1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Implements the AMDGPU specific subclass of TargetSubtarget. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUSubtarget.h" 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPUInstructionSelector.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPURegisterBankInfo.h" 19 #include "AMDGPUTargetMachine.h" 20 #include "R600Subtarget.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/IntrinsicsR600.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "amdgpu-subtarget" 36 37 #define GET_SUBTARGETINFO_TARGET_DESC 38 #define GET_SUBTARGETINFO_CTOR 39 #define AMDGPUSubtarget GCNSubtarget 40 #include "AMDGPUGenSubtargetInfo.inc" 41 #undef AMDGPUSubtarget 42 43 static cl::opt<bool> DisablePowerSched( 44 "amdgpu-disable-power-sched", 45 cl::desc("Disable scheduling to minimize mAI power bursts"), 46 cl::init(false)); 47 48 static cl::opt<bool> EnableVGPRIndexMode( 49 "amdgpu-vgpr-index-mode", 50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 51 cl::init(false)); 52 53 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", 54 cl::desc("Enable the use of AA during codegen."), 55 cl::init(true)); 56 57 GCNSubtarget::~GCNSubtarget() = default; 58 59 GCNSubtarget & 60 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, 61 StringRef GPU, StringRef FS) { 62 // Determine default and user-specified characteristics 63 // 64 // We want to be able to turn these off, but making this a subtarget feature 65 // for SI has the unhelpful behavior that it unsets everything else if you 66 // disable it. 67 // 68 // Similarly we want enable-prt-strict-null to be on by default and not to 69 // unset everything else if it is disabled 70 71 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); 72 73 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default 74 if (isAmdHsaOS()) 75 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; 76 77 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS 78 79 // Disable mutually exclusive bits. 80 if (FS.contains_insensitive("+wavefrontsize")) { 81 if (!FS.contains_insensitive("wavefrontsize16")) 82 FullFS += "-wavefrontsize16,"; 83 if (!FS.contains_insensitive("wavefrontsize32")) 84 FullFS += "-wavefrontsize32,"; 85 if (!FS.contains_insensitive("wavefrontsize64")) 86 FullFS += "-wavefrontsize64,"; 87 } 88 89 FullFS += FS; 90 91 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); 92 93 // Implement the "generic" processors, which acts as the default when no 94 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to 95 // the first amdgcn target that supports flat addressing. Other OSes defaults 96 // to the first amdgcn target. 97 if (Gen == AMDGPUSubtarget::INVALID) { 98 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS 99 : AMDGPUSubtarget::SOUTHERN_ISLANDS; 100 } 101 102 // We don't support FP64 for EG/NI atm. 103 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); 104 105 // Targets must either support 64-bit offsets for MUBUF instructions, and/or 106 // support flat operations, otherwise they cannot access a 64-bit global 107 // address space 108 assert(hasAddr64() || hasFlat()); 109 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets 110 // that do not support ADDR64 variants of MUBUF instructions. Such targets 111 // cannot use a 64 bit offset with a MUBUF instruction to access the global 112 // address space 113 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { 114 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 115 FlatForGlobal = true; 116 } 117 // Unless +-flat-for-global is specified, use MUBUF instructions for global 118 // address space access if flat operations are not available. 119 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { 120 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 121 FlatForGlobal = false; 122 } 123 124 // Set defaults if needed. 125 if (MaxPrivateElementSize == 0) 126 MaxPrivateElementSize = 4; 127 128 if (LDSBankCount == 0) 129 LDSBankCount = 32; 130 131 if (TT.getArch() == Triple::amdgcn) { 132 if (LocalMemorySize == 0) 133 LocalMemorySize = 32768; 134 135 // Do something sensible for unspecified target. 136 if (!HasMovrel && !HasVGPRIndexMode) 137 HasMovrel = true; 138 } 139 140 // Don't crash on invalid devices. 141 if (WavefrontSizeLog2 == 0) 142 WavefrontSizeLog2 = 5; 143 144 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; 145 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; 146 147 TargetID.setTargetIDFromFeaturesString(FS); 148 149 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " 150 << TargetID.getXnackSetting() << '\n'); 151 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " 152 << TargetID.getSramEccSetting() << '\n'); 153 154 return *this; 155 } 156 157 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : TargetTriple(TT) {} 158 159 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, 160 const GCNTargetMachine &TM) 161 : // clang-format off 162 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), 163 AMDGPUSubtarget(TT), 164 TargetTriple(TT), 165 TargetID(*this), 166 InstrItins(getInstrItineraryForCPU(GPU)), 167 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), 168 TLInfo(TM, *this), 169 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { 170 // clang-format on 171 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); 172 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); 173 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); 174 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); 175 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); 176 InstSelector.reset(new AMDGPUInstructionSelector( 177 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); 178 } 179 180 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { 181 if (getGeneration() < GFX10) 182 return 1; 183 184 switch (Opcode) { 185 case AMDGPU::V_LSHLREV_B64_e64: 186 case AMDGPU::V_LSHLREV_B64_gfx10: 187 case AMDGPU::V_LSHL_B64_e64: 188 case AMDGPU::V_LSHRREV_B64_e64: 189 case AMDGPU::V_LSHRREV_B64_gfx10: 190 case AMDGPU::V_LSHR_B64_e64: 191 case AMDGPU::V_ASHRREV_I64_e64: 192 case AMDGPU::V_ASHRREV_I64_gfx10: 193 case AMDGPU::V_ASHR_I64_e64: 194 return 1; 195 } 196 197 return 2; 198 } 199 200 /// This list was mostly derived from experimentation. 201 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { 202 switch (Opcode) { 203 case AMDGPU::V_CVT_F16_F32_e32: 204 case AMDGPU::V_CVT_F16_F32_e64: 205 case AMDGPU::V_CVT_F16_U16_e32: 206 case AMDGPU::V_CVT_F16_U16_e64: 207 case AMDGPU::V_CVT_F16_I16_e32: 208 case AMDGPU::V_CVT_F16_I16_e64: 209 case AMDGPU::V_RCP_F16_e64: 210 case AMDGPU::V_RCP_F16_e32: 211 case AMDGPU::V_RSQ_F16_e64: 212 case AMDGPU::V_RSQ_F16_e32: 213 case AMDGPU::V_SQRT_F16_e64: 214 case AMDGPU::V_SQRT_F16_e32: 215 case AMDGPU::V_LOG_F16_e64: 216 case AMDGPU::V_LOG_F16_e32: 217 case AMDGPU::V_EXP_F16_e64: 218 case AMDGPU::V_EXP_F16_e32: 219 case AMDGPU::V_SIN_F16_e64: 220 case AMDGPU::V_SIN_F16_e32: 221 case AMDGPU::V_COS_F16_e64: 222 case AMDGPU::V_COS_F16_e32: 223 case AMDGPU::V_FLOOR_F16_e64: 224 case AMDGPU::V_FLOOR_F16_e32: 225 case AMDGPU::V_CEIL_F16_e64: 226 case AMDGPU::V_CEIL_F16_e32: 227 case AMDGPU::V_TRUNC_F16_e64: 228 case AMDGPU::V_TRUNC_F16_e32: 229 case AMDGPU::V_RNDNE_F16_e64: 230 case AMDGPU::V_RNDNE_F16_e32: 231 case AMDGPU::V_FRACT_F16_e64: 232 case AMDGPU::V_FRACT_F16_e32: 233 case AMDGPU::V_FREXP_MANT_F16_e64: 234 case AMDGPU::V_FREXP_MANT_F16_e32: 235 case AMDGPU::V_FREXP_EXP_I16_F16_e64: 236 case AMDGPU::V_FREXP_EXP_I16_F16_e32: 237 case AMDGPU::V_LDEXP_F16_e64: 238 case AMDGPU::V_LDEXP_F16_e32: 239 case AMDGPU::V_LSHLREV_B16_e64: 240 case AMDGPU::V_LSHLREV_B16_e32: 241 case AMDGPU::V_LSHRREV_B16_e64: 242 case AMDGPU::V_LSHRREV_B16_e32: 243 case AMDGPU::V_ASHRREV_I16_e64: 244 case AMDGPU::V_ASHRREV_I16_e32: 245 case AMDGPU::V_ADD_U16_e64: 246 case AMDGPU::V_ADD_U16_e32: 247 case AMDGPU::V_SUB_U16_e64: 248 case AMDGPU::V_SUB_U16_e32: 249 case AMDGPU::V_SUBREV_U16_e64: 250 case AMDGPU::V_SUBREV_U16_e32: 251 case AMDGPU::V_MUL_LO_U16_e64: 252 case AMDGPU::V_MUL_LO_U16_e32: 253 case AMDGPU::V_ADD_F16_e64: 254 case AMDGPU::V_ADD_F16_e32: 255 case AMDGPU::V_SUB_F16_e64: 256 case AMDGPU::V_SUB_F16_e32: 257 case AMDGPU::V_SUBREV_F16_e64: 258 case AMDGPU::V_SUBREV_F16_e32: 259 case AMDGPU::V_MUL_F16_e64: 260 case AMDGPU::V_MUL_F16_e32: 261 case AMDGPU::V_MAX_F16_e64: 262 case AMDGPU::V_MAX_F16_e32: 263 case AMDGPU::V_MIN_F16_e64: 264 case AMDGPU::V_MIN_F16_e32: 265 case AMDGPU::V_MAX_U16_e64: 266 case AMDGPU::V_MAX_U16_e32: 267 case AMDGPU::V_MIN_U16_e64: 268 case AMDGPU::V_MIN_U16_e32: 269 case AMDGPU::V_MAX_I16_e64: 270 case AMDGPU::V_MAX_I16_e32: 271 case AMDGPU::V_MIN_I16_e64: 272 case AMDGPU::V_MIN_I16_e32: 273 case AMDGPU::V_MAD_F16_e64: 274 case AMDGPU::V_MAD_U16_e64: 275 case AMDGPU::V_MAD_I16_e64: 276 case AMDGPU::V_FMA_F16_e64: 277 case AMDGPU::V_DIV_FIXUP_F16_e64: 278 // On gfx10, all 16-bit instructions preserve the high bits. 279 return getGeneration() <= AMDGPUSubtarget::GFX9; 280 case AMDGPU::V_MADAK_F16: 281 case AMDGPU::V_MADMK_F16: 282 case AMDGPU::V_MAC_F16_e64: 283 case AMDGPU::V_MAC_F16_e32: 284 case AMDGPU::V_FMAMK_F16: 285 case AMDGPU::V_FMAAK_F16: 286 case AMDGPU::V_FMAC_F16_e64: 287 case AMDGPU::V_FMAC_F16_e32: 288 // In gfx9, the preferred handling of the unused high 16-bits changed. Most 289 // instructions maintain the legacy behavior of 0ing. Some instructions 290 // changed to preserving the high bits. 291 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 292 case AMDGPU::V_MAD_MIXLO_F16: 293 case AMDGPU::V_MAD_MIXHI_F16: 294 default: 295 return false; 296 } 297 } 298 299 unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, 300 const Function &F) const { 301 if (NWaves == 1) 302 return getLocalMemorySize(); 303 unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; 304 unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); 305 if (!WorkGroupsPerCu) 306 return 0; 307 unsigned MaxWaves = getMaxWavesPerEU(); 308 return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; 309 } 310 311 // FIXME: Should return min,max range. 312 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, 313 const Function &F) const { 314 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; 315 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); 316 if (!MaxWorkGroupsPerCu) 317 return 0; 318 319 const unsigned WaveSize = getWavefrontSize(); 320 321 // FIXME: Do we need to account for alignment requirement of LDS rounding the 322 // size up? 323 // Compute restriction based on LDS usage 324 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); 325 326 // This can be queried with more LDS than is possible, so just assume the 327 // worst. 328 if (NumGroups == 0) 329 return 1; 330 331 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); 332 333 // Round to the number of waves. 334 const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize; 335 unsigned MaxWaves = NumGroups * MaxGroupNumWaves; 336 337 // Clamp to the maximum possible number of waves. 338 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); 339 340 // FIXME: Needs to be a multiple of the group size? 341 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); 342 343 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && 344 "computed invalid occupancy"); 345 return MaxWaves; 346 } 347 348 unsigned 349 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { 350 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); 351 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); 352 } 353 354 std::pair<unsigned, unsigned> 355 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { 356 switch (CC) { 357 case CallingConv::AMDGPU_VS: 358 case CallingConv::AMDGPU_LS: 359 case CallingConv::AMDGPU_HS: 360 case CallingConv::AMDGPU_ES: 361 case CallingConv::AMDGPU_GS: 362 case CallingConv::AMDGPU_PS: 363 return std::make_pair(1, getWavefrontSize()); 364 default: 365 return std::make_pair(1u, getMaxFlatWorkGroupSize()); 366 } 367 } 368 369 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( 370 const Function &F) const { 371 // Default minimum/maximum flat work group sizes. 372 std::pair<unsigned, unsigned> Default = 373 getDefaultFlatWorkGroupSize(F.getCallingConv()); 374 375 // Requested minimum/maximum flat work group sizes. 376 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 377 F, "amdgpu-flat-work-group-size", Default); 378 379 // Make sure requested minimum is less than requested maximum. 380 if (Requested.first > Requested.second) 381 return Default; 382 383 // Make sure requested values do not violate subtarget's specifications. 384 if (Requested.first < getMinFlatWorkGroupSize()) 385 return Default; 386 if (Requested.second > getMaxFlatWorkGroupSize()) 387 return Default; 388 389 return Requested; 390 } 391 392 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( 393 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { 394 // Default minimum/maximum number of waves per execution unit. 395 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); 396 397 // If minimum/maximum flat work group sizes were explicitly requested using 398 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum 399 // number of waves per execution unit to values implied by requested 400 // minimum/maximum flat work group sizes. 401 unsigned MinImpliedByFlatWorkGroupSize = 402 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); 403 Default.first = MinImpliedByFlatWorkGroupSize; 404 405 // Requested minimum/maximum number of waves per execution unit. 406 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 407 F, "amdgpu-waves-per-eu", Default, true); 408 409 // Make sure requested minimum is less than requested maximum. 410 if (Requested.second && Requested.first > Requested.second) 411 return Default; 412 413 // Make sure requested values do not violate subtarget's specifications. 414 if (Requested.first < getMinWavesPerEU() || 415 Requested.second > getMaxWavesPerEU()) 416 return Default; 417 418 // Make sure requested values are compatible with values implied by requested 419 // minimum/maximum flat work group sizes. 420 if (Requested.first < MinImpliedByFlatWorkGroupSize) 421 return Default; 422 423 return Requested; 424 } 425 426 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { 427 auto Node = Kernel.getMetadata("reqd_work_group_size"); 428 if (Node && Node->getNumOperands() == 3) 429 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); 430 return std::numeric_limits<unsigned>::max(); 431 } 432 433 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { 434 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); 435 } 436 437 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, 438 unsigned Dimension) const { 439 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); 440 if (ReqdSize != std::numeric_limits<unsigned>::max()) 441 return ReqdSize - 1; 442 return getFlatWorkGroupSizes(Kernel).second - 1; 443 } 444 445 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { 446 Function *Kernel = I->getParent()->getParent(); 447 unsigned MinSize = 0; 448 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; 449 bool IdQuery = false; 450 451 // If reqd_work_group_size is present it narrows value down. 452 if (auto *CI = dyn_cast<CallInst>(I)) { 453 const Function *F = CI->getCalledFunction(); 454 if (F) { 455 unsigned Dim = UINT_MAX; 456 switch (F->getIntrinsicID()) { 457 case Intrinsic::amdgcn_workitem_id_x: 458 case Intrinsic::r600_read_tidig_x: 459 IdQuery = true; 460 LLVM_FALLTHROUGH; 461 case Intrinsic::r600_read_local_size_x: 462 Dim = 0; 463 break; 464 case Intrinsic::amdgcn_workitem_id_y: 465 case Intrinsic::r600_read_tidig_y: 466 IdQuery = true; 467 LLVM_FALLTHROUGH; 468 case Intrinsic::r600_read_local_size_y: 469 Dim = 1; 470 break; 471 case Intrinsic::amdgcn_workitem_id_z: 472 case Intrinsic::r600_read_tidig_z: 473 IdQuery = true; 474 LLVM_FALLTHROUGH; 475 case Intrinsic::r600_read_local_size_z: 476 Dim = 2; 477 break; 478 default: 479 break; 480 } 481 482 if (Dim <= 3) { 483 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); 484 if (ReqdSize != std::numeric_limits<unsigned>::max()) 485 MinSize = MaxSize = ReqdSize; 486 } 487 } 488 } 489 490 if (!MaxSize) 491 return false; 492 493 // Range metadata is [Lo, Hi). For ID query we need to pass max size 494 // as Hi. For size query we need to pass Hi + 1. 495 if (IdQuery) 496 MinSize = 0; 497 else 498 ++MaxSize; 499 500 MDBuilder MDB(I->getContext()); 501 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), 502 APInt(32, MaxSize)); 503 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 504 return true; 505 } 506 507 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { 508 assert(AMDGPU::isKernel(F.getCallingConv())); 509 510 // We don't allocate the segment if we know the implicit arguments weren't 511 // used, even if the ABI implies we need them. 512 if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr")) 513 return 0; 514 515 if (isMesaKernel(F)) 516 return 16; 517 518 // Assume all implicit inputs are used by default 519 unsigned NBytes = (AMDGPU::getAmdhsaCodeObjectVersion() >= 5) ? 256 : 56; 520 return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", NBytes); 521 } 522 523 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, 524 Align &MaxAlign) const { 525 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 526 F.getCallingConv() == CallingConv::SPIR_KERNEL); 527 528 const DataLayout &DL = F.getParent()->getDataLayout(); 529 uint64_t ExplicitArgBytes = 0; 530 MaxAlign = Align(1); 531 532 for (const Argument &Arg : F.args()) { 533 const bool IsByRef = Arg.hasByRefAttr(); 534 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 535 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 536 if (!Alignment) 537 Alignment = DL.getABITypeAlign(ArgTy); 538 539 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); 540 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; 541 MaxAlign = max(MaxAlign, Alignment); 542 } 543 544 return ExplicitArgBytes; 545 } 546 547 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, 548 Align &MaxAlign) const { 549 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); 550 551 unsigned ExplicitOffset = getExplicitKernelArgOffset(F); 552 553 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; 554 unsigned ImplicitBytes = getImplicitArgNumBytes(F); 555 if (ImplicitBytes != 0) { 556 const Align Alignment = getAlignmentForImplicitArgPtr(); 557 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; 558 MaxAlign = std::max(MaxAlign, Alignment); 559 } 560 561 // Being able to dereference past the end is useful for emitting scalar loads. 562 return alignTo(TotalSize, 4); 563 } 564 565 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { 566 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 567 : AMDGPUDwarfFlavour::Wave64; 568 } 569 570 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, 571 unsigned NumRegionInstrs) const { 572 // Track register pressure so the scheduler can try to decrease 573 // pressure once register usage is above the threshold defined by 574 // SIRegisterInfo::getRegPressureSetLimit() 575 Policy.ShouldTrackPressure = true; 576 577 // Enabling both top down and bottom up scheduling seems to give us less 578 // register spills than just using one of these approaches on its own. 579 Policy.OnlyTopDown = false; 580 Policy.OnlyBottomUp = false; 581 582 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. 583 if (!enableSIScheduler()) 584 Policy.ShouldTrackLaneMasks = true; 585 } 586 587 bool GCNSubtarget::hasMadF16() const { 588 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; 589 } 590 591 bool GCNSubtarget::useVGPRIndexMode() const { 592 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); 593 } 594 595 bool GCNSubtarget::useAA() const { return UseAA; } 596 597 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { 598 if (getGeneration() >= AMDGPUSubtarget::GFX10) 599 return getMaxWavesPerEU(); 600 601 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 602 if (SGPRs <= 80) 603 return 10; 604 if (SGPRs <= 88) 605 return 9; 606 if (SGPRs <= 100) 607 return 8; 608 return 7; 609 } 610 if (SGPRs <= 48) 611 return 10; 612 if (SGPRs <= 56) 613 return 9; 614 if (SGPRs <= 64) 615 return 8; 616 if (SGPRs <= 72) 617 return 7; 618 if (SGPRs <= 80) 619 return 6; 620 return 5; 621 } 622 623 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { 624 unsigned MaxWaves = getMaxWavesPerEU(); 625 unsigned Granule = getVGPRAllocGranule(); 626 if (VGPRs < Granule) 627 return MaxWaves; 628 unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; 629 return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); 630 } 631 632 unsigned 633 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const { 634 if (getGeneration() >= AMDGPUSubtarget::GFX10) 635 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. 636 637 if (HasFlatScratch || HasArchitectedFlatScratch) { 638 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 639 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). 640 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) 641 return 4; // FLAT_SCRATCH, VCC (in that order). 642 } 643 644 if (isXNACKEnabled()) 645 return 4; // XNACK, VCC (in that order). 646 return 2; // VCC. 647 } 648 649 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { 650 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 651 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); 652 } 653 654 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { 655 // In principle we do not need to reserve SGPR pair used for flat_scratch if 656 // we know flat instructions do not access the stack anywhere in the 657 // program. For now assume it's needed if we have flat instructions. 658 const bool KernelUsesFlatScratch = hasFlatAddressSpace(); 659 return getBaseReservedNumSGPRs(KernelUsesFlatScratch); 660 } 661 662 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, 663 unsigned NumSGPRs, 664 unsigned NumVGPRs) const { 665 unsigned Occupancy = 666 std::min(getMaxWavesPerEU(), 667 getOccupancyWithLocalMemSize(LDSSize, F)); 668 if (NumSGPRs) 669 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); 670 if (NumVGPRs) 671 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); 672 return Occupancy; 673 } 674 675 unsigned GCNSubtarget::getBaseMaxNumSGPRs( 676 const Function &F, std::pair<unsigned, unsigned> WavesPerEU, 677 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { 678 // Compute maximum number of SGPRs function can use using default/requested 679 // minimum number of waves per execution unit. 680 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); 681 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); 682 683 // Check if maximum number of SGPRs was explicitly requested using 684 // "amdgpu-num-sgpr" attribute. 685 if (F.hasFnAttribute("amdgpu-num-sgpr")) { 686 unsigned Requested = AMDGPU::getIntegerAttribute( 687 F, "amdgpu-num-sgpr", MaxNumSGPRs); 688 689 // Make sure requested value does not violate subtarget's specifications. 690 if (Requested && (Requested <= ReservedNumSGPRs)) 691 Requested = 0; 692 693 // If more SGPRs are required to support the input user/system SGPRs, 694 // increase to accommodate them. 695 // 696 // FIXME: This really ends up using the requested number of SGPRs + number 697 // of reserved special registers in total. Theoretically you could re-use 698 // the last input registers for these special registers, but this would 699 // require a lot of complexity to deal with the weird aliasing. 700 unsigned InputNumSGPRs = PreloadedSGPRs; 701 if (Requested && Requested < InputNumSGPRs) 702 Requested = InputNumSGPRs; 703 704 // Make sure requested value is compatible with values implied by 705 // default/requested minimum/maximum number of waves per execution unit. 706 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) 707 Requested = 0; 708 if (WavesPerEU.second && 709 Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) 710 Requested = 0; 711 712 if (Requested) 713 MaxNumSGPRs = Requested; 714 } 715 716 if (hasSGPRInitBug()) 717 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 718 719 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); 720 } 721 722 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { 723 const Function &F = MF.getFunction(); 724 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 725 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), 726 getReservedNumSGPRs(MF)); 727 } 728 729 static unsigned getMaxNumPreloadedSGPRs() { 730 // Max number of user SGPRs 731 unsigned MaxUserSGPRs = 4 + // private segment buffer 732 2 + // Dispatch ptr 733 2 + // queue ptr 734 2 + // kernel segment ptr 735 2 + // dispatch ID 736 2 + // flat scratch init 737 2; // Implicit buffer ptr 738 // Max number of system SGPRs 739 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX 740 1 + // WorkGroupIDY 741 1 + // WorkGroupIDZ 742 1 + // WorkGroupInfo 743 1; // private segment wave byte offset 744 return MaxUserSGPRs + MaxSystemSGPRs; 745 } 746 747 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { 748 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), 749 getReservedNumSGPRs(F)); 750 } 751 752 unsigned GCNSubtarget::getBaseMaxNumVGPRs( 753 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { 754 // Compute maximum number of VGPRs function can use using default/requested 755 // minimum number of waves per execution unit. 756 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); 757 758 // Check if maximum number of VGPRs was explicitly requested using 759 // "amdgpu-num-vgpr" attribute. 760 if (F.hasFnAttribute("amdgpu-num-vgpr")) { 761 unsigned Requested = AMDGPU::getIntegerAttribute( 762 F, "amdgpu-num-vgpr", MaxNumVGPRs); 763 764 if (hasGFX90AInsts()) 765 Requested *= 2; 766 767 // Make sure requested value is compatible with values implied by 768 // default/requested minimum/maximum number of waves per execution unit. 769 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) 770 Requested = 0; 771 if (WavesPerEU.second && 772 Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) 773 Requested = 0; 774 775 if (Requested) 776 MaxNumVGPRs = Requested; 777 } 778 779 return MaxNumVGPRs; 780 } 781 782 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { 783 return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); 784 } 785 786 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { 787 const Function &F = MF.getFunction(); 788 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 789 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); 790 } 791 792 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, 793 int UseOpIdx, SDep &Dep) const { 794 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || 795 !Def->isInstr() || !Use->isInstr()) 796 return; 797 798 MachineInstr *DefI = Def->getInstr(); 799 MachineInstr *UseI = Use->getInstr(); 800 801 if (DefI->isBundle()) { 802 const SIRegisterInfo *TRI = getRegisterInfo(); 803 auto Reg = Dep.getReg(); 804 MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); 805 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); 806 unsigned Lat = 0; 807 for (++I; I != E && I->isBundledWithPred(); ++I) { 808 if (I->modifiesRegister(Reg, TRI)) 809 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); 810 else if (Lat) 811 --Lat; 812 } 813 Dep.setLatency(Lat); 814 } else if (UseI->isBundle()) { 815 const SIRegisterInfo *TRI = getRegisterInfo(); 816 auto Reg = Dep.getReg(); 817 MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); 818 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); 819 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); 820 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { 821 if (I->readsRegister(Reg, TRI)) 822 break; 823 --Lat; 824 } 825 Dep.setLatency(Lat); 826 } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) { 827 // Work around the fact that SIInstrInfo::fixImplicitOperands modifies 828 // implicit operands which come from the MCInstrDesc, which can fool 829 // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit 830 // pseudo operands. 831 Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency( 832 DefI, DefOpIdx, UseI, UseOpIdx)); 833 } 834 } 835 836 namespace { 837 struct FillMFMAShadowMutation : ScheduleDAGMutation { 838 const SIInstrInfo *TII; 839 840 ScheduleDAGMI *DAG; 841 842 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} 843 844 bool isSALU(const SUnit *SU) const { 845 const MachineInstr *MI = SU->getInstr(); 846 return MI && TII->isSALU(*MI) && !MI->isTerminator(); 847 } 848 849 bool isVALU(const SUnit *SU) const { 850 const MachineInstr *MI = SU->getInstr(); 851 return MI && TII->isVALU(*MI); 852 } 853 854 bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { 855 if (Pred->NodeNum < Succ->NodeNum) 856 return true; 857 858 SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); 859 860 for (unsigned I = 0; I < Succs.size(); ++I) { 861 for (const SDep &SI : Succs[I]->Succs) { 862 const SUnit *SU = SI.getSUnit(); 863 if (SU != Succs[I] && !llvm::is_contained(Succs, SU)) 864 Succs.push_back(SU); 865 } 866 } 867 868 SmallPtrSet<const SUnit*, 32> Visited; 869 while (!Preds.empty()) { 870 const SUnit *SU = Preds.pop_back_val(); 871 if (llvm::is_contained(Succs, SU)) 872 return false; 873 Visited.insert(SU); 874 for (const SDep &SI : SU->Preds) 875 if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) 876 Preds.push_back(SI.getSUnit()); 877 } 878 879 return true; 880 } 881 882 // Link as many SALU instructions in chain as possible. Return the size 883 // of the chain. Links up to MaxChain instructions. 884 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, 885 SmallPtrSetImpl<SUnit *> &Visited) const { 886 SmallVector<SUnit *, 8> Worklist({To}); 887 unsigned Linked = 0; 888 889 while (!Worklist.empty() && MaxChain-- > 0) { 890 SUnit *SU = Worklist.pop_back_val(); 891 if (!Visited.insert(SU).second) 892 continue; 893 894 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); 895 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); 896 897 if (SU->addPred(SDep(From, SDep::Artificial), false)) 898 ++Linked; 899 900 for (SDep &SI : From->Succs) { 901 SUnit *SUv = SI.getSUnit(); 902 if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) 903 SUv->addPred(SDep(SU, SDep::Artificial), false); 904 } 905 906 for (SDep &SI : SU->Succs) { 907 SUnit *Succ = SI.getSUnit(); 908 if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) 909 Worklist.push_back(Succ); 910 } 911 } 912 913 return Linked; 914 } 915 916 void apply(ScheduleDAGInstrs *DAGInstrs) override { 917 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); 918 if (!ST.hasMAIInsts() || DisablePowerSched) 919 return; 920 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 921 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); 922 if (!TSchedModel || DAG->SUnits.empty()) 923 return; 924 925 // Scan for MFMA long latency instructions and try to add a dependency 926 // of available SALU instructions to give them a chance to fill MFMA 927 // shadow. That is desirable to fill MFMA shadow with SALU instructions 928 // rather than VALU to prevent power consumption bursts and throttle. 929 auto LastSALU = DAG->SUnits.begin(); 930 auto E = DAG->SUnits.end(); 931 SmallPtrSet<SUnit*, 32> Visited; 932 for (SUnit &SU : DAG->SUnits) { 933 MachineInstr &MAI = *SU.getInstr(); 934 if (!TII->isMAI(MAI) || 935 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 936 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) 937 continue; 938 939 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; 940 941 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); 942 dbgs() << "Need " << Lat 943 << " instructions to cover latency.\n"); 944 945 // Find up to Lat independent scalar instructions as early as 946 // possible such that they can be scheduled after this MFMA. 947 for ( ; Lat && LastSALU != E; ++LastSALU) { 948 if (Visited.count(&*LastSALU)) 949 continue; 950 951 if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) 952 continue; 953 954 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); 955 } 956 } 957 } 958 }; 959 } // namespace 960 961 void GCNSubtarget::getPostRAMutations( 962 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 963 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); 964 } 965 966 std::unique_ptr<ScheduleDAGMutation> 967 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { 968 return std::make_unique<FillMFMAShadowMutation>(&InstrInfo); 969 } 970 971 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { 972 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) 973 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); 974 else 975 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); 976 } 977 978 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { 979 if (TM.getTargetTriple().getArch() == Triple::amdgcn) 980 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); 981 else 982 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); 983 } 984