DestRC); 474 if (MovOp == AMDGPU::COPY) 475 return; 476 477 UseMI->setDesc(TII->get(MovOp)); 478 CopiesToReplace.push_back(UseMI); 479 } else { 480 if (UseMI->isCopy() && OpToFold.isReg() && 481 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) && 482 TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(1).getReg()) && 483 TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 484 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()) && 485 !UseMI->getOperand(1).getSubReg()) { 486 UseMI->getOperand(1).setReg(OpToFold.getReg()); 487 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 488 UseMI->getOperand(1).setIsKill(false); 489 CopiesToReplace.push_back(UseMI); 490 OpToFold.setIsKill(false); 491 return; 492 } 493 494 const MCInstrDesc &UseDesc = UseMI->getDesc(); 495 496 // Don't fold into target independent nodes. Target independent opcodes 497 // don't have defined register classes. 498 if (UseDesc.isVariadic() || 499 UseOp.isImplicit() || 500 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 501 return; 502 } 503 504 if (!FoldingImm) { 505 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 506 507 // FIXME: We could try to change the instruction from 64-bit to 32-bit 508 // to enable more folding opportunites. The shrink operands pass 509 // already does this. 510 return; 511 } 512 513 514 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 515 const TargetRegisterClass *FoldRC = 516 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 517 518 519 // Split 64-bit constants into 32-bits for folding. 520 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 521 unsigned UseReg = UseOp.getReg(); 522 const TargetRegisterClass *UseRC 523 = TargetRegisterInfo::isVirtualRegister(UseReg) ? 524 MRI->getRegClass(UseReg) : 525 TRI->getPhysRegClass(UseReg); 526 527 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 528 return; 529 530 APInt Imm(64, OpToFold.getImm()); 531 if (UseOp.getSubReg() == AMDGPU::sub0) { 532 Imm = Imm.getLoBits(32); 533 } else { 534 assert(UseOp.getSubReg() == AMDGPU::sub1); 535 Imm = Imm.getHiBits(32); 536 } 537 538 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 539 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 540 return; 541 } 542 543 544 545 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 546 } 547 548 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 549 uint32_t LHS, uint32_t RHS) { 550 switch (Opcode) { 551 case AMDGPU::V_AND_B32_e64: 552 case AMDGPU::V_AND_B32_e32: 553 case AMDGPU::S_AND_B32: 554 Result = LHS & RHS; 555 return true; 556 case AMDGPU::V_OR_B32_e64: 557 case AMDGPU::V_OR_B32_e32: 558 case AMDGPU::S_OR_B32: 559 Result = LHS | RHS; 560 return true; 561 case AMDGPU::V_XOR_B32_e64: 562 case AMDGPU::V_XOR_B32_e32: 563 case AMDGPU::S_XOR_B32: 564 Result = LHS ^ RHS; 565 return true; 566 case AMDGPU::V_LSHL_B32_e64: 567 case AMDGPU::V_LSHL_B32_e32: 568 case AMDGPU::S_LSHL_B32: 569 // The instruction ignores the high bits for out of bounds shifts. 570 Result = LHS << (RHS & 31); 571 return true; 572 case AMDGPU::V_LSHLREV_B32_e64: 573 case AMDGPU::V_LSHLREV_B32_e32: 574 Result = RHS << (LHS & 31); 575 return true; 576 case AMDGPU::V_LSHR_B32_e64: 577 case AMDGPU::V_LSHR_B32_e32: 578 case AMDGPU::S_LSHR_B32: 579 Result = LHS >> (RHS & 31); 580 return true; 581 case AMDGPU::V_LSHRREV_B32_e64: 582 case AMDGPU::V_LSHRREV_B32_e32: 583 Result = RHS >> (LHS & 31); 584 return true; 585 case AMDGPU::V_ASHR_I32_e64: 586 case AMDGPU::V_ASHR_I32_e32: 587 case AMDGPU::S_ASHR_I32: 588 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 589 return true; 590 case AMDGPU::V_ASHRREV_I32_e64: 591 case AMDGPU::V_ASHRREV_I32_e32: 592 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 593 return true; 594 default: 595 return false; 596 } 597 } 598 599 static unsigned getMovOpc(bool IsScalar) { 600 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 601 } 602 603 /// Remove any leftover implicit operands from mutating the instruction. e.g. 604 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 605 /// anymore. 606 static void stripExtraCopyOperands(MachineInstr &MI) { 607 const MCInstrDesc &Desc = MI.getDesc(); 608 unsigned NumOps = Desc.getNumOperands() + 609 Desc.getNumImplicitUses() + 610 Desc.getNumImplicitDefs(); 611 612 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 613 MI.RemoveOperand(I); 614 } 615 616 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 617 MI.setDesc(NewDesc); 618 stripExtraCopyOperands(MI); 619 } 620 621 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 622 MachineOperand &Op) { 623 if (Op.isReg()) { 624 // If this has a subregister, it obviously is a register source. 625 if (Op.getSubReg() != AMDGPU::NoSubRegister || 626 !TargetRegisterInfo::isVirtualRegister(Op.getReg())) 627 return &Op; 628 629 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 630 if (Def && Def->isMoveImmediate()) { 631 MachineOperand &ImmSrc = Def->getOperand(1); 632 if (ImmSrc.isImm()) 633 return &ImmSrc; 634 } 635 } 636 637 return &Op; 638 } 639 640 // Try to simplify operations with a constant that may appear after instruction 641 // selection. 642 // TODO: See if a frame index with a fixed offset can fold. 643 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 644 const SIInstrInfo *TII, 645 MachineInstr *MI, 646 MachineOperand *ImmOp) { 647 unsigned Opc = MI->getOpcode(); 648 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 649 Opc == AMDGPU::S_NOT_B32) { 650 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 651 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 652 return true; 653 } 654 655 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 656 if (Src1Idx == -1) 657 return false; 658 659 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 660 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 661 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 662 663 if (!Src0->isImm() && !Src1->isImm()) 664 return false; 665 666 if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { 667 if (Src0->isImm() && Src0->getImm() == 0) { 668 // v_lshl_or_b32 0, X, Y -> copy Y 669 // v_lshl_or_b32 0, X, K -> v_mov_b32 K 670 bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); 671 MI->RemoveOperand(Src1Idx); 672 MI->RemoveOperand(Src0Idx); 673 674 MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); 675 return true; 676 } 677 } 678 679 // and k0, k1 -> v_mov_b32 (k0 & k1) 680 // or k0, k1 -> v_mov_b32 (k0 | k1) 681 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 682 if (Src0->isImm() && Src1->isImm()) { 683 int32_t NewImm; 684 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 685 return false; 686 687 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 688 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 689 690 // Be careful to change the right operand, src0 may belong to a different 691 // instruction. 692 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 693 MI->RemoveOperand(Src1Idx); 694 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 695 return true; 696 } 697 698 if (!MI->isCommutable()) 699 return false; 700 701 if (Src0->isImm() && !Src1->isImm()) { 702 std::swap(Src0, Src1); 703 std::swap(Src0Idx, Src1Idx); 704 } 705 706 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 707 if (Opc == AMDGPU::V_OR_B32_e64 || 708 Opc == AMDGPU::V_OR_B32_e32 || 709 Opc == AMDGPU::S_OR_B32) { 710 if (Src1Val == 0) { 711 // y = or x, 0 => y = copy x 712 MI->RemoveOperand(Src1Idx); 713 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 714 } else if (Src1Val == -1) { 715 // y = or x, -1 => y = v_mov_b32 -1 716 MI->RemoveOperand(Src1Idx); 717 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 718 } else 719 return false; 720 721 return true; 722 } 723 724 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 725 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 726 MI->getOpcode() == AMDGPU::S_AND_B32) { 727 if (Src1Val == 0) { 728 // y = and x, 0 => y = v_mov_b32 0 729 MI->RemoveOperand(Src0Idx); 730 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 731 } else if (Src1Val == -1) { 732 // y = and x, -1 => y = copy x 733 MI->RemoveOperand(Src1Idx); 734 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 735 stripExtraCopyOperands(*MI); 736 } else 737 return false; 738 739 return true; 740 } 741 742 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 743 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 744 MI->getOpcode() == AMDGPU::S_XOR_B32) { 745 if (Src1Val == 0) { 746 // y = xor x, 0 => y = copy x 747 MI->RemoveOperand(Src1Idx); 748 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 749 return true; 750 } 751 } 752 753 return false; 754 } 755 756 // Try to fold an instruction into a simpler one 757 static bool tryFoldInst(const SIInstrInfo *TII, 758 MachineInstr *MI) { 759 unsigned Opc = MI->getOpcode(); 760 761 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 762 Opc == AMDGPU::V_CNDMASK_B32_e64 || 763 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 764 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 765 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 766 if (Src1->isIdenticalTo(*Src0)) { 767 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 768 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 769 if (Src2Idx != -1) 770 MI->RemoveOperand(Src2Idx); 771 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 772 mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY 773 : getMovOpc(false))); 774 LLVM_DEBUG(dbgs() << *MI << '\n'); 775 return true; 776 } 777 } 778 779 return false; 780 } 781 782 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 783 MachineOperand &OpToFold) const { 784 // We need mutate the operands of new mov instructions to add implicit 785 // uses of EXEC, but adding them invalidates the use_iterator, so defer 786 // this. 787 SmallVector<MachineInstr *, 4> CopiesToReplace; 788 SmallVector<FoldCandidate, 4> FoldList; 789 MachineOperand &Dst = MI.getOperand(0); 790 791 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 792 if (FoldingImm) { 793 unsigned NumLiteralUses = 0; 794 MachineOperand *NonInlineUse = nullptr; 795 int NonInlineUseOpNo = -1; 796 797 MachineRegisterInfo::use_iterator NextUse; 798 for (MachineRegisterInfo::use_iterator 799 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 800 Use != E; Use = NextUse) { 801 NextUse = std::next(Use); 802 MachineInstr *UseMI = Use->getParent(); 803 unsigned OpNo = Use.getOperandNo(); 804 805 // Folding the immediate may reveal operations that can be constant 806 // folded or replaced with a copy. This can happen for example after 807 // frame indices are lowered to constants or from splitting 64-bit 808 // constants. 809 // 810 // We may also encounter cases where one or both operands are 811 // immediates materialized into a register, which would ordinarily not 812 // be folded due to multiple uses or operand constraints. 813 814 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 815 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 816 817 // Some constant folding cases change the same immediate's use to a new 818 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 819 // again. The same constant folded instruction could also have a second 820 // use operand. 821 NextUse = MRI->use_begin(Dst.getReg()); 822 FoldList.clear(); 823 continue; 824 } 825 826 // Try to fold any inline immediate uses, and then only fold other 827 // constants if they have one use. 828 // 829 // The legality of the inline immediate must be checked based on the use 830 // operand, not the defining instruction, because 32-bit instructions 831 // with 32-bit inline immediate sources may be used to materialize 832 // constants used in 16-bit operands. 833 // 834 // e.g. it is unsafe to fold: 835 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 836 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 837 838 // Folding immediates with more than one use will increase program size. 839 // FIXME: This will also reduce register usage, which may be better 840 // in some cases. A better heuristic is needed. 841 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 842 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 843 } else { 844 if (++NumLiteralUses == 1) { 845 NonInlineUse = &*Use; 846 NonInlineUseOpNo = OpNo; 847 } 848 } 849 } 850 851 if (NumLiteralUses == 1) { 852 MachineInstr *UseMI = NonInlineUse->getParent(); 853 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 854 } 855 } else { 856 // Folding register. 857 SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; 858 for (MachineRegisterInfo::use_iterator 859 Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); 860 Use != E; ++Use) { 861 UsesToProcess.push_back(Use); 862 } 863 for (auto U : UsesToProcess) { 864 MachineInstr *UseMI = U->getParent(); 865 866 foldOperand(OpToFold, UseMI, U.getOperandNo(), 867 FoldList, CopiesToReplace); 868 } 869 } 870 871 MachineFunction *MF = MI.getParent()->getParent(); 872 // Make sure we add EXEC uses to any new v_mov instructions created. 873 for (MachineInstr *Copy : CopiesToReplace) 874 Copy->addImplicitDefUseOperands(*MF); 875 876 for (FoldCandidate &Fold : FoldList) { 877 if (updateOperand(Fold, *TII, *TRI)) { 878 // Clear kill flags. 879 if (Fold.isReg()) { 880 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 881 // FIXME: Probably shouldn't bother trying to fold if not an 882 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 883 // copies. 884 MRI->clearKillFlags(Fold.OpToFold->getReg()); 885 } 886 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 887 << static_cast<int>(Fold.UseOpNo) << " of " 888 << *Fold.UseMI << '\n'); 889 tryFoldInst(TII, Fold.UseMI); 890 } else if (Fold.isCommuted()) { 891 // Restoring instruction's original operand order if fold has failed. 892 TII->commuteInstruction(*Fold.UseMI, false); 893 } 894 } 895 } 896 897 // Clamp patterns are canonically selected to v_max_* instructions, so only 898 // handle them. 899 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 900 unsigned Op = MI.getOpcode(); 901 switch (Op) { 902 case AMDGPU::V_MAX_F32_e64: 903 case AMDGPU::V_MAX_F16_e64: 904 case AMDGPU::V_MAX_F64: 905 case AMDGPU::V_PK_MAX_F16: { 906 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 907 return nullptr; 908 909 // Make sure sources are identical. 910 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 911 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 912 if (!Src0->isReg() || !Src1->isReg() || 913 Src0->getReg() != Src1->getReg() || 914 Src0->getSubReg() != Src1->getSubReg() || 915 Src0->getSubReg() != AMDGPU::NoSubRegister) 916 return nullptr; 917 918 // Can't fold up if we have modifiers. 919 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 920 return nullptr; 921 922 unsigned Src0Mods 923 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 924 unsigned Src1Mods 925 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 926 927 // Having a 0 op_sel_hi would require swizzling the output in the source 928 // instruction, which we can't do. 929 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0; 930 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 931 return nullptr; 932 return Src0; 933 } 934 default: 935 return nullptr; 936 } 937 } 938 939 // We obviously have multiple uses in a clamp since the register is used twice 940 // in the same instruction. 941 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 942 int Count = 0; 943 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 944 I != E; ++I) { 945 if (++Count > 1) 946 return false; 947 } 948 949 return true; 950 } 951 952 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 953 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 954 const MachineOperand *ClampSrc = isClamp(MI); 955 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 956 return false; 957 958 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 959 960 // The type of clamp must be compatible. 961 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 962 return false; 963 964 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 965 if (!DefClamp) 966 return false; 967 968 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 969 << '\n'); 970 971 // Clamp is applied after omod, so it is OK if omod is set. 972 DefClamp->setImm(1); 973 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 974 MI.eraseFromParent(); 975 return true; 976 } 977 978 static int getOModValue(unsigned Opc, int64_t Val) { 979 switch (Opc) { 980 case AMDGPU::V_MUL_F32_e64: { 981 switch (static_cast<uint32_t>(Val)) { 982 case 0x3f000000: // 0.5 983 return SIOutMods::DIV2; 984 case 0x40000000: // 2.0 985 return SIOutMods::MUL2; 986 case 0x40800000: // 4.0 987 return SIOutMods::MUL4; 988 default: 989 return SIOutMods::NONE; 990 } 991 } 992 case AMDGPU::V_MUL_F16_e64: { 993 switch (static_cast<uint16_t>(Val)) { 994 case 0x3800: // 0.5 995 return SIOutMods::DIV2; 996 case 0x4000: // 2.0 997 return SIOutMods::MUL2; 998 case 0x4400: // 4.0 999 return SIOutMods::MUL4; 1000 default: 1001 return SIOutMods::NONE; 1002 } 1003 } 1004 default: 1005 llvm_unreachable("invalid mul opcode"); 1006 } 1007 } 1008 1009 // FIXME: Does this really not support denormals with f16? 1010 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1011 // handled, so will anything other than that break? 1012 std::pair<const MachineOperand *, int> 1013 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1014 unsigned Op = MI.getOpcode(); 1015 switch (Op) { 1016 case AMDGPU::V_MUL_F32_e64: 1017 case AMDGPU::V_MUL_F16_e64: { 1018 // If output denormals are enabled, omod is ignored. 1019 if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || 1020 (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) 1021 return std::make_pair(nullptr, SIOutMods::NONE); 1022 1023 const MachineOperand *RegOp = nullptr; 1024 const MachineOperand *ImmOp = nullptr; 1025 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1026 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1027 if (Src0->isImm()) { 1028 ImmOp = Src0; 1029 RegOp = Src1; 1030 } else if (Src1->isImm()) { 1031 ImmOp = Src1; 1032 RegOp = Src0; 1033 } else 1034 return std::make_pair(nullptr, SIOutMods::NONE); 1035 1036 int OMod = getOModValue(Op, ImmOp->getImm()); 1037 if (OMod == SIOutMods::NONE || 1038 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1039 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1040 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1041 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1042 return std::make_pair(nullptr, SIOutMods::NONE); 1043 1044 return std::make_pair(RegOp, OMod); 1045 } 1046 case AMDGPU::V_ADD_F32_e64: 1047 case AMDGPU::V_ADD_F16_e64: { 1048 // If output denormals are enabled, omod is ignored. 1049 if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || 1050 (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) 1051 return std::make_pair(nullptr, SIOutMods::NONE); 1052 1053 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1054 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1055 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1056 1057 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1058 Src0->getSubReg() == Src1->getSubReg() && 1059 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1060 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1061 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1062 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1063 return std::make_pair(Src0, SIOutMods::MUL2); 1064 1065 return std::make_pair(nullptr, SIOutMods::NONE); 1066 } 1067 default: 1068 return std::make_pair(nullptr, SIOutMods::NONE); 1069 } 1070 } 1071 1072 // FIXME: Does this need to check IEEE bit on function? 1073 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1074 const MachineOperand *RegOp; 1075 int OMod; 1076 std::tie(RegOp, OMod) = isOMod(MI); 1077 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1078 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1079 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1080 return false; 1081 1082 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1083 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1084 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1085 return false; 1086 1087 // Clamp is applied after omod. If the source already has clamp set, don't 1088 // fold it. 1089 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1090 return false; 1091 1092 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1093 1094 DefOMod->setImm(OMod); 1095 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1096 MI.eraseFromParent(); 1097 return true; 1098 } 1099 1100 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1101 if (skipFunction(MF.getFunction())) 1102 return false; 1103 1104 MRI = &MF.getRegInfo(); 1105 ST = &MF.getSubtarget<GCNSubtarget>(); 1106 TII = ST->getInstrInfo(); 1107 TRI = &TII->getRegisterInfo(); 1108 1109 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1110 1111 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1112 // correctly handle signed zeros. 1113 // 1114 bool IsIEEEMode = ST->enableIEEEBit(MF); 1115 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1116 1117 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1118 MachineBasicBlock::iterator I, Next; 1119 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1120 Next = std::next(I); 1121 MachineInstr &MI = *I; 1122 1123 tryFoldInst(TII, &MI); 1124 1125 if (!TII->isFoldableCopy(MI)) { 1126 // TODO: Omod might be OK if there is NSZ only on the source 1127 // instruction, and not the omod multiply. 1128 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1129 !tryFoldOMod(MI)) 1130 tryFoldClamp(MI); 1131 continue; 1132 } 1133 1134 MachineOperand &OpToFold = MI.getOperand(1); 1135 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI(); 1136 1137 // FIXME: We could also be folding things like TargetIndexes. 1138 if (!FoldingImm && !OpToFold.isReg()) 1139 continue; 1140 1141 if (OpToFold.isReg() && 1142 !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) 1143 continue; 1144 1145 // Prevent folding operands backwards in the function. For example, 1146 // the COPY opcode must not be replaced by 1 in this example: 1147 // 1148 // %3 = COPY %vgpr0; VGPR_32:%3 1149 // ... 1150 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1151 MachineOperand &Dst = MI.getOperand(0); 1152 if (Dst.isReg() && 1153 !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) 1154 continue; 1155 1156 foldInstOperand(MI, OpToFold); 1157 } 1158 } 1159 return false; 1160 } 1161