1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 /// \file 8 //===----------------------------------------------------------------------===// 9 // 10 11 #include "AMDGPU.h" 12 #include "GCNSubtarget.h" 13 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 14 #include "SIMachineFunctionInfo.h" 15 #include "llvm/ADT/DepthFirstIterator.h" 16 #include "llvm/CodeGen/MachineFunctionPass.h" 17 18 #define DEBUG_TYPE "si-fold-operands" 19 using namespace llvm; 20 21 namespace { 22 23 struct FoldCandidate { 24 MachineInstr *UseMI; 25 union { 26 MachineOperand *OpToFold; 27 uint64_t ImmToFold; 28 int FrameIndexToFold; 29 }; 30 int ShrinkOpcode; 31 unsigned UseOpNo; 32 MachineOperand::MachineOperandType Kind; 33 bool Commuted; 34 35 FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, 36 bool Commuted_ = false, 37 int ShrinkOp = -1) : 38 UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), 39 Kind(FoldOp->getType()), 40 Commuted(Commuted_) { 41 if (FoldOp->isImm()) { 42 ImmToFold = FoldOp->getImm(); 43 } else if (FoldOp->isFI()) { 44 FrameIndexToFold = FoldOp->getIndex(); 45 } else { 46 assert(FoldOp->isReg() || FoldOp->isGlobal()); 47 OpToFold = FoldOp; 48 } 49 } 50 51 bool isFI() const { 52 return Kind == MachineOperand::MO_FrameIndex; 53 } 54 55 bool isImm() const { 56 return Kind == MachineOperand::MO_Immediate; 57 } 58 59 bool isReg() const { 60 return Kind == MachineOperand::MO_Register; 61 } 62 63 bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } 64 65 bool isCommuted() const { 66 return Commuted; 67 } 68 69 bool needsShrink() const { 70 return ShrinkOpcode != -1; 71 } 72 73 int getShrinkOpcode() const { 74 return ShrinkOpcode; 75 } 76 }; 77 78 class SIFoldOperands : public MachineFunctionPass { 79 public: 80 static char ID; 81 MachineRegisterInfo *MRI; 82 const SIInstrInfo *TII; 83 const SIRegisterInfo *TRI; 84 const GCNSubtarget *ST; 85 const SIMachineFunctionInfo *MFI; 86 87 void foldOperand(MachineOperand &OpToFold, 88 MachineInstr *UseMI, 89 int UseOpIdx, 90 SmallVectorImpl<FoldCandidate> &FoldList, 91 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; 92 93 void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; 94 95 const MachineOperand *isClamp(const MachineInstr &MI) const; 96 bool tryFoldClamp(MachineInstr &MI); 97 98 std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; 99 bool tryFoldOMod(MachineInstr &MI); 100 101 public: 102 SIFoldOperands() : MachineFunctionPass(ID) { 103 initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnMachineFunction(MachineFunction &MF) override; 107 108 StringRef getPassName() const override { return "SI Fold Operands"; } 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.setPreservesCFG(); 112 MachineFunctionPass::getAnalysisUsage(AU); 113 } 114 }; 115 116 } // End anonymous namespace. 117 118 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, 119 "SI Fold Operands", false, false) 120 121 char SIFoldOperands::ID = 0; 122 123 char &llvm::SIFoldOperandsID = SIFoldOperands::ID; 124 125 // Map multiply-accumulate opcode to corresponding multiply-add opcode if any. 126 static unsigned macToMad(unsigned Opc) { 127 switch (Opc) { 128 case AMDGPU::V_MAC_F32_e64: 129 return AMDGPU::V_MAD_F32_e64; 130 case AMDGPU::V_MAC_F16_e64: 131 return AMDGPU::V_MAD_F16_e64; 132 case AMDGPU::V_FMAC_F32_e64: 133 return AMDGPU::V_FMA_F32_e64; 134 case AMDGPU::V_FMAC_F16_e64: 135 return AMDGPU::V_FMA_F16_gfx9_e64; 136 case AMDGPU::V_FMAC_LEGACY_F32_e64: 137 return AMDGPU::V_FMA_LEGACY_F32_e64; 138 } 139 return AMDGPU::INSTRUCTION_LIST_END; 140 } 141 142 // Wrapper around isInlineConstant that understands special cases when 143 // instruction types are replaced during operand folding. 144 static bool isInlineConstantIfFolded(const SIInstrInfo *TII, 145 const MachineInstr &UseMI, 146 unsigned OpNo, 147 const MachineOperand &OpToFold) { 148 if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) 149 return true; 150 151 unsigned Opc = UseMI.getOpcode(); 152 unsigned NewOpc = macToMad(Opc); 153 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 154 // Special case for mac. Since this is replaced with mad when folded into 155 // src2, we need to check the legality for the final instruction. 156 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 157 if (static_cast<int>(OpNo) == Src2Idx) { 158 const MCInstrDesc &MadDesc = TII->get(NewOpc); 159 return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); 160 } 161 } 162 163 return false; 164 } 165 166 // TODO: Add heuristic that the frame index might not fit in the addressing mode 167 // immediate offset to avoid materializing in loops. 168 static bool frameIndexMayFold(const SIInstrInfo *TII, 169 const MachineInstr &UseMI, 170 int OpNo, 171 const MachineOperand &OpToFold) { 172 if (!OpToFold.isFI()) 173 return false; 174 175 if (TII->isMUBUF(UseMI)) 176 return OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 177 AMDGPU::OpName::vaddr); 178 if (!TII->isFLATScratch(UseMI)) 179 return false; 180 181 int SIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 182 AMDGPU::OpName::saddr); 183 if (OpNo == SIdx) 184 return true; 185 186 int VIdx = AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), 187 AMDGPU::OpName::vaddr); 188 return OpNo == VIdx && SIdx == -1; 189 } 190 191 FunctionPass *llvm::createSIFoldOperandsPass() { 192 return new SIFoldOperands(); 193 } 194 195 static bool updateOperand(FoldCandidate &Fold, 196 const SIInstrInfo &TII, 197 const TargetRegisterInfo &TRI, 198 const GCNSubtarget &ST) { 199 MachineInstr *MI = Fold.UseMI; 200 MachineOperand &Old = MI->getOperand(Fold.UseOpNo); 201 assert(Old.isReg()); 202 203 if (Fold.isImm()) { 204 if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && 205 !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && 206 AMDGPU::isFoldableLiteralV216(Fold.ImmToFold, 207 ST.hasInv2PiInlineImm())) { 208 // Set op_sel/op_sel_hi on this operand or bail out if op_sel is 209 // already set. 210 unsigned Opcode = MI->getOpcode(); 211 int OpNo = MI->getOperandNo(&Old); 212 int ModIdx = -1; 213 if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) 214 ModIdx = AMDGPU::OpName::src0_modifiers; 215 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) 216 ModIdx = AMDGPU::OpName::src1_modifiers; 217 else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) 218 ModIdx = AMDGPU::OpName::src2_modifiers; 219 assert(ModIdx != -1); 220 ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); 221 MachineOperand &Mod = MI->getOperand(ModIdx); 222 unsigned Val = Mod.getImm(); 223 if (!(Val & SISrcMods::OP_SEL_0) && (Val & SISrcMods::OP_SEL_1)) { 224 // Only apply the following transformation if that operand requries 225 // a packed immediate. 226 switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { 227 case AMDGPU::OPERAND_REG_IMM_V2FP16: 228 case AMDGPU::OPERAND_REG_IMM_V2INT16: 229 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: 230 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: 231 // If upper part is all zero we do not need op_sel_hi. 232 if (!isUInt<16>(Fold.ImmToFold)) { 233 if (!(Fold.ImmToFold & 0xffff)) { 234 Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); 235 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 236 Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); 237 return true; 238 } 239 Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); 240 Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); 241 return true; 242 } 243 break; 244 default: 245 break; 246 } 247 } 248 } 249 } 250 251 if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { 252 MachineBasicBlock *MBB = MI->getParent(); 253 auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI, 16); 254 if (Liveness != MachineBasicBlock::LQR_Dead) { 255 LLVM_DEBUG(dbgs() << "Not shrinking " << MI << " due to vcc liveness\n"); 256 return false; 257 } 258 259 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 260 int Op32 = Fold.getShrinkOpcode(); 261 MachineOperand &Dst0 = MI->getOperand(0); 262 MachineOperand &Dst1 = MI->getOperand(1); 263 assert(Dst0.isDef() && Dst1.isDef()); 264 265 bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); 266 267 const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); 268 Register NewReg0 = MRI.createVirtualRegister(Dst0RC); 269 270 MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); 271 272 if (HaveNonDbgCarryUse) { 273 BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) 274 .addReg(AMDGPU::VCC, RegState::Kill); 275 } 276 277 // Keep the old instruction around to avoid breaking iterators, but 278 // replace it with a dummy instruction to remove uses. 279 // 280 // FIXME: We should not invert how this pass looks at operands to avoid 281 // this. Should track set of foldable movs instead of looking for uses 282 // when looking at a use. 283 Dst0.setReg(NewReg0); 284 for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) 285 MI->RemoveOperand(I); 286 MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); 287 288 if (Fold.isCommuted()) 289 TII.commuteInstruction(*Inst32, false); 290 return true; 291 } 292 293 assert(!Fold.needsShrink() && "not handled"); 294 295 if (Fold.isImm()) { 296 Old.ChangeToImmediate(Fold.ImmToFold); 297 return true; 298 } 299 300 if (Fold.isGlobal()) { 301 Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), 302 Fold.OpToFold->getTargetFlags()); 303 return true; 304 } 305 306 if (Fold.isFI()) { 307 Old.ChangeToFrameIndex(Fold.FrameIndexToFold); 308 return true; 309 } 310 311 MachineOperand *New = Fold.OpToFold; 312 Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); 313 Old.setIsUndef(New->isUndef()); 314 return true; 315 } 316 317 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, 318 const MachineInstr *MI) { 319 for (auto Candidate : FoldList) { 320 if (Candidate.UseMI == MI) 321 return true; 322 } 323 return false; 324 } 325 326 static void appendFoldCandidate(SmallVectorImpl<FoldCandidate> &FoldList, 327 MachineInstr *MI, unsigned OpNo, 328 MachineOperand *FoldOp, bool Commuted = false, 329 int ShrinkOp = -1) { 330 // Skip additional folding on the same operand. 331 for (FoldCandidate &Fold : FoldList) 332 if (Fold.UseMI == MI && Fold.UseOpNo == OpNo) 333 return; 334 LLVM_DEBUG(dbgs() << "Append " << (Commuted ? "commuted" : "normal") 335 << " operand " << OpNo << "\n " << *MI << '\n'); 336 FoldList.push_back(FoldCandidate(MI, OpNo, FoldOp, Commuted, ShrinkOp)); 337 } 338 339 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, 340 MachineInstr *MI, unsigned OpNo, 341 MachineOperand *OpToFold, 342 const SIInstrInfo *TII) { 343 if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { 344 // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 345 unsigned Opc = MI->getOpcode(); 346 unsigned NewOpc = macToMad(Opc); 347 if (NewOpc != AMDGPU::INSTRUCTION_LIST_END) { 348 // Check if changing this to a v_mad_{f16, f32} instruction will allow us 349 // to fold the operand. 350 MI->setDesc(TII->get(NewOpc)); 351 bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); 352 if (FoldAsMAD) { 353 MI->untieRegOperand(OpNo); 354 return true; 355 } 356 MI->setDesc(TII->get(Opc)); 357 } 358 359 // Special case for s_setreg_b32 360 if (OpToFold->isImm()) { 361 unsigned ImmOpc = 0; 362 if (Opc == AMDGPU::S_SETREG_B32) 363 ImmOpc = AMDGPU::S_SETREG_IMM32_B32; 364 else if (Opc == AMDGPU::S_SETREG_B32_mode) 365 ImmOpc = AMDGPU::S_SETREG_IMM32_B32_mode; 366 if (ImmOpc) { 367 MI->setDesc(TII->get(ImmOpc)); 368 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 369 return true; 370 } 371 } 372 373 // If we are already folding into another operand of MI, then 374 // we can't commute the instruction, otherwise we risk making the 375 // other fold illegal. 376 if (isUseMIInFoldList(FoldList, MI)) 377 return false; 378 379 unsigned CommuteOpNo = OpNo; 380 381 // Operand is not legal, so try to commute the instruction to 382 // see if this makes it possible to fold. 383 unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; 384 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 385 bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); 386 387 if (CanCommute) { 388 if (CommuteIdx0 == OpNo) 389 CommuteOpNo = CommuteIdx1; 390 else if (CommuteIdx1 == OpNo) 391 CommuteOpNo = CommuteIdx0; 392 } 393 394 395 // One of operands might be an Imm operand, and OpNo may refer to it after 396 // the call of commuteInstruction() below. Such situations are avoided 397 // here explicitly as OpNo must be a register operand to be a candidate 398 // for memory folding. 399 if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || 400 !MI->getOperand(CommuteIdx1).isReg())) 401 return false; 402 403 if (!CanCommute || 404 !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) 405 return false; 406 407 if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { 408 if ((Opc == AMDGPU::V_ADD_CO_U32_e64 || 409 Opc == AMDGPU::V_SUB_CO_U32_e64 || 410 Opc == AMDGPU::V_SUBREV_CO_U32_e64) && // FIXME 411 (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { 412 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 413 414 // Verify the other operand is a VGPR, otherwise we would violate the 415 // constant bus restriction. 416 unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; 417 MachineOperand &OtherOp = MI->getOperand(OtherIdx); 418 if (!OtherOp.isReg() || 419 !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) 420 return false; 421 422 assert(MI->getOperand(1).isDef()); 423 424 // Make sure to get the 32-bit version of the commuted opcode. 425 unsigned MaybeCommutedOpc = MI->getOpcode(); 426 int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); 427 428 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true, Op32); 429 return true; 430 } 431 432 TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); 433 return false; 434 } 435 436 appendFoldCandidate(FoldList, MI, CommuteOpNo, OpToFold, true); 437 return true; 438 } 439 440 // Check the case where we might introduce a second constant operand to a 441 // scalar instruction 442 if (TII->isSALU(MI->getOpcode())) { 443 const MCInstrDesc &InstDesc = MI->getDesc(); 444 const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo]; 445 const SIRegisterInfo &SRI = TII->getRegisterInfo(); 446 447 // Fine if the operand can be encoded as an inline constant 448 if (OpToFold->isImm()) { 449 if (!SRI.opCanUseInlineConstant(OpInfo.OperandType) || 450 !TII->isInlineConstant(*OpToFold, OpInfo)) { 451 // Otherwise check for another constant 452 for (unsigned i = 0, e = InstDesc.getNumOperands(); i != e; ++i) { 453 auto &Op = MI->getOperand(i); 454 if (OpNo != i && 455 TII->isLiteralConstantLike(Op, OpInfo)) { 456 return false; 457 } 458 } 459 } 460 } 461 } 462 463 appendFoldCandidate(FoldList, MI, OpNo, OpToFold); 464 return true; 465 } 466 467 // If the use operand doesn't care about the value, this may be an operand only 468 // used for register indexing, in which case it is unsafe to fold. 469 static bool isUseSafeToFold(const SIInstrInfo *TII, 470 const MachineInstr &MI, 471 const MachineOperand &UseMO) { 472 if (UseMO.isUndef() || TII->isSDWA(MI)) 473 return false; 474 475 switch (MI.getOpcode()) { 476 case AMDGPU::V_MOV_B32_e32: 477 case AMDGPU::V_MOV_B32_e64: 478 case AMDGPU::V_MOV_B64_PSEUDO: 479 // Do not fold into an indirect mov. 480 return !MI.hasRegisterImplicitUseOperand(AMDGPU::M0); 481 } 482 483 return true; 484 //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); 485 } 486 487 // Find a def of the UseReg, check if it is a reg_seqence and find initializers 488 // for each subreg, tracking it to foldable inline immediate if possible. 489 // Returns true on success. 490 static bool getRegSeqInit( 491 SmallVectorImpl<std::pair<MachineOperand*, unsigned>> &Defs, 492 Register UseReg, uint8_t OpTy, 493 const SIInstrInfo *TII, const MachineRegisterInfo &MRI) { 494 MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); 495 if (!Def || !Def->isRegSequence()) 496 return false; 497 498 for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { 499 MachineOperand *Sub = &Def->getOperand(I); 500 assert (Sub->isReg()); 501 502 for (MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub->getReg()); 503 SubDef && Sub->isReg() && !Sub->getSubReg() && 504 TII->isFoldableCopy(*SubDef); 505 SubDef = MRI.getUniqueVRegDef(Sub->getReg())) { 506 MachineOperand *Op = &SubDef->getOperand(1); 507 if (Op->isImm()) { 508 if (TII->isInlineConstant(*Op, OpTy)) 509 Sub = Op; 510 break; 511 } 512 if (!Op->isReg()) 513 break; 514 Sub = Op; 515 } 516 517 Defs.push_back(std::make_pair(Sub, Def->getOperand(I + 1).getImm())); 518 } 519 520 return true; 521 } 522 523 static bool tryToFoldACImm(const SIInstrInfo *TII, 524 const MachineOperand &OpToFold, 525 MachineInstr *UseMI, 526 unsigned UseOpIdx, 527 SmallVectorImpl<FoldCandidate> &FoldList) { 528 const MCInstrDesc &Desc = UseMI->getDesc(); 529 const MCOperandInfo *OpInfo = Desc.OpInfo; 530 if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) 531 return false; 532 533 uint8_t OpTy = OpInfo[UseOpIdx].OperandType; 534 if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || 535 OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) 536 return false; 537 538 if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy) && 539 TII->isOperandLegal(*UseMI, UseOpIdx, &OpToFold)) { 540 UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); 541 return true; 542 } 543 544 if (!OpToFold.isReg()) 545 return false; 546 547 Register UseReg = OpToFold.getReg(); 548 if (!UseReg.isVirtual()) 549 return false; 550 551 if (llvm::any_of(FoldList, [UseMI](const FoldCandidate &FC) { 552 return FC.UseMI == UseMI; 553 })) 554 return false; 555 556 MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); 557 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 558 if (!getRegSeqInit(Defs, UseReg, OpTy, TII, MRI)) 559 return false; 560 561 int32_t Imm; 562 for (unsigned I = 0, E = Defs.size(); I != E; ++I) { 563 const MachineOperand *Op = Defs[I].first; 564 if (!Op->isImm()) 565 return false; 566 567 auto SubImm = Op->getImm(); 568 if (!I) { 569 Imm = SubImm; 570 if (!TII->isInlineConstant(*Op, OpTy) || 571 !TII->isOperandLegal(*UseMI, UseOpIdx, Op)) 572 return false; 573 574 continue; 575 } 576 if (Imm != SubImm) 577 return false; // Can only fold splat constants 578 } 579 580 appendFoldCandidate(FoldList, UseMI, UseOpIdx, Defs[0].first); 581 return true; 582 } 583 584 void SIFoldOperands::foldOperand( 585 MachineOperand &OpToFold, 586 MachineInstr *UseMI, 587 int UseOpIdx, 588 SmallVectorImpl<FoldCandidate> &FoldList, 589 SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { 590 const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); 591 592 if (!isUseSafeToFold(TII, *UseMI, UseOp)) 593 return; 594 595 // FIXME: Fold operands with subregs. 596 if (UseOp.isReg() && OpToFold.isReg()) { 597 if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) 598 return; 599 } 600 601 // Special case for REG_SEQUENCE: We can't fold literals into 602 // REG_SEQUENCE instructions, so we have to fold them into the 603 // uses of REG_SEQUENCE. 604 if (UseMI->isRegSequence()) { 605 Register RegSeqDstReg = UseMI->getOperand(0).getReg(); 606 unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); 607 608 MachineRegisterInfo::use_nodbg_iterator Next; 609 for (MachineRegisterInfo::use_nodbg_iterator 610 RSUse = MRI->use_nodbg_begin(RegSeqDstReg), RSE = MRI->use_nodbg_end(); 611 RSUse != RSE; RSUse = Next) { 612 Next = std::next(RSUse); 613 614 MachineInstr *RSUseMI = RSUse->getParent(); 615 616 if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, 617 RSUse.getOperandNo(), FoldList)) 618 continue; 619 620 if (RSUse->getSubReg() != RegSeqDstSubReg) 621 continue; 622 623 foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, 624 CopiesToReplace); 625 } 626 627 return; 628 } 629 630 if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) 631 return; 632 633 if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { 634 // Sanity check that this is a stack access. 635 // FIXME: Should probably use stack pseudos before frame lowering. 636 637 if (TII->isMUBUF(*UseMI)) { 638 if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != 639 MFI->getScratchRSrcReg()) 640 return; 641 642 // Ensure this is either relative to the current frame or the current 643 // wave. 644 MachineOperand &SOff = 645 *TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); 646 if ((!SOff.isReg() || SOff.getReg() != MFI->getStackPtrOffsetReg()) && 647 (!SOff.isImm() || SOff.getImm() != 0)) 648 return; 649 650 // If this is relative to the current wave, update it to be relative to 651 // the current frame. 652 if (SOff.isImm()) 653 SOff.ChangeToRegister(MFI->getStackPtrOffsetReg(), false); 654 } 655 656 // A frame index will resolve to a positive constant, so it should always be 657 // safe to fold the addressing mode, even pre-GFX9. 658 UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); 659 660 if (TII->isFLATScratch(*UseMI) && 661 AMDGPU::getNamedOperandIdx(UseMI->getOpcode(), 662 AMDGPU::OpName::vaddr) != -1) { 663 unsigned NewOpc = AMDGPU::getFlatScratchInstSSfromSV(UseMI->getOpcode()); 664 UseMI->setDesc(TII->get(NewOpc)); 665 } 666 667 return; 668 } 669 670 bool FoldingImmLike = 671 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 672 673 if (FoldingImmLike && UseMI->isCopy()) { 674 Register DestReg = UseMI->getOperand(0).getReg(); 675 Register SrcReg = UseMI->getOperand(1).getReg(); 676 assert(SrcReg.isVirtual()); 677 678 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg); 679 680 // Don't fold into a copy to a physical register with the same class. Doing 681 // so would interfere with the register coalescer's logic which would avoid 682 // redundant initalizations. 683 if (DestReg.isPhysical() && SrcRC->contains(DestReg)) 684 return; 685 686 const TargetRegisterClass *DestRC = TRI->getRegClassForReg(*MRI, DestReg); 687 if (!DestReg.isPhysical()) { 688 if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { 689 MachineRegisterInfo::use_nodbg_iterator NextUse; 690 SmallVector<FoldCandidate, 4> CopyUses; 691 for (MachineRegisterInfo::use_nodbg_iterator Use = MRI->use_nodbg_begin(DestReg), 692 E = MRI->use_nodbg_end(); 693 Use != E; Use = NextUse) { 694 NextUse = std::next(Use); 695 // There's no point trying to fold into an implicit operand. 696 if (Use->isImplicit()) 697 continue; 698 699 FoldCandidate FC = FoldCandidate(Use->getParent(), Use.getOperandNo(), 700 &UseMI->getOperand(1)); 701 CopyUses.push_back(FC); 702 } 703 for (auto &F : CopyUses) { 704 foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, FoldList, CopiesToReplace); 705 } 706 } 707 708 if (DestRC == &AMDGPU::AGPR_32RegClass && 709 TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 710 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 711 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 712 CopiesToReplace.push_back(UseMI); 713 return; 714 } 715 } 716 717 // In order to fold immediates into copies, we need to change the 718 // copy to a MOV. 719 720 unsigned MovOp = TII->getMovOpcode(DestRC); 721 if (MovOp == AMDGPU::COPY) 722 return; 723 724 UseMI->setDesc(TII->get(MovOp)); 725 MachineInstr::mop_iterator ImpOpI = UseMI->implicit_operands().begin(); 726 MachineInstr::mop_iterator ImpOpE = UseMI->implicit_operands().end(); 727 while (ImpOpI != ImpOpE) { 728 MachineInstr::mop_iterator Tmp = ImpOpI; 729 ImpOpI++; 730 UseMI->RemoveOperand(UseMI->getOperandNo(Tmp)); 731 } 732 CopiesToReplace.push_back(UseMI); 733 } else { 734 if (UseMI->isCopy() && OpToFold.isReg() && 735 UseMI->getOperand(0).getReg().isVirtual() && 736 !UseMI->getOperand(1).getSubReg()) { 737 LLVM_DEBUG(dbgs() << "Folding " << OpToFold 738 << "\n into " << *UseMI << '\n'); 739 unsigned Size = TII->getOpSize(*UseMI, 1); 740 Register UseReg = OpToFold.getReg(); 741 UseMI->getOperand(1).setReg(UseReg); 742 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 743 UseMI->getOperand(1).setIsKill(false); 744 CopiesToReplace.push_back(UseMI); 745 OpToFold.setIsKill(false); 746 747 // That is very tricky to store a value into an AGPR. v_accvgpr_write_b32 748 // can only accept VGPR or inline immediate. Recreate a reg_sequence with 749 // its initializers right here, so we will rematerialize immediates and 750 // avoid copies via different reg classes. 751 SmallVector<std::pair<MachineOperand*, unsigned>, 32> Defs; 752 if (Size > 4 && TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 753 getRegSeqInit(Defs, UseReg, AMDGPU::OPERAND_REG_INLINE_C_INT32, TII, 754 *MRI)) { 755 const DebugLoc &DL = UseMI->getDebugLoc(); 756 MachineBasicBlock &MBB = *UseMI->getParent(); 757 758 UseMI->setDesc(TII->get(AMDGPU::REG_SEQUENCE)); 759 for (unsigned I = UseMI->getNumOperands() - 1; I > 0; --I) 760 UseMI->RemoveOperand(I); 761 762 MachineInstrBuilder B(*MBB.getParent(), UseMI); 763 DenseMap<TargetInstrInfo::RegSubRegPair, Register> VGPRCopies; 764 SmallSetVector<TargetInstrInfo::RegSubRegPair, 32> SeenAGPRs; 765 for (unsigned I = 0; I < Size / 4; ++I) { 766 MachineOperand *Def = Defs[I].first; 767 TargetInstrInfo::RegSubRegPair CopyToVGPR; 768 if (Def->isImm() && 769 TII->isInlineConstant(*Def, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { 770 int64_t Imm = Def->getImm(); 771 772 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 773 BuildMI(MBB, UseMI, DL, 774 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addImm(Imm); 775 B.addReg(Tmp); 776 } else if (Def->isReg() && TRI->isAGPR(*MRI, Def->getReg())) { 777 auto Src = getRegSubRegPair(*Def); 778 Def->setIsKill(false); 779 if (!SeenAGPRs.insert(Src)) { 780 // We cannot build a reg_sequence out of the same registers, they 781 // must be copied. Better do it here before copyPhysReg() created 782 // several reads to do the AGPR->VGPR->AGPR copy. 783 CopyToVGPR = Src; 784 } else { 785 B.addReg(Src.Reg, Def->isUndef() ? RegState::Undef : 0, 786 Src.SubReg); 787 } 788 } else { 789 assert(Def->isReg()); 790 Def->setIsKill(false); 791 auto Src = getRegSubRegPair(*Def); 792 793 // Direct copy from SGPR to AGPR is not possible. To avoid creation 794 // of exploded copies SGPR->VGPR->AGPR in the copyPhysReg() later, 795 // create a copy here and track if we already have such a copy. 796 if (TRI->isSGPRReg(*MRI, Src.Reg)) { 797 CopyToVGPR = Src; 798 } else { 799 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 800 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Tmp).add(*Def); 801 B.addReg(Tmp); 802 } 803 } 804 805 if (CopyToVGPR.Reg) { 806 Register Vgpr; 807 if (VGPRCopies.count(CopyToVGPR)) { 808 Vgpr = VGPRCopies[CopyToVGPR]; 809 } else { 810 Vgpr = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass); 811 BuildMI(MBB, UseMI, DL, TII->get(AMDGPU::COPY), Vgpr).add(*Def); 812 VGPRCopies[CopyToVGPR] = Vgpr; 813 } 814 auto Tmp = MRI->createVirtualRegister(&AMDGPU::AGPR_32RegClass); 815 BuildMI(MBB, UseMI, DL, 816 TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), Tmp).addReg(Vgpr); 817 B.addReg(Tmp); 818 } 819 820 B.addImm(Defs[I].second); 821 } 822 LLVM_DEBUG(dbgs() << "Folded " << *UseMI << '\n'); 823 return; 824 } 825 826 if (Size != 4) 827 return; 828 if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && 829 TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) 830 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32_e64)); 831 else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && 832 TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) 833 UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32_e64)); 834 return; 835 } 836 837 unsigned UseOpc = UseMI->getOpcode(); 838 if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || 839 (UseOpc == AMDGPU::V_READLANE_B32 && 840 (int)UseOpIdx == 841 AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { 842 // %vgpr = V_MOV_B32 imm 843 // %sgpr = V_READFIRSTLANE_B32 %vgpr 844 // => 845 // %sgpr = S_MOV_B32 imm 846 if (FoldingImmLike) { 847 if (execMayBeModifiedBeforeUse(*MRI, 848 UseMI->getOperand(UseOpIdx).getReg(), 849 *OpToFold.getParent(), 850 *UseMI)) 851 return; 852 853 UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); 854 855 if (OpToFold.isImm()) 856 UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); 857 else 858 UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); 859 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 860 return; 861 } 862 863 if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { 864 if (execMayBeModifiedBeforeUse(*MRI, 865 UseMI->getOperand(UseOpIdx).getReg(), 866 *OpToFold.getParent(), 867 *UseMI)) 868 return; 869 870 // %vgpr = COPY %sgpr0 871 // %sgpr1 = V_READFIRSTLANE_B32 %vgpr 872 // => 873 // %sgpr1 = COPY %sgpr0 874 UseMI->setDesc(TII->get(AMDGPU::COPY)); 875 UseMI->getOperand(1).setReg(OpToFold.getReg()); 876 UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); 877 UseMI->getOperand(1).setIsKill(false); 878 UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) 879 return; 880 } 881 } 882 883 const MCInstrDesc &UseDesc = UseMI->getDesc(); 884 885 // Don't fold into target independent nodes. Target independent opcodes 886 // don't have defined register classes. 887 if (UseDesc.isVariadic() || 888 UseOp.isImplicit() || 889 UseDesc.OpInfo[UseOpIdx].RegClass == -1) 890 return; 891 } 892 893 if (!FoldingImmLike) { 894 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 895 896 // FIXME: We could try to change the instruction from 64-bit to 32-bit 897 // to enable more folding opportunites. The shrink operands pass 898 // already does this. 899 return; 900 } 901 902 903 const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); 904 const TargetRegisterClass *FoldRC = 905 TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); 906 907 // Split 64-bit constants into 32-bits for folding. 908 if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { 909 Register UseReg = UseOp.getReg(); 910 const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); 911 912 if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) 913 return; 914 915 APInt Imm(64, OpToFold.getImm()); 916 if (UseOp.getSubReg() == AMDGPU::sub0) { 917 Imm = Imm.getLoBits(32); 918 } else { 919 assert(UseOp.getSubReg() == AMDGPU::sub1); 920 Imm = Imm.getHiBits(32); 921 } 922 923 MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); 924 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); 925 return; 926 } 927 928 929 930 tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); 931 } 932 933 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, 934 uint32_t LHS, uint32_t RHS) { 935 switch (Opcode) { 936 case AMDGPU::V_AND_B32_e64: 937 case AMDGPU::V_AND_B32_e32: 938 case AMDGPU::S_AND_B32: 939 Result = LHS & RHS; 940 return true; 941 case AMDGPU::V_OR_B32_e64: 942 case AMDGPU::V_OR_B32_e32: 943 case AMDGPU::S_OR_B32: 944 Result = LHS | RHS; 945 return true; 946 case AMDGPU::V_XOR_B32_e64: 947 case AMDGPU::V_XOR_B32_e32: 948 case AMDGPU::S_XOR_B32: 949 Result = LHS ^ RHS; 950 return true; 951 case AMDGPU::S_XNOR_B32: 952 Result = ~(LHS ^ RHS); 953 return true; 954 case AMDGPU::S_NAND_B32: 955 Result = ~(LHS & RHS); 956 return true; 957 case AMDGPU::S_NOR_B32: 958 Result = ~(LHS | RHS); 959 return true; 960 case AMDGPU::S_ANDN2_B32: 961 Result = LHS & ~RHS; 962 return true; 963 case AMDGPU::S_ORN2_B32: 964 Result = LHS | ~RHS; 965 return true; 966 case AMDGPU::V_LSHL_B32_e64: 967 case AMDGPU::V_LSHL_B32_e32: 968 case AMDGPU::S_LSHL_B32: 969 // The instruction ignores the high bits for out of bounds shifts. 970 Result = LHS << (RHS & 31); 971 return true; 972 case AMDGPU::V_LSHLREV_B32_e64: 973 case AMDGPU::V_LSHLREV_B32_e32: 974 Result = RHS << (LHS & 31); 975 return true; 976 case AMDGPU::V_LSHR_B32_e64: 977 case AMDGPU::V_LSHR_B32_e32: 978 case AMDGPU::S_LSHR_B32: 979 Result = LHS >> (RHS & 31); 980 return true; 981 case AMDGPU::V_LSHRREV_B32_e64: 982 case AMDGPU::V_LSHRREV_B32_e32: 983 Result = RHS >> (LHS & 31); 984 return true; 985 case AMDGPU::V_ASHR_I32_e64: 986 case AMDGPU::V_ASHR_I32_e32: 987 case AMDGPU::S_ASHR_I32: 988 Result = static_cast<int32_t>(LHS) >> (RHS & 31); 989 return true; 990 case AMDGPU::V_ASHRREV_I32_e64: 991 case AMDGPU::V_ASHRREV_I32_e32: 992 Result = static_cast<int32_t>(RHS) >> (LHS & 31); 993 return true; 994 default: 995 return false; 996 } 997 } 998 999 static unsigned getMovOpc(bool IsScalar) { 1000 return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; 1001 } 1002 1003 /// Remove any leftover implicit operands from mutating the instruction. e.g. 1004 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def 1005 /// anymore. 1006 static void stripExtraCopyOperands(MachineInstr &MI) { 1007 const MCInstrDesc &Desc = MI.getDesc(); 1008 unsigned NumOps = Desc.getNumOperands() + 1009 Desc.getNumImplicitUses() + 1010 Desc.getNumImplicitDefs(); 1011 1012 for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) 1013 MI.RemoveOperand(I); 1014 } 1015 1016 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { 1017 MI.setDesc(NewDesc); 1018 stripExtraCopyOperands(MI); 1019 } 1020 1021 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, 1022 MachineOperand &Op) { 1023 if (Op.isReg()) { 1024 // If this has a subregister, it obviously is a register source. 1025 if (Op.getSubReg() != AMDGPU::NoSubRegister || !Op.getReg().isVirtual()) 1026 return &Op; 1027 1028 MachineInstr *Def = MRI.getVRegDef(Op.getReg()); 1029 if (Def && Def->isMoveImmediate()) { 1030 MachineOperand &ImmSrc = Def->getOperand(1); 1031 if (ImmSrc.isImm()) 1032 return &ImmSrc; 1033 } 1034 } 1035 1036 return &Op; 1037 } 1038 1039 // Try to simplify operations with a constant that may appear after instruction 1040 // selection. 1041 // TODO: See if a frame index with a fixed offset can fold. 1042 static bool tryConstantFoldOp(MachineRegisterInfo &MRI, 1043 const SIInstrInfo *TII, 1044 MachineInstr *MI, 1045 MachineOperand *ImmOp) { 1046 unsigned Opc = MI->getOpcode(); 1047 if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || 1048 Opc == AMDGPU::S_NOT_B32) { 1049 MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); 1050 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); 1051 return true; 1052 } 1053 1054 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); 1055 if (Src1Idx == -1) 1056 return false; 1057 1058 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); 1059 MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); 1060 MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); 1061 1062 if (!Src0->isImm() && !Src1->isImm()) 1063 return false; 1064 1065 // and k0, k1 -> v_mov_b32 (k0 & k1) 1066 // or k0, k1 -> v_mov_b32 (k0 | k1) 1067 // xor k0, k1 -> v_mov_b32 (k0 ^ k1) 1068 if (Src0->isImm() && Src1->isImm()) { 1069 int32_t NewImm; 1070 if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) 1071 return false; 1072 1073 const SIRegisterInfo &TRI = TII->getRegisterInfo(); 1074 bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); 1075 1076 // Be careful to change the right operand, src0 may belong to a different 1077 // instruction. 1078 MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); 1079 MI->RemoveOperand(Src1Idx); 1080 mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); 1081 return true; 1082 } 1083 1084 if (!MI->isCommutable()) 1085 return false; 1086 1087 if (Src0->isImm() && !Src1->isImm()) { 1088 std::swap(Src0, Src1); 1089 std::swap(Src0Idx, Src1Idx); 1090 } 1091 1092 int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); 1093 if (Opc == AMDGPU::V_OR_B32_e64 || 1094 Opc == AMDGPU::V_OR_B32_e32 || 1095 Opc == AMDGPU::S_OR_B32) { 1096 if (Src1Val == 0) { 1097 // y = or x, 0 => y = copy x 1098 MI->RemoveOperand(Src1Idx); 1099 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1100 } else if (Src1Val == -1) { 1101 // y = or x, -1 => y = v_mov_b32 -1 1102 MI->RemoveOperand(Src1Idx); 1103 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); 1104 } else 1105 return false; 1106 1107 return true; 1108 } 1109 1110 if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || 1111 MI->getOpcode() == AMDGPU::V_AND_B32_e32 || 1112 MI->getOpcode() == AMDGPU::S_AND_B32) { 1113 if (Src1Val == 0) { 1114 // y = and x, 0 => y = v_mov_b32 0 1115 MI->RemoveOperand(Src0Idx); 1116 mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); 1117 } else if (Src1Val == -1) { 1118 // y = and x, -1 => y = copy x 1119 MI->RemoveOperand(Src1Idx); 1120 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1121 stripExtraCopyOperands(*MI); 1122 } else 1123 return false; 1124 1125 return true; 1126 } 1127 1128 if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || 1129 MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || 1130 MI->getOpcode() == AMDGPU::S_XOR_B32) { 1131 if (Src1Val == 0) { 1132 // y = xor x, 0 => y = copy x 1133 MI->RemoveOperand(Src1Idx); 1134 mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); 1135 return true; 1136 } 1137 } 1138 1139 return false; 1140 } 1141 1142 // Try to fold an instruction into a simpler one 1143 static bool tryFoldInst(const SIInstrInfo *TII, 1144 MachineInstr *MI) { 1145 unsigned Opc = MI->getOpcode(); 1146 1147 if (Opc == AMDGPU::V_CNDMASK_B32_e32 || 1148 Opc == AMDGPU::V_CNDMASK_B32_e64 || 1149 Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { 1150 const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); 1151 const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); 1152 int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); 1153 int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); 1154 if (Src1->isIdenticalTo(*Src0) && 1155 (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && 1156 (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { 1157 LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); 1158 auto &NewDesc = 1159 TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); 1160 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); 1161 if (Src2Idx != -1) 1162 MI->RemoveOperand(Src2Idx); 1163 MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); 1164 if (Src1ModIdx != -1) 1165 MI->RemoveOperand(Src1ModIdx); 1166 if (Src0ModIdx != -1) 1167 MI->RemoveOperand(Src0ModIdx); 1168 mutateCopyOp(*MI, NewDesc); 1169 LLVM_DEBUG(dbgs() << *MI << '\n'); 1170 return true; 1171 } 1172 } 1173 1174 return false; 1175 } 1176 1177 void SIFoldOperands::foldInstOperand(MachineInstr &MI, 1178 MachineOperand &OpToFold) const { 1179 // We need mutate the operands of new mov instructions to add implicit 1180 // uses of EXEC, but adding them invalidates the use_iterator, so defer 1181 // this. 1182 SmallVector<MachineInstr *, 4> CopiesToReplace; 1183 SmallVector<FoldCandidate, 4> FoldList; 1184 MachineOperand &Dst = MI.getOperand(0); 1185 1186 bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1187 if (FoldingImm) { 1188 unsigned NumLiteralUses = 0; 1189 MachineOperand *NonInlineUse = nullptr; 1190 int NonInlineUseOpNo = -1; 1191 1192 MachineRegisterInfo::use_nodbg_iterator NextUse; 1193 for (MachineRegisterInfo::use_nodbg_iterator 1194 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1195 Use != E; Use = NextUse) { 1196 NextUse = std::next(Use); 1197 MachineInstr *UseMI = Use->getParent(); 1198 unsigned OpNo = Use.getOperandNo(); 1199 1200 // Folding the immediate may reveal operations that can be constant 1201 // folded or replaced with a copy. This can happen for example after 1202 // frame indices are lowered to constants or from splitting 64-bit 1203 // constants. 1204 // 1205 // We may also encounter cases where one or both operands are 1206 // immediates materialized into a register, which would ordinarily not 1207 // be folded due to multiple uses or operand constraints. 1208 1209 if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { 1210 LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); 1211 1212 // Some constant folding cases change the same immediate's use to a new 1213 // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user 1214 // again. The same constant folded instruction could also have a second 1215 // use operand. 1216 NextUse = MRI->use_nodbg_begin(Dst.getReg()); 1217 FoldList.clear(); 1218 continue; 1219 } 1220 1221 // Try to fold any inline immediate uses, and then only fold other 1222 // constants if they have one use. 1223 // 1224 // The legality of the inline immediate must be checked based on the use 1225 // operand, not the defining instruction, because 32-bit instructions 1226 // with 32-bit inline immediate sources may be used to materialize 1227 // constants used in 16-bit operands. 1228 // 1229 // e.g. it is unsafe to fold: 1230 // s_mov_b32 s0, 1.0 // materializes 0x3f800000 1231 // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 1232 1233 // Folding immediates with more than one use will increase program size. 1234 // FIXME: This will also reduce register usage, which may be better 1235 // in some cases. A better heuristic is needed. 1236 if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { 1237 foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); 1238 } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { 1239 foldOperand(OpToFold, UseMI, OpNo, FoldList, 1240 CopiesToReplace); 1241 } else { 1242 if (++NumLiteralUses == 1) { 1243 NonInlineUse = &*Use; 1244 NonInlineUseOpNo = OpNo; 1245 } 1246 } 1247 } 1248 1249 if (NumLiteralUses == 1) { 1250 MachineInstr *UseMI = NonInlineUse->getParent(); 1251 foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); 1252 } 1253 } else { 1254 // Folding register. 1255 SmallVector <MachineRegisterInfo::use_nodbg_iterator, 4> UsesToProcess; 1256 for (MachineRegisterInfo::use_nodbg_iterator 1257 Use = MRI->use_nodbg_begin(Dst.getReg()), E = MRI->use_nodbg_end(); 1258 Use != E; ++Use) { 1259 UsesToProcess.push_back(Use); 1260 } 1261 for (auto U : UsesToProcess) { 1262 MachineInstr *UseMI = U->getParent(); 1263 1264 foldOperand(OpToFold, UseMI, U.getOperandNo(), 1265 FoldList, CopiesToReplace); 1266 } 1267 } 1268 1269 MachineFunction *MF = MI.getParent()->getParent(); 1270 // Make sure we add EXEC uses to any new v_mov instructions created. 1271 for (MachineInstr *Copy : CopiesToReplace) 1272 Copy->addImplicitDefUseOperands(*MF); 1273 1274 SmallPtrSet<MachineInstr *, 16> Folded; 1275 for (FoldCandidate &Fold : FoldList) { 1276 assert(!Fold.isReg() || Fold.OpToFold); 1277 if (Folded.count(Fold.UseMI)) 1278 continue; 1279 if (Fold.isReg() && Fold.OpToFold->getReg().isVirtual()) { 1280 Register Reg = Fold.OpToFold->getReg(); 1281 MachineInstr *DefMI = Fold.OpToFold->getParent(); 1282 if (DefMI->readsRegister(AMDGPU::EXEC, TRI) && 1283 execMayBeModifiedBeforeUse(*MRI, Reg, *DefMI, *Fold.UseMI)) 1284 continue; 1285 } 1286 if (updateOperand(Fold, *TII, *TRI, *ST)) { 1287 // Clear kill flags. 1288 if (Fold.isReg()) { 1289 assert(Fold.OpToFold && Fold.OpToFold->isReg()); 1290 // FIXME: Probably shouldn't bother trying to fold if not an 1291 // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR 1292 // copies. 1293 MRI->clearKillFlags(Fold.OpToFold->getReg()); 1294 } 1295 LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " 1296 << static_cast<int>(Fold.UseOpNo) << " of " 1297 << *Fold.UseMI << '\n'); 1298 if (tryFoldInst(TII, Fold.UseMI)) 1299 Folded.insert(Fold.UseMI); 1300 } else if (Fold.isCommuted()) { 1301 // Restoring instruction's original operand order if fold has failed. 1302 TII->commuteInstruction(*Fold.UseMI, false); 1303 } 1304 } 1305 } 1306 1307 // Clamp patterns are canonically selected to v_max_* instructions, so only 1308 // handle them. 1309 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { 1310 unsigned Op = MI.getOpcode(); 1311 switch (Op) { 1312 case AMDGPU::V_MAX_F32_e64: 1313 case AMDGPU::V_MAX_F16_e64: 1314 case AMDGPU::V_MAX_F64_e64: 1315 case AMDGPU::V_PK_MAX_F16: { 1316 if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) 1317 return nullptr; 1318 1319 // Make sure sources are identical. 1320 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1321 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1322 if (!Src0->isReg() || !Src1->isReg() || 1323 Src0->getReg() != Src1->getReg() || 1324 Src0->getSubReg() != Src1->getSubReg() || 1325 Src0->getSubReg() != AMDGPU::NoSubRegister) 1326 return nullptr; 1327 1328 // Can't fold up if we have modifiers. 1329 if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1330 return nullptr; 1331 1332 unsigned Src0Mods 1333 = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); 1334 unsigned Src1Mods 1335 = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); 1336 1337 // Having a 0 op_sel_hi would require swizzling the output in the source 1338 // instruction, which we can't do. 1339 unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 1340 : 0u; 1341 if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) 1342 return nullptr; 1343 return Src0; 1344 } 1345 default: 1346 return nullptr; 1347 } 1348 } 1349 1350 // We obviously have multiple uses in a clamp since the register is used twice 1351 // in the same instruction. 1352 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { 1353 int Count = 0; 1354 for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 1355 I != E; ++I) { 1356 if (++Count > 1) 1357 return false; 1358 } 1359 1360 return true; 1361 } 1362 1363 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel. 1364 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { 1365 const MachineOperand *ClampSrc = isClamp(MI); 1366 if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) 1367 return false; 1368 1369 MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); 1370 1371 // The type of clamp must be compatible. 1372 if (TII->getClampMask(*Def) != TII->getClampMask(MI)) 1373 return false; 1374 1375 MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); 1376 if (!DefClamp) 1377 return false; 1378 1379 LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def 1380 << '\n'); 1381 1382 // Clamp is applied after omod, so it is OK if omod is set. 1383 DefClamp->setImm(1); 1384 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1385 MI.eraseFromParent(); 1386 return true; 1387 } 1388 1389 static int getOModValue(unsigned Opc, int64_t Val) { 1390 switch (Opc) { 1391 case AMDGPU::V_MUL_F32_e64: { 1392 switch (static_cast<uint32_t>(Val)) { 1393 case 0x3f000000: // 0.5 1394 return SIOutMods::DIV2; 1395 case 0x40000000: // 2.0 1396 return SIOutMods::MUL2; 1397 case 0x40800000: // 4.0 1398 return SIOutMods::MUL4; 1399 default: 1400 return SIOutMods::NONE; 1401 } 1402 } 1403 case AMDGPU::V_MUL_F16_e64: { 1404 switch (static_cast<uint16_t>(Val)) { 1405 case 0x3800: // 0.5 1406 return SIOutMods::DIV2; 1407 case 0x4000: // 2.0 1408 return SIOutMods::MUL2; 1409 case 0x4400: // 4.0 1410 return SIOutMods::MUL4; 1411 default: 1412 return SIOutMods::NONE; 1413 } 1414 } 1415 default: 1416 llvm_unreachable("invalid mul opcode"); 1417 } 1418 } 1419 1420 // FIXME: Does this really not support denormals with f16? 1421 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not 1422 // handled, so will anything other than that break? 1423 std::pair<const MachineOperand *, int> 1424 SIFoldOperands::isOMod(const MachineInstr &MI) const { 1425 unsigned Op = MI.getOpcode(); 1426 switch (Op) { 1427 case AMDGPU::V_MUL_F32_e64: 1428 case AMDGPU::V_MUL_F16_e64: { 1429 // If output denormals are enabled, omod is ignored. 1430 if ((Op == AMDGPU::V_MUL_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1431 (Op == AMDGPU::V_MUL_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1432 return std::make_pair(nullptr, SIOutMods::NONE); 1433 1434 const MachineOperand *RegOp = nullptr; 1435 const MachineOperand *ImmOp = nullptr; 1436 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1437 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1438 if (Src0->isImm()) { 1439 ImmOp = Src0; 1440 RegOp = Src1; 1441 } else if (Src1->isImm()) { 1442 ImmOp = Src1; 1443 RegOp = Src0; 1444 } else 1445 return std::make_pair(nullptr, SIOutMods::NONE); 1446 1447 int OMod = getOModValue(Op, ImmOp->getImm()); 1448 if (OMod == SIOutMods::NONE || 1449 TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || 1450 TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || 1451 TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || 1452 TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) 1453 return std::make_pair(nullptr, SIOutMods::NONE); 1454 1455 return std::make_pair(RegOp, OMod); 1456 } 1457 case AMDGPU::V_ADD_F32_e64: 1458 case AMDGPU::V_ADD_F16_e64: { 1459 // If output denormals are enabled, omod is ignored. 1460 if ((Op == AMDGPU::V_ADD_F32_e64 && MFI->getMode().FP32OutputDenormals) || 1461 (Op == AMDGPU::V_ADD_F16_e64 && MFI->getMode().FP64FP16OutputDenormals)) 1462 return std::make_pair(nullptr, SIOutMods::NONE); 1463 1464 // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x 1465 const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); 1466 const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); 1467 1468 if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && 1469 Src0->getSubReg() == Src1->getSubReg() && 1470 !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && 1471 !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && 1472 !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && 1473 !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) 1474 return std::make_pair(Src0, SIOutMods::MUL2); 1475 1476 return std::make_pair(nullptr, SIOutMods::NONE); 1477 } 1478 default: 1479 return std::make_pair(nullptr, SIOutMods::NONE); 1480 } 1481 } 1482 1483 // FIXME: Does this need to check IEEE bit on function? 1484 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { 1485 const MachineOperand *RegOp; 1486 int OMod; 1487 std::tie(RegOp, OMod) = isOMod(MI); 1488 if (OMod == SIOutMods::NONE || !RegOp->isReg() || 1489 RegOp->getSubReg() != AMDGPU::NoSubRegister || 1490 !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) 1491 return false; 1492 1493 MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); 1494 MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); 1495 if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) 1496 return false; 1497 1498 // Clamp is applied after omod. If the source already has clamp set, don't 1499 // fold it. 1500 if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) 1501 return false; 1502 1503 LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); 1504 1505 DefOMod->setImm(OMod); 1506 MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); 1507 MI.eraseFromParent(); 1508 return true; 1509 } 1510 1511 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { 1512 if (skipFunction(MF.getFunction())) 1513 return false; 1514 1515 MRI = &MF.getRegInfo(); 1516 ST = &MF.getSubtarget<GCNSubtarget>(); 1517 TII = ST->getInstrInfo(); 1518 TRI = &TII->getRegisterInfo(); 1519 MFI = MF.getInfo<SIMachineFunctionInfo>(); 1520 1521 // omod is ignored by hardware if IEEE bit is enabled. omod also does not 1522 // correctly handle signed zeros. 1523 // 1524 // FIXME: Also need to check strictfp 1525 bool IsIEEEMode = MFI->getMode().IEEE; 1526 bool HasNSZ = MFI->hasNoSignedZerosFPMath(); 1527 1528 for (MachineBasicBlock *MBB : depth_first(&MF)) { 1529 MachineBasicBlock::iterator I, Next; 1530 1531 MachineOperand *CurrentKnownM0Val = nullptr; 1532 for (I = MBB->begin(); I != MBB->end(); I = Next) { 1533 Next = std::next(I); 1534 MachineInstr &MI = *I; 1535 1536 tryFoldInst(TII, &MI); 1537 1538 if (!TII->isFoldableCopy(MI)) { 1539 // Saw an unknown clobber of m0, so we no longer know what it is. 1540 if (CurrentKnownM0Val && MI.modifiesRegister(AMDGPU::M0, TRI)) 1541 CurrentKnownM0Val = nullptr; 1542 1543 // TODO: Omod might be OK if there is NSZ only on the source 1544 // instruction, and not the omod multiply. 1545 if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || 1546 !tryFoldOMod(MI)) 1547 tryFoldClamp(MI); 1548 1549 continue; 1550 } 1551 1552 // Specially track simple redefs of m0 to the same value in a block, so we 1553 // can erase the later ones. 1554 if (MI.getOperand(0).getReg() == AMDGPU::M0) { 1555 MachineOperand &NewM0Val = MI.getOperand(1); 1556 if (CurrentKnownM0Val && CurrentKnownM0Val->isIdenticalTo(NewM0Val)) { 1557 MI.eraseFromParent(); 1558 continue; 1559 } 1560 1561 // We aren't tracking other physical registers 1562 CurrentKnownM0Val = (NewM0Val.isReg() && NewM0Val.getReg().isPhysical()) ? 1563 nullptr : &NewM0Val; 1564 continue; 1565 } 1566 1567 MachineOperand &OpToFold = MI.getOperand(1); 1568 bool FoldingImm = 1569 OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); 1570 1571 // FIXME: We could also be folding things like TargetIndexes. 1572 if (!FoldingImm && !OpToFold.isReg()) 1573 continue; 1574 1575 if (OpToFold.isReg() && !OpToFold.getReg().isVirtual()) 1576 continue; 1577 1578 // Prevent folding operands backwards in the function. For example, 1579 // the COPY opcode must not be replaced by 1 in this example: 1580 // 1581 // %3 = COPY %vgpr0; VGPR_32:%3 1582 // ... 1583 // %vgpr0 = V_MOV_B32_e32 1, implicit %exec 1584 MachineOperand &Dst = MI.getOperand(0); 1585 if (Dst.isReg() && !Dst.getReg().isVirtual()) 1586 continue; 1587 1588 foldInstOperand(MI, OpToFold); 1589 } 1590 } 1591 return true; 1592 } 1593