1 //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Implements the AMDGPU specific subclass of TargetSubtarget. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUSubtarget.h" 15 #include "AMDGPUCallLowering.h" 16 #include "AMDGPUInstructionSelector.h" 17 #include "AMDGPULegalizerInfo.h" 18 #include "AMDGPURegisterBankInfo.h" 19 #include "AMDGPUTargetMachine.h" 20 #include "R600Subtarget.h" 21 #include "SIMachineFunctionInfo.h" 22 #include "Utils/AMDGPUBaseInfo.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" 25 #include "llvm/CodeGen/MachineScheduler.h" 26 #include "llvm/CodeGen/TargetFrameLowering.h" 27 #include "llvm/IR/IntrinsicsAMDGPU.h" 28 #include "llvm/IR/IntrinsicsR600.h" 29 #include "llvm/IR/MDBuilder.h" 30 #include "llvm/MC/MCSubtargetInfo.h" 31 #include <algorithm> 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "amdgpu-subtarget" 36 37 #define GET_SUBTARGETINFO_TARGET_DESC 38 #define GET_SUBTARGETINFO_CTOR 39 #define AMDGPUSubtarget GCNSubtarget 40 #include "AMDGPUGenSubtargetInfo.inc" 41 #undef AMDGPUSubtarget 42 43 static cl::opt<bool> DisablePowerSched( 44 "amdgpu-disable-power-sched", 45 cl::desc("Disable scheduling to minimize mAI power bursts"), 46 cl::init(false)); 47 48 static cl::opt<bool> EnableVGPRIndexMode( 49 "amdgpu-vgpr-index-mode", 50 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), 51 cl::init(false)); 52 53 static cl::opt<bool> EnableFlatScratch( 54 "amdgpu-enable-flat-scratch", 55 cl::desc("Use flat scratch instructions"), 56 cl::init(false)); 57 58 static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", 59 cl::desc("Enable the use of AA during codegen."), 60 cl::init(true)); 61 62 GCNSubtarget::~GCNSubtarget() = default; 63 64 GCNSubtarget & 65 GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, 66 StringRef GPU, StringRef FS) { 67 // Determine default and user-specified characteristics 68 // 69 // We want to be able to turn these off, but making this a subtarget feature 70 // for SI has the unhelpful behavior that it unsets everything else if you 71 // disable it. 72 // 73 // Similarly we want enable-prt-strict-null to be on by default and not to 74 // unset everything else if it is disabled 75 76 SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); 77 78 // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default 79 if (isAmdHsaOS()) 80 FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; 81 82 FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS 83 84 // Disable mutually exclusive bits. 85 if (FS.contains_insensitive("+wavefrontsize")) { 86 if (!FS.contains_insensitive("wavefrontsize16")) 87 FullFS += "-wavefrontsize16,"; 88 if (!FS.contains_insensitive("wavefrontsize32")) 89 FullFS += "-wavefrontsize32,"; 90 if (!FS.contains_insensitive("wavefrontsize64")) 91 FullFS += "-wavefrontsize64,"; 92 } 93 94 FullFS += FS; 95 96 ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); 97 98 // Implement the "generic" processors, which acts as the default when no 99 // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to 100 // the first amdgcn target that supports flat addressing. Other OSes defaults 101 // to the first amdgcn target. 102 if (Gen == AMDGPUSubtarget::INVALID) { 103 Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS 104 : AMDGPUSubtarget::SOUTHERN_ISLANDS; 105 } 106 107 // We don't support FP64 for EG/NI atm. 108 assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); 109 110 // Targets must either support 64-bit offsets for MUBUF instructions, and/or 111 // support flat operations, otherwise they cannot access a 64-bit global 112 // address space 113 assert(hasAddr64() || hasFlat()); 114 // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets 115 // that do not support ADDR64 variants of MUBUF instructions. Such targets 116 // cannot use a 64 bit offset with a MUBUF instruction to access the global 117 // address space 118 if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { 119 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 120 FlatForGlobal = true; 121 } 122 // Unless +-flat-for-global is specified, use MUBUF instructions for global 123 // address space access if flat operations are not available. 124 if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { 125 ToggleFeature(AMDGPU::FeatureFlatForGlobal); 126 FlatForGlobal = false; 127 } 128 129 // Set defaults if needed. 130 if (MaxPrivateElementSize == 0) 131 MaxPrivateElementSize = 4; 132 133 if (LDSBankCount == 0) 134 LDSBankCount = 32; 135 136 if (TT.getArch() == Triple::amdgcn) { 137 if (LocalMemorySize == 0) 138 LocalMemorySize = 32768; 139 140 // Do something sensible for unspecified target. 141 if (!HasMovrel && !HasVGPRIndexMode) 142 HasMovrel = true; 143 } 144 145 // Don't crash on invalid devices. 146 if (WavefrontSizeLog2 == 0) 147 WavefrontSizeLog2 = 5; 148 149 HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; 150 HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; 151 152 TargetID.setTargetIDFromFeaturesString(FS); 153 154 LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " 155 << TargetID.getXnackSetting() << '\n'); 156 LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " 157 << TargetID.getSramEccSetting() << '\n'); 158 159 return *this; 160 } 161 162 AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : 163 TargetTriple(TT), 164 GCN3Encoding(false), 165 Has16BitInsts(false), 166 HasMadMixInsts(false), 167 HasMadMacF32Insts(false), 168 HasDsSrc2Insts(false), 169 HasSDWA(false), 170 HasVOP3PInsts(false), 171 HasMulI24(true), 172 HasMulU24(true), 173 HasSMulHi(false), 174 HasInv2PiInlineImm(false), 175 HasFminFmaxLegacy(true), 176 EnablePromoteAlloca(false), 177 HasTrigReducedRange(false), 178 MaxWavesPerEU(10), 179 LocalMemorySize(0), 180 WavefrontSizeLog2(0) 181 { } 182 183 GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, 184 const GCNTargetMachine &TM) 185 : // clang-format off 186 AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), 187 AMDGPUSubtarget(TT), 188 TargetTriple(TT), 189 TargetID(*this), 190 Gen(INVALID), 191 InstrItins(getInstrItineraryForCPU(GPU)), 192 LDSBankCount(0), 193 MaxPrivateElementSize(0), 194 195 FastFMAF32(false), 196 FastDenormalF32(false), 197 HalfRate64Ops(false), 198 FullRate64Ops(false), 199 200 FlatForGlobal(false), 201 AutoWaitcntBeforeBarrier(false), 202 UnalignedScratchAccess(false), 203 UnalignedAccessMode(false), 204 205 HasApertureRegs(false), 206 SupportsXNACK(false), 207 EnableXNACK(false), 208 EnableTgSplit(false), 209 EnableCuMode(false), 210 TrapHandler(false), 211 212 EnableLoadStoreOpt(false), 213 EnableUnsafeDSOffsetFolding(false), 214 EnableSIScheduler(false), 215 EnableDS128(false), 216 EnablePRTStrictNull(false), 217 DumpCode(false), 218 219 FP64(false), 220 CIInsts(false), 221 GFX8Insts(false), 222 GFX9Insts(false), 223 GFX90AInsts(false), 224 GFX10Insts(false), 225 GFX10_3Insts(false), 226 GFX7GFX8GFX9Insts(false), 227 SGPRInitBug(false), 228 NegativeScratchOffsetBug(false), 229 NegativeUnalignedScratchOffsetBug(false), 230 HasSMemRealTime(false), 231 HasIntClamp(false), 232 HasFmaMixInsts(false), 233 HasMovrel(false), 234 HasVGPRIndexMode(false), 235 HasScalarStores(false), 236 HasScalarAtomics(false), 237 HasSDWAOmod(false), 238 HasSDWAScalar(false), 239 HasSDWASdst(false), 240 HasSDWAMac(false), 241 HasSDWAOutModsVOPC(false), 242 HasDPP(false), 243 HasDPP8(false), 244 Has64BitDPP(false), 245 HasPackedFP32Ops(false), 246 HasExtendedImageInsts(false), 247 HasR128A16(false), 248 HasGFX10A16(false), 249 HasG16(false), 250 HasNSAEncoding(false), 251 NSAMaxSize(0), 252 GFX10_AEncoding(false), 253 GFX10_BEncoding(false), 254 HasDLInsts(false), 255 HasDot1Insts(false), 256 HasDot2Insts(false), 257 HasDot3Insts(false), 258 HasDot4Insts(false), 259 HasDot5Insts(false), 260 HasDot6Insts(false), 261 HasDot7Insts(false), 262 HasMAIInsts(false), 263 HasPkFmacF16Inst(false), 264 HasAtomicFaddInsts(false), 265 SupportsSRAMECC(false), 266 EnableSRAMECC(false), 267 HasNoSdstCMPX(false), 268 HasVscnt(false), 269 HasGetWaveIdInst(false), 270 HasSMemTimeInst(false), 271 HasShaderCyclesRegister(false), 272 HasRegisterBanking(false), 273 HasVOP3Literal(false), 274 HasNoDataDepHazard(false), 275 FlatAddressSpace(false), 276 FlatInstOffsets(false), 277 FlatGlobalInsts(false), 278 FlatScratchInsts(false), 279 ScalarFlatScratchInsts(false), 280 HasArchitectedFlatScratch(false), 281 AddNoCarryInsts(false), 282 HasUnpackedD16VMem(false), 283 LDSMisalignedBug(false), 284 HasMFMAInlineLiteralBug(false), 285 UnalignedBufferAccess(false), 286 UnalignedDSAccess(false), 287 HasPackedTID(false), 288 289 ScalarizeGlobal(false), 290 291 HasVcmpxPermlaneHazard(false), 292 HasVMEMtoScalarWriteHazard(false), 293 HasSMEMtoVectorWriteHazard(false), 294 HasInstFwdPrefetchBug(false), 295 HasVcmpxExecWARHazard(false), 296 HasLdsBranchVmemWARHazard(false), 297 HasNSAtoVMEMBug(false), 298 HasNSAClauseBug(false), 299 HasOffset3fBug(false), 300 HasFlatSegmentOffsetBug(false), 301 HasImageStoreD16Bug(false), 302 HasImageGather4D16Bug(false), 303 304 FeatureDisable(false), 305 InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), 306 TLInfo(TM, *this), 307 FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { 308 // clang-format on 309 MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); 310 CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); 311 InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); 312 Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); 313 RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); 314 InstSelector.reset(new AMDGPUInstructionSelector( 315 *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); 316 } 317 318 bool GCNSubtarget::enableFlatScratch() const { 319 return flatScratchIsArchitected() || 320 (EnableFlatScratch && hasFlatScratchInsts()); 321 } 322 323 unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { 324 if (getGeneration() < GFX10) 325 return 1; 326 327 switch (Opcode) { 328 case AMDGPU::V_LSHLREV_B64_e64: 329 case AMDGPU::V_LSHLREV_B64_gfx10: 330 case AMDGPU::V_LSHL_B64_e64: 331 case AMDGPU::V_LSHRREV_B64_e64: 332 case AMDGPU::V_LSHRREV_B64_gfx10: 333 case AMDGPU::V_LSHR_B64_e64: 334 case AMDGPU::V_ASHRREV_I64_e64: 335 case AMDGPU::V_ASHRREV_I64_gfx10: 336 case AMDGPU::V_ASHR_I64_e64: 337 return 1; 338 } 339 340 return 2; 341 } 342 343 /// This list was mostly derived from experimentation. 344 bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { 345 switch (Opcode) { 346 case AMDGPU::V_CVT_F16_F32_e32: 347 case AMDGPU::V_CVT_F16_F32_e64: 348 case AMDGPU::V_CVT_F16_U16_e32: 349 case AMDGPU::V_CVT_F16_U16_e64: 350 case AMDGPU::V_CVT_F16_I16_e32: 351 case AMDGPU::V_CVT_F16_I16_e64: 352 case AMDGPU::V_RCP_F16_e64: 353 case AMDGPU::V_RCP_F16_e32: 354 case AMDGPU::V_RSQ_F16_e64: 355 case AMDGPU::V_RSQ_F16_e32: 356 case AMDGPU::V_SQRT_F16_e64: 357 case AMDGPU::V_SQRT_F16_e32: 358 case AMDGPU::V_LOG_F16_e64: 359 case AMDGPU::V_LOG_F16_e32: 360 case AMDGPU::V_EXP_F16_e64: 361 case AMDGPU::V_EXP_F16_e32: 362 case AMDGPU::V_SIN_F16_e64: 363 case AMDGPU::V_SIN_F16_e32: 364 case AMDGPU::V_COS_F16_e64: 365 case AMDGPU::V_COS_F16_e32: 366 case AMDGPU::V_FLOOR_F16_e64: 367 case AMDGPU::V_FLOOR_F16_e32: 368 case AMDGPU::V_CEIL_F16_e64: 369 case AMDGPU::V_CEIL_F16_e32: 370 case AMDGPU::V_TRUNC_F16_e64: 371 case AMDGPU::V_TRUNC_F16_e32: 372 case AMDGPU::V_RNDNE_F16_e64: 373 case AMDGPU::V_RNDNE_F16_e32: 374 case AMDGPU::V_FRACT_F16_e64: 375 case AMDGPU::V_FRACT_F16_e32: 376 case AMDGPU::V_FREXP_MANT_F16_e64: 377 case AMDGPU::V_FREXP_MANT_F16_e32: 378 case AMDGPU::V_FREXP_EXP_I16_F16_e64: 379 case AMDGPU::V_FREXP_EXP_I16_F16_e32: 380 case AMDGPU::V_LDEXP_F16_e64: 381 case AMDGPU::V_LDEXP_F16_e32: 382 case AMDGPU::V_LSHLREV_B16_e64: 383 case AMDGPU::V_LSHLREV_B16_e32: 384 case AMDGPU::V_LSHRREV_B16_e64: 385 case AMDGPU::V_LSHRREV_B16_e32: 386 case AMDGPU::V_ASHRREV_I16_e64: 387 case AMDGPU::V_ASHRREV_I16_e32: 388 case AMDGPU::V_ADD_U16_e64: 389 case AMDGPU::V_ADD_U16_e32: 390 case AMDGPU::V_SUB_U16_e64: 391 case AMDGPU::V_SUB_U16_e32: 392 case AMDGPU::V_SUBREV_U16_e64: 393 case AMDGPU::V_SUBREV_U16_e32: 394 case AMDGPU::V_MUL_LO_U16_e64: 395 case AMDGPU::V_MUL_LO_U16_e32: 396 case AMDGPU::V_ADD_F16_e64: 397 case AMDGPU::V_ADD_F16_e32: 398 case AMDGPU::V_SUB_F16_e64: 399 case AMDGPU::V_SUB_F16_e32: 400 case AMDGPU::V_SUBREV_F16_e64: 401 case AMDGPU::V_SUBREV_F16_e32: 402 case AMDGPU::V_MUL_F16_e64: 403 case AMDGPU::V_MUL_F16_e32: 404 case AMDGPU::V_MAX_F16_e64: 405 case AMDGPU::V_MAX_F16_e32: 406 case AMDGPU::V_MIN_F16_e64: 407 case AMDGPU::V_MIN_F16_e32: 408 case AMDGPU::V_MAX_U16_e64: 409 case AMDGPU::V_MAX_U16_e32: 410 case AMDGPU::V_MIN_U16_e64: 411 case AMDGPU::V_MIN_U16_e32: 412 case AMDGPU::V_MAX_I16_e64: 413 case AMDGPU::V_MAX_I16_e32: 414 case AMDGPU::V_MIN_I16_e64: 415 case AMDGPU::V_MIN_I16_e32: 416 // On gfx10, all 16-bit instructions preserve the high bits. 417 return getGeneration() <= AMDGPUSubtarget::GFX9; 418 case AMDGPU::V_MAD_F16_e64: 419 case AMDGPU::V_MADAK_F16: 420 case AMDGPU::V_MADMK_F16: 421 case AMDGPU::V_MAC_F16_e64: 422 case AMDGPU::V_MAC_F16_e32: 423 case AMDGPU::V_FMAMK_F16: 424 case AMDGPU::V_FMAAK_F16: 425 case AMDGPU::V_MAD_U16_e64: 426 case AMDGPU::V_MAD_I16_e64: 427 case AMDGPU::V_FMA_F16_e64: 428 case AMDGPU::V_FMAC_F16_e64: 429 case AMDGPU::V_FMAC_F16_e32: 430 case AMDGPU::V_DIV_FIXUP_F16_e64: 431 // In gfx9, the preferred handling of the unused high 16-bits changed. Most 432 // instructions maintain the legacy behavior of 0ing. Some instructions 433 // changed to preserving the high bits. 434 return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 435 case AMDGPU::V_MAD_MIXLO_F16: 436 case AMDGPU::V_MAD_MIXHI_F16: 437 default: 438 return false; 439 } 440 } 441 442 unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, 443 const Function &F) const { 444 if (NWaves == 1) 445 return getLocalMemorySize(); 446 unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; 447 unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); 448 if (!WorkGroupsPerCu) 449 return 0; 450 unsigned MaxWaves = getMaxWavesPerEU(); 451 return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; 452 } 453 454 // FIXME: Should return min,max range. 455 unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, 456 const Function &F) const { 457 const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; 458 const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); 459 if (!MaxWorkGroupsPerCu) 460 return 0; 461 462 const unsigned WaveSize = getWavefrontSize(); 463 464 // FIXME: Do we need to account for alignment requirement of LDS rounding the 465 // size up? 466 // Compute restriction based on LDS usage 467 unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); 468 469 // This can be queried with more LDS than is possible, so just assume the 470 // worst. 471 if (NumGroups == 0) 472 return 1; 473 474 NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); 475 476 // Round to the number of waves. 477 const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize; 478 unsigned MaxWaves = NumGroups * MaxGroupNumWaves; 479 480 // Clamp to the maximum possible number of waves. 481 MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); 482 483 // FIXME: Needs to be a multiple of the group size? 484 //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); 485 486 assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && 487 "computed invalid occupancy"); 488 return MaxWaves; 489 } 490 491 unsigned 492 AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { 493 const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); 494 return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); 495 } 496 497 std::pair<unsigned, unsigned> 498 AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { 499 switch (CC) { 500 case CallingConv::AMDGPU_VS: 501 case CallingConv::AMDGPU_LS: 502 case CallingConv::AMDGPU_HS: 503 case CallingConv::AMDGPU_ES: 504 case CallingConv::AMDGPU_GS: 505 case CallingConv::AMDGPU_PS: 506 return std::make_pair(1, getWavefrontSize()); 507 default: 508 return std::make_pair(1u, getMaxFlatWorkGroupSize()); 509 } 510 } 511 512 std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( 513 const Function &F) const { 514 // Default minimum/maximum flat work group sizes. 515 std::pair<unsigned, unsigned> Default = 516 getDefaultFlatWorkGroupSize(F.getCallingConv()); 517 518 // Requested minimum/maximum flat work group sizes. 519 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 520 F, "amdgpu-flat-work-group-size", Default); 521 522 // Make sure requested minimum is less than requested maximum. 523 if (Requested.first > Requested.second) 524 return Default; 525 526 // Make sure requested values do not violate subtarget's specifications. 527 if (Requested.first < getMinFlatWorkGroupSize()) 528 return Default; 529 if (Requested.second > getMaxFlatWorkGroupSize()) 530 return Default; 531 532 return Requested; 533 } 534 535 std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( 536 const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { 537 // Default minimum/maximum number of waves per execution unit. 538 std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); 539 540 // If minimum/maximum flat work group sizes were explicitly requested using 541 // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum 542 // number of waves per execution unit to values implied by requested 543 // minimum/maximum flat work group sizes. 544 unsigned MinImpliedByFlatWorkGroupSize = 545 getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); 546 Default.first = MinImpliedByFlatWorkGroupSize; 547 548 // Requested minimum/maximum number of waves per execution unit. 549 std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( 550 F, "amdgpu-waves-per-eu", Default, true); 551 552 // Make sure requested minimum is less than requested maximum. 553 if (Requested.second && Requested.first > Requested.second) 554 return Default; 555 556 // Make sure requested values do not violate subtarget's specifications. 557 if (Requested.first < getMinWavesPerEU() || 558 Requested.second > getMaxWavesPerEU()) 559 return Default; 560 561 // Make sure requested values are compatible with values implied by requested 562 // minimum/maximum flat work group sizes. 563 if (Requested.first < MinImpliedByFlatWorkGroupSize) 564 return Default; 565 566 return Requested; 567 } 568 569 static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { 570 auto Node = Kernel.getMetadata("reqd_work_group_size"); 571 if (Node && Node->getNumOperands() == 3) 572 return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); 573 return std::numeric_limits<unsigned>::max(); 574 } 575 576 bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { 577 return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); 578 } 579 580 unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, 581 unsigned Dimension) const { 582 unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); 583 if (ReqdSize != std::numeric_limits<unsigned>::max()) 584 return ReqdSize - 1; 585 return getFlatWorkGroupSizes(Kernel).second - 1; 586 } 587 588 bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { 589 Function *Kernel = I->getParent()->getParent(); 590 unsigned MinSize = 0; 591 unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; 592 bool IdQuery = false; 593 594 // If reqd_work_group_size is present it narrows value down. 595 if (auto *CI = dyn_cast<CallInst>(I)) { 596 const Function *F = CI->getCalledFunction(); 597 if (F) { 598 unsigned Dim = UINT_MAX; 599 switch (F->getIntrinsicID()) { 600 case Intrinsic::amdgcn_workitem_id_x: 601 case Intrinsic::r600_read_tidig_x: 602 IdQuery = true; 603 LLVM_FALLTHROUGH; 604 case Intrinsic::r600_read_local_size_x: 605 Dim = 0; 606 break; 607 case Intrinsic::amdgcn_workitem_id_y: 608 case Intrinsic::r600_read_tidig_y: 609 IdQuery = true; 610 LLVM_FALLTHROUGH; 611 case Intrinsic::r600_read_local_size_y: 612 Dim = 1; 613 break; 614 case Intrinsic::amdgcn_workitem_id_z: 615 case Intrinsic::r600_read_tidig_z: 616 IdQuery = true; 617 LLVM_FALLTHROUGH; 618 case Intrinsic::r600_read_local_size_z: 619 Dim = 2; 620 break; 621 default: 622 break; 623 } 624 625 if (Dim <= 3) { 626 unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); 627 if (ReqdSize != std::numeric_limits<unsigned>::max()) 628 MinSize = MaxSize = ReqdSize; 629 } 630 } 631 } 632 633 if (!MaxSize) 634 return false; 635 636 // Range metadata is [Lo, Hi). For ID query we need to pass max size 637 // as Hi. For size query we need to pass Hi + 1. 638 if (IdQuery) 639 MinSize = 0; 640 else 641 ++MaxSize; 642 643 MDBuilder MDB(I->getContext()); 644 MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), 645 APInt(32, MaxSize)); 646 I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 647 return true; 648 } 649 650 unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { 651 if (isMesaKernel(F)) 652 return 16; 653 return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0); 654 } 655 656 uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, 657 Align &MaxAlign) const { 658 assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || 659 F.getCallingConv() == CallingConv::SPIR_KERNEL); 660 661 const DataLayout &DL = F.getParent()->getDataLayout(); 662 uint64_t ExplicitArgBytes = 0; 663 MaxAlign = Align(1); 664 665 for (const Argument &Arg : F.args()) { 666 const bool IsByRef = Arg.hasByRefAttr(); 667 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); 668 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None; 669 if (!Alignment) 670 Alignment = DL.getABITypeAlign(ArgTy); 671 672 uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); 673 ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; 674 MaxAlign = max(MaxAlign, Alignment); 675 } 676 677 return ExplicitArgBytes; 678 } 679 680 unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, 681 Align &MaxAlign) const { 682 uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); 683 684 unsigned ExplicitOffset = getExplicitKernelArgOffset(F); 685 686 uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; 687 unsigned ImplicitBytes = getImplicitArgNumBytes(F); 688 if (ImplicitBytes != 0) { 689 const Align Alignment = getAlignmentForImplicitArgPtr(); 690 TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; 691 } 692 693 // Being able to dereference past the end is useful for emitting scalar loads. 694 return alignTo(TotalSize, 4); 695 } 696 697 AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { 698 return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 699 : AMDGPUDwarfFlavour::Wave64; 700 } 701 702 void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, 703 unsigned NumRegionInstrs) const { 704 // Track register pressure so the scheduler can try to decrease 705 // pressure once register usage is above the threshold defined by 706 // SIRegisterInfo::getRegPressureSetLimit() 707 Policy.ShouldTrackPressure = true; 708 709 // Enabling both top down and bottom up scheduling seems to give us less 710 // register spills than just using one of these approaches on its own. 711 Policy.OnlyTopDown = false; 712 Policy.OnlyBottomUp = false; 713 714 // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. 715 if (!enableSIScheduler()) 716 Policy.ShouldTrackLaneMasks = true; 717 } 718 719 bool GCNSubtarget::hasMadF16() const { 720 return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; 721 } 722 723 bool GCNSubtarget::useVGPRIndexMode() const { 724 return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); 725 } 726 727 bool GCNSubtarget::useAA() const { return UseAA; } 728 729 unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { 730 if (getGeneration() >= AMDGPUSubtarget::GFX10) 731 return getMaxWavesPerEU(); 732 733 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 734 if (SGPRs <= 80) 735 return 10; 736 if (SGPRs <= 88) 737 return 9; 738 if (SGPRs <= 100) 739 return 8; 740 return 7; 741 } 742 if (SGPRs <= 48) 743 return 10; 744 if (SGPRs <= 56) 745 return 9; 746 if (SGPRs <= 64) 747 return 8; 748 if (SGPRs <= 72) 749 return 7; 750 if (SGPRs <= 80) 751 return 6; 752 return 5; 753 } 754 755 unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { 756 unsigned MaxWaves = getMaxWavesPerEU(); 757 unsigned Granule = getVGPRAllocGranule(); 758 if (VGPRs < Granule) 759 return MaxWaves; 760 unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; 761 return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); 762 } 763 764 unsigned 765 GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratchInit) const { 766 if (getGeneration() >= AMDGPUSubtarget::GFX10) 767 return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. 768 769 if (HasFlatScratchInit || HasArchitectedFlatScratch) { 770 if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 771 return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). 772 if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) 773 return 4; // FLAT_SCRATCH, VCC (in that order). 774 } 775 776 if (isXNACKEnabled()) 777 return 4; // XNACK, VCC (in that order). 778 return 2; // VCC. 779 } 780 781 unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { 782 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 783 return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); 784 } 785 786 unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { 787 // The logic to detect if the function has 788 // flat scratch init is slightly different than how 789 // SIMachineFunctionInfo constructor derives. 790 // We don't use amdgpu-calls, amdgpu-stack-objects 791 // attributes and isAmdHsaOrMesa here as it doesn't really matter. 792 // TODO: Outline this derivation logic and have just 793 // one common function in the backend to avoid duplication. 794 bool isEntry = AMDGPU::isEntryFunctionCC(F.getCallingConv()); 795 bool FunctionHasFlatScratchInit = false; 796 if (hasFlatAddressSpace() && isEntry && !flatScratchIsArchitected() && 797 enableFlatScratch()) { 798 FunctionHasFlatScratchInit = true; 799 } 800 return getBaseReservedNumSGPRs(FunctionHasFlatScratchInit); 801 } 802 803 unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, 804 unsigned NumSGPRs, 805 unsigned NumVGPRs) const { 806 unsigned Occupancy = 807 std::min(getMaxWavesPerEU(), 808 getOccupancyWithLocalMemSize(LDSSize, F)); 809 if (NumSGPRs) 810 Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); 811 if (NumVGPRs) 812 Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); 813 return Occupancy; 814 } 815 816 unsigned GCNSubtarget::getBaseMaxNumSGPRs( 817 const Function &F, std::pair<unsigned, unsigned> WavesPerEU, 818 unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { 819 // Compute maximum number of SGPRs function can use using default/requested 820 // minimum number of waves per execution unit. 821 unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); 822 unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); 823 824 // Check if maximum number of SGPRs was explicitly requested using 825 // "amdgpu-num-sgpr" attribute. 826 if (F.hasFnAttribute("amdgpu-num-sgpr")) { 827 unsigned Requested = AMDGPU::getIntegerAttribute( 828 F, "amdgpu-num-sgpr", MaxNumSGPRs); 829 830 // Make sure requested value does not violate subtarget's specifications. 831 if (Requested && (Requested <= ReservedNumSGPRs)) 832 Requested = 0; 833 834 // If more SGPRs are required to support the input user/system SGPRs, 835 // increase to accommodate them. 836 // 837 // FIXME: This really ends up using the requested number of SGPRs + number 838 // of reserved special registers in total. Theoretically you could re-use 839 // the last input registers for these special registers, but this would 840 // require a lot of complexity to deal with the weird aliasing. 841 unsigned InputNumSGPRs = PreloadedSGPRs; 842 if (Requested && Requested < InputNumSGPRs) 843 Requested = InputNumSGPRs; 844 845 // Make sure requested value is compatible with values implied by 846 // default/requested minimum/maximum number of waves per execution unit. 847 if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) 848 Requested = 0; 849 if (WavesPerEU.second && 850 Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) 851 Requested = 0; 852 853 if (Requested) 854 MaxNumSGPRs = Requested; 855 } 856 857 if (hasSGPRInitBug()) 858 MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; 859 860 return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); 861 } 862 863 unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { 864 const Function &F = MF.getFunction(); 865 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 866 return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), 867 getReservedNumSGPRs(MF)); 868 } 869 870 static unsigned getMaxNumPreloadedSGPRs() { 871 // Max number of user SGPRs 872 unsigned MaxUserSGPRs = 4 + // private segment buffer 873 2 + // Dispatch ptr 874 2 + // queue ptr 875 2 + // kernel segment ptr 876 2 + // dispatch ID 877 2 + // flat scratch init 878 2; // Implicit buffer ptr 879 // Max number of system SGPRs 880 unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX 881 1 + // WorkGroupIDY 882 1 + // WorkGroupIDZ 883 1 + // WorkGroupInfo 884 1; // private segment wave byte offset 885 return MaxUserSGPRs + MaxSystemSGPRs; 886 } 887 888 unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { 889 return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), 890 getReservedNumSGPRs(F)); 891 } 892 893 unsigned GCNSubtarget::getBaseMaxNumVGPRs( 894 const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { 895 // Compute maximum number of VGPRs function can use using default/requested 896 // minimum number of waves per execution unit. 897 unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); 898 899 // Check if maximum number of VGPRs was explicitly requested using 900 // "amdgpu-num-vgpr" attribute. 901 if (F.hasFnAttribute("amdgpu-num-vgpr")) { 902 unsigned Requested = AMDGPU::getIntegerAttribute( 903 F, "amdgpu-num-vgpr", MaxNumVGPRs); 904 905 if (hasGFX90AInsts()) 906 Requested *= 2; 907 908 // Make sure requested value is compatible with values implied by 909 // default/requested minimum/maximum number of waves per execution unit. 910 if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) 911 Requested = 0; 912 if (WavesPerEU.second && 913 Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) 914 Requested = 0; 915 916 if (Requested) 917 MaxNumVGPRs = Requested; 918 } 919 920 return MaxNumVGPRs; 921 } 922 923 unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { 924 return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); 925 } 926 927 unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { 928 const Function &F = MF.getFunction(); 929 const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); 930 return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); 931 } 932 933 void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, 934 int UseOpIdx, SDep &Dep) const { 935 if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || 936 !Def->isInstr() || !Use->isInstr()) 937 return; 938 939 MachineInstr *DefI = Def->getInstr(); 940 MachineInstr *UseI = Use->getInstr(); 941 942 if (DefI->isBundle()) { 943 const SIRegisterInfo *TRI = getRegisterInfo(); 944 auto Reg = Dep.getReg(); 945 MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); 946 MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); 947 unsigned Lat = 0; 948 for (++I; I != E && I->isBundledWithPred(); ++I) { 949 if (I->modifiesRegister(Reg, TRI)) 950 Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); 951 else if (Lat) 952 --Lat; 953 } 954 Dep.setLatency(Lat); 955 } else if (UseI->isBundle()) { 956 const SIRegisterInfo *TRI = getRegisterInfo(); 957 auto Reg = Dep.getReg(); 958 MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); 959 MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); 960 unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); 961 for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { 962 if (I->readsRegister(Reg, TRI)) 963 break; 964 --Lat; 965 } 966 Dep.setLatency(Lat); 967 } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) { 968 // Work around the fact that SIInstrInfo::fixImplicitOperands modifies 969 // implicit operands which come from the MCInstrDesc, which can fool 970 // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit 971 // pseudo operands. 972 Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency( 973 DefI, DefOpIdx, UseI, UseOpIdx)); 974 } 975 } 976 977 namespace { 978 struct FillMFMAShadowMutation : ScheduleDAGMutation { 979 const SIInstrInfo *TII; 980 981 ScheduleDAGMI *DAG; 982 983 FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} 984 985 bool isSALU(const SUnit *SU) const { 986 const MachineInstr *MI = SU->getInstr(); 987 return MI && TII->isSALU(*MI) && !MI->isTerminator(); 988 } 989 990 bool isVALU(const SUnit *SU) const { 991 const MachineInstr *MI = SU->getInstr(); 992 return MI && TII->isVALU(*MI); 993 } 994 995 bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { 996 if (Pred->NodeNum < Succ->NodeNum) 997 return true; 998 999 SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); 1000 1001 for (unsigned I = 0; I < Succs.size(); ++I) { 1002 for (const SDep &SI : Succs[I]->Succs) { 1003 const SUnit *SU = SI.getSUnit(); 1004 if (SU != Succs[I] && !llvm::is_contained(Succs, SU)) 1005 Succs.push_back(SU); 1006 } 1007 } 1008 1009 SmallPtrSet<const SUnit*, 32> Visited; 1010 while (!Preds.empty()) { 1011 const SUnit *SU = Preds.pop_back_val(); 1012 if (llvm::is_contained(Succs, SU)) 1013 return false; 1014 Visited.insert(SU); 1015 for (const SDep &SI : SU->Preds) 1016 if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) 1017 Preds.push_back(SI.getSUnit()); 1018 } 1019 1020 return true; 1021 } 1022 1023 // Link as many SALU instructions in chain as possible. Return the size 1024 // of the chain. Links up to MaxChain instructions. 1025 unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, 1026 SmallPtrSetImpl<SUnit *> &Visited) const { 1027 SmallVector<SUnit *, 8> Worklist({To}); 1028 unsigned Linked = 0; 1029 1030 while (!Worklist.empty() && MaxChain-- > 0) { 1031 SUnit *SU = Worklist.pop_back_val(); 1032 if (!Visited.insert(SU).second) 1033 continue; 1034 1035 LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); 1036 dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); 1037 1038 if (SU->addPred(SDep(From, SDep::Artificial), false)) 1039 ++Linked; 1040 1041 for (SDep &SI : From->Succs) { 1042 SUnit *SUv = SI.getSUnit(); 1043 if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) 1044 SUv->addPred(SDep(SU, SDep::Artificial), false); 1045 } 1046 1047 for (SDep &SI : SU->Succs) { 1048 SUnit *Succ = SI.getSUnit(); 1049 if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) 1050 Worklist.push_back(Succ); 1051 } 1052 } 1053 1054 return Linked; 1055 } 1056 1057 void apply(ScheduleDAGInstrs *DAGInstrs) override { 1058 const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); 1059 if (!ST.hasMAIInsts() || DisablePowerSched) 1060 return; 1061 DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); 1062 const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); 1063 if (!TSchedModel || DAG->SUnits.empty()) 1064 return; 1065 1066 // Scan for MFMA long latency instructions and try to add a dependency 1067 // of available SALU instructions to give them a chance to fill MFMA 1068 // shadow. That is desirable to fill MFMA shadow with SALU instructions 1069 // rather than VALU to prevent power consumption bursts and throttle. 1070 auto LastSALU = DAG->SUnits.begin(); 1071 auto E = DAG->SUnits.end(); 1072 SmallPtrSet<SUnit*, 32> Visited; 1073 for (SUnit &SU : DAG->SUnits) { 1074 MachineInstr &MAI = *SU.getInstr(); 1075 if (!TII->isMAI(MAI) || 1076 MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || 1077 MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) 1078 continue; 1079 1080 unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; 1081 1082 LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); 1083 dbgs() << "Need " << Lat 1084 << " instructions to cover latency.\n"); 1085 1086 // Find up to Lat independent scalar instructions as early as 1087 // possible such that they can be scheduled after this MFMA. 1088 for ( ; Lat && LastSALU != E; ++LastSALU) { 1089 if (Visited.count(&*LastSALU)) 1090 continue; 1091 1092 if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) 1093 continue; 1094 1095 Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); 1096 } 1097 } 1098 } 1099 }; 1100 } // namespace 1101 1102 void GCNSubtarget::getPostRAMutations( 1103 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { 1104 Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); 1105 } 1106 1107 std::unique_ptr<ScheduleDAGMutation> 1108 GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { 1109 return std::make_unique<FillMFMAShadowMutation>(&InstrInfo); 1110 } 1111 1112 const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { 1113 if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) 1114 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); 1115 else 1116 return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); 1117 } 1118 1119 const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { 1120 if (TM.getTargetTriple().getArch() == Triple::amdgcn) 1121 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); 1122 else 1123 return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); 1124 } 1125