1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Implements the AMDGPU specific subclass of TargetSubtarget.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPUSubtarget.h"
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPUInstructionSelector.h"
17 #include "AMDGPULegalizerInfo.h"
18 #include "AMDGPURegisterBankInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "R600Subtarget.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "Utils/AMDGPUBaseInfo.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
25 #include "llvm/CodeGen/MachineScheduler.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/IR/IntrinsicsAMDGPU.h"
28 #include "llvm/IR/IntrinsicsR600.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include <algorithm>
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "amdgpu-subtarget"
36
37 #define GET_SUBTARGETINFO_TARGET_DESC
38 #define GET_SUBTARGETINFO_CTOR
39 #define AMDGPUSubtarget GCNSubtarget
40 #include "AMDGPUGenSubtargetInfo.inc"
41 #undef AMDGPUSubtarget
42
43 static cl::opt<bool> EnablePowerSched(
44 "amdgpu-enable-power-sched",
45 cl::desc("Enable scheduling to minimize mAI power bursts"),
46 cl::init(false));
47
48 static cl::opt<bool> EnableVGPRIndexMode(
49 "amdgpu-vgpr-index-mode",
50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
51 cl::init(false));
52
53 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
54 cl::desc("Enable the use of AA during codegen."),
55 cl::init(true));
56
57 GCNSubtarget::~GCNSubtarget() = default;
58
59 GCNSubtarget &
initializeSubtargetDependencies(const Triple & TT,StringRef GPU,StringRef FS)60 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
61 StringRef GPU, StringRef FS) {
62 // Determine default and user-specified characteristics
63 //
64 // We want to be able to turn these off, but making this a subtarget feature
65 // for SI has the unhelpful behavior that it unsets everything else if you
66 // disable it.
67 //
68 // Similarly we want enable-prt-strict-null to be on by default and not to
69 // unset everything else if it is disabled
70
71 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
72
73 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
74 if (isAmdHsaOS())
75 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
76
77 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
78
79 // Disable mutually exclusive bits.
80 if (FS.contains_insensitive("+wavefrontsize")) {
81 if (!FS.contains_insensitive("wavefrontsize16"))
82 FullFS += "-wavefrontsize16,";
83 if (!FS.contains_insensitive("wavefrontsize32"))
84 FullFS += "-wavefrontsize32,";
85 if (!FS.contains_insensitive("wavefrontsize64"))
86 FullFS += "-wavefrontsize64,";
87 }
88
89 FullFS += FS;
90
91 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
92
93 // Implement the "generic" processors, which acts as the default when no
94 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
95 // the first amdgcn target that supports flat addressing. Other OSes defaults
96 // to the first amdgcn target.
97 if (Gen == AMDGPUSubtarget::INVALID) {
98 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
99 : AMDGPUSubtarget::SOUTHERN_ISLANDS;
100 }
101
102 // We don't support FP64 for EG/NI atm.
103 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
104
105 // Targets must either support 64-bit offsets for MUBUF instructions, and/or
106 // support flat operations, otherwise they cannot access a 64-bit global
107 // address space
108 assert(hasAddr64() || hasFlat());
109 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
110 // that do not support ADDR64 variants of MUBUF instructions. Such targets
111 // cannot use a 64 bit offset with a MUBUF instruction to access the global
112 // address space
113 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
114 ToggleFeature(AMDGPU::FeatureFlatForGlobal);
115 FlatForGlobal = true;
116 }
117 // Unless +-flat-for-global is specified, use MUBUF instructions for global
118 // address space access if flat operations are not available.
119 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
120 ToggleFeature(AMDGPU::FeatureFlatForGlobal);
121 FlatForGlobal = false;
122 }
123
124 // Set defaults if needed.
125 if (MaxPrivateElementSize == 0)
126 MaxPrivateElementSize = 4;
127
128 if (LDSBankCount == 0)
129 LDSBankCount = 32;
130
131 if (TT.getArch() == Triple::amdgcn) {
132 if (LocalMemorySize == 0)
133 LocalMemorySize = 32768;
134
135 // Do something sensible for unspecified target.
136 if (!HasMovrel && !HasVGPRIndexMode)
137 HasMovrel = true;
138 }
139
140 // Don't crash on invalid devices.
141 if (WavefrontSizeLog2 == 0)
142 WavefrontSizeLog2 = 5;
143
144 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
145 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9;
146
147 TargetID.setTargetIDFromFeaturesString(FS);
148
149 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
150 << TargetID.getXnackSetting() << '\n');
151 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
152 << TargetID.getSramEccSetting() << '\n');
153
154 return *this;
155 }
156
AMDGPUSubtarget(const Triple & TT)157 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : TargetTriple(TT) {}
158
GCNSubtarget(const Triple & TT,StringRef GPU,StringRef FS,const GCNTargetMachine & TM)159 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
160 const GCNTargetMachine &TM)
161 : // clang-format off
162 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
163 AMDGPUSubtarget(TT),
164 TargetTriple(TT),
165 TargetID(*this),
166 InstrItins(getInstrItineraryForCPU(GPU)),
167 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
168 TLInfo(TM, *this),
169 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
170 // clang-format on
171 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
172 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
173 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
174 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
175 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
176 InstSelector.reset(new AMDGPUInstructionSelector(
177 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
178 }
179
getConstantBusLimit(unsigned Opcode) const180 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
181 if (getGeneration() < GFX10)
182 return 1;
183
184 switch (Opcode) {
185 case AMDGPU::V_LSHLREV_B64_e64:
186 case AMDGPU::V_LSHLREV_B64_gfx10:
187 case AMDGPU::V_LSHLREV_B64_e64_gfx11:
188 case AMDGPU::V_LSHL_B64_e64:
189 case AMDGPU::V_LSHRREV_B64_e64:
190 case AMDGPU::V_LSHRREV_B64_gfx10:
191 case AMDGPU::V_LSHRREV_B64_e64_gfx11:
192 case AMDGPU::V_LSHR_B64_e64:
193 case AMDGPU::V_ASHRREV_I64_e64:
194 case AMDGPU::V_ASHRREV_I64_gfx10:
195 case AMDGPU::V_ASHRREV_I64_e64_gfx11:
196 case AMDGPU::V_ASHR_I64_e64:
197 return 1;
198 }
199
200 return 2;
201 }
202
203 /// This list was mostly derived from experimentation.
zeroesHigh16BitsOfDest(unsigned Opcode) const204 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const {
205 switch (Opcode) {
206 case AMDGPU::V_CVT_F16_F32_e32:
207 case AMDGPU::V_CVT_F16_F32_e64:
208 case AMDGPU::V_CVT_F16_U16_e32:
209 case AMDGPU::V_CVT_F16_U16_e64:
210 case AMDGPU::V_CVT_F16_I16_e32:
211 case AMDGPU::V_CVT_F16_I16_e64:
212 case AMDGPU::V_RCP_F16_e64:
213 case AMDGPU::V_RCP_F16_e32:
214 case AMDGPU::V_RSQ_F16_e64:
215 case AMDGPU::V_RSQ_F16_e32:
216 case AMDGPU::V_SQRT_F16_e64:
217 case AMDGPU::V_SQRT_F16_e32:
218 case AMDGPU::V_LOG_F16_e64:
219 case AMDGPU::V_LOG_F16_e32:
220 case AMDGPU::V_EXP_F16_e64:
221 case AMDGPU::V_EXP_F16_e32:
222 case AMDGPU::V_SIN_F16_e64:
223 case AMDGPU::V_SIN_F16_e32:
224 case AMDGPU::V_COS_F16_e64:
225 case AMDGPU::V_COS_F16_e32:
226 case AMDGPU::V_FLOOR_F16_e64:
227 case AMDGPU::V_FLOOR_F16_e32:
228 case AMDGPU::V_CEIL_F16_e64:
229 case AMDGPU::V_CEIL_F16_e32:
230 case AMDGPU::V_TRUNC_F16_e64:
231 case AMDGPU::V_TRUNC_F16_e32:
232 case AMDGPU::V_RNDNE_F16_e64:
233 case AMDGPU::V_RNDNE_F16_e32:
234 case AMDGPU::V_FRACT_F16_e64:
235 case AMDGPU::V_FRACT_F16_e32:
236 case AMDGPU::V_FREXP_MANT_F16_e64:
237 case AMDGPU::V_FREXP_MANT_F16_e32:
238 case AMDGPU::V_FREXP_EXP_I16_F16_e64:
239 case AMDGPU::V_FREXP_EXP_I16_F16_e32:
240 case AMDGPU::V_LDEXP_F16_e64:
241 case AMDGPU::V_LDEXP_F16_e32:
242 case AMDGPU::V_LSHLREV_B16_e64:
243 case AMDGPU::V_LSHLREV_B16_e32:
244 case AMDGPU::V_LSHRREV_B16_e64:
245 case AMDGPU::V_LSHRREV_B16_e32:
246 case AMDGPU::V_ASHRREV_I16_e64:
247 case AMDGPU::V_ASHRREV_I16_e32:
248 case AMDGPU::V_ADD_U16_e64:
249 case AMDGPU::V_ADD_U16_e32:
250 case AMDGPU::V_SUB_U16_e64:
251 case AMDGPU::V_SUB_U16_e32:
252 case AMDGPU::V_SUBREV_U16_e64:
253 case AMDGPU::V_SUBREV_U16_e32:
254 case AMDGPU::V_MUL_LO_U16_e64:
255 case AMDGPU::V_MUL_LO_U16_e32:
256 case AMDGPU::V_ADD_F16_e64:
257 case AMDGPU::V_ADD_F16_e32:
258 case AMDGPU::V_SUB_F16_e64:
259 case AMDGPU::V_SUB_F16_e32:
260 case AMDGPU::V_SUBREV_F16_e64:
261 case AMDGPU::V_SUBREV_F16_e32:
262 case AMDGPU::V_MUL_F16_e64:
263 case AMDGPU::V_MUL_F16_e32:
264 case AMDGPU::V_MAX_F16_e64:
265 case AMDGPU::V_MAX_F16_e32:
266 case AMDGPU::V_MIN_F16_e64:
267 case AMDGPU::V_MIN_F16_e32:
268 case AMDGPU::V_MAX_U16_e64:
269 case AMDGPU::V_MAX_U16_e32:
270 case AMDGPU::V_MIN_U16_e64:
271 case AMDGPU::V_MIN_U16_e32:
272 case AMDGPU::V_MAX_I16_e64:
273 case AMDGPU::V_MAX_I16_e32:
274 case AMDGPU::V_MIN_I16_e64:
275 case AMDGPU::V_MIN_I16_e32:
276 case AMDGPU::V_MAD_F16_e64:
277 case AMDGPU::V_MAD_U16_e64:
278 case AMDGPU::V_MAD_I16_e64:
279 case AMDGPU::V_FMA_F16_e64:
280 case AMDGPU::V_DIV_FIXUP_F16_e64:
281 // On gfx10, all 16-bit instructions preserve the high bits.
282 return getGeneration() <= AMDGPUSubtarget::GFX9;
283 case AMDGPU::V_MADAK_F16:
284 case AMDGPU::V_MADMK_F16:
285 case AMDGPU::V_MAC_F16_e64:
286 case AMDGPU::V_MAC_F16_e32:
287 case AMDGPU::V_FMAMK_F16:
288 case AMDGPU::V_FMAAK_F16:
289 case AMDGPU::V_FMAC_F16_e64:
290 case AMDGPU::V_FMAC_F16_e32:
291 // In gfx9, the preferred handling of the unused high 16-bits changed. Most
292 // instructions maintain the legacy behavior of 0ing. Some instructions
293 // changed to preserving the high bits.
294 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
295 case AMDGPU::V_MAD_MIXLO_F16:
296 case AMDGPU::V_MAD_MIXHI_F16:
297 default:
298 return false;
299 }
300 }
301
getMaxLocalMemSizeWithWaveCount(unsigned NWaves,const Function & F) const302 unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
303 const Function &F) const {
304 if (NWaves == 1)
305 return getLocalMemorySize();
306 unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
307 unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
308 if (!WorkGroupsPerCu)
309 return 0;
310 unsigned MaxWaves = getMaxWavesPerEU();
311 return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
312 }
313
314 // FIXME: Should return min,max range.
getOccupancyWithLocalMemSize(uint32_t Bytes,const Function & F) const315 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
316 const Function &F) const {
317 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
318 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
319 if (!MaxWorkGroupsPerCu)
320 return 0;
321
322 const unsigned WaveSize = getWavefrontSize();
323
324 // FIXME: Do we need to account for alignment requirement of LDS rounding the
325 // size up?
326 // Compute restriction based on LDS usage
327 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
328
329 // This can be queried with more LDS than is possible, so just assume the
330 // worst.
331 if (NumGroups == 0)
332 return 1;
333
334 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
335
336 // Round to the number of waves.
337 const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize;
338 unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
339
340 // Clamp to the maximum possible number of waves.
341 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
342
343 // FIXME: Needs to be a multiple of the group size?
344 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
345
346 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
347 "computed invalid occupancy");
348 return MaxWaves;
349 }
350
351 unsigned
getOccupancyWithLocalMemSize(const MachineFunction & MF) const352 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
353 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
354 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
355 }
356
357 std::pair<unsigned, unsigned>
getDefaultFlatWorkGroupSize(CallingConv::ID CC) const358 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
359 switch (CC) {
360 case CallingConv::AMDGPU_VS:
361 case CallingConv::AMDGPU_LS:
362 case CallingConv::AMDGPU_HS:
363 case CallingConv::AMDGPU_ES:
364 case CallingConv::AMDGPU_GS:
365 case CallingConv::AMDGPU_PS:
366 return std::make_pair(1, getWavefrontSize());
367 default:
368 return std::make_pair(1u, getMaxFlatWorkGroupSize());
369 }
370 }
371
getFlatWorkGroupSizes(const Function & F) const372 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
373 const Function &F) const {
374 // Default minimum/maximum flat work group sizes.
375 std::pair<unsigned, unsigned> Default =
376 getDefaultFlatWorkGroupSize(F.getCallingConv());
377
378 // Requested minimum/maximum flat work group sizes.
379 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
380 F, "amdgpu-flat-work-group-size", Default);
381
382 // Make sure requested minimum is less than requested maximum.
383 if (Requested.first > Requested.second)
384 return Default;
385
386 // Make sure requested values do not violate subtarget's specifications.
387 if (Requested.first < getMinFlatWorkGroupSize())
388 return Default;
389 if (Requested.second > getMaxFlatWorkGroupSize())
390 return Default;
391
392 return Requested;
393 }
394
getWavesPerEU(const Function & F,std::pair<unsigned,unsigned> FlatWorkGroupSizes) const395 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
396 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const {
397 // Default minimum/maximum number of waves per execution unit.
398 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
399
400 // If minimum/maximum flat work group sizes were explicitly requested using
401 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
402 // number of waves per execution unit to values implied by requested
403 // minimum/maximum flat work group sizes.
404 unsigned MinImpliedByFlatWorkGroupSize =
405 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
406 Default.first = MinImpliedByFlatWorkGroupSize;
407
408 // Requested minimum/maximum number of waves per execution unit.
409 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
410 F, "amdgpu-waves-per-eu", Default, true);
411
412 // Make sure requested minimum is less than requested maximum.
413 if (Requested.second && Requested.first > Requested.second)
414 return Default;
415
416 // Make sure requested values do not violate subtarget's specifications.
417 if (Requested.first < getMinWavesPerEU() ||
418 Requested.second > getMaxWavesPerEU())
419 return Default;
420
421 // Make sure requested values are compatible with values implied by requested
422 // minimum/maximum flat work group sizes.
423 if (Requested.first < MinImpliedByFlatWorkGroupSize)
424 return Default;
425
426 return Requested;
427 }
428
getReqdWorkGroupSize(const Function & Kernel,unsigned Dim)429 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
430 auto Node = Kernel.getMetadata("reqd_work_group_size");
431 if (Node && Node->getNumOperands() == 3)
432 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
433 return std::numeric_limits<unsigned>::max();
434 }
435
isMesaKernel(const Function & F) const436 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
437 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
438 }
439
getMaxWorkitemID(const Function & Kernel,unsigned Dimension) const440 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
441 unsigned Dimension) const {
442 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
443 if (ReqdSize != std::numeric_limits<unsigned>::max())
444 return ReqdSize - 1;
445 return getFlatWorkGroupSizes(Kernel).second - 1;
446 }
447
makeLIDRangeMetadata(Instruction * I) const448 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
449 Function *Kernel = I->getParent()->getParent();
450 unsigned MinSize = 0;
451 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
452 bool IdQuery = false;
453
454 // If reqd_work_group_size is present it narrows value down.
455 if (auto *CI = dyn_cast<CallInst>(I)) {
456 const Function *F = CI->getCalledFunction();
457 if (F) {
458 unsigned Dim = UINT_MAX;
459 switch (F->getIntrinsicID()) {
460 case Intrinsic::amdgcn_workitem_id_x:
461 case Intrinsic::r600_read_tidig_x:
462 IdQuery = true;
463 LLVM_FALLTHROUGH;
464 case Intrinsic::r600_read_local_size_x:
465 Dim = 0;
466 break;
467 case Intrinsic::amdgcn_workitem_id_y:
468 case Intrinsic::r600_read_tidig_y:
469 IdQuery = true;
470 LLVM_FALLTHROUGH;
471 case Intrinsic::r600_read_local_size_y:
472 Dim = 1;
473 break;
474 case Intrinsic::amdgcn_workitem_id_z:
475 case Intrinsic::r600_read_tidig_z:
476 IdQuery = true;
477 LLVM_FALLTHROUGH;
478 case Intrinsic::r600_read_local_size_z:
479 Dim = 2;
480 break;
481 default:
482 break;
483 }
484
485 if (Dim <= 3) {
486 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
487 if (ReqdSize != std::numeric_limits<unsigned>::max())
488 MinSize = MaxSize = ReqdSize;
489 }
490 }
491 }
492
493 if (!MaxSize)
494 return false;
495
496 // Range metadata is [Lo, Hi). For ID query we need to pass max size
497 // as Hi. For size query we need to pass Hi + 1.
498 if (IdQuery)
499 MinSize = 0;
500 else
501 ++MaxSize;
502
503 MDBuilder MDB(I->getContext());
504 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
505 APInt(32, MaxSize));
506 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
507 return true;
508 }
509
getImplicitArgNumBytes(const Function & F) const510 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
511 assert(AMDGPU::isKernel(F.getCallingConv()));
512
513 // We don't allocate the segment if we know the implicit arguments weren't
514 // used, even if the ABI implies we need them.
515 if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
516 return 0;
517
518 if (isMesaKernel(F))
519 return 16;
520
521 // Assume all implicit inputs are used by default
522 unsigned NBytes = (AMDGPU::getAmdhsaCodeObjectVersion() >= 5) ? 256 : 56;
523 return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", NBytes);
524 }
525
getExplicitKernArgSize(const Function & F,Align & MaxAlign) const526 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
527 Align &MaxAlign) const {
528 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
529 F.getCallingConv() == CallingConv::SPIR_KERNEL);
530
531 const DataLayout &DL = F.getParent()->getDataLayout();
532 uint64_t ExplicitArgBytes = 0;
533 MaxAlign = Align(1);
534
535 for (const Argument &Arg : F.args()) {
536 const bool IsByRef = Arg.hasByRefAttr();
537 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
538 Align Alignment = DL.getValueOrABITypeAlignment(
539 IsByRef ? Arg.getParamAlign() : None, ArgTy);
540 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
541 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
542 MaxAlign = std::max(MaxAlign, Alignment);
543 }
544
545 return ExplicitArgBytes;
546 }
547
getKernArgSegmentSize(const Function & F,Align & MaxAlign) const548 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
549 Align &MaxAlign) const {
550 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
551
552 unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
553
554 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
555 unsigned ImplicitBytes = getImplicitArgNumBytes(F);
556 if (ImplicitBytes != 0) {
557 const Align Alignment = getAlignmentForImplicitArgPtr();
558 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
559 MaxAlign = std::max(MaxAlign, Alignment);
560 }
561
562 // Being able to dereference past the end is useful for emitting scalar loads.
563 return alignTo(TotalSize, 4);
564 }
565
getAMDGPUDwarfFlavour() const566 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
567 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
568 : AMDGPUDwarfFlavour::Wave64;
569 }
570
overrideSchedPolicy(MachineSchedPolicy & Policy,unsigned NumRegionInstrs) const571 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
572 unsigned NumRegionInstrs) const {
573 // Track register pressure so the scheduler can try to decrease
574 // pressure once register usage is above the threshold defined by
575 // SIRegisterInfo::getRegPressureSetLimit()
576 Policy.ShouldTrackPressure = true;
577
578 // Enabling both top down and bottom up scheduling seems to give us less
579 // register spills than just using one of these approaches on its own.
580 Policy.OnlyTopDown = false;
581 Policy.OnlyBottomUp = false;
582
583 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
584 if (!enableSIScheduler())
585 Policy.ShouldTrackLaneMasks = true;
586 }
587
hasMadF16() const588 bool GCNSubtarget::hasMadF16() const {
589 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
590 }
591
useVGPRIndexMode() const592 bool GCNSubtarget::useVGPRIndexMode() const {
593 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
594 }
595
useAA() const596 bool GCNSubtarget::useAA() const { return UseAA; }
597
getOccupancyWithNumSGPRs(unsigned SGPRs) const598 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
599 if (getGeneration() >= AMDGPUSubtarget::GFX10)
600 return getMaxWavesPerEU();
601
602 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
603 if (SGPRs <= 80)
604 return 10;
605 if (SGPRs <= 88)
606 return 9;
607 if (SGPRs <= 100)
608 return 8;
609 return 7;
610 }
611 if (SGPRs <= 48)
612 return 10;
613 if (SGPRs <= 56)
614 return 9;
615 if (SGPRs <= 64)
616 return 8;
617 if (SGPRs <= 72)
618 return 7;
619 if (SGPRs <= 80)
620 return 6;
621 return 5;
622 }
623
getOccupancyWithNumVGPRs(unsigned VGPRs) const624 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
625 unsigned MaxWaves = getMaxWavesPerEU();
626 unsigned Granule = getVGPRAllocGranule();
627 if (VGPRs < Granule)
628 return MaxWaves;
629 unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule;
630 return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves);
631 }
632
633 unsigned
getBaseReservedNumSGPRs(const bool HasFlatScratch) const634 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const {
635 if (getGeneration() >= AMDGPUSubtarget::GFX10)
636 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
637
638 if (HasFlatScratch || HasArchitectedFlatScratch) {
639 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
640 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
641 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
642 return 4; // FLAT_SCRATCH, VCC (in that order).
643 }
644
645 if (isXNACKEnabled())
646 return 4; // XNACK, VCC (in that order).
647 return 2; // VCC.
648 }
649
getReservedNumSGPRs(const MachineFunction & MF) const650 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
651 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
652 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit());
653 }
654
getReservedNumSGPRs(const Function & F) const655 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const {
656 // In principle we do not need to reserve SGPR pair used for flat_scratch if
657 // we know flat instructions do not access the stack anywhere in the
658 // program. For now assume it's needed if we have flat instructions.
659 const bool KernelUsesFlatScratch = hasFlatAddressSpace();
660 return getBaseReservedNumSGPRs(KernelUsesFlatScratch);
661 }
662
computeOccupancy(const Function & F,unsigned LDSSize,unsigned NumSGPRs,unsigned NumVGPRs) const663 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
664 unsigned NumSGPRs,
665 unsigned NumVGPRs) const {
666 unsigned Occupancy =
667 std::min(getMaxWavesPerEU(),
668 getOccupancyWithLocalMemSize(LDSSize, F));
669 if (NumSGPRs)
670 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
671 if (NumVGPRs)
672 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
673 return Occupancy;
674 }
675
getBaseMaxNumSGPRs(const Function & F,std::pair<unsigned,unsigned> WavesPerEU,unsigned PreloadedSGPRs,unsigned ReservedNumSGPRs) const676 unsigned GCNSubtarget::getBaseMaxNumSGPRs(
677 const Function &F, std::pair<unsigned, unsigned> WavesPerEU,
678 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const {
679 // Compute maximum number of SGPRs function can use using default/requested
680 // minimum number of waves per execution unit.
681 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
682 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
683
684 // Check if maximum number of SGPRs was explicitly requested using
685 // "amdgpu-num-sgpr" attribute.
686 if (F.hasFnAttribute("amdgpu-num-sgpr")) {
687 unsigned Requested = AMDGPU::getIntegerAttribute(
688 F, "amdgpu-num-sgpr", MaxNumSGPRs);
689
690 // Make sure requested value does not violate subtarget's specifications.
691 if (Requested && (Requested <= ReservedNumSGPRs))
692 Requested = 0;
693
694 // If more SGPRs are required to support the input user/system SGPRs,
695 // increase to accommodate them.
696 //
697 // FIXME: This really ends up using the requested number of SGPRs + number
698 // of reserved special registers in total. Theoretically you could re-use
699 // the last input registers for these special registers, but this would
700 // require a lot of complexity to deal with the weird aliasing.
701 unsigned InputNumSGPRs = PreloadedSGPRs;
702 if (Requested && Requested < InputNumSGPRs)
703 Requested = InputNumSGPRs;
704
705 // Make sure requested value is compatible with values implied by
706 // default/requested minimum/maximum number of waves per execution unit.
707 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
708 Requested = 0;
709 if (WavesPerEU.second &&
710 Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
711 Requested = 0;
712
713 if (Requested)
714 MaxNumSGPRs = Requested;
715 }
716
717 if (hasSGPRInitBug())
718 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
719
720 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs);
721 }
722
getMaxNumSGPRs(const MachineFunction & MF) const723 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
724 const Function &F = MF.getFunction();
725 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
726 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(),
727 getReservedNumSGPRs(MF));
728 }
729
getMaxNumPreloadedSGPRs()730 static unsigned getMaxNumPreloadedSGPRs() {
731 // Max number of user SGPRs
732 unsigned MaxUserSGPRs = 4 + // private segment buffer
733 2 + // Dispatch ptr
734 2 + // queue ptr
735 2 + // kernel segment ptr
736 2 + // dispatch ID
737 2 + // flat scratch init
738 2; // Implicit buffer ptr
739
740 // Max number of system SGPRs
741 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX
742 1 + // WorkGroupIDY
743 1 + // WorkGroupIDZ
744 1 + // WorkGroupInfo
745 1; // private segment wave byte offset
746
747 // Max number of synthetic SGPRs
748 unsigned SyntheticSGPRs = 1; // LDSKernelId
749
750 return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs;
751 }
752
getMaxNumSGPRs(const Function & F) const753 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const {
754 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(),
755 getReservedNumSGPRs(F));
756 }
757
getBaseMaxNumVGPRs(const Function & F,std::pair<unsigned,unsigned> WavesPerEU) const758 unsigned GCNSubtarget::getBaseMaxNumVGPRs(
759 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const {
760 // Compute maximum number of VGPRs function can use using default/requested
761 // minimum number of waves per execution unit.
762 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
763
764 // Check if maximum number of VGPRs was explicitly requested using
765 // "amdgpu-num-vgpr" attribute.
766 if (F.hasFnAttribute("amdgpu-num-vgpr")) {
767 unsigned Requested = AMDGPU::getIntegerAttribute(
768 F, "amdgpu-num-vgpr", MaxNumVGPRs);
769
770 if (hasGFX90AInsts())
771 Requested *= 2;
772
773 // Make sure requested value is compatible with values implied by
774 // default/requested minimum/maximum number of waves per execution unit.
775 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
776 Requested = 0;
777 if (WavesPerEU.second &&
778 Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
779 Requested = 0;
780
781 if (Requested)
782 MaxNumVGPRs = Requested;
783 }
784
785 return MaxNumVGPRs;
786 }
787
getMaxNumVGPRs(const Function & F) const788 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const {
789 return getBaseMaxNumVGPRs(F, getWavesPerEU(F));
790 }
791
getMaxNumVGPRs(const MachineFunction & MF) const792 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
793 const Function &F = MF.getFunction();
794 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
795 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU());
796 }
797
adjustSchedDependency(SUnit * Def,int DefOpIdx,SUnit * Use,int UseOpIdx,SDep & Dep) const798 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
799 int UseOpIdx, SDep &Dep) const {
800 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
801 !Def->isInstr() || !Use->isInstr())
802 return;
803
804 MachineInstr *DefI = Def->getInstr();
805 MachineInstr *UseI = Use->getInstr();
806
807 if (DefI->isBundle()) {
808 const SIRegisterInfo *TRI = getRegisterInfo();
809 auto Reg = Dep.getReg();
810 MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
811 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
812 unsigned Lat = 0;
813 for (++I; I != E && I->isBundledWithPred(); ++I) {
814 if (I->modifiesRegister(Reg, TRI))
815 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
816 else if (Lat)
817 --Lat;
818 }
819 Dep.setLatency(Lat);
820 } else if (UseI->isBundle()) {
821 const SIRegisterInfo *TRI = getRegisterInfo();
822 auto Reg = Dep.getReg();
823 MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
824 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
825 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
826 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
827 if (I->readsRegister(Reg, TRI))
828 break;
829 --Lat;
830 }
831 Dep.setLatency(Lat);
832 } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) {
833 // Work around the fact that SIInstrInfo::fixImplicitOperands modifies
834 // implicit operands which come from the MCInstrDesc, which can fool
835 // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit
836 // pseudo operands.
837 Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency(
838 DefI, DefOpIdx, UseI, UseOpIdx));
839 }
840 }
841
842 namespace {
843 struct FillMFMAShadowMutation : ScheduleDAGMutation {
844 const SIInstrInfo *TII;
845
846 ScheduleDAGMI *DAG;
847
FillMFMAShadowMutation__anon181c87920111::FillMFMAShadowMutation848 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
849
isSALU__anon181c87920111::FillMFMAShadowMutation850 bool isSALU(const SUnit *SU) const {
851 const MachineInstr *MI = SU->getInstr();
852 return MI && TII->isSALU(*MI) && !MI->isTerminator();
853 }
854
isVALU__anon181c87920111::FillMFMAShadowMutation855 bool isVALU(const SUnit *SU) const {
856 const MachineInstr *MI = SU->getInstr();
857 return MI && TII->isVALU(*MI);
858 }
859
860 // Link as many SALU instructions in chain as possible. Return the size
861 // of the chain. Links up to MaxChain instructions.
linkSALUChain__anon181c87920111::FillMFMAShadowMutation862 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
863 SmallPtrSetImpl<SUnit *> &Visited) const {
864 SmallVector<SUnit *, 8> Worklist({To});
865 unsigned Linked = 0;
866
867 while (!Worklist.empty() && MaxChain-- > 0) {
868 SUnit *SU = Worklist.pop_back_val();
869 if (!Visited.insert(SU).second)
870 continue;
871
872 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
873 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
874
875 if (SU != From && From != &DAG->ExitSU && DAG->canAddEdge(SU, From))
876 if (DAG->addEdge(SU, SDep(From, SDep::Artificial)))
877 ++Linked;
878
879 for (SDep &SI : From->Succs) {
880 SUnit *SUv = SI.getSUnit();
881 if (SUv != From && SU != &DAG->ExitSU && isVALU(SUv) &&
882 DAG->canAddEdge(SUv, SU))
883 DAG->addEdge(SUv, SDep(SU, SDep::Artificial));
884 }
885
886 for (SDep &SI : SU->Succs) {
887 SUnit *Succ = SI.getSUnit();
888 if (Succ != SU && isSALU(Succ))
889 Worklist.push_back(Succ);
890 }
891 }
892
893 return Linked;
894 }
895
apply__anon181c87920111::FillMFMAShadowMutation896 void apply(ScheduleDAGInstrs *DAGInstrs) override {
897 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
898 if (!ST.hasMAIInsts())
899 return;
900 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
901 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
902 if (!TSchedModel || DAG->SUnits.empty())
903 return;
904
905 // Scan for MFMA long latency instructions and try to add a dependency
906 // of available SALU instructions to give them a chance to fill MFMA
907 // shadow. That is desirable to fill MFMA shadow with SALU instructions
908 // rather than VALU to prevent power consumption bursts and throttle.
909 auto LastSALU = DAG->SUnits.begin();
910 auto E = DAG->SUnits.end();
911 SmallPtrSet<SUnit*, 32> Visited;
912 for (SUnit &SU : DAG->SUnits) {
913 MachineInstr &MAI = *SU.getInstr();
914 if (!TII->isMAI(MAI) ||
915 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
916 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
917 continue;
918
919 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
920
921 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
922 dbgs() << "Need " << Lat
923 << " instructions to cover latency.\n");
924
925 // Find up to Lat independent scalar instructions as early as
926 // possible such that they can be scheduled after this MFMA.
927 for ( ; Lat && LastSALU != E; ++LastSALU) {
928 if (Visited.count(&*LastSALU))
929 continue;
930
931 if (&SU == &DAG->ExitSU || &SU == &*LastSALU || !isSALU(&*LastSALU) ||
932 !DAG->canAddEdge(&*LastSALU, &SU))
933 continue;
934
935 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
936 }
937 }
938 }
939 };
940 } // namespace
941
getPostRAMutations(std::vector<std::unique_ptr<ScheduleDAGMutation>> & Mutations) const942 void GCNSubtarget::getPostRAMutations(
943 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
944 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
945 }
946
947 std::unique_ptr<ScheduleDAGMutation>
createFillMFMAShadowMutation(const TargetInstrInfo * TII) const948 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const {
949 return EnablePowerSched ? std::make_unique<FillMFMAShadowMutation>(&InstrInfo)
950 : nullptr;
951 }
952
get(const MachineFunction & MF)953 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
954 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
955 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
956 else
957 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
958 }
959
get(const TargetMachine & TM,const Function & F)960 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
961 if (TM.getTargetTriple().getArch() == Triple::amdgcn)
962 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
963 else
964 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
965 }
966