1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 18 #define DEBUG_TYPE "si-fold-operands" 19 using namespace llvm; 20 21 namespace { 22 23 struct FoldCandidate { 24 MachineInstr *UseMI; 25 union { 26 MachineOperand *OpToFold; 27 uint64_t ImmToFold; 28 int FrameIndexToFold; 29 }; 30 int ShrinkOpcode; 31 unsigned UseOpNo; 32 MachineOperand::MachineOperandType Kind; 33 bool Commuted; 34 35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 36 bool Commuted_ = false, 37 int ShrinkOp = -1) : 38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 39 Kind(FoldOp->getType()), 40 Commuted(Commuted_) { 41 if (FoldOp->isImm()) { 42 ImmToFold = FoldOp->getImm(); 43 } else if (FoldOp->isFI()) { 44 FrameIndexToFold = FoldOp->getIndex(); 45 } else { 46 assert(FoldOp->isReg() || FoldOp->isGlobal()); 47 OpToFold = FoldOp; 48 } 49 } 50 51 bool isFI() const { 52 return Kind == MachineOperand::MO_FrameIndex; 53 } 54 55 bool isImm() const { 56 return Kind == MachineOperand::MO_Immediate; 57 } 58 59 bool isReg() const { 60 return Kind == MachineOperand::MO_Register; 61 } 62 63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 64 65 bool isCommuted() const { 66 return Commuted; 67 } 68 69 bool needsShrink() const { 70 return ShrinkOpcode != -1; 71 } 72 73 int getShrinkOpcode() const { 74 return ShrinkOpcode; 75 } 76 }; 77 78 class SIFoldOperands : public MachineFunctionPass { 79 public: 80 static char ID; 81 MachineRegisterInfo *MRI; 82 const SIInstrInfo *TII; 83 const SIRegisterInfo *TRI; 84 const GCNSubtarget *ST; 85 const SIMachineFunctionInfo *MFI; 86 87 void foldOperand(MachineOperand &OpToFold, 88 MachineInstr *UseMI, 89 int UseOpIdx, 90 SmallVectorImpl<FoldCandidate> &FoldList, 91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 92 93 bool tryFoldCndMask(MachineInstr &MI) const; 94 bool tryFoldZeroHighBits(MachineInstr &MI) const; 95 bool foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 96 97 const MachineOperand *isClamp(const MachineInstr &MI) const; 98 bool tryFoldClamp(MachineInstr &MI); 99 100 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 101 bool tryFoldOMod(MachineInstr &MI); 102 bool tryFoldRegSequence(MachineInstr &MI); 103 bool tryFoldLCSSAPhi(MachineInstr &MI); 104 bool tryFoldLoad(MachineInstr &MI); 105 106 public: 107 SIFoldOperands() : MachineFunctionPass(ID) { 108 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 109 } 110 111 bool runOnMachineFunction(MachineFunction &MF) override; 112 113 StringRef getPassName() const override { return "SI Fold Operands"; } 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.setPreservesCFG(); 117 MachineFunctionPass::getAnalysisUsage(AU); 118 } 119 }; 120 121 } // End anonymous namespace. 122 123 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 124 "SI Fold Operands", false, false) 125 126 char SIFoldOperands::ID = 0; 127 128 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 129 130 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 131 static unsigned macToMad(unsigned Opc) { 132 switch (Opc) { 133 case AMDGPU::V_MAC_F32_e64: 134 return AMDGPU::V_MAD_F32_e64; 135 case AMDGPU::V_MAC_F16_e64: 136 return AMDGPU::V_MAD_F16_e64; 137 case AMDGPU::V_FMAC_F32_e64: 138 return AMDGPU::V_FMA_F32_e64; 139 case AMDGPU::V_FMAC_F16_e64: 140 return AMDGPU::V_FMA_F16_gfx9_e64; 141 case AMDGPU::V_FMAC_LEGACY_F32_e64: 142 return AMDGPU::V_FMA_LEGACY_F32_e64; 143 case AMDGPU::V_FMAC_F64_e64: 144 return AMDGPU::V_FMA_F64_e64; 145 } 146 return AMDGPU::INSTRUCTION_LIST_END; 147 } 148 149 // Wrapper around isInlineConstant that understands special cases when 150 // instruction types are replaced during operand folding. 151 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 152 const MachineInstr &UseMI, 153 unsigned OpNo, 154 const MachineOperand &OpToFold) { 155 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 156 return true; 157 158 unsigned Opc = UseMI.getOpcode(); 159 unsigned NewOpc = macToMad(Opc); 160 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 161 // Special case for mac. Since this is replaced with mad when folded into 162 // src2, we need to check the legality for the final instruction. 163 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 164 if (static_cast<int>(OpNo) == Src2Idx) { 165 const MCInstrDesc &MadDesc = TII->get(NewOpc); 166 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 167 } 168 } 169 170 return false; 171 } 172 173 // TODO: Add heuristic that the frame index might not fit in the addressing mode 174 // immediate offset to avoid materializing in loops. 175 static bool frameIndexMayFold(const SIInstrInfo *TII, 176 const MachineInstr &UseMI, 177 int OpNo, 178 const MachineOperand &OpToFold) { 179 if (!OpToFold.isFI()) 180 return false; 181 182 if (TII->isMUBUF(UseMI)) 183 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 184 AMDGPU::OpName::vaddr); 185 if (!TII->isFLATScratch(UseMI)) 186 return false; 187 188 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 189 AMDGPU::OpName::saddr); 190 if (OpNo == SIdx) 191 return true; 192 193 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 194 AMDGPU::OpName::vaddr); 195 return OpNo == VIdx && SIdx == -1; 196 } 197 198 FunctionPass *llvm::createSIFoldOperandsPass() { 199 return new SIFoldOperands(); 200 } 201 202 static bool updateOperand(FoldCandidate &Fold, 203 const SIInstrInfo &TII, 204 const TargetRegisterInfo &TRI, 205 const GCNSubtarget &ST) { 206 MachineInstr *MI = Fold.UseMI; 207 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 208 assert(Old.isReg()); 209 210 if (Fold.isImm()) { 211 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 212 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 213 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 214 ST.hasInv2PiInlineImm())) { 215 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 216 // already set. 217 unsigned Opcode = MI->getOpcode(); 218 int OpNo = MI->getOperandNo(&Old); 219 int ModIdx = -1; 220 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 221 ModIdx = AMDGPU::OpName::src0_modifiers; 222 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 223 ModIdx = AMDGPU::OpName::src1_modifiers; 224 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 225 ModIdx = AMDGPU::OpName::src2_modifiers; 226 assert(ModIdx != -1); 227 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 228 MachineOperand &Mod = MI->getOperand(ModIdx); 229 unsigned Val = Mod.getImm(); 230 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 231 // Only apply the following transformation if that operand requires 232 // a packed immediate. 233 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 234 case AMDGPU::OPERAND_REG_IMM_V2FP16: 235 case AMDGPU::OPERAND_REG_IMM_V2INT16: 236 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 237 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 238 // If upper part is all zero we do not need op_sel_hi. 239 if (!isUInt<16>(Fold.ImmToFold)) { 240 if (!(Fold.ImmToFold & 0xffff)) { 241 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 242 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 243 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 244 return true; 245 } 246 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 247 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 248 return true; 249 } 250 break; 251 default: 252 break; 253 } 254 } 255 } 256 } 257 258 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 259 MachineBasicBlock *MBB = MI->getParent(); 260 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 261 if (Liveness != MachineBasicBlock::LQR_Dead) { 262 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 263 return false; 264 } 265 266 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 267 int Op32 = Fold.getShrinkOpcode(); 268 MachineOperand &Dst0 = MI->getOperand(0); 269 MachineOperand &Dst1 = MI->getOperand(1); 270 assert(Dst0.isDef() && Dst1.isDef()); 271 272 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 273 274 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 275 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 276 277 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 278 279 if (HaveNonDbgCarryUse) { 280 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 281 .addReg(AMDGPU::VCC, RegState::Kill); 282 } 283 284 // Keep the old instruction around to avoid breaking iterators, but 285 // replace it with a dummy instruction to remove uses. 286 // 287 // FIXME: We should not invert how this pass looks at operands to avoid 288 // this. Should track set of foldable movs instead of looking for uses 289 // when looking at a use. 290 Dst0.setReg(NewReg0); 291 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 292 MI->RemoveOperand(I); 293 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 294 295 if (Fold.isCommuted()) 296 TII.commuteInstruction(*Inst32, false); 297 return true; 298 } 299 300 assert(!Fold.needsShrink() && "not handled"); 301 302 if (Fold.isImm()) { 303 if (Old.isTied()) { 304 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(MI->getOpcode()); 305 if (NewMFMAOpc == -1) 306 return false; 307 MI->setDesc(TII.get(NewMFMAOpc)); 308 MI->untieRegOperand(0); 309 } 310 Old.ChangeToImmediate(Fold.ImmToFold); 311 return true; 312 } 313 314 if (Fold.isGlobal()) { 315 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 316 Fold.OpToFold->getTargetFlags()); 317 return true; 318 } 319 320 if (Fold.isFI()) { 321 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 322 return true; 323 } 324 325 MachineOperand *New = Fold.OpToFold; 326 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 327 Old.setIsUndef(New->isUndef()); 328 return true; 329 } 330 331 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 332 const MachineInstr *MI) { 333 for (auto Candidate : FoldList) { 334 if (Candidate.UseMI == MI) 335 return true; 336 } 337 return false; 338 } 339 340 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 341 MachineInstr *MI, unsigned OpNo, 342 MachineOperand *FoldOp, bool Commuted = false, 343 int ShrinkOp = -1) { 344 // Skip additional folding on the same operand. 345 for (FoldCandidate &Fold : FoldList) 346 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 347 return; 348 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 349 << " operand " << OpNo << "\n " << *MI); 350 FoldList.emplace_back(MI, OpNo, FoldOp, Commuted, ShrinkOp); 351 } 352 353 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 354 MachineInstr *MI, unsigned OpNo, 355 MachineOperand *OpToFold, 356 const SIInstrInfo *TII) { 357 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 358 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 359 unsigned Opc = MI->getOpcode(); 360 unsigned NewOpc = macToMad(Opc); 361 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 362 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 363 // to fold the operand. 364 MI->setDesc(TII->get(NewOpc)); 365 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 366 if (FoldAsMAD) { 367 MI->untieRegOperand(OpNo); 368 return true; 369 } 370 MI->setDesc(TII->get(Opc)); 371 } 372 373 // Special case for s_setreg_b32 374 if (OpToFold->isImm()) { 375 unsigned ImmOpc = 0; 376 if (Opc == AMDGPU::S_SETREG_B32) 377 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 378 else if (Opc == AMDGPU::S_SETREG_B32_mode) 379 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 380 if (ImmOpc) { 381 MI->setDesc(TII->get(ImmOpc)); 382 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 383 return true; 384 } 385 } 386 387 // If we are already folding into another operand of MI, then 388 // we can't commute the instruction, otherwise we risk making the 389 // other fold illegal. 390 if (isUseMIInFoldList(FoldList, MI)) 391 return false; 392 393 unsigned CommuteOpNo = OpNo; 394 395 // Operand is not legal, so try to commute the instruction to 396 // see if this makes it possible to fold. 397 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 398 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 399 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 400 401 if (CanCommute) { 402 if (CommuteIdx0 == OpNo) 403 CommuteOpNo = CommuteIdx1; 404 else if (CommuteIdx1 == OpNo) 405 CommuteOpNo = CommuteIdx0; 406 } 407 408 409 // One of operands might be an Imm operand, and OpNo may refer to it after 410 // the call of commuteInstruction() below. Such situations are avoided 411 // here explicitly as OpNo must be a register operand to be a candidate 412 // for memory folding. 413 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 414 !MI->getOperand(CommuteIdx1).isReg())) 415 return false; 416 417 if (!CanCommute || 418 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 419 return false; 420 421 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 422 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 423 Opc == AMDGPU::V_SUB_CO_U32_e64 || 424 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 425 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 426 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 427 428 // Verify the other operand is a VGPR, otherwise we would violate the 429 // constant bus restriction. 430 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 431 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 432 if (!OtherOp.isReg() || 433 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 434 return false; 435 436 assert(MI->getOperand(1).isDef()); 437 438 // Make sure to get the 32-bit version of the commuted opcode. 439 unsigned MaybeCommutedOpc = MI->getOpcode(); 440 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 441 442 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 443 return true; 444 } 445 446 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 447 return false; 448 } 449 450 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 451 return true; 452 } 453 454 // Check the case where we might introduce a second constant operand to a 455 // scalar instruction 456 if (TII->isSALU(MI->getOpcode())) { 457 const MCInstrDesc &InstDesc = MI->getDesc(); 458 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 459 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 460 461 // Fine if the operand can be encoded as an inline constant 462 if (TII->isLiteralConstantLike(*OpToFold, OpInfo)) { 463 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 464 !TII->isInlineConstant(*OpToFold, OpInfo)) { 465 // Otherwise check for another constant 466 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 467 auto &Op = MI->getOperand(i); 468 if (OpNo != i && 469 TII->isLiteralConstantLike(Op, OpInfo)) { 470 return false; 471 } 472 } 473 } 474 } 475 } 476 477 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 478 return true; 479 } 480 481 // If the use operand doesn't care about the value, this may be an operand only 482 // used for register indexing, in which case it is unsafe to fold. 483 static bool isUseSafeToFold(const SIInstrInfo *TII, 484 const MachineInstr &MI, 485 const MachineOperand &UseMO) { 486 if (UseMO.isUndef() || TII->isSDWA(MI)) 487 return false; 488 489 switch (MI.getOpcode()) { 490 case AMDGPU::V_MOV_B32_e32: 491 case AMDGPU::V_MOV_B32_e64: 492 case AMDGPU::V_MOV_B64_PSEUDO: 493 case AMDGPU::V_MOV_B64_e32: 494 case AMDGPU::V_MOV_B64_e64: 495 // Do not fold into an indirect mov. 496 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 497 } 498 499 return true; 500 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 501 } 502 503 // Find a def of the UseReg, check if it is a reg_sequence and find initializers 504 // for each subreg, tracking it to foldable inline immediate if possible. 505 // Returns true on success. 506 static bool getRegSeqInit( 507 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 508 Register UseReg, uint8_t OpTy, 509 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 510 MachineInstr *Def = MRI.getVRegDef(UseReg); 511 if (!Def || !Def->isRegSequence()) 512 return false; 513 514 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 515 MachineOperand *Sub = &Def->getOperand(I); 516 assert(Sub->isReg()); 517 518 for (MachineInstr *SubDef = MRI.getVRegDef(Sub->getReg()); 519 SubDef && Sub->isReg() && Sub->getReg().isVirtual() && 520 !Sub->getSubReg() && TII->isFoldableCopy(*SubDef); 521 SubDef = MRI.getVRegDef(Sub->getReg())) { 522 MachineOperand *Op = &SubDef->getOperand(1); 523 if (Op->isImm()) { 524 if (TII->isInlineConstant(*Op, OpTy)) 525 Sub = Op; 526 break; 527 } 528 if (!Op->isReg() || Op->getReg().isPhysical()) 529 break; 530 Sub = Op; 531 } 532 533 Defs.emplace_back(Sub, Def->getOperand(I + 1).getImm()); 534 } 535 536 return true; 537 } 538 539 static bool tryToFoldACImm(const SIInstrInfo *TII, 540 const MachineOperand &OpToFold, 541 MachineInstr *UseMI, 542 unsigned UseOpIdx, 543 SmallVectorImpl<FoldCandidate> &FoldList) { 544 const MCInstrDesc &Desc = UseMI->getDesc(); 545 const MCOperandInfo *OpInfo = Desc.OpInfo; 546 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 547 return false; 548 549 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 550 if ((OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 551 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) && 552 (OpTy < AMDGPU::OPERAND_REG_INLINE_C_FIRST || 553 OpTy > AMDGPU::OPERAND_REG_INLINE_C_LAST)) 554 return false; 555 556 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 557 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 558 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 559 return true; 560 } 561 562 if (!OpToFold.isReg()) 563 return false; 564 565 Register UseReg = OpToFold.getReg(); 566 if (!UseReg.isVirtual()) 567 return false; 568 569 if (isUseMIInFoldList(FoldList, UseMI)) 570 return false; 571 572 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 573 574 // Maybe it is just a COPY of an immediate itself. 575 MachineInstr *Def = MRI.getVRegDef(UseReg); 576 MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 577 if (!UseOp.getSubReg() && Def && TII->isFoldableCopy(*Def)) { 578 MachineOperand &DefOp = Def->getOperand(1); 579 if (DefOp.isImm() && TII->isInlineConstant(DefOp, OpTy) && 580 TII->isOperandLegal(*UseMI, UseOpIdx, &DefOp)) { 581 UseMI->getOperand(UseOpIdx).ChangeToImmediate(DefOp.getImm()); 582 return true; 583 } 584 } 585 586 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 587 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 588 return false; 589 590 int32_t Imm; 591 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 592 const MachineOperand *Op = Defs[I].first; 593 if (!Op->isImm()) 594 return false; 595 596 auto SubImm = Op->getImm(); 597 if (!I) { 598 Imm = SubImm; 599 if (!TII->isInlineConstant(*Op, OpTy) || 600 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 601 return false; 602 603 continue; 604 } 605 if (Imm != SubImm) 606 return false; // Can only fold splat constants 607 } 608 609 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 610 return true; 611 } 612 613 void SIFoldOperands::foldOperand( 614 MachineOperand &OpToFold, 615 MachineInstr *UseMI, 616 int UseOpIdx, 617 SmallVectorImpl<FoldCandidate> &FoldList, 618 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 619 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 620 621 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 622 return; 623 624 // FIXME: Fold operands with subregs. 625 if (UseOp.isReg() && OpToFold.isReg()) { 626 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 627 return; 628 } 629 630 // Special case for REG_SEQUENCE: We can't fold literals into 631 // REG_SEQUENCE instructions, so we have to fold them into the 632 // uses of REG_SEQUENCE. 633 if (UseMI->isRegSequence()) { 634 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 635 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 636 637 for (auto &RSUse : make_early_inc_range(MRI->use_nodbg_operands(RegSeqDstReg))) { 638 MachineInstr *RSUseMI = RSUse.getParent(); 639 640 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 641 RSUseMI->getOperandNo(&RSUse), FoldList)) 642 continue; 643 644 if (RSUse.getSubReg() != RegSeqDstSubReg) 645 continue; 646 647 foldOperand(OpToFold, RSUseMI, RSUseMI->getOperandNo(&RSUse), FoldList, 648 CopiesToReplace); 649 } 650 651 return; 652 } 653 654 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 655 return; 656 657 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 658 // Verify that this is a stack access. 659 // FIXME: Should probably use stack pseudos before frame lowering. 660 661 if (TII->isMUBUF(*UseMI)) { 662 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 663 MFI->getScratchRSrcReg()) 664 return; 665 666 // Ensure this is either relative to the current frame or the current 667 // wave. 668 MachineOperand &SOff = 669 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 670 if (!SOff.isImm() || SOff.getImm() != 0) 671 return; 672 } 673 674 // A frame index will resolve to a positive constant, so it should always be 675 // safe to fold the addressing mode, even pre-GFX9. 676 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 677 678 if (TII->isFLATScratch(*UseMI) && 679 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 680 AMDGPU::OpName::vaddr) != -1 && 681 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 682 AMDGPU::OpName::saddr) == -1) { 683 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 684 UseMI->setDesc(TII->get(NewOpc)); 685 } 686 687 return; 688 } 689 690 bool FoldingImmLike = 691 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 692 693 if (FoldingImmLike && UseMI->isCopy()) { 694 Register DestReg = UseMI->getOperand(0).getReg(); 695 Register SrcReg = UseMI->getOperand(1).getReg(); 696 assert(SrcReg.isVirtual()); 697 698 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 699 700 // Don't fold into a copy to a physical register with the same class. Doing 701 // so would interfere with the register coalescer's logic which would avoid 702 // redundant initializations. 703 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 704 return; 705 706 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 707 if (!DestReg.isPhysical()) { 708 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 709 SmallVector<FoldCandidate, 4> CopyUses; 710 for (auto &Use : MRI->use_nodbg_operands(DestReg)) { 711 // There's no point trying to fold into an implicit operand. 712 if (Use.isImplicit()) 713 continue; 714 715 CopyUses.emplace_back(Use.getParent(), 716 Use.getParent()->getOperandNo(&Use), 717 &UseMI->getOperand(1)); 718 } 719 for (auto &F : CopyUses) { 720 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 721 } 722 } 723 724 if (DestRC == &AMDGPU::AGPR_32RegClass && 725 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 726 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 727 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 728 CopiesToReplace.push_back(UseMI); 729 return; 730 } 731 } 732 733 // In order to fold immediates into copies, we need to change the 734 // copy to a MOV. 735 736 unsigned MovOp = TII->getMovOpcode(DestRC); 737 if (MovOp == AMDGPU::COPY) 738 return; 739 740 UseMI->setDesc(TII->get(MovOp)); 741 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 742 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 743 while (ImpOpI != ImpOpE) { 744 MachineInstr::mop_iterator Tmp = ImpOpI; 745 ImpOpI++; 746 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 747 } 748 CopiesToReplace.push_back(UseMI); 749 } else { 750 if (UseMI->isCopy() && OpToFold.isReg() && 751 UseMI->getOperand(0).getReg().isVirtual() && 752 !UseMI->getOperand(1).getSubReg()) { 753 LLVM_DEBUG(dbgs() << "Folding " << OpToFold << "\n into " << *UseMI); 754 unsigned Size = TII->getOpSize(*UseMI, 1); 755 Register UseReg = OpToFold.getReg(); 756 UseMI->getOperand(1).setReg(UseReg); 757 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 758 UseMI->getOperand(1).setIsKill(false); 759 CopiesToReplace.push_back(UseMI); 760 OpToFold.setIsKill(false); 761 762 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 763 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 764 // its initializers right here, so we will rematerialize immediates and 765 // avoid copies via different reg classes. 766 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 767 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 768 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 769 *MRI)) { 770 const DebugLoc &DL = UseMI->getDebugLoc(); 771 MachineBasicBlock &MBB = *UseMI->getParent(); 772 773 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 774 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 775 UseMI->RemoveOperand(I); 776 777 MachineInstrBuilder B(*MBB.getParent(), UseMI); 778 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 779 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 780 for (unsigned I = 0; I < Size / 4; ++I) { 781 MachineOperand *Def = Defs[I].first; 782 TargetInstrInfo::RegSubRegPair CopyToVGPR; 783 if (Def->isImm() && 784 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 785 int64_t Imm = Def->getImm(); 786 787 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 788 BuildMI(MBB, UseMI, DL, 789 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 790 B.addReg(Tmp); 791 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 792 auto Src = getRegSubRegPair(*Def); 793 Def->setIsKill(false); 794 if (!SeenAGPRs.insert(Src)) { 795 // We cannot build a reg_sequence out of the same registers, they 796 // must be copied. Better do it here before copyPhysReg() created 797 // several reads to do the AGPR->VGPR->AGPR copy. 798 CopyToVGPR = Src; 799 } else { 800 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 801 Src.SubReg); 802 } 803 } else { 804 assert(Def->isReg()); 805 Def->setIsKill(false); 806 auto Src = getRegSubRegPair(*Def); 807 808 // Direct copy from SGPR to AGPR is not possible. To avoid creation 809 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 810 // create a copy here and track if we already have such a copy. 811 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 812 CopyToVGPR = Src; 813 } else { 814 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 815 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 816 B.addReg(Tmp); 817 } 818 } 819 820 if (CopyToVGPR.Reg) { 821 Register Vgpr; 822 if (VGPRCopies.count(CopyToVGPR)) { 823 Vgpr = VGPRCopies[CopyToVGPR]; 824 } else { 825 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 826 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 827 VGPRCopies[CopyToVGPR] = Vgpr; 828 } 829 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 830 BuildMI(MBB, UseMI, DL, 831 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 832 B.addReg(Tmp); 833 } 834 835 B.addImm(Defs[I].second); 836 } 837 LLVM_DEBUG(dbgs() << "Folded " << *UseMI); 838 return; 839 } 840 841 if (Size != 4) 842 return; 843 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 844 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 845 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 846 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 847 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 848 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 849 else if (ST->hasGFX90AInsts() && 850 TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 851 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 852 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_MOV_B32)); 853 return; 854 } 855 856 unsigned UseOpc = UseMI->getOpcode(); 857 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 858 (UseOpc == AMDGPU::V_READLANE_B32 && 859 (int)UseOpIdx == 860 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 861 // %vgpr = V_MOV_B32 imm 862 // %sgpr = V_READFIRSTLANE_B32 %vgpr 863 // => 864 // %sgpr = S_MOV_B32 imm 865 if (FoldingImmLike) { 866 if (execMayBeModifiedBeforeUse(*MRI, 867 UseMI->getOperand(UseOpIdx).getReg(), 868 *OpToFold.getParent(), 869 *UseMI)) 870 return; 871 872 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 873 874 if (OpToFold.isImm()) 875 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 876 else 877 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 878 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 879 return; 880 } 881 882 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 883 if (execMayBeModifiedBeforeUse(*MRI, 884 UseMI->getOperand(UseOpIdx).getReg(), 885 *OpToFold.getParent(), 886 *UseMI)) 887 return; 888 889 // %vgpr = COPY %sgpr0 890 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 891 // => 892 // %sgpr1 = COPY %sgpr0 893 UseMI->setDesc(TII->get(AMDGPU::COPY)); 894 UseMI->getOperand(1).setReg(OpToFold.getReg()); 895 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 896 UseMI->getOperand(1).setIsKill(false); 897 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 898 return; 899 } 900 } 901 902 const MCInstrDesc &UseDesc = UseMI->getDesc(); 903 904 // Don't fold into target independent nodes. Target independent opcodes 905 // don't have defined register classes. 906 if (UseDesc.isVariadic() || 907 UseOp.isImplicit() || 908 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 909 return; 910 } 911 912 if (!FoldingImmLike) { 913 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 914 915 // FIXME: We could try to change the instruction from 64-bit to 32-bit 916 // to enable more folding opportunities. The shrink operands pass 917 // already does this. 918 return; 919 } 920 921 922 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 923 const TargetRegisterClass *FoldRC = 924 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 925 926 // Split 64-bit constants into 32-bits for folding. 927 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 928 Register UseReg = UseOp.getReg(); 929 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 930 931 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 932 return; 933 934 APInt Imm(64, OpToFold.getImm()); 935 if (UseOp.getSubReg() == AMDGPU::sub0) { 936 Imm = Imm.getLoBits(32); 937 } else { 938 assert(UseOp.getSubReg() == AMDGPU::sub1); 939 Imm = Imm.getHiBits(32); 940 } 941 942 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 943 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 944 return; 945 } 946 947 948 949 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 950 } 951 952 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 953 uint32_t LHS, uint32_t RHS) { 954 switch (Opcode) { 955 case AMDGPU::V_AND_B32_e64: 956 case AMDGPU::V_AND_B32_e32: 957 case AMDGPU::S_AND_B32: 958 Result = LHS & RHS; 959 return true; 960 case AMDGPU::V_OR_B32_e64: 961 case AMDGPU::V_OR_B32_e32: 962 case AMDGPU::S_OR_B32: 963 Result = LHS | RHS; 964 return true; 965 case AMDGPU::V_XOR_B32_e64: 966 case AMDGPU::V_XOR_B32_e32: 967 case AMDGPU::S_XOR_B32: 968 Result = LHS ^ RHS; 969 return true; 970 case AMDGPU::S_XNOR_B32: 971 Result = ~(LHS ^ RHS); 972 return true; 973 case AMDGPU::S_NAND_B32: 974 Result = ~(LHS & RHS); 975 return true; 976 case AMDGPU::S_NOR_B32: 977 Result = ~(LHS | RHS); 978 return true; 979 case AMDGPU::S_ANDN2_B32: 980 Result = LHS & ~RHS; 981 return true; 982 case AMDGPU::S_ORN2_B32: 983 Result = LHS | ~RHS; 984 return true; 985 case AMDGPU::V_LSHL_B32_e64: 986 case AMDGPU::V_LSHL_B32_e32: 987 case AMDGPU::S_LSHL_B32: 988 // The instruction ignores the high bits for out of bounds shifts. 989 Result = LHS << (RHS & 31); 990 return true; 991 case AMDGPU::V_LSHLREV_B32_e64: 992 case AMDGPU::V_LSHLREV_B32_e32: 993 Result = RHS << (LHS & 31); 994 return true; 995 case AMDGPU::V_LSHR_B32_e64: 996 case AMDGPU::V_LSHR_B32_e32: 997 case AMDGPU::S_LSHR_B32: 998 Result = LHS >> (RHS & 31); 999 return true; 1000 case AMDGPU::V_LSHRREV_B32_e64: 1001 case AMDGPU::V_LSHRREV_B32_e32: 1002 Result = RHS >> (LHS & 31); 1003 return true; 1004 case AMDGPU::V_ASHR_I32_e64: 1005 case AMDGPU::V_ASHR_I32_e32: 1006 case AMDGPU::S_ASHR_I32: 1007 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 1008 return true; 1009 case AMDGPU::V_ASHRREV_I32_e64: 1010 case AMDGPU::V_ASHRREV_I32_e32: 1011 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 1012 return true; 1013 default: 1014 return false; 1015 } 1016 } 1017 1018 static unsigned getMovOpc(bool IsScalar) { 1019 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1020 } 1021 1022 /// Remove any leftover implicit operands from mutating the instruction. e.g. 1023 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1024 /// anymore. 1025 static void stripExtraCopyOperands(MachineInstr &MI) { 1026 const MCInstrDesc &Desc = MI.getDesc(); 1027 unsigned NumOps = Desc.getNumOperands() + 1028 Desc.getNumImplicitUses() + 1029 Desc.getNumImplicitDefs(); 1030 1031 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1032 MI.RemoveOperand(I); 1033 } 1034 1035 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1036 MI.setDesc(NewDesc); 1037 stripExtraCopyOperands(MI); 1038 } 1039 1040 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1041 MachineOperand &Op) { 1042 if (Op.isReg()) { 1043 // If this has a subregister, it obviously is a register source. 1044 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1045 return &Op; 1046 1047 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1048 if (Def && Def->isMoveImmediate()) { 1049 MachineOperand &ImmSrc = Def->getOperand(1); 1050 if (ImmSrc.isImm()) 1051 return &ImmSrc; 1052 } 1053 } 1054 1055 return &Op; 1056 } 1057 1058 // Try to simplify operations with a constant that may appear after instruction 1059 // selection. 1060 // TODO: See if a frame index with a fixed offset can fold. 1061 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, const SIInstrInfo *TII, 1062 MachineInstr *MI) { 1063 unsigned Opc = MI->getOpcode(); 1064 1065 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1066 if (Src0Idx == -1) 1067 return false; 1068 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1069 1070 if ((Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1071 Opc == AMDGPU::S_NOT_B32) && 1072 Src0->isImm()) { 1073 MI->getOperand(1).ChangeToImmediate(~Src0->getImm()); 1074 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1075 return true; 1076 } 1077 1078 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1079 if (Src1Idx == -1) 1080 return false; 1081 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1082 1083 if (!Src0->isImm() && !Src1->isImm()) 1084 return false; 1085 1086 // and k0, k1 -> v_mov_b32 (k0 & k1) 1087 // or k0, k1 -> v_mov_b32 (k0 | k1) 1088 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1089 if (Src0->isImm() && Src1->isImm()) { 1090 int32_t NewImm; 1091 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1092 return false; 1093 1094 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1095 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1096 1097 // Be careful to change the right operand, src0 may belong to a different 1098 // instruction. 1099 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1100 MI->RemoveOperand(Src1Idx); 1101 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1102 return true; 1103 } 1104 1105 if (!MI->isCommutable()) 1106 return false; 1107 1108 if (Src0->isImm() && !Src1->isImm()) { 1109 std::swap(Src0, Src1); 1110 std::swap(Src0Idx, Src1Idx); 1111 } 1112 1113 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1114 if (Opc == AMDGPU::V_OR_B32_e64 || 1115 Opc == AMDGPU::V_OR_B32_e32 || 1116 Opc == AMDGPU::S_OR_B32) { 1117 if (Src1Val == 0) { 1118 // y = or x, 0 => y = copy x 1119 MI->RemoveOperand(Src1Idx); 1120 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1121 } else if (Src1Val == -1) { 1122 // y = or x, -1 => y = v_mov_b32 -1 1123 MI->RemoveOperand(Src1Idx); 1124 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1125 } else 1126 return false; 1127 1128 return true; 1129 } 1130 1131 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1132 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1133 MI->getOpcode() == AMDGPU::S_AND_B32) { 1134 if (Src1Val == 0) { 1135 // y = and x, 0 => y = v_mov_b32 0 1136 MI->RemoveOperand(Src0Idx); 1137 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1138 } else if (Src1Val == -1) { 1139 // y = and x, -1 => y = copy x 1140 MI->RemoveOperand(Src1Idx); 1141 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1142 stripExtraCopyOperands(*MI); 1143 } else 1144 return false; 1145 1146 return true; 1147 } 1148 1149 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1150 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1151 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1152 if (Src1Val == 0) { 1153 // y = xor x, 0 => y = copy x 1154 MI->RemoveOperand(Src1Idx); 1155 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1156 return true; 1157 } 1158 } 1159 1160 return false; 1161 } 1162 1163 // Try to fold an instruction into a simpler one 1164 bool SIFoldOperands::tryFoldCndMask(MachineInstr &MI) const { 1165 unsigned Opc = MI.getOpcode(); 1166 if (Opc != AMDGPU::V_CNDMASK_B32_e32 && Opc != AMDGPU::V_CNDMASK_B32_e64 && 1167 Opc != AMDGPU::V_CNDMASK_B64_PSEUDO) 1168 return false; 1169 1170 MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1171 MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1172 if (!Src1->isIdenticalTo(*Src0)) { 1173 auto *Src0Imm = getImmOrMaterializedImm(*MRI, *Src0); 1174 auto *Src1Imm = getImmOrMaterializedImm(*MRI, *Src1); 1175 if (!Src1Imm->isIdenticalTo(*Src0Imm)) 1176 return false; 1177 } 1178 1179 int Src1ModIdx = 1180 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1181 int Src0ModIdx = 1182 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1183 if ((Src1ModIdx != -1 && MI.getOperand(Src1ModIdx).getImm() != 0) || 1184 (Src0ModIdx != -1 && MI.getOperand(Src0ModIdx).getImm() != 0)) 1185 return false; 1186 1187 LLVM_DEBUG(dbgs() << "Folded " << MI << " into "); 1188 auto &NewDesc = 1189 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1190 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1191 if (Src2Idx != -1) 1192 MI.RemoveOperand(Src2Idx); 1193 MI.RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1194 if (Src1ModIdx != -1) 1195 MI.RemoveOperand(Src1ModIdx); 1196 if (Src0ModIdx != -1) 1197 MI.RemoveOperand(Src0ModIdx); 1198 mutateCopyOp(MI, NewDesc); 1199 LLVM_DEBUG(dbgs() << MI); 1200 return true; 1201 } 1202 1203 bool SIFoldOperands::tryFoldZeroHighBits(MachineInstr &MI) const { 1204 if (MI.getOpcode() != AMDGPU::V_AND_B32_e64 && 1205 MI.getOpcode() != AMDGPU::V_AND_B32_e32) 1206 return false; 1207 1208 MachineOperand *Src0 = getImmOrMaterializedImm(*MRI, MI.getOperand(1)); 1209 if (!Src0->isImm() || Src0->getImm() != 0xffff) 1210 return false; 1211 1212 Register Src1 = MI.getOperand(2).getReg(); 1213 MachineInstr *SrcDef = MRI->getVRegDef(Src1); 1214 if (ST->zeroesHigh16BitsOfDest(SrcDef->getOpcode())) { 1215 Register Dst = MI.getOperand(0).getReg(); 1216 MRI->replaceRegWith(Dst, SrcDef->getOperand(0).getReg()); 1217 MI.eraseFromParent(); 1218 return true; 1219 } 1220 1221 return false; 1222 } 1223 1224 bool SIFoldOperands::foldInstOperand(MachineInstr &MI, 1225 MachineOperand &OpToFold) const { 1226 // We need mutate the operands of new mov instructions to add implicit 1227 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1228 // this. 1229 SmallVector<MachineInstr *, 4> CopiesToReplace; 1230 SmallVector<FoldCandidate, 4> FoldList; 1231 MachineOperand &Dst = MI.getOperand(0); 1232 bool Changed = false; 1233 1234 if (OpToFold.isImm()) { 1235 for (auto &UseMI : 1236 make_early_inc_range(MRI->use_nodbg_instructions(Dst.getReg()))) { 1237 // Folding the immediate may reveal operations that can be constant 1238 // folded or replaced with a copy. This can happen for example after 1239 // frame indices are lowered to constants or from splitting 64-bit 1240 // constants. 1241 // 1242 // We may also encounter cases where one or both operands are 1243 // immediates materialized into a register, which would ordinarily not 1244 // be folded due to multiple uses or operand constraints. 1245 if (tryConstantFoldOp(*MRI, TII, &UseMI)) { 1246 LLVM_DEBUG(dbgs() << "Constant folded " << UseMI); 1247 Changed = true; 1248 } 1249 } 1250 } 1251 1252 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1253 if (FoldingImm) { 1254 unsigned NumLiteralUses = 0; 1255 MachineOperand *NonInlineUse = nullptr; 1256 int NonInlineUseOpNo = -1; 1257 1258 for (auto &Use : 1259 make_early_inc_range(MRI->use_nodbg_operands(Dst.getReg()))) { 1260 MachineInstr *UseMI = Use.getParent(); 1261 unsigned OpNo = UseMI->getOperandNo(&Use); 1262 1263 // Try to fold any inline immediate uses, and then only fold other 1264 // constants if they have one use. 1265 // 1266 // The legality of the inline immediate must be checked based on the use 1267 // operand, not the defining instruction, because 32-bit instructions 1268 // with 32-bit inline immediate sources may be used to materialize 1269 // constants used in 16-bit operands. 1270 // 1271 // e.g. it is unsafe to fold: 1272 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1273 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1274 1275 // Folding immediates with more than one use will increase program size. 1276 // FIXME: This will also reduce register usage, which may be better 1277 // in some cases. A better heuristic is needed. 1278 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1279 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1280 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1281 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1282 } else { 1283 if (++NumLiteralUses == 1) { 1284 NonInlineUse = &Use; 1285 NonInlineUseOpNo = OpNo; 1286 } 1287 } 1288 } 1289 1290 if (NumLiteralUses == 1) { 1291 MachineInstr *UseMI = NonInlineUse->getParent(); 1292 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1293 } 1294 } else { 1295 // Folding register. 1296 SmallVector <MachineOperand *, 4> UsesToProcess; 1297 for (auto &Use : MRI->use_nodbg_operands(Dst.getReg())) 1298 UsesToProcess.push_back(&Use); 1299 for (auto U : UsesToProcess) { 1300 MachineInstr *UseMI = U->getParent(); 1301 1302 foldOperand(OpToFold, UseMI, UseMI->getOperandNo(U), 1303 FoldList, CopiesToReplace); 1304 } 1305 } 1306 1307 if (CopiesToReplace.empty() && FoldList.empty()) 1308 return Changed; 1309 1310 MachineFunction *MF = MI.getParent()->getParent(); 1311 // Make sure we add EXEC uses to any new v_mov instructions created. 1312 for (MachineInstr *Copy : CopiesToReplace) 1313 Copy->addImplicitDefUseOperands(*MF); 1314 1315 for (FoldCandidate &Fold : FoldList) { 1316 assert(!Fold.isReg() || Fold.OpToFold); 1317 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1318 Register Reg = Fold.OpToFold->getReg(); 1319 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1320 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1321 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1322 continue; 1323 } 1324 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1325 // Clear kill flags. 1326 if (Fold.isReg()) { 1327 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1328 // FIXME: Probably shouldn't bother trying to fold if not an 1329 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1330 // copies. 1331 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1332 } 1333 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1334 << static_cast<int>(Fold.UseOpNo) << " of " 1335 << *Fold.UseMI); 1336 } else if (Fold.isCommuted()) { 1337 // Restoring instruction's original operand order if fold has failed. 1338 TII->commuteInstruction(*Fold.UseMI, false); 1339 } 1340 } 1341 return true; 1342 } 1343 1344 // Clamp patterns are canonically selected to v_max_* instructions, so only 1345 // handle them. 1346 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1347 unsigned Op = MI.getOpcode(); 1348 switch (Op) { 1349 case AMDGPU::V_MAX_F32_e64: 1350 case AMDGPU::V_MAX_F16_e64: 1351 case AMDGPU::V_MAX_F64_e64: 1352 case AMDGPU::V_PK_MAX_F16: { 1353 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1354 return nullptr; 1355 1356 // Make sure sources are identical. 1357 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1358 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1359 if (!Src0->isReg() || !Src1->isReg() || 1360 Src0->getReg() != Src1->getReg() || 1361 Src0->getSubReg() != Src1->getSubReg() || 1362 Src0->getSubReg() != AMDGPU::NoSubRegister) 1363 return nullptr; 1364 1365 // Can't fold up if we have modifiers. 1366 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1367 return nullptr; 1368 1369 unsigned Src0Mods 1370 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1371 unsigned Src1Mods 1372 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1373 1374 // Having a 0 op_sel_hi would require swizzling the output in the source 1375 // instruction, which we can't do. 1376 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1377 : 0u; 1378 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1379 return nullptr; 1380 return Src0; 1381 } 1382 default: 1383 return nullptr; 1384 } 1385 } 1386 1387 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1388 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1389 const MachineOperand *ClampSrc = isClamp(MI); 1390 if (!ClampSrc || !MRI->hasOneNonDBGUser(ClampSrc->getReg())) 1391 return false; 1392 1393 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1394 1395 // The type of clamp must be compatible. 1396 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1397 return false; 1398 1399 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1400 if (!DefClamp) 1401 return false; 1402 1403 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def); 1404 1405 // Clamp is applied after omod, so it is OK if omod is set. 1406 DefClamp->setImm(1); 1407 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1408 MI.eraseFromParent(); 1409 1410 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1411 // instruction, so we might as well convert it to the more flexible VOP3-only 1412 // mad/fma form. 1413 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1414 Def->eraseFromParent(); 1415 1416 return true; 1417 } 1418 1419 static int getOModValue(unsigned Opc, int64_t Val) { 1420 switch (Opc) { 1421 case AMDGPU::V_MUL_F64_e64: { 1422 switch (Val) { 1423 case 0x3fe0000000000000: // 0.5 1424 return SIOutMods::DIV2; 1425 case 0x4000000000000000: // 2.0 1426 return SIOutMods::MUL2; 1427 case 0x4010000000000000: // 4.0 1428 return SIOutMods::MUL4; 1429 default: 1430 return SIOutMods::NONE; 1431 } 1432 } 1433 case AMDGPU::V_MUL_F32_e64: { 1434 switch (static_cast<uint32_t>(Val)) { 1435 case 0x3f000000: // 0.5 1436 return SIOutMods::DIV2; 1437 case 0x40000000: // 2.0 1438 return SIOutMods::MUL2; 1439 case 0x40800000: // 4.0 1440 return SIOutMods::MUL4; 1441 default: 1442 return SIOutMods::NONE; 1443 } 1444 } 1445 case AMDGPU::V_MUL_F16_e64: { 1446 switch (static_cast<uint16_t>(Val)) { 1447 case 0x3800: // 0.5 1448 return SIOutMods::DIV2; 1449 case 0x4000: // 2.0 1450 return SIOutMods::MUL2; 1451 case 0x4400: // 4.0 1452 return SIOutMods::MUL4; 1453 default: 1454 return SIOutMods::NONE; 1455 } 1456 } 1457 default: 1458 llvm_unreachable("invalid mul opcode"); 1459 } 1460 } 1461 1462 // FIXME: Does this really not support denormals with f16? 1463 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1464 // handled, so will anything other than that break? 1465 std::pair<const MachineOperand *, int> 1466 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1467 unsigned Op = MI.getOpcode(); 1468 switch (Op) { 1469 case AMDGPU::V_MUL_F64_e64: 1470 case AMDGPU::V_MUL_F32_e64: 1471 case AMDGPU::V_MUL_F16_e64: { 1472 // If output denormals are enabled, omod is ignored. 1473 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1474 ((Op == AMDGPU::V_MUL_F64_e64 || Op == AMDGPU::V_MUL_F16_e64) && 1475 MFI->getMode().FP64FP16OutputDenormals)) 1476 return std::make_pair(nullptr, SIOutMods::NONE); 1477 1478 const MachineOperand *RegOp = nullptr; 1479 const MachineOperand *ImmOp = nullptr; 1480 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1481 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1482 if (Src0->isImm()) { 1483 ImmOp = Src0; 1484 RegOp = Src1; 1485 } else if (Src1->isImm()) { 1486 ImmOp = Src1; 1487 RegOp = Src0; 1488 } else 1489 return std::make_pair(nullptr, SIOutMods::NONE); 1490 1491 int OMod = getOModValue(Op, ImmOp->getImm()); 1492 if (OMod == SIOutMods::NONE || 1493 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1494 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1495 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1496 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1497 return std::make_pair(nullptr, SIOutMods::NONE); 1498 1499 return std::make_pair(RegOp, OMod); 1500 } 1501 case AMDGPU::V_ADD_F64_e64: 1502 case AMDGPU::V_ADD_F32_e64: 1503 case AMDGPU::V_ADD_F16_e64: { 1504 // If output denormals are enabled, omod is ignored. 1505 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1506 ((Op == AMDGPU::V_ADD_F64_e64 || Op == AMDGPU::V_ADD_F16_e64) && 1507 MFI->getMode().FP64FP16OutputDenormals)) 1508 return std::make_pair(nullptr, SIOutMods::NONE); 1509 1510 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1511 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1512 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1513 1514 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1515 Src0->getSubReg() == Src1->getSubReg() && 1516 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1517 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1518 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1519 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1520 return std::make_pair(Src0, SIOutMods::MUL2); 1521 1522 return std::make_pair(nullptr, SIOutMods::NONE); 1523 } 1524 default: 1525 return std::make_pair(nullptr, SIOutMods::NONE); 1526 } 1527 } 1528 1529 // FIXME: Does this need to check IEEE bit on function? 1530 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1531 const MachineOperand *RegOp; 1532 int OMod; 1533 std::tie(RegOp, OMod) = isOMod(MI); 1534 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1535 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1536 !MRI->hasOneNonDBGUser(RegOp->getReg())) 1537 return false; 1538 1539 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1540 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1541 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1542 return false; 1543 1544 // Clamp is applied after omod. If the source already has clamp set, don't 1545 // fold it. 1546 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1547 return false; 1548 1549 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def); 1550 1551 DefOMod->setImm(OMod); 1552 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1553 MI.eraseFromParent(); 1554 1555 // Use of output modifiers forces VOP3 encoding for a VOP2 mac/fmac 1556 // instruction, so we might as well convert it to the more flexible VOP3-only 1557 // mad/fma form. 1558 if (TII->convertToThreeAddress(*Def, nullptr, nullptr)) 1559 Def->eraseFromParent(); 1560 1561 return true; 1562 } 1563 1564 // Try to fold a reg_sequence with vgpr output and agpr inputs into an 1565 // instruction which can take an agpr. So far that means a store. 1566 bool SIFoldOperands::tryFoldRegSequence(MachineInstr &MI) { 1567 assert(MI.isRegSequence()); 1568 auto Reg = MI.getOperand(0).getReg(); 1569 1570 if (!ST->hasGFX90AInsts() || !TRI->isVGPR(*MRI, Reg) || 1571 !MRI->hasOneNonDBGUse(Reg)) 1572 return false; 1573 1574 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 1575 if (!getRegSeqInit(Defs, Reg, MCOI::OPERAND_REGISTER, TII, *MRI)) 1576 return false; 1577 1578 for (auto &Def : Defs) { 1579 const auto *Op = Def.first; 1580 if (!Op->isReg()) 1581 return false; 1582 if (TRI->isAGPR(*MRI, Op->getReg())) 1583 continue; 1584 // Maybe this is a COPY from AREG 1585 const MachineInstr *SubDef = MRI->getVRegDef(Op->getReg()); 1586 if (!SubDef || !SubDef->isCopy() || SubDef->getOperand(1).getSubReg()) 1587 return false; 1588 if (!TRI->isAGPR(*MRI, SubDef->getOperand(1).getReg())) 1589 return false; 1590 } 1591 1592 MachineOperand *Op = &*MRI->use_nodbg_begin(Reg); 1593 MachineInstr *UseMI = Op->getParent(); 1594 while (UseMI->isCopy() && !Op->getSubReg()) { 1595 Reg = UseMI->getOperand(0).getReg(); 1596 if (!TRI->isVGPR(*MRI, Reg) || !MRI->hasOneNonDBGUse(Reg)) 1597 return false; 1598 Op = &*MRI->use_nodbg_begin(Reg); 1599 UseMI = Op->getParent(); 1600 } 1601 1602 if (Op->getSubReg()) 1603 return false; 1604 1605 unsigned OpIdx = Op - &UseMI->getOperand(0); 1606 const MCInstrDesc &InstDesc = UseMI->getDesc(); 1607 const TargetRegisterClass *OpRC = 1608 TII->getRegClass(InstDesc, OpIdx, TRI, *MI.getMF()); 1609 if (!OpRC || !TRI->isVectorSuperClass(OpRC)) 1610 return false; 1611 1612 const auto *NewDstRC = TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg)); 1613 auto Dst = MRI->createVirtualRegister(NewDstRC); 1614 auto RS = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1615 TII->get(AMDGPU::REG_SEQUENCE), Dst); 1616 1617 for (unsigned I = 0; I < Defs.size(); ++I) { 1618 MachineOperand *Def = Defs[I].first; 1619 Def->setIsKill(false); 1620 if (TRI->isAGPR(*MRI, Def->getReg())) { 1621 RS.add(*Def); 1622 } else { // This is a copy 1623 MachineInstr *SubDef = MRI->getVRegDef(Def->getReg()); 1624 SubDef->getOperand(1).setIsKill(false); 1625 RS.addReg(SubDef->getOperand(1).getReg(), 0, Def->getSubReg()); 1626 } 1627 RS.addImm(Defs[I].second); 1628 } 1629 1630 Op->setReg(Dst); 1631 if (!TII->isOperandLegal(*UseMI, OpIdx, Op)) { 1632 Op->setReg(Reg); 1633 RS->eraseFromParent(); 1634 return false; 1635 } 1636 1637 LLVM_DEBUG(dbgs() << "Folded " << *RS << " into " << *UseMI); 1638 1639 // Erase the REG_SEQUENCE eagerly, unless we followed a chain of COPY users, 1640 // in which case we can erase them all later in runOnMachineFunction. 1641 if (MRI->use_nodbg_empty(MI.getOperand(0).getReg())) 1642 MI.eraseFromParent(); 1643 return true; 1644 } 1645 1646 // Try to hoist an AGPR to VGPR copy out of the loop across a LCSSA PHI. 1647 // This should allow folding of an AGPR into a consumer which may support it. 1648 // I.e.: 1649 // 1650 // loop: // loop: 1651 // %1:vreg = COPY %0:areg // exit: 1652 // exit: => // %1:areg = PHI %0:areg, %loop 1653 // %2:vreg = PHI %1:vreg, %loop // %2:vreg = COPY %1:areg 1654 bool SIFoldOperands::tryFoldLCSSAPhi(MachineInstr &PHI) { 1655 assert(PHI.isPHI()); 1656 1657 if (PHI.getNumExplicitOperands() != 3) // Single input LCSSA PHI 1658 return false; 1659 1660 Register PhiIn = PHI.getOperand(1).getReg(); 1661 Register PhiOut = PHI.getOperand(0).getReg(); 1662 if (PHI.getOperand(1).getSubReg() || 1663 !TRI->isVGPR(*MRI, PhiIn) || !TRI->isVGPR(*MRI, PhiOut)) 1664 return false; 1665 1666 // A single use should not matter for correctness, but if it has another use 1667 // inside the loop we may perform copy twice in a worst case. 1668 if (!MRI->hasOneNonDBGUse(PhiIn)) 1669 return false; 1670 1671 MachineInstr *Copy = MRI->getVRegDef(PhiIn); 1672 if (!Copy || !Copy->isCopy()) 1673 return false; 1674 1675 Register CopyIn = Copy->getOperand(1).getReg(); 1676 if (!TRI->isAGPR(*MRI, CopyIn) || Copy->getOperand(1).getSubReg()) 1677 return false; 1678 1679 const TargetRegisterClass *ARC = MRI->getRegClass(CopyIn); 1680 Register NewReg = MRI->createVirtualRegister(ARC); 1681 PHI.getOperand(1).setReg(CopyIn); 1682 PHI.getOperand(0).setReg(NewReg); 1683 1684 MachineBasicBlock *MBB = PHI.getParent(); 1685 BuildMI(*MBB, MBB->getFirstNonPHI(), Copy->getDebugLoc(), 1686 TII->get(AMDGPU::COPY), PhiOut) 1687 .addReg(NewReg, RegState::Kill); 1688 Copy->eraseFromParent(); // We know this copy had a single use. 1689 1690 LLVM_DEBUG(dbgs() << "Folded " << PHI); 1691 1692 return true; 1693 } 1694 1695 // Attempt to convert VGPR load to an AGPR load. 1696 bool SIFoldOperands::tryFoldLoad(MachineInstr &MI) { 1697 assert(MI.mayLoad()); 1698 if (!ST->hasGFX90AInsts() || MI.getNumExplicitDefs() != 1) 1699 return false; 1700 1701 MachineOperand &Def = MI.getOperand(0); 1702 if (!Def.isDef()) 1703 return false; 1704 1705 Register DefReg = Def.getReg(); 1706 1707 if (DefReg.isPhysical() || !TRI->isVGPR(*MRI, DefReg)) 1708 return false; 1709 1710 SmallVector<const MachineInstr*, 8> Users; 1711 SmallVector<Register, 8> MoveRegs; 1712 for (const MachineInstr &I : MRI->use_nodbg_instructions(DefReg)) { 1713 Users.push_back(&I); 1714 } 1715 if (Users.empty()) 1716 return false; 1717 1718 // Check that all uses a copy to an agpr or a reg_sequence producing an agpr. 1719 while (!Users.empty()) { 1720 const MachineInstr *I = Users.pop_back_val(); 1721 if (!I->isCopy() && !I->isRegSequence()) 1722 return false; 1723 Register DstReg = I->getOperand(0).getReg(); 1724 if (TRI->isAGPR(*MRI, DstReg)) 1725 continue; 1726 MoveRegs.push_back(DstReg); 1727 for (const MachineInstr &U : MRI->use_nodbg_instructions(DstReg)) { 1728 Users.push_back(&U); 1729 } 1730 } 1731 1732 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 1733 MRI->setRegClass(DefReg, TRI->getEquivalentAGPRClass(RC)); 1734 if (!TII->isOperandLegal(MI, 0, &Def)) { 1735 MRI->setRegClass(DefReg, RC); 1736 return false; 1737 } 1738 1739 while (!MoveRegs.empty()) { 1740 Register Reg = MoveRegs.pop_back_val(); 1741 MRI->setRegClass(Reg, TRI->getEquivalentAGPRClass(MRI->getRegClass(Reg))); 1742 } 1743 1744 LLVM_DEBUG(dbgs() << "Folded " << MI); 1745 1746 return true; 1747 } 1748 1749 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1750 if (skipFunction(MF.getFunction())) 1751 return false; 1752 1753 MRI = &MF.getRegInfo(); 1754 ST = &MF.getSubtarget<GCNSubtarget>(); 1755 TII = ST->getInstrInfo(); 1756 TRI = &TII->getRegisterInfo(); 1757 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1758 1759 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1760 // correctly handle signed zeros. 1761 // 1762 // FIXME: Also need to check strictfp 1763 bool IsIEEEMode = MFI->getMode().IEEE; 1764 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1765 1766 bool Changed = false; 1767 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1768 MachineOperand *CurrentKnownM0Val = nullptr; 1769 for (auto &MI : make_early_inc_range(*MBB)) { 1770 Changed |= tryFoldCndMask(MI); 1771 1772 if (tryFoldZeroHighBits(MI)) { 1773 Changed = true; 1774 continue; 1775 } 1776 1777 if (MI.isRegSequence() && tryFoldRegSequence(MI)) { 1778 Changed = true; 1779 continue; 1780 } 1781 1782 if (MI.isPHI() && tryFoldLCSSAPhi(MI)) { 1783 Changed = true; 1784 continue; 1785 } 1786 1787 if (MI.mayLoad() && tryFoldLoad(MI)) { 1788 Changed = true; 1789 continue; 1790 } 1791 1792 if (!TII->isFoldableCopy(MI)) { 1793 // Saw an unknown clobber of m0, so we no longer know what it is. 1794 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1795 CurrentKnownM0Val = nullptr; 1796 1797 // TODO: Omod might be OK if there is NSZ only on the source 1798 // instruction, and not the omod multiply. 1799 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1800 !tryFoldOMod(MI)) 1801 Changed |= tryFoldClamp(MI); 1802 1803 continue; 1804 } 1805 1806 // Specially track simple redefs of m0 to the same value in a block, so we 1807 // can erase the later ones. 1808 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1809 MachineOperand &NewM0Val = MI.getOperand(1); 1810 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1811 MI.eraseFromParent(); 1812 Changed = true; 1813 continue; 1814 } 1815 1816 // We aren't tracking other physical registers 1817 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1818 nullptr : &NewM0Val; 1819 continue; 1820 } 1821 1822 MachineOperand &OpToFold = MI.getOperand(1); 1823 bool FoldingImm = 1824 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1825 1826 // FIXME: We could also be folding things like TargetIndexes. 1827 if (!FoldingImm && !OpToFold.isReg()) 1828 continue; 1829 1830 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1831 continue; 1832 1833 // Prevent folding operands backwards in the function. For example, 1834 // the COPY opcode must not be replaced by 1 in this example: 1835 // 1836 // %3 = COPY %vgpr0; VGPR_32:%3 1837 // ... 1838 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1839 if (!MI.getOperand(0).getReg().isVirtual()) 1840 continue; 1841 1842 Changed |= foldInstOperand(MI, OpToFold); 1843 1844 // If we managed to fold all uses of this copy then we might as well 1845 // delete it now. 1846 // The only reason we need to follow chains of copies here is that 1847 // tryFoldRegSequence looks forward through copies before folding a 1848 // REG_SEQUENCE into its eventual users. 1849 auto *InstToErase = &MI; 1850 while (MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1851 auto &SrcOp = InstToErase->getOperand(1); 1852 auto SrcReg = SrcOp.isReg() ? SrcOp.getReg() : Register(); 1853 InstToErase->eraseFromParent(); 1854 Changed = true; 1855 InstToErase = nullptr; 1856 if (!SrcReg || SrcReg.isPhysical()) 1857 break; 1858 InstToErase = MRI->getVRegDef(SrcReg); 1859 if (!InstToErase || !TII->isFoldableCopy(*InstToErase)) 1860 break; 1861 } 1862 if (InstToErase && InstToErase->isRegSequence() && 1863 MRI->use_nodbg_empty(InstToErase->getOperand(0).getReg())) { 1864 InstToErase->eraseFromParent(); 1865 Changed = true; 1866 } 1867 } 1868 } 1869 return Changed; 1870 } 1871