1 //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 /// \file
9 //===----------------------------------------------------------------------===//
10 //
11 
12 #include "AMDGPU.h"
13 #include "AMDGPUSubtarget.h"
14 #include "SIInstrInfo.h"
15 #include "SIMachineFunctionInfo.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include "llvm/Target/TargetMachine.h"
24 
25 #define DEBUG_TYPE "si-fold-operands"
26 using namespace llvm;
27 
28 namespace {
29 
30 struct FoldCandidate {
31   MachineInstr *UseMI;
32   union {
33     MachineOperand *OpToFold;
34     uint64_t ImmToFold;
35     int FrameIndexToFold;
36   };
37   unsigned char UseOpNo;
38   MachineOperand::MachineOperandType Kind;
39   bool Commuted;
40 
41   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
42                 bool Commuted_ = false) :
43     UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()),
44     Commuted(Commuted_) {
45     if (FoldOp->isImm()) {
46       ImmToFold = FoldOp->getImm();
47     } else if (FoldOp->isFI()) {
48       FrameIndexToFold = FoldOp->getIndex();
49     } else {
50       assert(FoldOp->isReg());
51       OpToFold = FoldOp;
52     }
53   }
54 
55   bool isFI() const {
56     return Kind == MachineOperand::MO_FrameIndex;
57   }
58 
59   bool isImm() const {
60     return Kind == MachineOperand::MO_Immediate;
61   }
62 
63   bool isReg() const {
64     return Kind == MachineOperand::MO_Register;
65   }
66 
67   bool isCommuted() const {
68     return Commuted;
69   }
70 };
71 
72 class SIFoldOperands : public MachineFunctionPass {
73 public:
74   static char ID;
75   MachineRegisterInfo *MRI;
76   const SIInstrInfo *TII;
77   const SIRegisterInfo *TRI;
78   const SISubtarget *ST;
79 
80   void foldOperand(MachineOperand &OpToFold,
81                    MachineInstr *UseMI,
82                    unsigned UseOpIdx,
83                    SmallVectorImpl<FoldCandidate> &FoldList,
84                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
85 
86   void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
87 
88   const MachineOperand *isClamp(const MachineInstr &MI) const;
89   bool tryFoldClamp(MachineInstr &MI);
90 
91   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
92   bool tryFoldOMod(MachineInstr &MI);
93 
94 public:
95   SIFoldOperands() : MachineFunctionPass(ID) {
96     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
97   }
98 
99   bool runOnMachineFunction(MachineFunction &MF) override;
100 
101   StringRef getPassName() const override { return "SI Fold Operands"; }
102 
103   void getAnalysisUsage(AnalysisUsage &AU) const override {
104     AU.setPreservesCFG();
105     MachineFunctionPass::getAnalysisUsage(AU);
106   }
107 };
108 
109 } // End anonymous namespace.
110 
111 INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
112                 "SI Fold Operands", false, false)
113 
114 char SIFoldOperands::ID = 0;
115 
116 char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
117 
118 // Wrapper around isInlineConstant that understands special cases when
119 // instruction types are replaced during operand folding.
120 static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
121                                      const MachineInstr &UseMI,
122                                      unsigned OpNo,
123                                      const MachineOperand &OpToFold) {
124   if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
125     return true;
126 
127   unsigned Opc = UseMI.getOpcode();
128   switch (Opc) {
129   case AMDGPU::V_MAC_F32_e64:
130   case AMDGPU::V_MAC_F16_e64: {
131     // Special case for mac. Since this is replaced with mad when folded into
132     // src2, we need to check the legality for the final instruction.
133     int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
134     if (static_cast<int>(OpNo) == Src2Idx) {
135       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
136       const MCInstrDesc &MadDesc
137         = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
138       return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
139     }
140     return false;
141   }
142   default:
143     return false;
144   }
145 }
146 
147 FunctionPass *llvm::createSIFoldOperandsPass() {
148   return new SIFoldOperands();
149 }
150 
151 static bool updateOperand(FoldCandidate &Fold,
152                           const TargetRegisterInfo &TRI) {
153   MachineInstr *MI = Fold.UseMI;
154   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
155   assert(Old.isReg());
156 
157   if (Fold.isImm()) {
158     Old.ChangeToImmediate(Fold.ImmToFold);
159     return true;
160   }
161 
162   if (Fold.isFI()) {
163     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
164     return true;
165   }
166 
167   MachineOperand *New = Fold.OpToFold;
168   if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
169       TargetRegisterInfo::isVirtualRegister(New->getReg())) {
170     Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
171 
172     Old.setIsUndef(New->isUndef());
173     return true;
174   }
175 
176   // FIXME: Handle physical registers.
177 
178   return false;
179 }
180 
181 static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
182                               const MachineInstr *MI) {
183   for (auto Candidate : FoldList) {
184     if (Candidate.UseMI == MI)
185       return true;
186   }
187   return false;
188 }
189 
190 static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
191                              MachineInstr *MI, unsigned OpNo,
192                              MachineOperand *OpToFold,
193                              const SIInstrInfo *TII) {
194   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
195 
196     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
197     unsigned Opc = MI->getOpcode();
198     if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) &&
199         (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
200       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
201 
202       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
203       // to fold the operand.
204       MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16));
205       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
206       if (FoldAsMAD) {
207         MI->untieRegOperand(OpNo);
208         return true;
209       }
210       MI->setDesc(TII->get(Opc));
211     }
212 
213     // Special case for s_setreg_b32
214     if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
215       MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
216       FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
217       return true;
218     }
219 
220     // If we are already folding into another operand of MI, then
221     // we can't commute the instruction, otherwise we risk making the
222     // other fold illegal.
223     if (isUseMIInFoldList(FoldList, MI))
224       return false;
225 
226     // Operand is not legal, so try to commute the instruction to
227     // see if this makes it possible to fold.
228     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
229     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
230     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
231 
232     if (CanCommute) {
233       if (CommuteIdx0 == OpNo)
234         OpNo = CommuteIdx1;
235       else if (CommuteIdx1 == OpNo)
236         OpNo = CommuteIdx0;
237     }
238 
239     // One of operands might be an Imm operand, and OpNo may refer to it after
240     // the call of commuteInstruction() below. Such situations are avoided
241     // here explicitly as OpNo must be a register operand to be a candidate
242     // for memory folding.
243     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
244                        !MI->getOperand(CommuteIdx1).isReg()))
245       return false;
246 
247     if (!CanCommute ||
248         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
249       return false;
250 
251     if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
252       TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
253       return false;
254     }
255 
256     FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold, true));
257     return true;
258   }
259 
260   FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
261   return true;
262 }
263 
264 // If the use operand doesn't care about the value, this may be an operand only
265 // used for register indexing, in which case it is unsafe to fold.
266 static bool isUseSafeToFold(const SIInstrInfo *TII,
267                             const MachineInstr &MI,
268                             const MachineOperand &UseMO) {
269   return !UseMO.isUndef() && !TII->isSDWA(MI);
270   //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
271 }
272 
273 void SIFoldOperands::foldOperand(
274   MachineOperand &OpToFold,
275   MachineInstr *UseMI,
276   unsigned UseOpIdx,
277   SmallVectorImpl<FoldCandidate> &FoldList,
278   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
279   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
280 
281   if (!isUseSafeToFold(TII, *UseMI, UseOp))
282     return;
283 
284   // FIXME: Fold operands with subregs.
285   if (UseOp.isReg() && OpToFold.isReg()) {
286     if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
287       return;
288 
289     // Don't fold subregister extracts into tied operands, only if it is a full
290     // copy since a subregister use tied to a full register def doesn't really
291     // make sense. e.g. don't fold:
292     //
293     // %1 = COPY %0:sub1
294     // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
295     //
296     //  into
297     // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
298     if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
299       return;
300   }
301 
302   // Special case for REG_SEQUENCE: We can't fold literals into
303   // REG_SEQUENCE instructions, so we have to fold them into the
304   // uses of REG_SEQUENCE.
305   if (UseMI->isRegSequence()) {
306     unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
307     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
308 
309     for (MachineRegisterInfo::use_iterator
310            RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
311          RSUse != RSE; ++RSUse) {
312 
313       MachineInstr *RSUseMI = RSUse->getParent();
314       if (RSUse->getSubReg() != RegSeqDstSubReg)
315         continue;
316 
317       foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
318                   CopiesToReplace);
319     }
320 
321     return;
322   }
323 
324 
325   bool FoldingImm = OpToFold.isImm();
326 
327   // In order to fold immediates into copies, we need to change the
328   // copy to a MOV.
329   if (FoldingImm && UseMI->isCopy()) {
330     unsigned DestReg = UseMI->getOperand(0).getReg();
331     const TargetRegisterClass *DestRC
332       = TargetRegisterInfo::isVirtualRegister(DestReg) ?
333       MRI->getRegClass(DestReg) :
334       TRI->getPhysRegClass(DestReg);
335 
336     unsigned MovOp = TII->getMovOpcode(DestRC);
337     if (MovOp == AMDGPU::COPY)
338       return;
339 
340     UseMI->setDesc(TII->get(MovOp));
341     CopiesToReplace.push_back(UseMI);
342   } else {
343     const MCInstrDesc &UseDesc = UseMI->getDesc();
344 
345     // Don't fold into target independent nodes.  Target independent opcodes
346     // don't have defined register classes.
347     if (UseDesc.isVariadic() ||
348         UseOp.isImplicit() ||
349         UseDesc.OpInfo[UseOpIdx].RegClass == -1)
350       return;
351   }
352 
353   if (!FoldingImm) {
354     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
355 
356     // FIXME: We could try to change the instruction from 64-bit to 32-bit
357     // to enable more folding opportunites.  The shrink operands pass
358     // already does this.
359     return;
360   }
361 
362 
363   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
364   const TargetRegisterClass *FoldRC =
365     TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
366 
367 
368   // Split 64-bit constants into 32-bits for folding.
369   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
370     unsigned UseReg = UseOp.getReg();
371     const TargetRegisterClass *UseRC
372       = TargetRegisterInfo::isVirtualRegister(UseReg) ?
373       MRI->getRegClass(UseReg) :
374       TRI->getPhysRegClass(UseReg);
375 
376     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
377       return;
378 
379     APInt Imm(64, OpToFold.getImm());
380     if (UseOp.getSubReg() == AMDGPU::sub0) {
381       Imm = Imm.getLoBits(32);
382     } else {
383       assert(UseOp.getSubReg() == AMDGPU::sub1);
384       Imm = Imm.getHiBits(32);
385     }
386 
387     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
388     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
389     return;
390   }
391 
392 
393 
394   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
395 }
396 
397 static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
398                                   uint32_t LHS, uint32_t RHS) {
399   switch (Opcode) {
400   case AMDGPU::V_AND_B32_e64:
401   case AMDGPU::V_AND_B32_e32:
402   case AMDGPU::S_AND_B32:
403     Result = LHS & RHS;
404     return true;
405   case AMDGPU::V_OR_B32_e64:
406   case AMDGPU::V_OR_B32_e32:
407   case AMDGPU::S_OR_B32:
408     Result = LHS | RHS;
409     return true;
410   case AMDGPU::V_XOR_B32_e64:
411   case AMDGPU::V_XOR_B32_e32:
412   case AMDGPU::S_XOR_B32:
413     Result = LHS ^ RHS;
414     return true;
415   case AMDGPU::V_LSHL_B32_e64:
416   case AMDGPU::V_LSHL_B32_e32:
417   case AMDGPU::S_LSHL_B32:
418     // The instruction ignores the high bits for out of bounds shifts.
419     Result = LHS << (RHS & 31);
420     return true;
421   case AMDGPU::V_LSHLREV_B32_e64:
422   case AMDGPU::V_LSHLREV_B32_e32:
423     Result = RHS << (LHS & 31);
424     return true;
425   case AMDGPU::V_LSHR_B32_e64:
426   case AMDGPU::V_LSHR_B32_e32:
427   case AMDGPU::S_LSHR_B32:
428     Result = LHS >> (RHS & 31);
429     return true;
430   case AMDGPU::V_LSHRREV_B32_e64:
431   case AMDGPU::V_LSHRREV_B32_e32:
432     Result = RHS >> (LHS & 31);
433     return true;
434   case AMDGPU::V_ASHR_I32_e64:
435   case AMDGPU::V_ASHR_I32_e32:
436   case AMDGPU::S_ASHR_I32:
437     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
438     return true;
439   case AMDGPU::V_ASHRREV_I32_e64:
440   case AMDGPU::V_ASHRREV_I32_e32:
441     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
442     return true;
443   default:
444     return false;
445   }
446 }
447 
448 static unsigned getMovOpc(bool IsScalar) {
449   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
450 }
451 
452 /// Remove any leftover implicit operands from mutating the instruction. e.g.
453 /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
454 /// anymore.
455 static void stripExtraCopyOperands(MachineInstr &MI) {
456   const MCInstrDesc &Desc = MI.getDesc();
457   unsigned NumOps = Desc.getNumOperands() +
458                     Desc.getNumImplicitUses() +
459                     Desc.getNumImplicitDefs();
460 
461   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
462     MI.RemoveOperand(I);
463 }
464 
465 static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
466   MI.setDesc(NewDesc);
467   stripExtraCopyOperands(MI);
468 }
469 
470 static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
471                                                MachineOperand &Op) {
472   if (Op.isReg()) {
473     // If this has a subregister, it obviously is a register source.
474     if (Op.getSubReg() != AMDGPU::NoSubRegister)
475       return &Op;
476 
477     MachineInstr *Def = MRI.getVRegDef(Op.getReg());
478     if (Def && Def->isMoveImmediate()) {
479       MachineOperand &ImmSrc = Def->getOperand(1);
480       if (ImmSrc.isImm())
481         return &ImmSrc;
482     }
483   }
484 
485   return &Op;
486 }
487 
488 // Try to simplify operations with a constant that may appear after instruction
489 // selection.
490 // TODO: See if a frame index with a fixed offset can fold.
491 static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
492                               const SIInstrInfo *TII,
493                               MachineInstr *MI,
494                               MachineOperand *ImmOp) {
495   unsigned Opc = MI->getOpcode();
496   if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
497       Opc == AMDGPU::S_NOT_B32) {
498     MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
499     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
500     return true;
501   }
502 
503   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
504   if (Src1Idx == -1)
505     return false;
506 
507   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
508   MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
509   MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
510 
511   if (!Src0->isImm() && !Src1->isImm())
512     return false;
513 
514   // and k0, k1 -> v_mov_b32 (k0 & k1)
515   // or k0, k1 -> v_mov_b32 (k0 | k1)
516   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
517   if (Src0->isImm() && Src1->isImm()) {
518     int32_t NewImm;
519     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
520       return false;
521 
522     const SIRegisterInfo &TRI = TII->getRegisterInfo();
523     bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
524 
525     // Be careful to change the right operand, src0 may belong to a different
526     // instruction.
527     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
528     MI->RemoveOperand(Src1Idx);
529     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
530     return true;
531   }
532 
533   if (!MI->isCommutable())
534     return false;
535 
536   if (Src0->isImm() && !Src1->isImm()) {
537     std::swap(Src0, Src1);
538     std::swap(Src0Idx, Src1Idx);
539   }
540 
541   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
542   if (Opc == AMDGPU::V_OR_B32_e64 ||
543       Opc == AMDGPU::V_OR_B32_e32 ||
544       Opc == AMDGPU::S_OR_B32) {
545     if (Src1Val == 0) {
546       // y = or x, 0 => y = copy x
547       MI->RemoveOperand(Src1Idx);
548       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
549     } else if (Src1Val == -1) {
550       // y = or x, -1 => y = v_mov_b32 -1
551       MI->RemoveOperand(Src1Idx);
552       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
553     } else
554       return false;
555 
556     return true;
557   }
558 
559   if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
560       MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
561       MI->getOpcode() == AMDGPU::S_AND_B32) {
562     if (Src1Val == 0) {
563       // y = and x, 0 => y = v_mov_b32 0
564       MI->RemoveOperand(Src0Idx);
565       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
566     } else if (Src1Val == -1) {
567       // y = and x, -1 => y = copy x
568       MI->RemoveOperand(Src1Idx);
569       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
570       stripExtraCopyOperands(*MI);
571     } else
572       return false;
573 
574     return true;
575   }
576 
577   if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
578       MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
579       MI->getOpcode() == AMDGPU::S_XOR_B32) {
580     if (Src1Val == 0) {
581       // y = xor x, 0 => y = copy x
582       MI->RemoveOperand(Src1Idx);
583       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
584       return true;
585     }
586   }
587 
588   return false;
589 }
590 
591 // Try to fold an instruction into a simpler one
592 static bool tryFoldInst(const SIInstrInfo *TII,
593                         MachineInstr *MI) {
594   unsigned Opc = MI->getOpcode();
595 
596   if (Opc == AMDGPU::V_CNDMASK_B32_e32    ||
597       Opc == AMDGPU::V_CNDMASK_B32_e64    ||
598       Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
599     const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
600     const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
601     if (Src1->isIdenticalTo(*Src0)) {
602       DEBUG(dbgs() << "Folded " << *MI << " into ");
603       int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
604       if (Src2Idx != -1)
605         MI->RemoveOperand(Src2Idx);
606       MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
607       mutateCopyOp(*MI, TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY
608                                                : getMovOpc(false)));
609       DEBUG(dbgs() << *MI << '\n');
610       return true;
611     }
612   }
613 
614   return false;
615 }
616 
617 void SIFoldOperands::foldInstOperand(MachineInstr &MI,
618                                      MachineOperand &OpToFold) const {
619   // We need mutate the operands of new mov instructions to add implicit
620   // uses of EXEC, but adding them invalidates the use_iterator, so defer
621   // this.
622   SmallVector<MachineInstr *, 4> CopiesToReplace;
623   SmallVector<FoldCandidate, 4> FoldList;
624   MachineOperand &Dst = MI.getOperand(0);
625 
626   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
627   if (FoldingImm) {
628     unsigned NumLiteralUses = 0;
629     MachineOperand *NonInlineUse = nullptr;
630     int NonInlineUseOpNo = -1;
631 
632     MachineRegisterInfo::use_iterator NextUse;
633     for (MachineRegisterInfo::use_iterator
634            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
635          Use != E; Use = NextUse) {
636       NextUse = std::next(Use);
637       MachineInstr *UseMI = Use->getParent();
638       unsigned OpNo = Use.getOperandNo();
639 
640       // Folding the immediate may reveal operations that can be constant
641       // folded or replaced with a copy. This can happen for example after
642       // frame indices are lowered to constants or from splitting 64-bit
643       // constants.
644       //
645       // We may also encounter cases where one or both operands are
646       // immediates materialized into a register, which would ordinarily not
647       // be folded due to multiple uses or operand constraints.
648 
649       if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
650         DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n');
651 
652         // Some constant folding cases change the same immediate's use to a new
653         // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
654         // again. The same constant folded instruction could also have a second
655         // use operand.
656         NextUse = MRI->use_begin(Dst.getReg());
657         FoldList.clear();
658         continue;
659       }
660 
661       // Try to fold any inline immediate uses, and then only fold other
662       // constants if they have one use.
663       //
664       // The legality of the inline immediate must be checked based on the use
665       // operand, not the defining instruction, because 32-bit instructions
666       // with 32-bit inline immediate sources may be used to materialize
667       // constants used in 16-bit operands.
668       //
669       // e.g. it is unsafe to fold:
670       //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
671       //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
672 
673       // Folding immediates with more than one use will increase program size.
674       // FIXME: This will also reduce register usage, which may be better
675       // in some cases. A better heuristic is needed.
676       if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
677         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
678       } else {
679         if (++NumLiteralUses == 1) {
680           NonInlineUse = &*Use;
681           NonInlineUseOpNo = OpNo;
682         }
683       }
684     }
685 
686     if (NumLiteralUses == 1) {
687       MachineInstr *UseMI = NonInlineUse->getParent();
688       foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
689     }
690   } else {
691     // Folding register.
692     for (MachineRegisterInfo::use_iterator
693            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
694          Use != E; ++Use) {
695       MachineInstr *UseMI = Use->getParent();
696 
697       foldOperand(OpToFold, UseMI, Use.getOperandNo(),
698                   FoldList, CopiesToReplace);
699     }
700   }
701 
702   MachineFunction *MF = MI.getParent()->getParent();
703   // Make sure we add EXEC uses to any new v_mov instructions created.
704   for (MachineInstr *Copy : CopiesToReplace)
705     Copy->addImplicitDefUseOperands(*MF);
706 
707   for (FoldCandidate &Fold : FoldList) {
708     if (updateOperand(Fold, *TRI)) {
709       // Clear kill flags.
710       if (Fold.isReg()) {
711         assert(Fold.OpToFold && Fold.OpToFold->isReg());
712         // FIXME: Probably shouldn't bother trying to fold if not an
713         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
714         // copies.
715         MRI->clearKillFlags(Fold.OpToFold->getReg());
716       }
717       DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
718             static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n');
719       tryFoldInst(TII, Fold.UseMI);
720     } else if (Fold.isCommuted()) {
721       // Restoring instruction's original operand order if fold has failed.
722       TII->commuteInstruction(*Fold.UseMI, false);
723     }
724   }
725 }
726 
727 // Clamp patterns are canonically selected to v_max_* instructions, so only
728 // handle them.
729 const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
730   unsigned Op = MI.getOpcode();
731   switch (Op) {
732   case AMDGPU::V_MAX_F32_e64:
733   case AMDGPU::V_MAX_F16_e64:
734   case AMDGPU::V_MAX_F64:
735   case AMDGPU::V_PK_MAX_F16: {
736     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
737       return nullptr;
738 
739     // Make sure sources are identical.
740     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
741     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
742     if (!Src0->isReg() || !Src1->isReg() ||
743         Src0->getReg() != Src1->getReg() ||
744         Src0->getSubReg() != Src1->getSubReg() ||
745         Src0->getSubReg() != AMDGPU::NoSubRegister)
746       return nullptr;
747 
748     // Can't fold up if we have modifiers.
749     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
750       return nullptr;
751 
752     unsigned Src0Mods
753       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
754     unsigned Src1Mods
755       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
756 
757     // Having a 0 op_sel_hi would require swizzling the output in the source
758     // instruction, which we can't do.
759     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 : 0;
760     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
761       return nullptr;
762     return Src0;
763   }
764   default:
765     return nullptr;
766   }
767 }
768 
769 // We obviously have multiple uses in a clamp since the register is used twice
770 // in the same instruction.
771 static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
772   int Count = 0;
773   for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
774        I != E; ++I) {
775     if (++Count > 1)
776       return false;
777   }
778 
779   return true;
780 }
781 
782 // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
783 bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
784   const MachineOperand *ClampSrc = isClamp(MI);
785   if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
786     return false;
787 
788   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
789 
790   // The type of clamp must be compatible.
791   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
792     return false;
793 
794   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
795   if (!DefClamp)
796     return false;
797 
798   DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n');
799 
800   // Clamp is applied after omod, so it is OK if omod is set.
801   DefClamp->setImm(1);
802   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
803   MI.eraseFromParent();
804   return true;
805 }
806 
807 static int getOModValue(unsigned Opc, int64_t Val) {
808   switch (Opc) {
809   case AMDGPU::V_MUL_F32_e64: {
810     switch (static_cast<uint32_t>(Val)) {
811     case 0x3f000000: // 0.5
812       return SIOutMods::DIV2;
813     case 0x40000000: // 2.0
814       return SIOutMods::MUL2;
815     case 0x40800000: // 4.0
816       return SIOutMods::MUL4;
817     default:
818       return SIOutMods::NONE;
819     }
820   }
821   case AMDGPU::V_MUL_F16_e64: {
822     switch (static_cast<uint16_t>(Val)) {
823     case 0x3800: // 0.5
824       return SIOutMods::DIV2;
825     case 0x4000: // 2.0
826       return SIOutMods::MUL2;
827     case 0x4400: // 4.0
828       return SIOutMods::MUL4;
829     default:
830       return SIOutMods::NONE;
831     }
832   }
833   default:
834     llvm_unreachable("invalid mul opcode");
835   }
836 }
837 
838 // FIXME: Does this really not support denormals with f16?
839 // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
840 // handled, so will anything other than that break?
841 std::pair<const MachineOperand *, int>
842 SIFoldOperands::isOMod(const MachineInstr &MI) const {
843   unsigned Op = MI.getOpcode();
844   switch (Op) {
845   case AMDGPU::V_MUL_F32_e64:
846   case AMDGPU::V_MUL_F16_e64: {
847     // If output denormals are enabled, omod is ignored.
848     if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
849         (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
850       return std::make_pair(nullptr, SIOutMods::NONE);
851 
852     const MachineOperand *RegOp = nullptr;
853     const MachineOperand *ImmOp = nullptr;
854     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
855     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
856     if (Src0->isImm()) {
857       ImmOp = Src0;
858       RegOp = Src1;
859     } else if (Src1->isImm()) {
860       ImmOp = Src1;
861       RegOp = Src0;
862     } else
863       return std::make_pair(nullptr, SIOutMods::NONE);
864 
865     int OMod = getOModValue(Op, ImmOp->getImm());
866     if (OMod == SIOutMods::NONE ||
867         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
868         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
869         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
870         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
871       return std::make_pair(nullptr, SIOutMods::NONE);
872 
873     return std::make_pair(RegOp, OMod);
874   }
875   case AMDGPU::V_ADD_F32_e64:
876   case AMDGPU::V_ADD_F16_e64: {
877     // If output denormals are enabled, omod is ignored.
878     if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
879         (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
880       return std::make_pair(nullptr, SIOutMods::NONE);
881 
882     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
883     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
884     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
885 
886     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
887         Src0->getSubReg() == Src1->getSubReg() &&
888         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
889         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
890         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
891         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
892       return std::make_pair(Src0, SIOutMods::MUL2);
893 
894     return std::make_pair(nullptr, SIOutMods::NONE);
895   }
896   default:
897     return std::make_pair(nullptr, SIOutMods::NONE);
898   }
899 }
900 
901 // FIXME: Does this need to check IEEE bit on function?
902 bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
903   const MachineOperand *RegOp;
904   int OMod;
905   std::tie(RegOp, OMod) = isOMod(MI);
906   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
907       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
908       !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
909     return false;
910 
911   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
912   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
913   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
914     return false;
915 
916   // Clamp is applied after omod. If the source already has clamp set, don't
917   // fold it.
918   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
919     return false;
920 
921   DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
922 
923   DefOMod->setImm(OMod);
924   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
925   MI.eraseFromParent();
926   return true;
927 }
928 
929 bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
930   if (skipFunction(MF.getFunction()))
931     return false;
932 
933   MRI = &MF.getRegInfo();
934   ST = &MF.getSubtarget<SISubtarget>();
935   TII = ST->getInstrInfo();
936   TRI = &TII->getRegisterInfo();
937 
938   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
939 
940   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
941   // correctly handle signed zeros.
942   //
943   // TODO: Check nsz on instructions when fast math flags are preserved to MI
944   // level.
945   bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath();
946 
947   for (MachineBasicBlock *MBB : depth_first(&MF)) {
948     MachineBasicBlock::iterator I, Next;
949     for (I = MBB->begin(); I != MBB->end(); I = Next) {
950       Next = std::next(I);
951       MachineInstr &MI = *I;
952 
953       tryFoldInst(TII, &MI);
954 
955       if (!TII->isFoldableCopy(MI)) {
956         if (IsIEEEMode || !tryFoldOMod(MI))
957           tryFoldClamp(MI);
958         continue;
959       }
960 
961       MachineOperand &OpToFold = MI.getOperand(1);
962       bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
963 
964       // FIXME: We could also be folding things like TargetIndexes.
965       if (!FoldingImm && !OpToFold.isReg())
966         continue;
967 
968       if (OpToFold.isReg() &&
969           !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
970         continue;
971 
972       // Prevent folding operands backwards in the function. For example,
973       // the COPY opcode must not be replaced by 1 in this example:
974       //
975       //    %3 = COPY %vgpr0; VGPR_32:%3
976       //    ...
977       //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
978       MachineOperand &Dst = MI.getOperand(0);
979       if (Dst.isReg() &&
980           !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
981         continue;
982 
983       foldInstOperand(MI, OpToFold);
984     }
985   }
986   return false;
987 }
988