1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Implements the AMDGPU specific subclass of TargetSubtarget. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUSubtarget.h" 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPUInstructionSelector.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPURegisterBankInfo.h" 19 #include "AMDGPUTargetMachine.h" 20 #include "R600Subtarget.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/IntrinsicsR600.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "amdgpu-subtarget" 36 37 #define GET_SUBTARGETINFO_TARGET_DESC 38 #define GET_SUBTARGETINFO_CTOR 39 #define AMDGPUSubtarget GCNSubtarget 40 #include "AMDGPUGenSubtargetInfo.inc" 41 #undef AMDGPUSubtarget 42 43 static cl::opt<bool> DisablePowerSched( 44 "amdgpu-disable-power-sched", 45 cl::desc("Disable scheduling to minimize mAI power bursts"), 46 cl::init(false)); 47 48 static cl::opt<bool> EnableVGPRIndexMode( 49 "amdgpu-vgpr-index-mode", 50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 51 cl::init(false)); 52 53 static cl::opt<bool> EnableFlatScratch( 54 "amdgpu-enable-flat-scratch", 55 cl::desc("Use flat scratch instructions"), 56 cl::init(false)); 57 58 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", 59 cl::desc("Enable the use of AA during codegen."), 60 cl::init(true)); 61 62 GCNSubtarget::~GCNSubtarget() = default; 63 64 GCNSubtarget & 65 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, 66 StringRef GPU, StringRef FS) { 67 // Determine default and user-specified characteristics 68 // 69 // We want to be able to turn these off, but making this a subtarget feature 70 // for SI has the unhelpful behavior that it unsets everything else if you 71 // disable it. 72 // 73 // Similarly we want enable-prt-strict-null to be on by default and not to 74 // unset everything else if it is disabled 75 76 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); 77 78 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default 79 if (isAmdHsaOS()) 80 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; 81 82 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS 83 84 // Disable mutually exclusive bits. 85 if (FS.find_insensitive("+wavefrontsize") != StringRef::npos) { 86 if (FS.find_insensitive("wavefrontsize16") == StringRef::npos) 87 FullFS += "-wavefrontsize16,"; 88 if (FS.find_insensitive("wavefrontsize32") == StringRef::npos) 89 FullFS += "-wavefrontsize32,"; 90 if (FS.find_insensitive("wavefrontsize64") == StringRef::npos) 91 FullFS += "-wavefrontsize64,"; 92 } 93 94 FullFS += FS; 95 96 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); 97 98 // Implement the "generic" processors, which acts as the default when no 99 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to 100 // the first amdgcn target that supports flat addressing. Other OSes defaults 101 // to the first amdgcn target. 102 if (Gen == AMDGPUSubtarget::INVALID) { 103 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS 104 : AMDGPUSubtarget::SOUTHERN_ISLANDS; 105 } 106 107 // We don't support FP64 for EG/NI atm. 108 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); 109 110 // Targets must either support 64-bit offsets for MUBUF instructions, and/or 111 // support flat operations, otherwise they cannot access a 64-bit global 112 // address space 113 assert(hasAddr64() || hasFlat()); 114 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets 115 // that do not support ADDR64 variants of MUBUF instructions. Such targets 116 // cannot use a 64 bit offset with a MUBUF instruction to access the global 117 // address space 118 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { 119 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 120 FlatForGlobal = true; 121 } 122 // Unless +-flat-for-global is specified, use MUBUF instructions for global 123 // address space access if flat operations are not available. 124 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { 125 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 126 FlatForGlobal = false; 127 } 128 129 // Set defaults if needed. 130 if (MaxPrivateElementSize == 0) 131 MaxPrivateElementSize = 4; 132 133 if (LDSBankCount == 0) 134 LDSBankCount = 32; 135 136 if (TT.getArch() == Triple::amdgcn) { 137 if (LocalMemorySize == 0) 138 LocalMemorySize = 32768; 139 140 // Do something sensible for unspecified target. 141 if (!HasMovrel && !HasVGPRIndexMode) 142 HasMovrel = true; 143 } 144 145 // Don't crash on invalid devices. 146 if (WavefrontSizeLog2 == 0) 147 WavefrontSizeLog2 = 5; 148 149 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; 150 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; 151 152 TargetID.setTargetIDFromFeaturesString(FS); 153 154 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " 155 << TargetID.getXnackSetting() << '\n'); 156 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " 157 << TargetID.getSramEccSetting() << '\n'); 158 159 return *this; 160 } 161 162 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : 163 TargetTriple(TT), 164 GCN3Encoding(false), 165 Has16BitInsts(false), 166 HasMadMixInsts(false), 167 HasMadMacF32Insts(false), 168 HasDsSrc2Insts(false), 169 HasSDWA(false), 170 HasVOP3PInsts(false), 171 HasMulI24(true), 172 HasMulU24(true), 173 HasSMulHi(false), 174 HasInv2PiInlineImm(false), 175 HasFminFmaxLegacy(true), 176 EnablePromoteAlloca(false), 177 HasTrigReducedRange(false), 178 MaxWavesPerEU(10), 179 LocalMemorySize(0), 180 WavefrontSizeLog2(0) 181 { } 182 183 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, 184 const GCNTargetMachine &TM) 185 : // clang-format off 186 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), 187 AMDGPUSubtarget(TT), 188 TargetTriple(TT), 189 TargetID(*this), 190 Gen(INVALID), 191 InstrItins(getInstrItineraryForCPU(GPU)), 192 LDSBankCount(0), 193 MaxPrivateElementSize(0), 194 195 FastFMAF32(false), 196 FastDenormalF32(false), 197 HalfRate64Ops(false), 198 FullRate64Ops(false), 199 200 FlatForGlobal(false), 201 AutoWaitcntBeforeBarrier(false), 202 UnalignedScratchAccess(false), 203 UnalignedAccessMode(false), 204 205 HasApertureRegs(false), 206 SupportsXNACK(false), 207 EnableXNACK(false), 208 EnableTgSplit(false), 209 EnableCuMode(false), 210 TrapHandler(false), 211 212 EnableLoadStoreOpt(false), 213 EnableUnsafeDSOffsetFolding(false), 214 EnableSIScheduler(false), 215 EnableDS128(false), 216 EnablePRTStrictNull(false), 217 DumpCode(false), 218 219 FP64(false), 220 CIInsts(false), 221 GFX8Insts(false), 222 GFX9Insts(false), 223 GFX90AInsts(false), 224 GFX10Insts(false), 225 GFX10_3Insts(false), 226 GFX7GFX8GFX9Insts(false), 227 SGPRInitBug(false), 228 NegativeScratchOffsetBug(false), 229 NegativeUnalignedScratchOffsetBug(false), 230 HasSMemRealTime(false), 231 HasIntClamp(false), 232 HasFmaMixInsts(false), 233 HasMovrel(false), 234 HasVGPRIndexMode(false), 235 HasScalarStores(false), 236 HasScalarAtomics(false), 237 HasSDWAOmod(false), 238 HasSDWAScalar(false), 239 HasSDWASdst(false), 240 HasSDWAMac(false), 241 HasSDWAOutModsVOPC(false), 242 HasDPP(false), 243 HasDPP8(false), 244 Has64BitDPP(false), 245 HasPackedFP32Ops(false), 246 HasExtendedImageInsts(false), 247 HasR128A16(false), 248 HasGFX10A16(false), 249 HasG16(false), 250 HasNSAEncoding(false), 251 NSAMaxSize(0), 252 GFX10_AEncoding(false), 253 GFX10_BEncoding(false), 254 HasDLInsts(false), 255 HasDot1Insts(false), 256 HasDot2Insts(false), 257 HasDot3Insts(false), 258 HasDot4Insts(false), 259 HasDot5Insts(false), 260 HasDot6Insts(false), 261 HasDot7Insts(false), 262 HasMAIInsts(false), 263 HasPkFmacF16Inst(false), 264 HasAtomicFaddInsts(false), 265 SupportsSRAMECC(false), 266 EnableSRAMECC(false), 267 HasNoSdstCMPX(false), 268 HasVscnt(false), 269 HasGetWaveIdInst(false), 270 HasSMemTimeInst(false), 271 HasShaderCyclesRegister(false), 272 HasRegisterBanking(false), 273 HasVOP3Literal(false), 274 HasNoDataDepHazard(false), 275 FlatAddressSpace(false), 276 FlatInstOffsets(false), 277 FlatGlobalInsts(false), 278 FlatScratchInsts(false), 279 ScalarFlatScratchInsts(false), 280 HasArchitectedFlatScratch(false), 281 AddNoCarryInsts(false), 282 HasUnpackedD16VMem(false), 283 LDSMisalignedBug(false), 284 HasMFMAInlineLiteralBug(false), 285 UnalignedBufferAccess(false), 286 UnalignedDSAccess(false), 287 HasPackedTID(false), 288 289 ScalarizeGlobal(false), 290 291 HasVcmpxPermlaneHazard(false), 292 HasVMEMtoScalarWriteHazard(false), 293 HasSMEMtoVectorWriteHazard(false), 294 HasInstFwdPrefetchBug(false), 295 HasVcmpxExecWARHazard(false), 296 HasLdsBranchVmemWARHazard(false), 297 HasNSAtoVMEMBug(false), 298 HasNSAClauseBug(false), 299 HasOffset3fBug(false), 300 HasFlatSegmentOffsetBug(false), 301 HasImageStoreD16Bug(false), 302 HasImageGather4D16Bug(false), 303 304 FeatureDisable(false), 305 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), 306 TLInfo(TM, *this), 307 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { 308 // clang-format on 309 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); 310 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); 311 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); 312 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); 313 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); 314 InstSelector.reset(new AMDGPUInstructionSelector( 315 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); 316 } 317 318 bool GCNSubtarget::enableFlatScratch() const { 319 return flatScratchIsArchitected() || 320 (EnableFlatScratch && hasFlatScratchInsts()); 321 } 322 323 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { 324 if (getGeneration() < GFX10) 325 return 1; 326 327 switch (Opcode) { 328 case AMDGPU::V_LSHLREV_B64_e64: 329 case AMDGPU::V_LSHLREV_B64_gfx10: 330 case AMDGPU::V_LSHL_B64_e64: 331 case AMDGPU::V_LSHRREV_B64_e64: 332 case AMDGPU::V_LSHRREV_B64_gfx10: 333 case AMDGPU::V_LSHR_B64_e64: 334 case AMDGPU::V_ASHRREV_I64_e64: 335 case AMDGPU::V_ASHRREV_I64_gfx10: 336 case AMDGPU::V_ASHR_I64_e64: 337 return 1; 338 } 339 340 return 2; 341 } 342 343 /// This list was mostly derived from experimentation. 344 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { 345 switch (Opcode) { 346 case AMDGPU::V_CVT_F16_F32_e32: 347 case AMDGPU::V_CVT_F16_F32_e64: 348 case AMDGPU::V_CVT_F16_U16_e32: 349 case AMDGPU::V_CVT_F16_U16_e64: 350 case AMDGPU::V_CVT_F16_I16_e32: 351 case AMDGPU::V_CVT_F16_I16_e64: 352 case AMDGPU::V_RCP_F16_e64: 353 case AMDGPU::V_RCP_F16_e32: 354 case AMDGPU::V_RSQ_F16_e64: 355 case AMDGPU::V_RSQ_F16_e32: 356 case AMDGPU::V_SQRT_F16_e64: 357 case AMDGPU::V_SQRT_F16_e32: 358 case AMDGPU::V_LOG_F16_e64: 359 case AMDGPU::V_LOG_F16_e32: 360 case AMDGPU::V_EXP_F16_e64: 361 case AMDGPU::V_EXP_F16_e32: 362 case AMDGPU::V_SIN_F16_e64: 363 case AMDGPU::V_SIN_F16_e32: 364 case AMDGPU::V_COS_F16_e64: 365 case AMDGPU::V_COS_F16_e32: 366 case AMDGPU::V_FLOOR_F16_e64: 367 case AMDGPU::V_FLOOR_F16_e32: 368 case AMDGPU::V_CEIL_F16_e64: 369 case AMDGPU::V_CEIL_F16_e32: 370 case AMDGPU::V_TRUNC_F16_e64: 371 case AMDGPU::V_TRUNC_F16_e32: 372 case AMDGPU::V_RNDNE_F16_e64: 373 case AMDGPU::V_RNDNE_F16_e32: 374 case AMDGPU::V_FRACT_F16_e64: 375 case AMDGPU::V_FRACT_F16_e32: 376 case AMDGPU::V_FREXP_MANT_F16_e64: 377 case AMDGPU::V_FREXP_MANT_F16_e32: 378 case AMDGPU::V_FREXP_EXP_I16_F16_e64: 379 case AMDGPU::V_FREXP_EXP_I16_F16_e32: 380 case AMDGPU::V_LDEXP_F16_e64: 381 case AMDGPU::V_LDEXP_F16_e32: 382 case AMDGPU::V_LSHLREV_B16_e64: 383 case AMDGPU::V_LSHLREV_B16_e32: 384 case AMDGPU::V_LSHRREV_B16_e64: 385 case AMDGPU::V_LSHRREV_B16_e32: 386 case AMDGPU::V_ASHRREV_I16_e64: 387 case AMDGPU::V_ASHRREV_I16_e32: 388 case AMDGPU::V_ADD_U16_e64: 389 case AMDGPU::V_ADD_U16_e32: 390 case AMDGPU::V_SUB_U16_e64: 391 case AMDGPU::V_SUB_U16_e32: 392 case AMDGPU::V_SUBREV_U16_e64: 393 case AMDGPU::V_SUBREV_U16_e32: 394 case AMDGPU::V_MUL_LO_U16_e64: 395 case AMDGPU::V_MUL_LO_U16_e32: 396 case AMDGPU::V_ADD_F16_e64: 397 case AMDGPU::V_ADD_F16_e32: 398 case AMDGPU::V_SUB_F16_e64: 399 case AMDGPU::V_SUB_F16_e32: 400 case AMDGPU::V_SUBREV_F16_e64: 401 case AMDGPU::V_SUBREV_F16_e32: 402 case AMDGPU::V_MUL_F16_e64: 403 case AMDGPU::V_MUL_F16_e32: 404 case AMDGPU::V_MAX_F16_e64: 405 case AMDGPU::V_MAX_F16_e32: 406 case AMDGPU::V_MIN_F16_e64: 407 case AMDGPU::V_MIN_F16_e32: 408 case AMDGPU::V_MAX_U16_e64: 409 case AMDGPU::V_MAX_U16_e32: 410 case AMDGPU::V_MIN_U16_e64: 411 case AMDGPU::V_MIN_U16_e32: 412 case AMDGPU::V_MAX_I16_e64: 413 case AMDGPU::V_MAX_I16_e32: 414 case AMDGPU::V_MIN_I16_e64: 415 case AMDGPU::V_MIN_I16_e32: 416 // On gfx10, all 16-bit instructions preserve the high bits. 417 return getGeneration() <= AMDGPUSubtarget::GFX9; 418 case AMDGPU::V_MAD_F16_e64: 419 case AMDGPU::V_MADAK_F16: 420 case AMDGPU::V_MADMK_F16: 421 case AMDGPU::V_MAC_F16_e64: 422 case AMDGPU::V_MAC_F16_e32: 423 case AMDGPU::V_FMAMK_F16: 424 case AMDGPU::V_FMAAK_F16: 425 case AMDGPU::V_MAD_U16_e64: 426 case AMDGPU::V_MAD_I16_e64: 427 case AMDGPU::V_FMA_F16_e64: 428 case AMDGPU::V_FMAC_F16_e64: 429 case AMDGPU::V_FMAC_F16_e32: 430 case AMDGPU::V_DIV_FIXUP_F16_e64: 431 // In gfx9, the preferred handling of the unused high 16-bits changed. Most 432 // instructions maintain the legacy behavior of 0ing. Some instructions 433 // changed to preserving the high bits. 434 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 435 case AMDGPU::V_MAD_MIXLO_F16: 436 case AMDGPU::V_MAD_MIXHI_F16: 437 default: 438 return false; 439 } 440 } 441 442 unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, 443 const Function &F) const { 444 if (NWaves == 1) 445 return getLocalMemorySize(); 446 unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; 447 unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); 448 if (!WorkGroupsPerCu) 449 return 0; 450 unsigned MaxWaves = getMaxWavesPerEU(); 451 return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; 452 } 453 454 // FIXME: Should return min,max range. 455 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, 456 const Function &F) const { 457 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; 458 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); 459 if (!MaxWorkGroupsPerCu) 460 return 0; 461 462 const unsigned WaveSize = getWavefrontSize(); 463 464 // FIXME: Do we need to account for alignment requirement of LDS rounding the 465 // size up? 466 // Compute restriction based on LDS usage 467 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); 468 469 // This can be queried with more LDS than is possible, so just assume the 470 // worst. 471 if (NumGroups == 0) 472 return 1; 473 474 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); 475 476 // Round to the number of waves. 477 const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize; 478 unsigned MaxWaves = NumGroups * MaxGroupNumWaves; 479 480 // Clamp to the maximum possible number of waves. 481 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); 482 483 // FIXME: Needs to be a multiple of the group size? 484 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); 485 486 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && 487 "computed invalid occupancy"); 488 return MaxWaves; 489 } 490 491 unsigned 492 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { 493 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); 494 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); 495 } 496 497 std::pair<unsigned, unsigned> 498 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { 499 switch (CC) { 500 case CallingConv::AMDGPU_VS: 501 case CallingConv::AMDGPU_LS: 502 case CallingConv::AMDGPU_HS: 503 case CallingConv::AMDGPU_ES: 504 case CallingConv::AMDGPU_GS: 505 case CallingConv::AMDGPU_PS: 506 return std::make_pair(1, getWavefrontSize()); 507 default: 508 return std::make_pair(1u, getMaxFlatWorkGroupSize()); 509 } 510 } 511 512 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( 513 const Function &F) const { 514 // Default minimum/maximum flat work group sizes. 515 std::pair<unsigned, unsigned> Default = 516 getDefaultFlatWorkGroupSize(F.getCallingConv()); 517 518 // Requested minimum/maximum flat work group sizes. 519 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 520 F, "amdgpu-flat-work-group-size", Default); 521 522 // Make sure requested minimum is less than requested maximum. 523 if (Requested.first > Requested.second) 524 return Default; 525 526 // Make sure requested values do not violate subtarget's specifications. 527 if (Requested.first < getMinFlatWorkGroupSize()) 528 return Default; 529 if (Requested.second > getMaxFlatWorkGroupSize()) 530 return Default; 531 532 return Requested; 533 } 534 535 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( 536 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { 537 // Default minimum/maximum number of waves per execution unit. 538 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); 539 540 // If minimum/maximum flat work group sizes were explicitly requested using 541 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum 542 // number of waves per execution unit to values implied by requested 543 // minimum/maximum flat work group sizes. 544 unsigned MinImpliedByFlatWorkGroupSize = 545 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); 546 Default.first = MinImpliedByFlatWorkGroupSize; 547 bool RequestedFlatWorkGroupSize = 548 F.hasFnAttribute("amdgpu-flat-work-group-size"); 549 550 // Requested minimum/maximum number of waves per execution unit. 551 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 552 F, "amdgpu-waves-per-eu", Default, true); 553 554 // Make sure requested minimum is less than requested maximum. 555 if (Requested.second && Requested.first > Requested.second) 556 return Default; 557 558 // Make sure requested values do not violate subtarget's specifications. 559 if (Requested.first < getMinWavesPerEU() || 560 Requested.second > getMaxWavesPerEU()) 561 return Default; 562 563 // Make sure requested values are compatible with values implied by requested 564 // minimum/maximum flat work group sizes. 565 if (RequestedFlatWorkGroupSize && 566 Requested.first < MinImpliedByFlatWorkGroupSize) 567 return Default; 568 569 return Requested; 570 } 571 572 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { 573 auto Node = Kernel.getMetadata("reqd_work_group_size"); 574 if (Node && Node->getNumOperands() == 3) 575 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); 576 return std::numeric_limits<unsigned>::max(); 577 } 578 579 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { 580 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); 581 } 582 583 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, 584 unsigned Dimension) const { 585 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); 586 if (ReqdSize != std::numeric_limits<unsigned>::max()) 587 return ReqdSize - 1; 588 return getFlatWorkGroupSizes(Kernel).second - 1; 589 } 590 591 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { 592 Function *Kernel = I->getParent()->getParent(); 593 unsigned MinSize = 0; 594 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; 595 bool IdQuery = false; 596 597 // If reqd_work_group_size is present it narrows value down. 598 if (auto *CI = dyn_cast<CallInst>(I)) { 599 const Function *F = CI->getCalledFunction(); 600 if (F) { 601 unsigned Dim = UINT_MAX; 602 switch (F->getIntrinsicID()) { 603 case Intrinsic::amdgcn_workitem_id_x: 604 case Intrinsic::r600_read_tidig_x: 605 IdQuery = true; 606 LLVM_FALLTHROUGH; 607 case Intrinsic::r600_read_local_size_x: 608 Dim = 0; 609 break; 610 case Intrinsic::amdgcn_workitem_id_y: 611 case Intrinsic::r600_read_tidig_y: 612 IdQuery = true; 613 LLVM_FALLTHROUGH; 614 case Intrinsic::r600_read_local_size_y: 615 Dim = 1; 616 break; 617 case Intrinsic::amdgcn_workitem_id_z: 618 case Intrinsic::r600_read_tidig_z: 619 IdQuery = true; 620 LLVM_FALLTHROUGH; 621 case Intrinsic::r600_read_local_size_z: 622 Dim = 2; 623 break; 624 default: 625 break; 626 } 627 628 if (Dim <= 3) { 629 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); 630 if (ReqdSize != std::numeric_limits<unsigned>::max()) 631 MinSize = MaxSize = ReqdSize; 632 } 633 } 634 } 635 636 if (!MaxSize) 637 return false; 638 639 // Range metadata is [Lo, Hi). For ID query we need to pass max size 640 // as Hi. For size query we need to pass Hi + 1. 641 if (IdQuery) 642 MinSize = 0; 643 else 644 ++MaxSize; 645 646 MDBuilder MDB(I->getContext()); 647 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), 648 APInt(32, MaxSize)); 649 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 650 return true; 651 } 652 653 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { 654 if (isMesaKernel(F)) 655 return 16; 656 return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0); 657 } 658 659 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, 660 Align &MaxAlign) const { 661 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 662 F.getCallingConv() == CallingConv::SPIR_KERNEL); 663 664 const DataLayout &DL = F.getParent()->getDataLayout(); 665 uint64_t ExplicitArgBytes = 0; 666 MaxAlign = Align(1); 667 668 for (const Argument &Arg : F.args()) { 669 const bool IsByRef = Arg.hasByRefAttr(); 670 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 671 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 672 if (!Alignment) 673 Alignment = DL.getABITypeAlign(ArgTy); 674 675 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); 676 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; 677 MaxAlign = max(MaxAlign, Alignment); 678 } 679 680 return ExplicitArgBytes; 681 } 682 683 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, 684 Align &MaxAlign) const { 685 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); 686 687 unsigned ExplicitOffset = getExplicitKernelArgOffset(F); 688 689 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; 690 unsigned ImplicitBytes = getImplicitArgNumBytes(F); 691 if (ImplicitBytes != 0) { 692 const Align Alignment = getAlignmentForImplicitArgPtr(); 693 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; 694 } 695 696 // Being able to dereference past the end is useful for emitting scalar loads. 697 return alignTo(TotalSize, 4); 698 } 699 700 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { 701 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 702 : AMDGPUDwarfFlavour::Wave64; 703 } 704 705 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, 706 unsigned NumRegionInstrs) const { 707 // Track register pressure so the scheduler can try to decrease 708 // pressure once register usage is above the threshold defined by 709 // SIRegisterInfo::getRegPressureSetLimit() 710 Policy.ShouldTrackPressure = true; 711 712 // Enabling both top down and bottom up scheduling seems to give us less 713 // register spills than just using one of these approaches on its own. 714 Policy.OnlyTopDown = false; 715 Policy.OnlyBottomUp = false; 716 717 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. 718 if (!enableSIScheduler()) 719 Policy.ShouldTrackLaneMasks = true; 720 } 721 722 bool GCNSubtarget::hasMadF16() const { 723 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; 724 } 725 726 bool GCNSubtarget::useVGPRIndexMode() const { 727 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); 728 } 729 730 bool GCNSubtarget::useAA() const { return UseAA; } 731 732 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { 733 if (getGeneration() >= AMDGPUSubtarget::GFX10) 734 return getMaxWavesPerEU(); 735 736 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 737 if (SGPRs <= 80) 738 return 10; 739 if (SGPRs <= 88) 740 return 9; 741 if (SGPRs <= 100) 742 return 8; 743 return 7; 744 } 745 if (SGPRs <= 48) 746 return 10; 747 if (SGPRs <= 56) 748 return 9; 749 if (SGPRs <= 64) 750 return 8; 751 if (SGPRs <= 72) 752 return 7; 753 if (SGPRs <= 80) 754 return 6; 755 return 5; 756 } 757 758 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { 759 unsigned MaxWaves = getMaxWavesPerEU(); 760 unsigned Granule = getVGPRAllocGranule(); 761 if (VGPRs < Granule) 762 return MaxWaves; 763 unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; 764 return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); 765 } 766 767 unsigned 768 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratchInit) const { 769 if (getGeneration() >= AMDGPUSubtarget::GFX10) 770 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. 771 772 if (HasFlatScratchInit) { 773 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 774 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). 775 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) 776 return 4; // FLAT_SCRATCH, VCC (in that order). 777 } 778 779 if (isXNACKEnabled()) 780 return 4; // XNACK, VCC (in that order). 781 return 2; // VCC. 782 } 783 784 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { 785 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 786 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); 787 } 788 789 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { 790 // The logic to detect if the function has 791 // flat scratch init is slightly different than how 792 // SIMachineFunctionInfo constructor derives. 793 // We don't use amdgpu-calls, amdgpu-stack-objects 794 // attributes and isAmdHsaOrMesa here as it doesn't really matter. 795 // TODO: Outline this derivation logic and have just 796 // one common function in the backend to avoid duplication. 797 bool isEntry = AMDGPU::isEntryFunctionCC(F.getCallingConv()); 798 bool FunctionHasFlatScratchInit = false; 799 if (hasFlatAddressSpace() && isEntry && !flatScratchIsArchitected() && 800 enableFlatScratch()) { 801 FunctionHasFlatScratchInit = true; 802 } 803 return getBaseReservedNumSGPRs(FunctionHasFlatScratchInit); 804 } 805 806 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, 807 unsigned NumSGPRs, 808 unsigned NumVGPRs) const { 809 unsigned Occupancy = 810 std::min(getMaxWavesPerEU(), 811 getOccupancyWithLocalMemSize(LDSSize, F)); 812 if (NumSGPRs) 813 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); 814 if (NumVGPRs) 815 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); 816 return Occupancy; 817 } 818 819 unsigned GCNSubtarget::getBaseMaxNumSGPRs( 820 const Function &F, std::pair<unsigned, unsigned> WavesPerEU, 821 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { 822 // Compute maximum number of SGPRs function can use using default/requested 823 // minimum number of waves per execution unit. 824 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); 825 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); 826 827 // Check if maximum number of SGPRs was explicitly requested using 828 // "amdgpu-num-sgpr" attribute. 829 if (F.hasFnAttribute("amdgpu-num-sgpr")) { 830 unsigned Requested = AMDGPU::getIntegerAttribute( 831 F, "amdgpu-num-sgpr", MaxNumSGPRs); 832 833 // Make sure requested value does not violate subtarget's specifications. 834 if (Requested && (Requested <= ReservedNumSGPRs)) 835 Requested = 0; 836 837 // If more SGPRs are required to support the input user/system SGPRs, 838 // increase to accommodate them. 839 // 840 // FIXME: This really ends up using the requested number of SGPRs + number 841 // of reserved special registers in total. Theoretically you could re-use 842 // the last input registers for these special registers, but this would 843 // require a lot of complexity to deal with the weird aliasing. 844 unsigned InputNumSGPRs = PreloadedSGPRs; 845 if (Requested && Requested < InputNumSGPRs) 846 Requested = InputNumSGPRs; 847 848 // Make sure requested value is compatible with values implied by 849 // default/requested minimum/maximum number of waves per execution unit. 850 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) 851 Requested = 0; 852 if (WavesPerEU.second && 853 Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) 854 Requested = 0; 855 856 if (Requested) 857 MaxNumSGPRs = Requested; 858 } 859 860 if (hasSGPRInitBug()) 861 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 862 863 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); 864 } 865 866 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { 867 const Function &F = MF.getFunction(); 868 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 869 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), 870 getReservedNumSGPRs(MF)); 871 } 872 873 static unsigned getMaxNumPreloadedSGPRs() { 874 // Max number of user SGPRs 875 unsigned MaxUserSGPRs = 4 + // private segment buffer 876 2 + // Dispatch ptr 877 2 + // queue ptr 878 2 + // kernel segment ptr 879 2 + // dispatch ID 880 2 + // flat scratch init 881 2; // Implicit buffer ptr 882 // Max number of system SGPRs 883 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX 884 1 + // WorkGroupIDY 885 1 + // WorkGroupIDZ 886 1 + // WorkGroupInfo 887 1; // private segment wave byte offset 888 return MaxUserSGPRs + MaxSystemSGPRs; 889 } 890 891 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { 892 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), 893 getReservedNumSGPRs(F)); 894 } 895 896 unsigned GCNSubtarget::getBaseMaxNumVGPRs( 897 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { 898 // Compute maximum number of VGPRs function can use using default/requested 899 // minimum number of waves per execution unit. 900 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); 901 902 // Check if maximum number of VGPRs was explicitly requested using 903 // "amdgpu-num-vgpr" attribute. 904 if (F.hasFnAttribute("amdgpu-num-vgpr")) { 905 unsigned Requested = AMDGPU::getIntegerAttribute( 906 F, "amdgpu-num-vgpr", MaxNumVGPRs); 907 908 if (hasGFX90AInsts()) 909 Requested *= 2; 910 911 // Make sure requested value is compatible with values implied by 912 // default/requested minimum/maximum number of waves per execution unit. 913 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) 914 Requested = 0; 915 if (WavesPerEU.second && 916 Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) 917 Requested = 0; 918 919 if (Requested) 920 MaxNumVGPRs = Requested; 921 } 922 923 return MaxNumVGPRs; 924 } 925 926 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { 927 return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); 928 } 929 930 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { 931 const Function &F = MF.getFunction(); 932 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 933 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); 934 } 935 936 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, 937 int UseOpIdx, SDep &Dep) const { 938 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || 939 !Def->isInstr() || !Use->isInstr()) 940 return; 941 942 MachineInstr *DefI = Def->getInstr(); 943 MachineInstr *UseI = Use->getInstr(); 944 945 if (DefI->isBundle()) { 946 const SIRegisterInfo *TRI = getRegisterInfo(); 947 auto Reg = Dep.getReg(); 948 MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); 949 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); 950 unsigned Lat = 0; 951 for (++I; I != E && I->isBundledWithPred(); ++I) { 952 if (I->modifiesRegister(Reg, TRI)) 953 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); 954 else if (Lat) 955 --Lat; 956 } 957 Dep.setLatency(Lat); 958 } else if (UseI->isBundle()) { 959 const SIRegisterInfo *TRI = getRegisterInfo(); 960 auto Reg = Dep.getReg(); 961 MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); 962 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); 963 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); 964 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { 965 if (I->readsRegister(Reg, TRI)) 966 break; 967 --Lat; 968 } 969 Dep.setLatency(Lat); 970 } 971 } 972 973 namespace { 974 struct FillMFMAShadowMutation : ScheduleDAGMutation { 975 const SIInstrInfo *TII; 976 977 ScheduleDAGMI *DAG; 978 979 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} 980 981 bool isSALU(const SUnit *SU) const { 982 const MachineInstr *MI = SU->getInstr(); 983 return MI && TII->isSALU(*MI) && !MI->isTerminator(); 984 } 985 986 bool isVALU(const SUnit *SU) const { 987 const MachineInstr *MI = SU->getInstr(); 988 return MI && TII->isVALU(*MI); 989 } 990 991 bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { 992 if (Pred->NodeNum < Succ->NodeNum) 993 return true; 994 995 SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); 996 997 for (unsigned I = 0; I < Succs.size(); ++I) { 998 for (const SDep &SI : Succs[I]->Succs) { 999 const SUnit *SU = SI.getSUnit(); 1000 if (SU != Succs[I] && !llvm::is_contained(Succs, SU)) 1001 Succs.push_back(SU); 1002 } 1003 } 1004 1005 SmallPtrSet<const SUnit*, 32> Visited; 1006 while (!Preds.empty()) { 1007 const SUnit *SU = Preds.pop_back_val(); 1008 if (llvm::is_contained(Succs, SU)) 1009 return false; 1010 Visited.insert(SU); 1011 for (const SDep &SI : SU->Preds) 1012 if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) 1013 Preds.push_back(SI.getSUnit()); 1014 } 1015 1016 return true; 1017 } 1018 1019 // Link as many SALU instructions in chain as possible. Return the size 1020 // of the chain. Links up to MaxChain instructions. 1021 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, 1022 SmallPtrSetImpl<SUnit *> &Visited) const { 1023 SmallVector<SUnit *, 8> Worklist({To}); 1024 unsigned Linked = 0; 1025 1026 while (!Worklist.empty() && MaxChain-- > 0) { 1027 SUnit *SU = Worklist.pop_back_val(); 1028 if (!Visited.insert(SU).second) 1029 continue; 1030 1031 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); 1032 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); 1033 1034 if (SU->addPred(SDep(From, SDep::Artificial), false)) 1035 ++Linked; 1036 1037 for (SDep &SI : From->Succs) { 1038 SUnit *SUv = SI.getSUnit(); 1039 if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) 1040 SUv->addPred(SDep(SU, SDep::Artificial), false); 1041 } 1042 1043 for (SDep &SI : SU->Succs) { 1044 SUnit *Succ = SI.getSUnit(); 1045 if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) 1046 Worklist.push_back(Succ); 1047 } 1048 } 1049 1050 return Linked; 1051 } 1052 1053 void apply(ScheduleDAGInstrs *DAGInstrs) override { 1054 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); 1055 if (!ST.hasMAIInsts() || DisablePowerSched) 1056 return; 1057 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1058 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); 1059 if (!TSchedModel || DAG->SUnits.empty()) 1060 return; 1061 1062 // Scan for MFMA long latency instructions and try to add a dependency 1063 // of available SALU instructions to give them a chance to fill MFMA 1064 // shadow. That is desirable to fill MFMA shadow with SALU instructions 1065 // rather than VALU to prevent power consumption bursts and throttle. 1066 auto LastSALU = DAG->SUnits.begin(); 1067 auto E = DAG->SUnits.end(); 1068 SmallPtrSet<SUnit*, 32> Visited; 1069 for (SUnit &SU : DAG->SUnits) { 1070 MachineInstr &MAI = *SU.getInstr(); 1071 if (!TII->isMAI(MAI) || 1072 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 1073 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) 1074 continue; 1075 1076 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; 1077 1078 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); 1079 dbgs() << "Need " << Lat 1080 << " instructions to cover latency.\n"); 1081 1082 // Find up to Lat independent scalar instructions as early as 1083 // possible such that they can be scheduled after this MFMA. 1084 for ( ; Lat && LastSALU != E; ++LastSALU) { 1085 if (Visited.count(&*LastSALU)) 1086 continue; 1087 1088 if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) 1089 continue; 1090 1091 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); 1092 } 1093 } 1094 } 1095 }; 1096 } // namespace 1097 1098 void GCNSubtarget::getPostRAMutations( 1099 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 1100 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); 1101 } 1102 1103 std::unique_ptr<ScheduleDAGMutation> 1104 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { 1105 return std::make_unique<FillMFMAShadowMutation>(&InstrInfo); 1106 } 1107 1108 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { 1109 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) 1110 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); 1111 else 1112 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); 1113 } 1114 1115 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { 1116 if (TM.getTargetTriple().getArch() == Triple::amdgcn) 1117 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); 1118 else 1119 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); 1120 } 1121