1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Implements the AMDGPU specific subclass of TargetSubtarget. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUSubtarget.h" 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPUInstructionSelector.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPURegisterBankInfo.h" 19 #include "AMDGPUTargetMachine.h" 20 #include "R600Subtarget.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/IntrinsicsR600.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "amdgpu-subtarget" 36 37 #define GET_SUBTARGETINFO_TARGET_DESC 38 #define GET_SUBTARGETINFO_CTOR 39 #define AMDGPUSubtarget GCNSubtarget 40 #include "AMDGPUGenSubtargetInfo.inc" 41 #undef AMDGPUSubtarget 42 43 static cl::opt<bool> DisablePowerSched( 44 "amdgpu-disable-power-sched", 45 cl::desc("Disable scheduling to minimize mAI power bursts"), 46 cl::init(false)); 47 48 static cl::opt<bool> EnableVGPRIndexMode( 49 "amdgpu-vgpr-index-mode", 50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 51 cl::init(false)); 52 53 static cl::opt<bool> EnableFlatScratch( 54 "amdgpu-enable-flat-scratch", 55 cl::desc("Use flat scratch instructions"), 56 cl::init(false)); 57 58 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", 59 cl::desc("Enable the use of AA during codegen."), 60 cl::init(true)); 61 62 GCNSubtarget::~GCNSubtarget() = default; 63 64 GCNSubtarget & 65 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, 66 StringRef GPU, StringRef FS) { 67 // Determine default and user-specified characteristics 68 // 69 // We want to be able to turn these off, but making this a subtarget feature 70 // for SI has the unhelpful behavior that it unsets everything else if you 71 // disable it. 72 // 73 // Similarly we want enable-prt-strict-null to be on by default and not to 74 // unset everything else if it is disabled 75 76 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); 77 78 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default 79 if (isAmdHsaOS()) 80 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; 81 82 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS 83 84 // Disable mutually exclusive bits. 85 if (FS.contains_insensitive("+wavefrontsize")) { 86 if (!FS.contains_insensitive("wavefrontsize16")) 87 FullFS += "-wavefrontsize16,"; 88 if (!FS.contains_insensitive("wavefrontsize32")) 89 FullFS += "-wavefrontsize32,"; 90 if (!FS.contains_insensitive("wavefrontsize64")) 91 FullFS += "-wavefrontsize64,"; 92 } 93 94 FullFS += FS; 95 96 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); 97 98 // Implement the "generic" processors, which acts as the default when no 99 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to 100 // the first amdgcn target that supports flat addressing. Other OSes defaults 101 // to the first amdgcn target. 102 if (Gen == AMDGPUSubtarget::INVALID) { 103 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS 104 : AMDGPUSubtarget::SOUTHERN_ISLANDS; 105 } 106 107 // We don't support FP64 for EG/NI atm. 108 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); 109 110 // Targets must either support 64-bit offsets for MUBUF instructions, and/or 111 // support flat operations, otherwise they cannot access a 64-bit global 112 // address space 113 assert(hasAddr64() || hasFlat()); 114 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets 115 // that do not support ADDR64 variants of MUBUF instructions. Such targets 116 // cannot use a 64 bit offset with a MUBUF instruction to access the global 117 // address space 118 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { 119 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 120 FlatForGlobal = true; 121 } 122 // Unless +-flat-for-global is specified, use MUBUF instructions for global 123 // address space access if flat operations are not available. 124 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { 125 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 126 FlatForGlobal = false; 127 } 128 129 // Set defaults if needed. 130 if (MaxPrivateElementSize == 0) 131 MaxPrivateElementSize = 4; 132 133 if (LDSBankCount == 0) 134 LDSBankCount = 32; 135 136 if (TT.getArch() == Triple::amdgcn) { 137 if (LocalMemorySize == 0) 138 LocalMemorySize = 32768; 139 140 // Do something sensible for unspecified target. 141 if (!HasMovrel && !HasVGPRIndexMode) 142 HasMovrel = true; 143 } 144 145 // Don't crash on invalid devices. 146 if (WavefrontSizeLog2 == 0) 147 WavefrontSizeLog2 = 5; 148 149 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; 150 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; 151 152 TargetID.setTargetIDFromFeaturesString(FS); 153 154 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " 155 << TargetID.getXnackSetting() << '\n'); 156 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " 157 << TargetID.getSramEccSetting() << '\n'); 158 159 return *this; 160 } 161 162 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : 163 TargetTriple(TT), 164 GCN3Encoding(false), 165 Has16BitInsts(false), 166 HasMadMixInsts(false), 167 HasMadMacF32Insts(false), 168 HasDsSrc2Insts(false), 169 HasSDWA(false), 170 HasVOP3PInsts(false), 171 HasMulI24(true), 172 HasMulU24(true), 173 HasSMulHi(false), 174 HasInv2PiInlineImm(false), 175 HasFminFmaxLegacy(true), 176 EnablePromoteAlloca(false), 177 HasTrigReducedRange(false), 178 MaxWavesPerEU(10), 179 LocalMemorySize(0), 180 WavefrontSizeLog2(0) 181 { } 182 183 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, 184 const GCNTargetMachine &TM) 185 : // clang-format off 186 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), 187 AMDGPUSubtarget(TT), 188 TargetTriple(TT), 189 TargetID(*this), 190 Gen(INVALID), 191 InstrItins(getInstrItineraryForCPU(GPU)), 192 LDSBankCount(0), 193 MaxPrivateElementSize(0), 194 195 FastFMAF32(false), 196 FastDenormalF32(false), 197 HalfRate64Ops(false), 198 FullRate64Ops(false), 199 200 FlatForGlobal(false), 201 AutoWaitcntBeforeBarrier(false), 202 UnalignedScratchAccess(false), 203 UnalignedAccessMode(false), 204 205 HasApertureRegs(false), 206 SupportsXNACK(false), 207 EnableXNACK(false), 208 EnableTgSplit(false), 209 EnableCuMode(false), 210 TrapHandler(false), 211 212 EnableLoadStoreOpt(false), 213 EnableUnsafeDSOffsetFolding(false), 214 EnableSIScheduler(false), 215 EnableDS128(false), 216 EnablePRTStrictNull(false), 217 DumpCode(false), 218 219 FP64(false), 220 CIInsts(false), 221 GFX8Insts(false), 222 GFX9Insts(false), 223 GFX90AInsts(false), 224 GFX10Insts(false), 225 GFX10_3Insts(false), 226 GFX7GFX8GFX9Insts(false), 227 SGPRInitBug(false), 228 NegativeScratchOffsetBug(false), 229 NegativeUnalignedScratchOffsetBug(false), 230 HasSMemRealTime(false), 231 HasIntClamp(false), 232 HasFmaMixInsts(false), 233 HasMovrel(false), 234 HasVGPRIndexMode(false), 235 HasScalarStores(false), 236 HasScalarAtomics(false), 237 HasSDWAOmod(false), 238 HasSDWAScalar(false), 239 HasSDWASdst(false), 240 HasSDWAMac(false), 241 HasSDWAOutModsVOPC(false), 242 HasDPP(false), 243 HasDPP8(false), 244 Has64BitDPP(false), 245 HasPackedFP32Ops(false), 246 HasExtendedImageInsts(false), 247 HasR128A16(false), 248 HasGFX10A16(false), 249 HasG16(false), 250 HasNSAEncoding(false), 251 NSAMaxSize(0), 252 GFX10_AEncoding(false), 253 GFX10_BEncoding(false), 254 HasDLInsts(false), 255 HasDot1Insts(false), 256 HasDot2Insts(false), 257 HasDot3Insts(false), 258 HasDot4Insts(false), 259 HasDot5Insts(false), 260 HasDot6Insts(false), 261 HasDot7Insts(false), 262 HasMAIInsts(false), 263 HasPkFmacF16Inst(false), 264 HasAtomicFaddInsts(false), 265 SupportsSRAMECC(false), 266 EnableSRAMECC(false), 267 HasNoSdstCMPX(false), 268 HasVscnt(false), 269 HasGetWaveIdInst(false), 270 HasSMemTimeInst(false), 271 HasShaderCyclesRegister(false), 272 HasRegisterBanking(false), 273 HasVOP3Literal(false), 274 HasNoDataDepHazard(false), 275 FlatAddressSpace(false), 276 FlatInstOffsets(false), 277 FlatGlobalInsts(false), 278 FlatScratchInsts(false), 279 ScalarFlatScratchInsts(false), 280 HasArchitectedFlatScratch(false), 281 AddNoCarryInsts(false), 282 HasUnpackedD16VMem(false), 283 LDSMisalignedBug(false), 284 HasMFMAInlineLiteralBug(false), 285 UnalignedBufferAccess(false), 286 UnalignedDSAccess(false), 287 HasPackedTID(false), 288 289 ScalarizeGlobal(false), 290 291 HasVcmpxPermlaneHazard(false), 292 HasVMEMtoScalarWriteHazard(false), 293 HasSMEMtoVectorWriteHazard(false), 294 HasInstFwdPrefetchBug(false), 295 HasVcmpxExecWARHazard(false), 296 HasLdsBranchVmemWARHazard(false), 297 HasNSAtoVMEMBug(false), 298 HasNSAClauseBug(false), 299 HasOffset3fBug(false), 300 HasFlatSegmentOffsetBug(false), 301 HasImageStoreD16Bug(false), 302 HasImageGather4D16Bug(false), 303 304 FeatureDisable(false), 305 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), 306 TLInfo(TM, *this), 307 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { 308 // clang-format on 309 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); 310 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); 311 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); 312 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); 313 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); 314 InstSelector.reset(new AMDGPUInstructionSelector( 315 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); 316 } 317 318 bool GCNSubtarget::enableFlatScratch() const { 319 return flatScratchIsArchitected() || 320 (EnableFlatScratch && hasFlatScratchInsts()); 321 } 322 323 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { 324 if (getGeneration() < GFX10) 325 return 1; 326 327 switch (Opcode) { 328 case AMDGPU::V_LSHLREV_B64_e64: 329 case AMDGPU::V_LSHLREV_B64_gfx10: 330 case AMDGPU::V_LSHL_B64_e64: 331 case AMDGPU::V_LSHRREV_B64_e64: 332 case AMDGPU::V_LSHRREV_B64_gfx10: 333 case AMDGPU::V_LSHR_B64_e64: 334 case AMDGPU::V_ASHRREV_I64_e64: 335 case AMDGPU::V_ASHRREV_I64_gfx10: 336 case AMDGPU::V_ASHR_I64_e64: 337 return 1; 338 } 339 340 return 2; 341 } 342 343 /// This list was mostly derived from experimentation. 344 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { 345 switch (Opcode) { 346 case AMDGPU::V_CVT_F16_F32_e32: 347 case AMDGPU::V_CVT_F16_F32_e64: 348 case AMDGPU::V_CVT_F16_U16_e32: 349 case AMDGPU::V_CVT_F16_U16_e64: 350 case AMDGPU::V_CVT_F16_I16_e32: 351 case AMDGPU::V_CVT_F16_I16_e64: 352 case AMDGPU::V_RCP_F16_e64: 353 case AMDGPU::V_RCP_F16_e32: 354 case AMDGPU::V_RSQ_F16_e64: 355 case AMDGPU::V_RSQ_F16_e32: 356 case AMDGPU::V_SQRT_F16_e64: 357 case AMDGPU::V_SQRT_F16_e32: 358 case AMDGPU::V_LOG_F16_e64: 359 case AMDGPU::V_LOG_F16_e32: 360 case AMDGPU::V_EXP_F16_e64: 361 case AMDGPU::V_EXP_F16_e32: 362 case AMDGPU::V_SIN_F16_e64: 363 case AMDGPU::V_SIN_F16_e32: 364 case AMDGPU::V_COS_F16_e64: 365 case AMDGPU::V_COS_F16_e32: 366 case AMDGPU::V_FLOOR_F16_e64: 367 case AMDGPU::V_FLOOR_F16_e32: 368 case AMDGPU::V_CEIL_F16_e64: 369 case AMDGPU::V_CEIL_F16_e32: 370 case AMDGPU::V_TRUNC_F16_e64: 371 case AMDGPU::V_TRUNC_F16_e32: 372 case AMDGPU::V_RNDNE_F16_e64: 373 case AMDGPU::V_RNDNE_F16_e32: 374 case AMDGPU::V_FRACT_F16_e64: 375 case AMDGPU::V_FRACT_F16_e32: 376 case AMDGPU::V_FREXP_MANT_F16_e64: 377 case AMDGPU::V_FREXP_MANT_F16_e32: 378 case AMDGPU::V_FREXP_EXP_I16_F16_e64: 379 case AMDGPU::V_FREXP_EXP_I16_F16_e32: 380 case AMDGPU::V_LDEXP_F16_e64: 381 case AMDGPU::V_LDEXP_F16_e32: 382 case AMDGPU::V_LSHLREV_B16_e64: 383 case AMDGPU::V_LSHLREV_B16_e32: 384 case AMDGPU::V_LSHRREV_B16_e64: 385 case AMDGPU::V_LSHRREV_B16_e32: 386 case AMDGPU::V_ASHRREV_I16_e64: 387 case AMDGPU::V_ASHRREV_I16_e32: 388 case AMDGPU::V_ADD_U16_e64: 389 case AMDGPU::V_ADD_U16_e32: 390 case AMDGPU::V_SUB_U16_e64: 391 case AMDGPU::V_SUB_U16_e32: 392 case AMDGPU::V_SUBREV_U16_e64: 393 case AMDGPU::V_SUBREV_U16_e32: 394 case AMDGPU::V_MUL_LO_U16_e64: 395 case AMDGPU::V_MUL_LO_U16_e32: 396 case AMDGPU::V_ADD_F16_e64: 397 case AMDGPU::V_ADD_F16_e32: 398 case AMDGPU::V_SUB_F16_e64: 399 case AMDGPU::V_SUB_F16_e32: 400 case AMDGPU::V_SUBREV_F16_e64: 401 case AMDGPU::V_SUBREV_F16_e32: 402 case AMDGPU::V_MUL_F16_e64: 403 case AMDGPU::V_MUL_F16_e32: 404 case AMDGPU::V_MAX_F16_e64: 405 case AMDGPU::V_MAX_F16_e32: 406 case AMDGPU::V_MIN_F16_e64: 407 case AMDGPU::V_MIN_F16_e32: 408 case AMDGPU::V_MAX_U16_e64: 409 case AMDGPU::V_MAX_U16_e32: 410 case AMDGPU::V_MIN_U16_e64: 411 case AMDGPU::V_MIN_U16_e32: 412 case AMDGPU::V_MAX_I16_e64: 413 case AMDGPU::V_MAX_I16_e32: 414 case AMDGPU::V_MIN_I16_e64: 415 case AMDGPU::V_MIN_I16_e32: 416 // On gfx10, all 16-bit instructions preserve the high bits. 417 return getGeneration() <= AMDGPUSubtarget::GFX9; 418 case AMDGPU::V_MAD_F16_e64: 419 case AMDGPU::V_MADAK_F16: 420 case AMDGPU::V_MADMK_F16: 421 case AMDGPU::V_MAC_F16_e64: 422 case AMDGPU::V_MAC_F16_e32: 423 case AMDGPU::V_FMAMK_F16: 424 case AMDGPU::V_FMAAK_F16: 425 case AMDGPU::V_MAD_U16_e64: 426 case AMDGPU::V_MAD_I16_e64: 427 case AMDGPU::V_FMA_F16_e64: 428 case AMDGPU::V_FMAC_F16_e64: 429 case AMDGPU::V_FMAC_F16_e32: 430 case AMDGPU::V_DIV_FIXUP_F16_e64: 431 // In gfx9, the preferred handling of the unused high 16-bits changed. Most 432 // instructions maintain the legacy behavior of 0ing. Some instructions 433 // changed to preserving the high bits. 434 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 435 case AMDGPU::V_MAD_MIXLO_F16: 436 case AMDGPU::V_MAD_MIXHI_F16: 437 default: 438 return false; 439 } 440 } 441 442 unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, 443 const Function &F) const { 444 if (NWaves == 1) 445 return getLocalMemorySize(); 446 unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; 447 unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); 448 if (!WorkGroupsPerCu) 449 return 0; 450 unsigned MaxWaves = getMaxWavesPerEU(); 451 return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; 452 } 453 454 // FIXME: Should return min,max range. 455 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, 456 const Function &F) const { 457 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; 458 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); 459 if (!MaxWorkGroupsPerCu) 460 return 0; 461 462 const unsigned WaveSize = getWavefrontSize(); 463 464 // FIXME: Do we need to account for alignment requirement of LDS rounding the 465 // size up? 466 // Compute restriction based on LDS usage 467 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); 468 469 // This can be queried with more LDS than is possible, so just assume the 470 // worst. 471 if (NumGroups == 0) 472 return 1; 473 474 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); 475 476 // Round to the number of waves. 477 const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize; 478 unsigned MaxWaves = NumGroups * MaxGroupNumWaves; 479 480 // Clamp to the maximum possible number of waves. 481 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); 482 483 // FIXME: Needs to be a multiple of the group size? 484 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); 485 486 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && 487 "computed invalid occupancy"); 488 return MaxWaves; 489 } 490 491 unsigned 492 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { 493 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); 494 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); 495 } 496 497 std::pair<unsigned, unsigned> 498 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { 499 switch (CC) { 500 case CallingConv::AMDGPU_VS: 501 case CallingConv::AMDGPU_LS: 502 case CallingConv::AMDGPU_HS: 503 case CallingConv::AMDGPU_ES: 504 case CallingConv::AMDGPU_GS: 505 case CallingConv::AMDGPU_PS: 506 return std::make_pair(1, getWavefrontSize()); 507 default: 508 return std::make_pair(1u, getMaxFlatWorkGroupSize()); 509 } 510 } 511 512 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( 513 const Function &F) const { 514 // Default minimum/maximum flat work group sizes. 515 std::pair<unsigned, unsigned> Default = 516 getDefaultFlatWorkGroupSize(F.getCallingConv()); 517 518 // Requested minimum/maximum flat work group sizes. 519 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 520 F, "amdgpu-flat-work-group-size", Default); 521 522 // Make sure requested minimum is less than requested maximum. 523 if (Requested.first > Requested.second) 524 return Default; 525 526 // Make sure requested values do not violate subtarget's specifications. 527 if (Requested.first < getMinFlatWorkGroupSize()) 528 return Default; 529 if (Requested.second > getMaxFlatWorkGroupSize()) 530 return Default; 531 532 return Requested; 533 } 534 535 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( 536 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { 537 // Default minimum/maximum number of waves per execution unit. 538 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); 539 540 // If minimum/maximum flat work group sizes were explicitly requested using 541 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum 542 // number of waves per execution unit to values implied by requested 543 // minimum/maximum flat work group sizes. 544 unsigned MinImpliedByFlatWorkGroupSize = 545 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); 546 Default.first = MinImpliedByFlatWorkGroupSize; 547 548 // Requested minimum/maximum number of waves per execution unit. 549 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 550 F, "amdgpu-waves-per-eu", Default, true); 551 552 // Make sure requested minimum is less than requested maximum. 553 if (Requested.second && Requested.first > Requested.second) 554 return Default; 555 556 // Make sure requested values do not violate subtarget's specifications. 557 if (Requested.first < getMinWavesPerEU() || 558 Requested.second > getMaxWavesPerEU()) 559 return Default; 560 561 // Make sure requested values are compatible with values implied by requested 562 // minimum/maximum flat work group sizes. 563 if (Requested.first < MinImpliedByFlatWorkGroupSize) 564 return Default; 565 566 return Requested; 567 } 568 569 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { 570 auto Node = Kernel.getMetadata("reqd_work_group_size"); 571 if (Node && Node->getNumOperands() == 3) 572 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); 573 return std::numeric_limits<unsigned>::max(); 574 } 575 576 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { 577 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); 578 } 579 580 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, 581 unsigned Dimension) const { 582 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); 583 if (ReqdSize != std::numeric_limits<unsigned>::max()) 584 return ReqdSize - 1; 585 return getFlatWorkGroupSizes(Kernel).second - 1; 586 } 587 588 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { 589 Function *Kernel = I->getParent()->getParent(); 590 unsigned MinSize = 0; 591 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; 592 bool IdQuery = false; 593 594 // If reqd_work_group_size is present it narrows value down. 595 if (auto *CI = dyn_cast<CallInst>(I)) { 596 const Function *F = CI->getCalledFunction(); 597 if (F) { 598 unsigned Dim = UINT_MAX; 599 switch (F->getIntrinsicID()) { 600 case Intrinsic::amdgcn_workitem_id_x: 601 case Intrinsic::r600_read_tidig_x: 602 IdQuery = true; 603 LLVM_FALLTHROUGH; 604 case Intrinsic::r600_read_local_size_x: 605 Dim = 0; 606 break; 607 case Intrinsic::amdgcn_workitem_id_y: 608 case Intrinsic::r600_read_tidig_y: 609 IdQuery = true; 610 LLVM_FALLTHROUGH; 611 case Intrinsic::r600_read_local_size_y: 612 Dim = 1; 613 break; 614 case Intrinsic::amdgcn_workitem_id_z: 615 case Intrinsic::r600_read_tidig_z: 616 IdQuery = true; 617 LLVM_FALLTHROUGH; 618 case Intrinsic::r600_read_local_size_z: 619 Dim = 2; 620 break; 621 default: 622 break; 623 } 624 625 if (Dim <= 3) { 626 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); 627 if (ReqdSize != std::numeric_limits<unsigned>::max()) 628 MinSize = MaxSize = ReqdSize; 629 } 630 } 631 } 632 633 if (!MaxSize) 634 return false; 635 636 // Range metadata is [Lo, Hi). For ID query we need to pass max size 637 // as Hi. For size query we need to pass Hi + 1. 638 if (IdQuery) 639 MinSize = 0; 640 else 641 ++MaxSize; 642 643 MDBuilder MDB(I->getContext()); 644 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), 645 APInt(32, MaxSize)); 646 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 647 return true; 648 } 649 650 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { 651 if (isMesaKernel(F)) 652 return 16; 653 return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0); 654 } 655 656 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, 657 Align &MaxAlign) const { 658 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 659 F.getCallingConv() == CallingConv::SPIR_KERNEL); 660 661 const DataLayout &DL = F.getParent()->getDataLayout(); 662 uint64_t ExplicitArgBytes = 0; 663 MaxAlign = Align(1); 664 665 for (const Argument &Arg : F.args()) { 666 const bool IsByRef = Arg.hasByRefAttr(); 667 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 668 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 669 if (!Alignment) 670 Alignment = DL.getABITypeAlign(ArgTy); 671 672 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); 673 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; 674 MaxAlign = max(MaxAlign, Alignment); 675 } 676 677 return ExplicitArgBytes; 678 } 679 680 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, 681 Align &MaxAlign) const { 682 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); 683 684 unsigned ExplicitOffset = getExplicitKernelArgOffset(F); 685 686 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; 687 unsigned ImplicitBytes = getImplicitArgNumBytes(F); 688 if (ImplicitBytes != 0) { 689 const Align Alignment = getAlignmentForImplicitArgPtr(); 690 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; 691 MaxAlign = std::max(MaxAlign, Alignment); 692 } 693 694 // Being able to dereference past the end is useful for emitting scalar loads. 695 return alignTo(TotalSize, 4); 696 } 697 698 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { 699 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 700 : AMDGPUDwarfFlavour::Wave64; 701 } 702 703 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, 704 unsigned NumRegionInstrs) const { 705 // Track register pressure so the scheduler can try to decrease 706 // pressure once register usage is above the threshold defined by 707 // SIRegisterInfo::getRegPressureSetLimit() 708 Policy.ShouldTrackPressure = true; 709 710 // Enabling both top down and bottom up scheduling seems to give us less 711 // register spills than just using one of these approaches on its own. 712 Policy.OnlyTopDown = false; 713 Policy.OnlyBottomUp = false; 714 715 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. 716 if (!enableSIScheduler()) 717 Policy.ShouldTrackLaneMasks = true; 718 } 719 720 bool GCNSubtarget::hasMadF16() const { 721 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; 722 } 723 724 bool GCNSubtarget::useVGPRIndexMode() const { 725 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); 726 } 727 728 bool GCNSubtarget::useAA() const { return UseAA; } 729 730 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { 731 if (getGeneration() >= AMDGPUSubtarget::GFX10) 732 return getMaxWavesPerEU(); 733 734 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 735 if (SGPRs <= 80) 736 return 10; 737 if (SGPRs <= 88) 738 return 9; 739 if (SGPRs <= 100) 740 return 8; 741 return 7; 742 } 743 if (SGPRs <= 48) 744 return 10; 745 if (SGPRs <= 56) 746 return 9; 747 if (SGPRs <= 64) 748 return 8; 749 if (SGPRs <= 72) 750 return 7; 751 if (SGPRs <= 80) 752 return 6; 753 return 5; 754 } 755 756 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { 757 unsigned MaxWaves = getMaxWavesPerEU(); 758 unsigned Granule = getVGPRAllocGranule(); 759 if (VGPRs < Granule) 760 return MaxWaves; 761 unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; 762 return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); 763 } 764 765 unsigned 766 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratchInit) const { 767 if (getGeneration() >= AMDGPUSubtarget::GFX10) 768 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. 769 770 if (HasFlatScratchInit || HasArchitectedFlatScratch) { 771 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 772 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). 773 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) 774 return 4; // FLAT_SCRATCH, VCC (in that order). 775 } 776 777 if (isXNACKEnabled()) 778 return 4; // XNACK, VCC (in that order). 779 return 2; // VCC. 780 } 781 782 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { 783 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 784 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); 785 } 786 787 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { 788 // The logic to detect if the function has 789 // flat scratch init is slightly different than how 790 // SIMachineFunctionInfo constructor derives. 791 // We don't use amdgpu-calls, amdgpu-stack-objects 792 // attributes and isAmdHsaOrMesa here as it doesn't really matter. 793 // TODO: Outline this derivation logic and have just 794 // one common function in the backend to avoid duplication. 795 bool isEntry = AMDGPU::isEntryFunctionCC(F.getCallingConv()); 796 bool FunctionHasFlatScratchInit = false; 797 if (hasFlatAddressSpace() && isEntry && !flatScratchIsArchitected() && 798 enableFlatScratch()) { 799 FunctionHasFlatScratchInit = true; 800 } 801 return getBaseReservedNumSGPRs(FunctionHasFlatScratchInit); 802 } 803 804 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, 805 unsigned NumSGPRs, 806 unsigned NumVGPRs) const { 807 unsigned Occupancy = 808 std::min(getMaxWavesPerEU(), 809 getOccupancyWithLocalMemSize(LDSSize, F)); 810 if (NumSGPRs) 811 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); 812 if (NumVGPRs) 813 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); 814 return Occupancy; 815 } 816 817 unsigned GCNSubtarget::getBaseMaxNumSGPRs( 818 const Function &F, std::pair<unsigned, unsigned> WavesPerEU, 819 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { 820 // Compute maximum number of SGPRs function can use using default/requested 821 // minimum number of waves per execution unit. 822 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); 823 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); 824 825 // Check if maximum number of SGPRs was explicitly requested using 826 // "amdgpu-num-sgpr" attribute. 827 if (F.hasFnAttribute("amdgpu-num-sgpr")) { 828 unsigned Requested = AMDGPU::getIntegerAttribute( 829 F, "amdgpu-num-sgpr", MaxNumSGPRs); 830 831 // Make sure requested value does not violate subtarget's specifications. 832 if (Requested && (Requested <= ReservedNumSGPRs)) 833 Requested = 0; 834 835 // If more SGPRs are required to support the input user/system SGPRs, 836 // increase to accommodate them. 837 // 838 // FIXME: This really ends up using the requested number of SGPRs + number 839 // of reserved special registers in total. Theoretically you could re-use 840 // the last input registers for these special registers, but this would 841 // require a lot of complexity to deal with the weird aliasing. 842 unsigned InputNumSGPRs = PreloadedSGPRs; 843 if (Requested && Requested < InputNumSGPRs) 844 Requested = InputNumSGPRs; 845 846 // Make sure requested value is compatible with values implied by 847 // default/requested minimum/maximum number of waves per execution unit. 848 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) 849 Requested = 0; 850 if (WavesPerEU.second && 851 Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) 852 Requested = 0; 853 854 if (Requested) 855 MaxNumSGPRs = Requested; 856 } 857 858 if (hasSGPRInitBug()) 859 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 860 861 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); 862 } 863 864 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { 865 const Function &F = MF.getFunction(); 866 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 867 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), 868 getReservedNumSGPRs(MF)); 869 } 870 871 static unsigned getMaxNumPreloadedSGPRs() { 872 // Max number of user SGPRs 873 unsigned MaxUserSGPRs = 4 + // private segment buffer 874 2 + // Dispatch ptr 875 2 + // queue ptr 876 2 + // kernel segment ptr 877 2 + // dispatch ID 878 2 + // flat scratch init 879 2; // Implicit buffer ptr 880 // Max number of system SGPRs 881 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX 882 1 + // WorkGroupIDY 883 1 + // WorkGroupIDZ 884 1 + // WorkGroupInfo 885 1; // private segment wave byte offset 886 return MaxUserSGPRs + MaxSystemSGPRs; 887 } 888 889 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { 890 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), 891 getReservedNumSGPRs(F)); 892 } 893 894 unsigned GCNSubtarget::getBaseMaxNumVGPRs( 895 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { 896 // Compute maximum number of VGPRs function can use using default/requested 897 // minimum number of waves per execution unit. 898 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); 899 900 // Check if maximum number of VGPRs was explicitly requested using 901 // "amdgpu-num-vgpr" attribute. 902 if (F.hasFnAttribute("amdgpu-num-vgpr")) { 903 unsigned Requested = AMDGPU::getIntegerAttribute( 904 F, "amdgpu-num-vgpr", MaxNumVGPRs); 905 906 if (hasGFX90AInsts()) 907 Requested *= 2; 908 909 // Make sure requested value is compatible with values implied by 910 // default/requested minimum/maximum number of waves per execution unit. 911 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) 912 Requested = 0; 913 if (WavesPerEU.second && 914 Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) 915 Requested = 0; 916 917 if (Requested) 918 MaxNumVGPRs = Requested; 919 } 920 921 return MaxNumVGPRs; 922 } 923 924 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { 925 return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); 926 } 927 928 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { 929 const Function &F = MF.getFunction(); 930 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 931 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); 932 } 933 934 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, 935 int UseOpIdx, SDep &Dep) const { 936 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || 937 !Def->isInstr() || !Use->isInstr()) 938 return; 939 940 MachineInstr *DefI = Def->getInstr(); 941 MachineInstr *UseI = Use->getInstr(); 942 943 if (DefI->isBundle()) { 944 const SIRegisterInfo *TRI = getRegisterInfo(); 945 auto Reg = Dep.getReg(); 946 MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); 947 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); 948 unsigned Lat = 0; 949 for (++I; I != E && I->isBundledWithPred(); ++I) { 950 if (I->modifiesRegister(Reg, TRI)) 951 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); 952 else if (Lat) 953 --Lat; 954 } 955 Dep.setLatency(Lat); 956 } else if (UseI->isBundle()) { 957 const SIRegisterInfo *TRI = getRegisterInfo(); 958 auto Reg = Dep.getReg(); 959 MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); 960 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); 961 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); 962 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { 963 if (I->readsRegister(Reg, TRI)) 964 break; 965 --Lat; 966 } 967 Dep.setLatency(Lat); 968 } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) { 969 // Work around the fact that SIInstrInfo::fixImplicitOperands modifies 970 // implicit operands which come from the MCInstrDesc, which can fool 971 // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit 972 // pseudo operands. 973 Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency( 974 DefI, DefOpIdx, UseI, UseOpIdx)); 975 } 976 } 977 978 namespace { 979 struct FillMFMAShadowMutation : ScheduleDAGMutation { 980 const SIInstrInfo *TII; 981 982 ScheduleDAGMI *DAG; 983 984 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} 985 986 bool isSALU(const SUnit *SU) const { 987 const MachineInstr *MI = SU->getInstr(); 988 return MI && TII->isSALU(*MI) && !MI->isTerminator(); 989 } 990 991 bool isVALU(const SUnit *SU) const { 992 const MachineInstr *MI = SU->getInstr(); 993 return MI && TII->isVALU(*MI); 994 } 995 996 bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { 997 if (Pred->NodeNum < Succ->NodeNum) 998 return true; 999 1000 SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); 1001 1002 for (unsigned I = 0; I < Succs.size(); ++I) { 1003 for (const SDep &SI : Succs[I]->Succs) { 1004 const SUnit *SU = SI.getSUnit(); 1005 if (SU != Succs[I] && !llvm::is_contained(Succs, SU)) 1006 Succs.push_back(SU); 1007 } 1008 } 1009 1010 SmallPtrSet<const SUnit*, 32> Visited; 1011 while (!Preds.empty()) { 1012 const SUnit *SU = Preds.pop_back_val(); 1013 if (llvm::is_contained(Succs, SU)) 1014 return false; 1015 Visited.insert(SU); 1016 for (const SDep &SI : SU->Preds) 1017 if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) 1018 Preds.push_back(SI.getSUnit()); 1019 } 1020 1021 return true; 1022 } 1023 1024 // Link as many SALU instructions in chain as possible. Return the size 1025 // of the chain. Links up to MaxChain instructions. 1026 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, 1027 SmallPtrSetImpl<SUnit *> &Visited) const { 1028 SmallVector<SUnit *, 8> Worklist({To}); 1029 unsigned Linked = 0; 1030 1031 while (!Worklist.empty() && MaxChain-- > 0) { 1032 SUnit *SU = Worklist.pop_back_val(); 1033 if (!Visited.insert(SU).second) 1034 continue; 1035 1036 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); 1037 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); 1038 1039 if (SU->addPred(SDep(From, SDep::Artificial), false)) 1040 ++Linked; 1041 1042 for (SDep &SI : From->Succs) { 1043 SUnit *SUv = SI.getSUnit(); 1044 if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) 1045 SUv->addPred(SDep(SU, SDep::Artificial), false); 1046 } 1047 1048 for (SDep &SI : SU->Succs) { 1049 SUnit *Succ = SI.getSUnit(); 1050 if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) 1051 Worklist.push_back(Succ); 1052 } 1053 } 1054 1055 return Linked; 1056 } 1057 1058 void apply(ScheduleDAGInstrs *DAGInstrs) override { 1059 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); 1060 if (!ST.hasMAIInsts() || DisablePowerSched) 1061 return; 1062 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1063 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); 1064 if (!TSchedModel || DAG->SUnits.empty()) 1065 return; 1066 1067 // Scan for MFMA long latency instructions and try to add a dependency 1068 // of available SALU instructions to give them a chance to fill MFMA 1069 // shadow. That is desirable to fill MFMA shadow with SALU instructions 1070 // rather than VALU to prevent power consumption bursts and throttle. 1071 auto LastSALU = DAG->SUnits.begin(); 1072 auto E = DAG->SUnits.end(); 1073 SmallPtrSet<SUnit*, 32> Visited; 1074 for (SUnit &SU : DAG->SUnits) { 1075 MachineInstr &MAI = *SU.getInstr(); 1076 if (!TII->isMAI(MAI) || 1077 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 1078 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) 1079 continue; 1080 1081 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; 1082 1083 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); 1084 dbgs() << "Need " << Lat 1085 << " instructions to cover latency.\n"); 1086 1087 // Find up to Lat independent scalar instructions as early as 1088 // possible such that they can be scheduled after this MFMA. 1089 for ( ; Lat && LastSALU != E; ++LastSALU) { 1090 if (Visited.count(&*LastSALU)) 1091 continue; 1092 1093 if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) 1094 continue; 1095 1096 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); 1097 } 1098 } 1099 } 1100 }; 1101 } // namespace 1102 1103 void GCNSubtarget::getPostRAMutations( 1104 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 1105 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); 1106 } 1107 1108 std::unique_ptr<ScheduleDAGMutation> 1109 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { 1110 return std::make_unique<FillMFMAShadowMutation>(&InstrInfo); 1111 } 1112 1113 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { 1114 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) 1115 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); 1116 else 1117 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); 1118 } 1119 1120 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { 1121 if (TM.getTargetTriple().getArch() == Triple::amdgcn) 1122 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); 1123 else 1124 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); 1125 } 1126