1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Implements the AMDGPU specific subclass of TargetSubtarget. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUSubtarget.h" 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPUInstructionSelector.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPURegisterBankInfo.h" 19 #include "AMDGPUTargetMachine.h" 20 #include "R600Subtarget.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/IntrinsicsR600.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "amdgpu-subtarget" 36 37 #define GET_SUBTARGETINFO_TARGET_DESC 38 #define GET_SUBTARGETINFO_CTOR 39 #define AMDGPUSubtarget GCNSubtarget 40 #include "AMDGPUGenSubtargetInfo.inc" 41 #undef AMDGPUSubtarget 42 43 static cl::opt<bool> DisablePowerSched( 44 "amdgpu-disable-power-sched", 45 cl::desc("Disable scheduling to minimize mAI power bursts"), 46 cl::init(false)); 47 48 static cl::opt<bool> EnableVGPRIndexMode( 49 "amdgpu-vgpr-index-mode", 50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 51 cl::init(false)); 52 53 static cl::opt<bool> EnableFlatScratch( 54 "amdgpu-enable-flat-scratch", 55 cl::desc("Use flat scratch instructions"), 56 cl::init(false)); 57 58 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", 59 cl::desc("Enable the use of AA during codegen."), 60 cl::init(true)); 61 62 GCNSubtarget::~GCNSubtarget() = default; 63 64 GCNSubtarget & 65 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, 66 StringRef GPU, StringRef FS) { 67 // Determine default and user-specified characteristics 68 // 69 // We want to be able to turn these off, but making this a subtarget feature 70 // for SI has the unhelpful behavior that it unsets everything else if you 71 // disable it. 72 // 73 // Similarly we want enable-prt-strict-null to be on by default and not to 74 // unset everything else if it is disabled 75 76 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); 77 78 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default 79 if (isAmdHsaOS()) 80 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; 81 82 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS 83 84 // Disable mutually exclusive bits. 85 if (FS.find_insensitive("+wavefrontsize") != StringRef::npos) { 86 if (FS.find_insensitive("wavefrontsize16") == StringRef::npos) 87 FullFS += "-wavefrontsize16,"; 88 if (FS.find_insensitive("wavefrontsize32") == StringRef::npos) 89 FullFS += "-wavefrontsize32,"; 90 if (FS.find_insensitive("wavefrontsize64") == StringRef::npos) 91 FullFS += "-wavefrontsize64,"; 92 } 93 94 FullFS += FS; 95 96 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); 97 98 // Implement the "generic" processors, which acts as the default when no 99 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to 100 // the first amdgcn target that supports flat addressing. Other OSes defaults 101 // to the first amdgcn target. 102 if (Gen == AMDGPUSubtarget::INVALID) { 103 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS 104 : AMDGPUSubtarget::SOUTHERN_ISLANDS; 105 } 106 107 // We don't support FP64 for EG/NI atm. 108 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); 109 110 // Targets must either support 64-bit offsets for MUBUF instructions, and/or 111 // support flat operations, otherwise they cannot access a 64-bit global 112 // address space 113 assert(hasAddr64() || hasFlat()); 114 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets 115 // that do not support ADDR64 variants of MUBUF instructions. Such targets 116 // cannot use a 64 bit offset with a MUBUF instruction to access the global 117 // address space 118 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { 119 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 120 FlatForGlobal = true; 121 } 122 // Unless +-flat-for-global is specified, use MUBUF instructions for global 123 // address space access if flat operations are not available. 124 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { 125 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 126 FlatForGlobal = false; 127 } 128 129 // Set defaults if needed. 130 if (MaxPrivateElementSize == 0) 131 MaxPrivateElementSize = 4; 132 133 if (LDSBankCount == 0) 134 LDSBankCount = 32; 135 136 if (TT.getArch() == Triple::amdgcn) { 137 if (LocalMemorySize == 0) 138 LocalMemorySize = 32768; 139 140 // Do something sensible for unspecified target. 141 if (!HasMovrel && !HasVGPRIndexMode) 142 HasMovrel = true; 143 } 144 145 // Don't crash on invalid devices. 146 if (WavefrontSizeLog2 == 0) 147 WavefrontSizeLog2 = 5; 148 149 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; 150 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; 151 152 TargetID.setTargetIDFromFeaturesString(FS); 153 154 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " 155 << TargetID.getXnackSetting() << '\n'); 156 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " 157 << TargetID.getSramEccSetting() << '\n'); 158 159 return *this; 160 } 161 162 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : 163 TargetTriple(TT), 164 GCN3Encoding(false), 165 Has16BitInsts(false), 166 HasMadMixInsts(false), 167 HasMadMacF32Insts(false), 168 HasDsSrc2Insts(false), 169 HasSDWA(false), 170 HasVOP3PInsts(false), 171 HasMulI24(true), 172 HasMulU24(true), 173 HasSMulHi(false), 174 HasInv2PiInlineImm(false), 175 HasFminFmaxLegacy(true), 176 EnablePromoteAlloca(false), 177 HasTrigReducedRange(false), 178 MaxWavesPerEU(10), 179 LocalMemorySize(0), 180 WavefrontSizeLog2(0) 181 { } 182 183 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, 184 const GCNTargetMachine &TM) 185 : // clang-format off 186 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), 187 AMDGPUSubtarget(TT), 188 TargetTriple(TT), 189 TargetID(*this), 190 Gen(INVALID), 191 InstrItins(getInstrItineraryForCPU(GPU)), 192 LDSBankCount(0), 193 MaxPrivateElementSize(0), 194 195 FastFMAF32(false), 196 FastDenormalF32(false), 197 HalfRate64Ops(false), 198 FullRate64Ops(false), 199 200 FlatForGlobal(false), 201 AutoWaitcntBeforeBarrier(false), 202 UnalignedScratchAccess(false), 203 UnalignedAccessMode(false), 204 205 HasApertureRegs(false), 206 SupportsXNACK(false), 207 EnableXNACK(false), 208 EnableTgSplit(false), 209 EnableCuMode(false), 210 TrapHandler(false), 211 212 EnableLoadStoreOpt(false), 213 EnableUnsafeDSOffsetFolding(false), 214 EnableSIScheduler(false), 215 EnableDS128(false), 216 EnablePRTStrictNull(false), 217 DumpCode(false), 218 219 FP64(false), 220 CIInsts(false), 221 GFX8Insts(false), 222 GFX9Insts(false), 223 GFX90AInsts(false), 224 GFX10Insts(false), 225 GFX10_3Insts(false), 226 GFX7GFX8GFX9Insts(false), 227 SGPRInitBug(false), 228 NegativeScratchOffsetBug(false), 229 NegativeUnalignedScratchOffsetBug(false), 230 HasSMemRealTime(false), 231 HasIntClamp(false), 232 HasFmaMixInsts(false), 233 HasMovrel(false), 234 HasVGPRIndexMode(false), 235 HasScalarStores(false), 236 HasScalarAtomics(false), 237 HasSDWAOmod(false), 238 HasSDWAScalar(false), 239 HasSDWASdst(false), 240 HasSDWAMac(false), 241 HasSDWAOutModsVOPC(false), 242 HasDPP(false), 243 HasDPP8(false), 244 Has64BitDPP(false), 245 HasPackedFP32Ops(false), 246 HasExtendedImageInsts(false), 247 HasR128A16(false), 248 HasGFX10A16(false), 249 HasG16(false), 250 HasNSAEncoding(false), 251 NSAMaxSize(0), 252 GFX10_AEncoding(false), 253 GFX10_BEncoding(false), 254 HasDLInsts(false), 255 HasDot1Insts(false), 256 HasDot2Insts(false), 257 HasDot3Insts(false), 258 HasDot4Insts(false), 259 HasDot5Insts(false), 260 HasDot6Insts(false), 261 HasDot7Insts(false), 262 HasMAIInsts(false), 263 HasPkFmacF16Inst(false), 264 HasAtomicFaddInsts(false), 265 SupportsSRAMECC(false), 266 EnableSRAMECC(false), 267 HasNoSdstCMPX(false), 268 HasVscnt(false), 269 HasGetWaveIdInst(false), 270 HasSMemTimeInst(false), 271 HasShaderCyclesRegister(false), 272 HasRegisterBanking(false), 273 HasVOP3Literal(false), 274 HasNoDataDepHazard(false), 275 FlatAddressSpace(false), 276 FlatInstOffsets(false), 277 FlatGlobalInsts(false), 278 FlatScratchInsts(false), 279 ScalarFlatScratchInsts(false), 280 HasArchitectedFlatScratch(false), 281 AddNoCarryInsts(false), 282 HasUnpackedD16VMem(false), 283 LDSMisalignedBug(false), 284 HasMFMAInlineLiteralBug(false), 285 UnalignedBufferAccess(false), 286 UnalignedDSAccess(false), 287 HasPackedTID(false), 288 289 ScalarizeGlobal(false), 290 291 HasVcmpxPermlaneHazard(false), 292 HasVMEMtoScalarWriteHazard(false), 293 HasSMEMtoVectorWriteHazard(false), 294 HasInstFwdPrefetchBug(false), 295 HasVcmpxExecWARHazard(false), 296 HasLdsBranchVmemWARHazard(false), 297 HasNSAtoVMEMBug(false), 298 HasNSAClauseBug(false), 299 HasOffset3fBug(false), 300 HasFlatSegmentOffsetBug(false), 301 HasImageStoreD16Bug(false), 302 HasImageGather4D16Bug(false), 303 304 FeatureDisable(false), 305 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), 306 TLInfo(TM, *this), 307 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { 308 // clang-format on 309 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); 310 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); 311 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); 312 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); 313 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); 314 InstSelector.reset(new AMDGPUInstructionSelector( 315 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); 316 } 317 318 bool GCNSubtarget::enableFlatScratch() const { 319 return flatScratchIsArchitected() || 320 (EnableFlatScratch && hasFlatScratchInsts()); 321 } 322 323 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { 324 if (getGeneration() < GFX10) 325 return 1; 326 327 switch (Opcode) { 328 case AMDGPU::V_LSHLREV_B64_e64: 329 case AMDGPU::V_LSHLREV_B64_gfx10: 330 case AMDGPU::V_LSHL_B64_e64: 331 case AMDGPU::V_LSHRREV_B64_e64: 332 case AMDGPU::V_LSHRREV_B64_gfx10: 333 case AMDGPU::V_LSHR_B64_e64: 334 case AMDGPU::V_ASHRREV_I64_e64: 335 case AMDGPU::V_ASHRREV_I64_gfx10: 336 case AMDGPU::V_ASHR_I64_e64: 337 return 1; 338 } 339 340 return 2; 341 } 342 343 /// This list was mostly derived from experimentation. 344 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { 345 switch (Opcode) { 346 case AMDGPU::V_CVT_F16_F32_e32: 347 case AMDGPU::V_CVT_F16_F32_e64: 348 case AMDGPU::V_CVT_F16_U16_e32: 349 case AMDGPU::V_CVT_F16_U16_e64: 350 case AMDGPU::V_CVT_F16_I16_e32: 351 case AMDGPU::V_CVT_F16_I16_e64: 352 case AMDGPU::V_RCP_F16_e64: 353 case AMDGPU::V_RCP_F16_e32: 354 case AMDGPU::V_RSQ_F16_e64: 355 case AMDGPU::V_RSQ_F16_e32: 356 case AMDGPU::V_SQRT_F16_e64: 357 case AMDGPU::V_SQRT_F16_e32: 358 case AMDGPU::V_LOG_F16_e64: 359 case AMDGPU::V_LOG_F16_e32: 360 case AMDGPU::V_EXP_F16_e64: 361 case AMDGPU::V_EXP_F16_e32: 362 case AMDGPU::V_SIN_F16_e64: 363 case AMDGPU::V_SIN_F16_e32: 364 case AMDGPU::V_COS_F16_e64: 365 case AMDGPU::V_COS_F16_e32: 366 case AMDGPU::V_FLOOR_F16_e64: 367 case AMDGPU::V_FLOOR_F16_e32: 368 case AMDGPU::V_CEIL_F16_e64: 369 case AMDGPU::V_CEIL_F16_e32: 370 case AMDGPU::V_TRUNC_F16_e64: 371 case AMDGPU::V_TRUNC_F16_e32: 372 case AMDGPU::V_RNDNE_F16_e64: 373 case AMDGPU::V_RNDNE_F16_e32: 374 case AMDGPU::V_FRACT_F16_e64: 375 case AMDGPU::V_FRACT_F16_e32: 376 case AMDGPU::V_FREXP_MANT_F16_e64: 377 case AMDGPU::V_FREXP_MANT_F16_e32: 378 case AMDGPU::V_FREXP_EXP_I16_F16_e64: 379 case AMDGPU::V_FREXP_EXP_I16_F16_e32: 380 case AMDGPU::V_LDEXP_F16_e64: 381 case AMDGPU::V_LDEXP_F16_e32: 382 case AMDGPU::V_LSHLREV_B16_e64: 383 case AMDGPU::V_LSHLREV_B16_e32: 384 case AMDGPU::V_LSHRREV_B16_e64: 385 case AMDGPU::V_LSHRREV_B16_e32: 386 case AMDGPU::V_ASHRREV_I16_e64: 387 case AMDGPU::V_ASHRREV_I16_e32: 388 case AMDGPU::V_ADD_U16_e64: 389 case AMDGPU::V_ADD_U16_e32: 390 case AMDGPU::V_SUB_U16_e64: 391 case AMDGPU::V_SUB_U16_e32: 392 case AMDGPU::V_SUBREV_U16_e64: 393 case AMDGPU::V_SUBREV_U16_e32: 394 case AMDGPU::V_MUL_LO_U16_e64: 395 case AMDGPU::V_MUL_LO_U16_e32: 396 case AMDGPU::V_ADD_F16_e64: 397 case AMDGPU::V_ADD_F16_e32: 398 case AMDGPU::V_SUB_F16_e64: 399 case AMDGPU::V_SUB_F16_e32: 400 case AMDGPU::V_SUBREV_F16_e64: 401 case AMDGPU::V_SUBREV_F16_e32: 402 case AMDGPU::V_MUL_F16_e64: 403 case AMDGPU::V_MUL_F16_e32: 404 case AMDGPU::V_MAX_F16_e64: 405 case AMDGPU::V_MAX_F16_e32: 406 case AMDGPU::V_MIN_F16_e64: 407 case AMDGPU::V_MIN_F16_e32: 408 case AMDGPU::V_MAX_U16_e64: 409 case AMDGPU::V_MAX_U16_e32: 410 case AMDGPU::V_MIN_U16_e64: 411 case AMDGPU::V_MIN_U16_e32: 412 case AMDGPU::V_MAX_I16_e64: 413 case AMDGPU::V_MAX_I16_e32: 414 case AMDGPU::V_MIN_I16_e64: 415 case AMDGPU::V_MIN_I16_e32: 416 // On gfx10, all 16-bit instructions preserve the high bits. 417 return getGeneration() <= AMDGPUSubtarget::GFX9; 418 case AMDGPU::V_MAD_F16_e64: 419 case AMDGPU::V_MADAK_F16: 420 case AMDGPU::V_MADMK_F16: 421 case AMDGPU::V_MAC_F16_e64: 422 case AMDGPU::V_MAC_F16_e32: 423 case AMDGPU::V_FMAMK_F16: 424 case AMDGPU::V_FMAAK_F16: 425 case AMDGPU::V_MAD_U16_e64: 426 case AMDGPU::V_MAD_I16_e64: 427 case AMDGPU::V_FMA_F16_e64: 428 case AMDGPU::V_FMAC_F16_e64: 429 case AMDGPU::V_FMAC_F16_e32: 430 case AMDGPU::V_DIV_FIXUP_F16_e64: 431 // In gfx9, the preferred handling of the unused high 16-bits changed. Most 432 // instructions maintain the legacy behavior of 0ing. Some instructions 433 // changed to preserving the high bits. 434 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 435 case AMDGPU::V_MAD_MIXLO_F16: 436 case AMDGPU::V_MAD_MIXHI_F16: 437 default: 438 return false; 439 } 440 } 441 442 unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, 443 const Function &F) const { 444 if (NWaves == 1) 445 return getLocalMemorySize(); 446 unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; 447 unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); 448 if (!WorkGroupsPerCu) 449 return 0; 450 unsigned MaxWaves = getMaxWavesPerEU(); 451 return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; 452 } 453 454 // FIXME: Should return min,max range. 455 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, 456 const Function &F) const { 457 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; 458 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); 459 if (!MaxWorkGroupsPerCu) 460 return 0; 461 462 const unsigned WaveSize = getWavefrontSize(); 463 464 // FIXME: Do we need to account for alignment requirement of LDS rounding the 465 // size up? 466 // Compute restriction based on LDS usage 467 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); 468 469 // This can be queried with more LDS than is possible, so just assume the 470 // worst. 471 if (NumGroups == 0) 472 return 1; 473 474 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); 475 476 // Round to the number of waves. 477 const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize; 478 unsigned MaxWaves = NumGroups * MaxGroupNumWaves; 479 480 // Clamp to the maximum possible number of waves. 481 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); 482 483 // FIXME: Needs to be a multiple of the group size? 484 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); 485 486 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && 487 "computed invalid occupancy"); 488 return MaxWaves; 489 } 490 491 unsigned 492 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { 493 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); 494 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); 495 } 496 497 std::pair<unsigned, unsigned> 498 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { 499 switch (CC) { 500 case CallingConv::AMDGPU_VS: 501 case CallingConv::AMDGPU_LS: 502 case CallingConv::AMDGPU_HS: 503 case CallingConv::AMDGPU_ES: 504 case CallingConv::AMDGPU_GS: 505 case CallingConv::AMDGPU_PS: 506 return std::make_pair(1, getWavefrontSize()); 507 default: 508 return std::make_pair(1u, getMaxFlatWorkGroupSize()); 509 } 510 } 511 512 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( 513 const Function &F) const { 514 // Default minimum/maximum flat work group sizes. 515 std::pair<unsigned, unsigned> Default = 516 getDefaultFlatWorkGroupSize(F.getCallingConv()); 517 518 // Requested minimum/maximum flat work group sizes. 519 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 520 F, "amdgpu-flat-work-group-size", Default); 521 522 // Make sure requested minimum is less than requested maximum. 523 if (Requested.first > Requested.second) 524 return Default; 525 526 // Make sure requested values do not violate subtarget's specifications. 527 if (Requested.first < getMinFlatWorkGroupSize()) 528 return Default; 529 if (Requested.second > getMaxFlatWorkGroupSize()) 530 return Default; 531 532 return Requested; 533 } 534 535 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( 536 const Function &F) const { 537 // Default minimum/maximum number of waves per execution unit. 538 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); 539 540 // Default/requested minimum/maximum flat work group sizes. 541 std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F); 542 543 // If minimum/maximum flat work group sizes were explicitly requested using 544 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum 545 // number of waves per execution unit to values implied by requested 546 // minimum/maximum flat work group sizes. 547 unsigned MinImpliedByFlatWorkGroupSize = 548 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); 549 Default.first = MinImpliedByFlatWorkGroupSize; 550 bool RequestedFlatWorkGroupSize = 551 F.hasFnAttribute("amdgpu-flat-work-group-size"); 552 553 // Requested minimum/maximum number of waves per execution unit. 554 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 555 F, "amdgpu-waves-per-eu", Default, true); 556 557 // Make sure requested minimum is less than requested maximum. 558 if (Requested.second && Requested.first > Requested.second) 559 return Default; 560 561 // Make sure requested values do not violate subtarget's specifications. 562 if (Requested.first < getMinWavesPerEU() || 563 Requested.second > getMaxWavesPerEU()) 564 return Default; 565 566 // Make sure requested values are compatible with values implied by requested 567 // minimum/maximum flat work group sizes. 568 if (RequestedFlatWorkGroupSize && 569 Requested.first < MinImpliedByFlatWorkGroupSize) 570 return Default; 571 572 return Requested; 573 } 574 575 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { 576 auto Node = Kernel.getMetadata("reqd_work_group_size"); 577 if (Node && Node->getNumOperands() == 3) 578 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); 579 return std::numeric_limits<unsigned>::max(); 580 } 581 582 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { 583 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); 584 } 585 586 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, 587 unsigned Dimension) const { 588 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); 589 if (ReqdSize != std::numeric_limits<unsigned>::max()) 590 return ReqdSize - 1; 591 return getFlatWorkGroupSizes(Kernel).second - 1; 592 } 593 594 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { 595 Function *Kernel = I->getParent()->getParent(); 596 unsigned MinSize = 0; 597 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; 598 bool IdQuery = false; 599 600 // If reqd_work_group_size is present it narrows value down. 601 if (auto *CI = dyn_cast<CallInst>(I)) { 602 const Function *F = CI->getCalledFunction(); 603 if (F) { 604 unsigned Dim = UINT_MAX; 605 switch (F->getIntrinsicID()) { 606 case Intrinsic::amdgcn_workitem_id_x: 607 case Intrinsic::r600_read_tidig_x: 608 IdQuery = true; 609 LLVM_FALLTHROUGH; 610 case Intrinsic::r600_read_local_size_x: 611 Dim = 0; 612 break; 613 case Intrinsic::amdgcn_workitem_id_y: 614 case Intrinsic::r600_read_tidig_y: 615 IdQuery = true; 616 LLVM_FALLTHROUGH; 617 case Intrinsic::r600_read_local_size_y: 618 Dim = 1; 619 break; 620 case Intrinsic::amdgcn_workitem_id_z: 621 case Intrinsic::r600_read_tidig_z: 622 IdQuery = true; 623 LLVM_FALLTHROUGH; 624 case Intrinsic::r600_read_local_size_z: 625 Dim = 2; 626 break; 627 default: 628 break; 629 } 630 631 if (Dim <= 3) { 632 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); 633 if (ReqdSize != std::numeric_limits<unsigned>::max()) 634 MinSize = MaxSize = ReqdSize; 635 } 636 } 637 } 638 639 if (!MaxSize) 640 return false; 641 642 // Range metadata is [Lo, Hi). For ID query we need to pass max size 643 // as Hi. For size query we need to pass Hi + 1. 644 if (IdQuery) 645 MinSize = 0; 646 else 647 ++MaxSize; 648 649 MDBuilder MDB(I->getContext()); 650 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), 651 APInt(32, MaxSize)); 652 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 653 return true; 654 } 655 656 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { 657 if (isMesaKernel(F)) 658 return 16; 659 return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0); 660 } 661 662 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, 663 Align &MaxAlign) const { 664 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 665 F.getCallingConv() == CallingConv::SPIR_KERNEL); 666 667 const DataLayout &DL = F.getParent()->getDataLayout(); 668 uint64_t ExplicitArgBytes = 0; 669 MaxAlign = Align(1); 670 671 for (const Argument &Arg : F.args()) { 672 const bool IsByRef = Arg.hasByRefAttr(); 673 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 674 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 675 if (!Alignment) 676 Alignment = DL.getABITypeAlign(ArgTy); 677 678 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); 679 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; 680 MaxAlign = max(MaxAlign, Alignment); 681 } 682 683 return ExplicitArgBytes; 684 } 685 686 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, 687 Align &MaxAlign) const { 688 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); 689 690 unsigned ExplicitOffset = getExplicitKernelArgOffset(F); 691 692 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; 693 unsigned ImplicitBytes = getImplicitArgNumBytes(F); 694 if (ImplicitBytes != 0) { 695 const Align Alignment = getAlignmentForImplicitArgPtr(); 696 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; 697 } 698 699 // Being able to dereference past the end is useful for emitting scalar loads. 700 return alignTo(TotalSize, 4); 701 } 702 703 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { 704 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 705 : AMDGPUDwarfFlavour::Wave64; 706 } 707 708 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, 709 unsigned NumRegionInstrs) const { 710 // Track register pressure so the scheduler can try to decrease 711 // pressure once register usage is above the threshold defined by 712 // SIRegisterInfo::getRegPressureSetLimit() 713 Policy.ShouldTrackPressure = true; 714 715 // Enabling both top down and bottom up scheduling seems to give us less 716 // register spills than just using one of these approaches on its own. 717 Policy.OnlyTopDown = false; 718 Policy.OnlyBottomUp = false; 719 720 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. 721 if (!enableSIScheduler()) 722 Policy.ShouldTrackLaneMasks = true; 723 } 724 725 bool GCNSubtarget::hasMadF16() const { 726 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; 727 } 728 729 bool GCNSubtarget::useVGPRIndexMode() const { 730 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); 731 } 732 733 bool GCNSubtarget::useAA() const { return UseAA; } 734 735 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { 736 if (getGeneration() >= AMDGPUSubtarget::GFX10) 737 return getMaxWavesPerEU(); 738 739 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 740 if (SGPRs <= 80) 741 return 10; 742 if (SGPRs <= 88) 743 return 9; 744 if (SGPRs <= 100) 745 return 8; 746 return 7; 747 } 748 if (SGPRs <= 48) 749 return 10; 750 if (SGPRs <= 56) 751 return 9; 752 if (SGPRs <= 64) 753 return 8; 754 if (SGPRs <= 72) 755 return 7; 756 if (SGPRs <= 80) 757 return 6; 758 return 5; 759 } 760 761 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { 762 unsigned MaxWaves = getMaxWavesPerEU(); 763 unsigned Granule = getVGPRAllocGranule(); 764 if (VGPRs < Granule) 765 return MaxWaves; 766 unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; 767 return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); 768 } 769 770 unsigned 771 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratchInit) const { 772 if (getGeneration() >= AMDGPUSubtarget::GFX10) 773 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. 774 775 if (HasFlatScratchInit) { 776 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 777 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). 778 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) 779 return 4; // FLAT_SCRATCH, VCC (in that order). 780 } 781 782 if (isXNACKEnabled()) 783 return 4; // XNACK, VCC (in that order). 784 return 2; // VCC. 785 } 786 787 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { 788 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 789 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); 790 } 791 792 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { 793 // The logic to detect if the function has 794 // flat scratch init is slightly different than how 795 // SIMachineFunctionInfo constructor derives. 796 // We don't use amdgpu-calls, amdgpu-stack-objects 797 // attributes and isAmdHsaOrMesa here as it doesn't really matter. 798 // TODO: Outline this derivation logic and have just 799 // one common function in the backend to avoid duplication. 800 bool isEntry = AMDGPU::isEntryFunctionCC(F.getCallingConv()); 801 bool FunctionHasFlatScratchInit = false; 802 if (hasFlatAddressSpace() && isEntry && !flatScratchIsArchitected() && 803 enableFlatScratch()) { 804 FunctionHasFlatScratchInit = true; 805 } 806 return getBaseReservedNumSGPRs(FunctionHasFlatScratchInit); 807 } 808 809 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, 810 unsigned NumSGPRs, 811 unsigned NumVGPRs) const { 812 unsigned Occupancy = 813 std::min(getMaxWavesPerEU(), 814 getOccupancyWithLocalMemSize(LDSSize, F)); 815 if (NumSGPRs) 816 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); 817 if (NumVGPRs) 818 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); 819 return Occupancy; 820 } 821 822 unsigned GCNSubtarget::getBaseMaxNumSGPRs( 823 const Function &F, std::pair<unsigned, unsigned> WavesPerEU, 824 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { 825 // Compute maximum number of SGPRs function can use using default/requested 826 // minimum number of waves per execution unit. 827 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); 828 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); 829 830 // Check if maximum number of SGPRs was explicitly requested using 831 // "amdgpu-num-sgpr" attribute. 832 if (F.hasFnAttribute("amdgpu-num-sgpr")) { 833 unsigned Requested = AMDGPU::getIntegerAttribute( 834 F, "amdgpu-num-sgpr", MaxNumSGPRs); 835 836 // Make sure requested value does not violate subtarget's specifications. 837 if (Requested && (Requested <= ReservedNumSGPRs)) 838 Requested = 0; 839 840 // If more SGPRs are required to support the input user/system SGPRs, 841 // increase to accommodate them. 842 // 843 // FIXME: This really ends up using the requested number of SGPRs + number 844 // of reserved special registers in total. Theoretically you could re-use 845 // the last input registers for these special registers, but this would 846 // require a lot of complexity to deal with the weird aliasing. 847 unsigned InputNumSGPRs = PreloadedSGPRs; 848 if (Requested && Requested < InputNumSGPRs) 849 Requested = InputNumSGPRs; 850 851 // Make sure requested value is compatible with values implied by 852 // default/requested minimum/maximum number of waves per execution unit. 853 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) 854 Requested = 0; 855 if (WavesPerEU.second && 856 Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) 857 Requested = 0; 858 859 if (Requested) 860 MaxNumSGPRs = Requested; 861 } 862 863 if (hasSGPRInitBug()) 864 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 865 866 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); 867 } 868 869 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { 870 const Function &F = MF.getFunction(); 871 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 872 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), 873 getReservedNumSGPRs(MF)); 874 } 875 876 static unsigned getMaxNumPreloadedSGPRs() { 877 // Max number of user SGPRs 878 unsigned MaxUserSGPRs = 4 + // private segment buffer 879 2 + // Dispatch ptr 880 2 + // queue ptr 881 2 + // kernel segment ptr 882 2 + // dispatch ID 883 2 + // flat scratch init 884 2; // Implicit buffer ptr 885 // Max number of system SGPRs 886 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX 887 1 + // WorkGroupIDY 888 1 + // WorkGroupIDZ 889 1 + // WorkGroupInfo 890 1; // private segment wave byte offset 891 return MaxUserSGPRs + MaxSystemSGPRs; 892 } 893 894 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { 895 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), 896 getReservedNumSGPRs(F)); 897 } 898 899 unsigned GCNSubtarget::getBaseMaxNumVGPRs( 900 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { 901 // Compute maximum number of VGPRs function can use using default/requested 902 // minimum number of waves per execution unit. 903 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); 904 905 // Check if maximum number of VGPRs was explicitly requested using 906 // "amdgpu-num-vgpr" attribute. 907 if (F.hasFnAttribute("amdgpu-num-vgpr")) { 908 unsigned Requested = AMDGPU::getIntegerAttribute( 909 F, "amdgpu-num-vgpr", MaxNumVGPRs); 910 911 if (hasGFX90AInsts()) 912 Requested *= 2; 913 914 // Make sure requested value is compatible with values implied by 915 // default/requested minimum/maximum number of waves per execution unit. 916 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) 917 Requested = 0; 918 if (WavesPerEU.second && 919 Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) 920 Requested = 0; 921 922 if (Requested) 923 MaxNumVGPRs = Requested; 924 } 925 926 return MaxNumVGPRs; 927 } 928 929 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { 930 return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); 931 } 932 933 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { 934 const Function &F = MF.getFunction(); 935 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 936 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); 937 } 938 939 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, 940 int UseOpIdx, SDep &Dep) const { 941 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || 942 !Def->isInstr() || !Use->isInstr()) 943 return; 944 945 MachineInstr *DefI = Def->getInstr(); 946 MachineInstr *UseI = Use->getInstr(); 947 948 if (DefI->isBundle()) { 949 const SIRegisterInfo *TRI = getRegisterInfo(); 950 auto Reg = Dep.getReg(); 951 MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); 952 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); 953 unsigned Lat = 0; 954 for (++I; I != E && I->isBundledWithPred(); ++I) { 955 if (I->modifiesRegister(Reg, TRI)) 956 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); 957 else if (Lat) 958 --Lat; 959 } 960 Dep.setLatency(Lat); 961 } else if (UseI->isBundle()) { 962 const SIRegisterInfo *TRI = getRegisterInfo(); 963 auto Reg = Dep.getReg(); 964 MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); 965 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); 966 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); 967 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { 968 if (I->readsRegister(Reg, TRI)) 969 break; 970 --Lat; 971 } 972 Dep.setLatency(Lat); 973 } 974 } 975 976 namespace { 977 struct FillMFMAShadowMutation : ScheduleDAGMutation { 978 const SIInstrInfo *TII; 979 980 ScheduleDAGMI *DAG; 981 982 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} 983 984 bool isSALU(const SUnit *SU) const { 985 const MachineInstr *MI = SU->getInstr(); 986 return MI && TII->isSALU(*MI) && !MI->isTerminator(); 987 } 988 989 bool isVALU(const SUnit *SU) const { 990 const MachineInstr *MI = SU->getInstr(); 991 return MI && TII->isVALU(*MI); 992 } 993 994 bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { 995 if (Pred->NodeNum < Succ->NodeNum) 996 return true; 997 998 SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); 999 1000 for (unsigned I = 0; I < Succs.size(); ++I) { 1001 for (const SDep &SI : Succs[I]->Succs) { 1002 const SUnit *SU = SI.getSUnit(); 1003 if (SU != Succs[I] && !llvm::is_contained(Succs, SU)) 1004 Succs.push_back(SU); 1005 } 1006 } 1007 1008 SmallPtrSet<const SUnit*, 32> Visited; 1009 while (!Preds.empty()) { 1010 const SUnit *SU = Preds.pop_back_val(); 1011 if (llvm::is_contained(Succs, SU)) 1012 return false; 1013 Visited.insert(SU); 1014 for (const SDep &SI : SU->Preds) 1015 if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) 1016 Preds.push_back(SI.getSUnit()); 1017 } 1018 1019 return true; 1020 } 1021 1022 // Link as many SALU instructions in chain as possible. Return the size 1023 // of the chain. Links up to MaxChain instructions. 1024 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, 1025 SmallPtrSetImpl<SUnit *> &Visited) const { 1026 SmallVector<SUnit *, 8> Worklist({To}); 1027 unsigned Linked = 0; 1028 1029 while (!Worklist.empty() && MaxChain-- > 0) { 1030 SUnit *SU = Worklist.pop_back_val(); 1031 if (!Visited.insert(SU).second) 1032 continue; 1033 1034 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); 1035 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); 1036 1037 if (SU->addPred(SDep(From, SDep::Artificial), false)) 1038 ++Linked; 1039 1040 for (SDep &SI : From->Succs) { 1041 SUnit *SUv = SI.getSUnit(); 1042 if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) 1043 SUv->addPred(SDep(SU, SDep::Artificial), false); 1044 } 1045 1046 for (SDep &SI : SU->Succs) { 1047 SUnit *Succ = SI.getSUnit(); 1048 if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) 1049 Worklist.push_back(Succ); 1050 } 1051 } 1052 1053 return Linked; 1054 } 1055 1056 void apply(ScheduleDAGInstrs *DAGInstrs) override { 1057 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); 1058 if (!ST.hasMAIInsts() || DisablePowerSched) 1059 return; 1060 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1061 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); 1062 if (!TSchedModel || DAG->SUnits.empty()) 1063 return; 1064 1065 // Scan for MFMA long latency instructions and try to add a dependency 1066 // of available SALU instructions to give them a chance to fill MFMA 1067 // shadow. That is desirable to fill MFMA shadow with SALU instructions 1068 // rather than VALU to prevent power consumption bursts and throttle. 1069 auto LastSALU = DAG->SUnits.begin(); 1070 auto E = DAG->SUnits.end(); 1071 SmallPtrSet<SUnit*, 32> Visited; 1072 for (SUnit &SU : DAG->SUnits) { 1073 MachineInstr &MAI = *SU.getInstr(); 1074 if (!TII->isMAI(MAI) || 1075 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 1076 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) 1077 continue; 1078 1079 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; 1080 1081 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); 1082 dbgs() << "Need " << Lat 1083 << " instructions to cover latency.\n"); 1084 1085 // Find up to Lat independent scalar instructions as early as 1086 // possible such that they can be scheduled after this MFMA. 1087 for ( ; Lat && LastSALU != E; ++LastSALU) { 1088 if (Visited.count(&*LastSALU)) 1089 continue; 1090 1091 if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) 1092 continue; 1093 1094 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); 1095 } 1096 } 1097 } 1098 }; 1099 } // namespace 1100 1101 void GCNSubtarget::getPostRAMutations( 1102 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 1103 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); 1104 } 1105 1106 std::unique_ptr<ScheduleDAGMutation> 1107 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { 1108 return std::make_unique<FillMFMAShadowMutation>(&InstrInfo); 1109 } 1110 1111 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { 1112 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) 1113 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); 1114 else 1115 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); 1116 } 1117 1118 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { 1119 if (TM.getTargetTriple().getArch() == Triple::amdgcn) 1120 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); 1121 else 1122 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); 1123 } 1124