1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUArgumentUsageInfo.h" 16 #include "AMDGPUISelLowering.h" // For AMDGPUISD 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUPerfHintAnalysis.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 22 #include "SIDefines.h" 23 #include "SIISelLowering.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIRegisterInfo.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGISel.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/InitializePasses.h" 43 #ifdef EXPENSIVE_CHECKS 44 #include "llvm/IR/Dominators.h" 45 #endif 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <new> 56 #include <vector> 57 58 #define DEBUG_TYPE "isel" 59 60 using namespace llvm; 61 62 namespace llvm { 63 64 class R600InstrInfo; 65 66 } // end namespace llvm 67 68 //===----------------------------------------------------------------------===// 69 // Instruction Selector Implementation 70 //===----------------------------------------------------------------------===// 71 72 namespace { 73 74 static bool isNullConstantOrUndef(SDValue V) { 75 if (V.isUndef()) 76 return true; 77 78 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 79 return Const != nullptr && Const->isNullValue(); 80 } 81 82 static bool getConstantValue(SDValue N, uint32_t &Out) { 83 // This is only used for packed vectors, where ussing 0 for undef should 84 // always be good. 85 if (N.isUndef()) { 86 Out = 0; 87 return true; 88 } 89 90 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 91 Out = C->getAPIntValue().getSExtValue(); 92 return true; 93 } 94 95 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 96 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 97 return true; 98 } 99 100 return false; 101 } 102 103 // TODO: Handle undef as zero 104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 105 bool Negate = false) { 106 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 107 uint32_t LHSVal, RHSVal; 108 if (getConstantValue(N->getOperand(0), LHSVal) && 109 getConstantValue(N->getOperand(1), RHSVal)) { 110 SDLoc SL(N); 111 uint32_t K = Negate ? 112 (-LHSVal & 0xffff) | (-RHSVal << 16) : 113 (LHSVal & 0xffff) | (RHSVal << 16); 114 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 115 DAG.getTargetConstant(K, SL, MVT::i32)); 116 } 117 118 return nullptr; 119 } 120 121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 122 return packConstantV2I16(N, DAG, true); 123 } 124 125 /// AMDGPU specific code to select AMDGPU machine instructions for 126 /// SelectionDAG operations. 127 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 128 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 129 // make the right decision when generating code for different targets. 130 const GCNSubtarget *Subtarget; 131 132 // Default FP mode for the current function. 133 AMDGPU::SIModeRegisterDefaults Mode; 134 135 bool EnableLateStructurizeCFG; 136 137 public: 138 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 139 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 140 : SelectionDAGISel(*TM, OptLevel) { 141 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 142 } 143 ~AMDGPUDAGToDAGISel() override = default; 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.addRequired<AMDGPUArgumentUsageInfo>(); 147 AU.addRequired<LegacyDivergenceAnalysis>(); 148 #ifdef EXPENSIVE_CHECKS 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 #endif 152 SelectionDAGISel::getAnalysisUsage(AU); 153 } 154 155 bool matchLoadD16FromBuildVector(SDNode *N) const; 156 157 bool runOnMachineFunction(MachineFunction &MF) override; 158 void PreprocessISelDAG() override; 159 void Select(SDNode *N) override; 160 StringRef getPassName() const override; 161 void PostprocessISelDAG() override; 162 163 protected: 164 void SelectBuildVector(SDNode *N, unsigned RegClassID); 165 166 private: 167 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 168 bool isNoNanSrc(SDValue N) const; 169 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 170 bool isNegInlineImmediate(const SDNode *N) const { 171 return isInlineImmediate(N, true); 172 } 173 174 bool isInlineImmediate16(int64_t Imm) const { 175 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 176 } 177 178 bool isInlineImmediate32(int64_t Imm) const { 179 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 180 } 181 182 bool isInlineImmediate64(int64_t Imm) const { 183 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 184 } 185 186 bool isInlineImmediate(const APFloat &Imm) const { 187 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 188 } 189 190 bool isVGPRImm(const SDNode *N) const; 191 bool isUniformLoad(const SDNode *N) const; 192 bool isUniformBr(const SDNode *N) const; 193 194 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 195 196 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 197 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 198 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 199 200 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 201 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 202 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 203 bool isDSOffsetLegal(SDValue Base, unsigned Offset, 204 unsigned OffsetBits) const; 205 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 206 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 207 SDValue &Offset1) const; 208 bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 209 SDValue &Offset1) const; 210 bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0, 211 SDValue &Offset1, bool IsDS128) const; 212 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 213 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 214 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 215 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 216 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 217 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 218 SDValue &SLC, SDValue &TFE, SDValue &DLC, 219 SDValue &SWZ) const; 220 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 221 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 222 SDValue &SLC) const; 223 bool SelectMUBUFScratchOffen(SDNode *Parent, 224 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 225 SDValue &SOffset, SDValue &ImmOffset) const; 226 bool SelectMUBUFScratchOffset(SDNode *Parent, 227 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 228 SDValue &Offset) const; 229 230 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 231 SDValue &Offset, SDValue &GLC, SDValue &SLC, 232 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 233 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 234 SDValue &Offset, SDValue &SLC) const; 235 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 236 SDValue &Offset) const; 237 238 template <bool IsSigned> 239 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 240 SDValue &Offset) const; 241 bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 242 SDValue &VOffset, SDValue &Offset) const; 243 244 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 245 bool &Imm) const; 246 SDValue Expand32BitAddress(SDValue Addr) const; 247 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 248 bool &Imm) const; 249 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 250 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 251 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 252 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 253 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 254 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 255 256 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 257 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const; 258 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 259 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 260 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 261 SDValue &Clamp, SDValue &Omod) const; 262 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 263 SDValue &Clamp, SDValue &Omod) const; 264 265 bool SelectVOP3OMods(SDValue In, SDValue &Src, 266 SDValue &Clamp, SDValue &Omod) const; 267 268 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 269 270 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 271 272 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 273 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 274 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 275 276 SDValue getHi16Elt(SDValue In) const; 277 278 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 279 280 void SelectADD_SUB_I64(SDNode *N); 281 void SelectAddcSubb(SDNode *N); 282 void SelectUADDO_USUBO(SDNode *N); 283 void SelectDIV_SCALE(SDNode *N); 284 void SelectMAD_64_32(SDNode *N); 285 void SelectFMA_W_CHAIN(SDNode *N); 286 void SelectFMUL_W_CHAIN(SDNode *N); 287 288 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 289 uint32_t Offset, uint32_t Width); 290 void SelectS_BFEFromShifts(SDNode *N); 291 void SelectS_BFE(SDNode *N); 292 bool isCBranchSCC(const SDNode *N) const; 293 void SelectBRCOND(SDNode *N); 294 void SelectFMAD_FMA(SDNode *N); 295 void SelectATOMIC_CMP_SWAP(SDNode *N); 296 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 297 void SelectDS_GWS(SDNode *N, unsigned IntrID); 298 void SelectInterpP1F16(SDNode *N); 299 void SelectINTRINSIC_W_CHAIN(SDNode *N); 300 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 301 void SelectINTRINSIC_VOID(SDNode *N); 302 303 protected: 304 // Include the pieces autogenerated from the target description. 305 #include "AMDGPUGenDAGISel.inc" 306 }; 307 308 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 309 const R600Subtarget *Subtarget; 310 311 bool isConstantLoad(const MemSDNode *N, int cbID) const; 312 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 313 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 314 SDValue& Offset); 315 public: 316 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 317 AMDGPUDAGToDAGISel(TM, OptLevel) {} 318 319 void Select(SDNode *N) override; 320 321 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 322 SDValue &Offset) override; 323 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 324 SDValue &Offset) override; 325 326 bool runOnMachineFunction(MachineFunction &MF) override; 327 328 void PreprocessISelDAG() override {} 329 330 protected: 331 // Include the pieces autogenerated from the target description. 332 #include "R600GenDAGISel.inc" 333 }; 334 335 static SDValue stripBitcast(SDValue Val) { 336 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 337 } 338 339 // Figure out if this is really an extract of the high 16-bits of a dword. 340 static bool isExtractHiElt(SDValue In, SDValue &Out) { 341 In = stripBitcast(In); 342 if (In.getOpcode() != ISD::TRUNCATE) 343 return false; 344 345 SDValue Srl = In.getOperand(0); 346 if (Srl.getOpcode() == ISD::SRL) { 347 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 348 if (ShiftAmt->getZExtValue() == 16) { 349 Out = stripBitcast(Srl.getOperand(0)); 350 return true; 351 } 352 } 353 } 354 355 return false; 356 } 357 358 // Look through operations that obscure just looking at the low 16-bits of the 359 // same register. 360 static SDValue stripExtractLoElt(SDValue In) { 361 if (In.getOpcode() == ISD::TRUNCATE) { 362 SDValue Src = In.getOperand(0); 363 if (Src.getValueType().getSizeInBits() == 32) 364 return stripBitcast(Src); 365 } 366 367 return In; 368 } 369 370 } // end anonymous namespace 371 372 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 373 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 374 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 375 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 376 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 377 #ifdef EXPENSIVE_CHECKS 378 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 379 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 380 #endif 381 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 382 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 383 384 /// This pass converts a legalized DAG into a AMDGPU-specific 385 // DAG, ready for instruction scheduling. 386 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 387 CodeGenOpt::Level OptLevel) { 388 return new AMDGPUDAGToDAGISel(TM, OptLevel); 389 } 390 391 /// This pass converts a legalized DAG into a R600-specific 392 // DAG, ready for instruction scheduling. 393 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 394 CodeGenOpt::Level OptLevel) { 395 return new R600DAGToDAGISel(TM, OptLevel); 396 } 397 398 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 399 #ifdef EXPENSIVE_CHECKS 400 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 401 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 402 for (auto &L : LI->getLoopsInPreorder()) { 403 assert(L->isLCSSAForm(DT)); 404 } 405 #endif 406 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 407 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 408 return SelectionDAGISel::runOnMachineFunction(MF); 409 } 410 411 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 412 assert(Subtarget->d16PreservesUnusedBits()); 413 MVT VT = N->getValueType(0).getSimpleVT(); 414 if (VT != MVT::v2i16 && VT != MVT::v2f16) 415 return false; 416 417 SDValue Lo = N->getOperand(0); 418 SDValue Hi = N->getOperand(1); 419 420 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 421 422 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 423 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 424 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 425 426 // Need to check for possible indirect dependencies on the other half of the 427 // vector to avoid introducing a cycle. 428 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 429 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 430 431 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 432 SDValue Ops[] = { 433 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 434 }; 435 436 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 437 if (LdHi->getMemoryVT() == MVT::i8) { 438 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 439 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 440 } else { 441 assert(LdHi->getMemoryVT() == MVT::i16); 442 } 443 444 SDValue NewLoadHi = 445 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 446 Ops, LdHi->getMemoryVT(), 447 LdHi->getMemOperand()); 448 449 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 450 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 451 return true; 452 } 453 454 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 455 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 456 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 457 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 458 if (LdLo && Lo.hasOneUse()) { 459 SDValue TiedIn = getHi16Elt(Hi); 460 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 461 return false; 462 463 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 464 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 465 if (LdLo->getMemoryVT() == MVT::i8) { 466 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 467 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 468 } else { 469 assert(LdLo->getMemoryVT() == MVT::i16); 470 } 471 472 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 473 474 SDValue Ops[] = { 475 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 476 }; 477 478 SDValue NewLoadLo = 479 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 480 Ops, LdLo->getMemoryVT(), 481 LdLo->getMemOperand()); 482 483 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 484 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 485 return true; 486 } 487 488 return false; 489 } 490 491 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 492 if (!Subtarget->d16PreservesUnusedBits()) 493 return; 494 495 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 496 497 bool MadeChange = false; 498 while (Position != CurDAG->allnodes_begin()) { 499 SDNode *N = &*--Position; 500 if (N->use_empty()) 501 continue; 502 503 switch (N->getOpcode()) { 504 case ISD::BUILD_VECTOR: 505 MadeChange |= matchLoadD16FromBuildVector(N); 506 break; 507 default: 508 break; 509 } 510 } 511 512 if (MadeChange) { 513 CurDAG->RemoveDeadNodes(); 514 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 515 CurDAG->dump();); 516 } 517 } 518 519 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 520 if (TM.Options.NoNaNsFPMath) 521 return true; 522 523 // TODO: Move into isKnownNeverNaN 524 if (N->getFlags().hasNoNaNs()) 525 return true; 526 527 return CurDAG->isKnownNeverNaN(N); 528 } 529 530 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 531 bool Negated) const { 532 if (N->isUndef()) 533 return true; 534 535 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 536 if (Negated) { 537 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 538 return TII->isInlineConstant(-C->getAPIntValue()); 539 540 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 541 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 542 543 } else { 544 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 545 return TII->isInlineConstant(C->getAPIntValue()); 546 547 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 548 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 549 } 550 551 return false; 552 } 553 554 /// Determine the register class for \p OpNo 555 /// \returns The register class of the virtual register that will be used for 556 /// the given operand number \OpNo or NULL if the register class cannot be 557 /// determined. 558 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 559 unsigned OpNo) const { 560 if (!N->isMachineOpcode()) { 561 if (N->getOpcode() == ISD::CopyToReg) { 562 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 563 if (Reg.isVirtual()) { 564 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 565 return MRI.getRegClass(Reg); 566 } 567 568 const SIRegisterInfo *TRI 569 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 570 return TRI->getPhysRegClass(Reg); 571 } 572 573 return nullptr; 574 } 575 576 switch (N->getMachineOpcode()) { 577 default: { 578 const MCInstrDesc &Desc = 579 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 580 unsigned OpIdx = Desc.getNumDefs() + OpNo; 581 if (OpIdx >= Desc.getNumOperands()) 582 return nullptr; 583 int RegClass = Desc.OpInfo[OpIdx].RegClass; 584 if (RegClass == -1) 585 return nullptr; 586 587 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 588 } 589 case AMDGPU::REG_SEQUENCE: { 590 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 591 const TargetRegisterClass *SuperRC = 592 Subtarget->getRegisterInfo()->getRegClass(RCID); 593 594 SDValue SubRegOp = N->getOperand(OpNo + 1); 595 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 596 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 597 SubRegIdx); 598 } 599 } 600 } 601 602 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 603 SDValue Glue) const { 604 SmallVector <SDValue, 8> Ops; 605 Ops.push_back(NewChain); // Replace the chain. 606 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 607 Ops.push_back(N->getOperand(i)); 608 609 Ops.push_back(Glue); 610 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 611 } 612 613 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 614 const SITargetLowering& Lowering = 615 *static_cast<const SITargetLowering*>(getTargetLowering()); 616 617 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 618 619 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 620 return glueCopyToOp(N, M0, M0.getValue(1)); 621 } 622 623 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 624 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 625 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 626 if (Subtarget->ldsRequiresM0Init()) 627 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 628 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 629 MachineFunction &MF = CurDAG->getMachineFunction(); 630 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 631 return 632 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 633 } 634 return N; 635 } 636 637 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 638 EVT VT) const { 639 SDNode *Lo = CurDAG->getMachineNode( 640 AMDGPU::S_MOV_B32, DL, MVT::i32, 641 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 642 SDNode *Hi = 643 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 644 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 645 const SDValue Ops[] = { 646 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 647 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 648 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 649 650 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 651 } 652 653 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 654 EVT VT = N->getValueType(0); 655 unsigned NumVectorElts = VT.getVectorNumElements(); 656 EVT EltVT = VT.getVectorElementType(); 657 SDLoc DL(N); 658 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 659 660 if (NumVectorElts == 1) { 661 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 662 RegClass); 663 return; 664 } 665 666 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 667 "supported yet"); 668 // 32 = Max Num Vector Elements 669 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 670 // 1 = Vector Register Class 671 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 672 673 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 674 Triple::amdgcn; 675 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 676 bool IsRegSeq = true; 677 unsigned NOps = N->getNumOperands(); 678 for (unsigned i = 0; i < NOps; i++) { 679 // XXX: Why is this here? 680 if (isa<RegisterSDNode>(N->getOperand(i))) { 681 IsRegSeq = false; 682 break; 683 } 684 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 685 : R600RegisterInfo::getSubRegFromChannel(i); 686 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 687 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 688 } 689 if (NOps != NumVectorElts) { 690 // Fill in the missing undef elements if this was a scalar_to_vector. 691 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 692 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 693 DL, EltVT); 694 for (unsigned i = NOps; i < NumVectorElts; ++i) { 695 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 696 : R600RegisterInfo::getSubRegFromChannel(i); 697 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 698 RegSeqArgs[1 + (2 * i) + 1] = 699 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 700 } 701 } 702 703 if (!IsRegSeq) 704 SelectCode(N); 705 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 706 } 707 708 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 709 unsigned int Opc = N->getOpcode(); 710 if (N->isMachineOpcode()) { 711 N->setNodeId(-1); 712 return; // Already selected. 713 } 714 715 // isa<MemSDNode> almost works but is slightly too permissive for some DS 716 // intrinsics. 717 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 718 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 719 Opc == ISD::ATOMIC_LOAD_FADD || 720 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 721 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 722 N = glueCopyToM0LDSInit(N); 723 SelectCode(N); 724 return; 725 } 726 727 switch (Opc) { 728 default: 729 break; 730 // We are selecting i64 ADD here instead of custom lower it during 731 // DAG legalization, so we can fold some i64 ADDs used for address 732 // calculation into the LOAD and STORE instructions. 733 case ISD::ADDC: 734 case ISD::ADDE: 735 case ISD::SUBC: 736 case ISD::SUBE: { 737 if (N->getValueType(0) != MVT::i64) 738 break; 739 740 SelectADD_SUB_I64(N); 741 return; 742 } 743 case ISD::ADDCARRY: 744 case ISD::SUBCARRY: 745 if (N->getValueType(0) != MVT::i32) 746 break; 747 748 SelectAddcSubb(N); 749 return; 750 case ISD::UADDO: 751 case ISD::USUBO: { 752 SelectUADDO_USUBO(N); 753 return; 754 } 755 case AMDGPUISD::FMUL_W_CHAIN: { 756 SelectFMUL_W_CHAIN(N); 757 return; 758 } 759 case AMDGPUISD::FMA_W_CHAIN: { 760 SelectFMA_W_CHAIN(N); 761 return; 762 } 763 764 case ISD::SCALAR_TO_VECTOR: 765 case ISD::BUILD_VECTOR: { 766 EVT VT = N->getValueType(0); 767 unsigned NumVectorElts = VT.getVectorNumElements(); 768 if (VT.getScalarSizeInBits() == 16) { 769 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 770 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 771 ReplaceNode(N, Packed); 772 return; 773 } 774 } 775 776 break; 777 } 778 779 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 780 unsigned RegClassID = 781 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 782 SelectBuildVector(N, RegClassID); 783 return; 784 } 785 case ISD::BUILD_PAIR: { 786 SDValue RC, SubReg0, SubReg1; 787 SDLoc DL(N); 788 if (N->getValueType(0) == MVT::i128) { 789 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 790 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 791 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 792 } else if (N->getValueType(0) == MVT::i64) { 793 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 794 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 795 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 796 } else { 797 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 798 } 799 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 800 N->getOperand(1), SubReg1 }; 801 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 802 N->getValueType(0), Ops)); 803 return; 804 } 805 806 case ISD::Constant: 807 case ISD::ConstantFP: { 808 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 809 break; 810 811 uint64_t Imm; 812 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 813 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 814 else { 815 ConstantSDNode *C = cast<ConstantSDNode>(N); 816 Imm = C->getZExtValue(); 817 } 818 819 SDLoc DL(N); 820 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 821 return; 822 } 823 case AMDGPUISD::BFE_I32: 824 case AMDGPUISD::BFE_U32: { 825 // There is a scalar version available, but unlike the vector version which 826 // has a separate operand for the offset and width, the scalar version packs 827 // the width and offset into a single operand. Try to move to the scalar 828 // version if the offsets are constant, so that we can try to keep extended 829 // loads of kernel arguments in SGPRs. 830 831 // TODO: Technically we could try to pattern match scalar bitshifts of 832 // dynamic values, but it's probably not useful. 833 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 834 if (!Offset) 835 break; 836 837 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 838 if (!Width) 839 break; 840 841 bool Signed = Opc == AMDGPUISD::BFE_I32; 842 843 uint32_t OffsetVal = Offset->getZExtValue(); 844 uint32_t WidthVal = Width->getZExtValue(); 845 846 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 847 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 848 return; 849 } 850 case AMDGPUISD::DIV_SCALE: { 851 SelectDIV_SCALE(N); 852 return; 853 } 854 case AMDGPUISD::MAD_I64_I32: 855 case AMDGPUISD::MAD_U64_U32: { 856 SelectMAD_64_32(N); 857 return; 858 } 859 case ISD::CopyToReg: { 860 const SITargetLowering& Lowering = 861 *static_cast<const SITargetLowering*>(getTargetLowering()); 862 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 863 break; 864 } 865 case ISD::AND: 866 case ISD::SRL: 867 case ISD::SRA: 868 case ISD::SIGN_EXTEND_INREG: 869 if (N->getValueType(0) != MVT::i32) 870 break; 871 872 SelectS_BFE(N); 873 return; 874 case ISD::BRCOND: 875 SelectBRCOND(N); 876 return; 877 case ISD::FMAD: 878 case ISD::FMA: 879 SelectFMAD_FMA(N); 880 return; 881 case AMDGPUISD::ATOMIC_CMP_SWAP: 882 SelectATOMIC_CMP_SWAP(N); 883 return; 884 case AMDGPUISD::CVT_PKRTZ_F16_F32: 885 case AMDGPUISD::CVT_PKNORM_I16_F32: 886 case AMDGPUISD::CVT_PKNORM_U16_F32: 887 case AMDGPUISD::CVT_PK_U16_U32: 888 case AMDGPUISD::CVT_PK_I16_I32: { 889 // Hack around using a legal type if f16 is illegal. 890 if (N->getValueType(0) == MVT::i32) { 891 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 892 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 893 { N->getOperand(0), N->getOperand(1) }); 894 SelectCode(N); 895 return; 896 } 897 898 break; 899 } 900 case ISD::INTRINSIC_W_CHAIN: { 901 SelectINTRINSIC_W_CHAIN(N); 902 return; 903 } 904 case ISD::INTRINSIC_WO_CHAIN: { 905 SelectINTRINSIC_WO_CHAIN(N); 906 return; 907 } 908 case ISD::INTRINSIC_VOID: { 909 SelectINTRINSIC_VOID(N); 910 return; 911 } 912 } 913 914 SelectCode(N); 915 } 916 917 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 918 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 919 const Instruction *Term = BB->getTerminator(); 920 return Term->getMetadata("amdgpu.uniform") || 921 Term->getMetadata("structurizecfg.uniform"); 922 } 923 924 StringRef AMDGPUDAGToDAGISel::getPassName() const { 925 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 926 } 927 928 //===----------------------------------------------------------------------===// 929 // Complex Patterns 930 //===----------------------------------------------------------------------===// 931 932 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 933 SDValue &Offset) { 934 return false; 935 } 936 937 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 938 SDValue &Offset) { 939 ConstantSDNode *C; 940 SDLoc DL(Addr); 941 942 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 943 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 944 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 945 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 946 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 947 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 948 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 949 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 950 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 951 Base = Addr.getOperand(0); 952 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 953 } else { 954 Base = Addr; 955 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 956 } 957 958 return true; 959 } 960 961 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 962 const SDLoc &DL) const { 963 SDNode *Mov = CurDAG->getMachineNode( 964 AMDGPU::S_MOV_B32, DL, MVT::i32, 965 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 966 return SDValue(Mov, 0); 967 } 968 969 // FIXME: Should only handle addcarry/subcarry 970 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 971 SDLoc DL(N); 972 SDValue LHS = N->getOperand(0); 973 SDValue RHS = N->getOperand(1); 974 975 unsigned Opcode = N->getOpcode(); 976 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 977 bool ProduceCarry = 978 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 979 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 980 981 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 982 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 983 984 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 985 DL, MVT::i32, LHS, Sub0); 986 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 987 DL, MVT::i32, LHS, Sub1); 988 989 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 990 DL, MVT::i32, RHS, Sub0); 991 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 992 DL, MVT::i32, RHS, Sub1); 993 994 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 995 996 static const unsigned OpcMap[2][2][2] = { 997 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 998 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 999 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 1000 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1001 1002 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1003 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1004 1005 SDNode *AddLo; 1006 if (!ConsumeCarry) { 1007 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1008 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1009 } else { 1010 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1011 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1012 } 1013 SDValue AddHiArgs[] = { 1014 SDValue(Hi0, 0), 1015 SDValue(Hi1, 0), 1016 SDValue(AddLo, 1) 1017 }; 1018 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1019 1020 SDValue RegSequenceArgs[] = { 1021 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1022 SDValue(AddLo,0), 1023 Sub0, 1024 SDValue(AddHi,0), 1025 Sub1, 1026 }; 1027 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1028 MVT::i64, RegSequenceArgs); 1029 1030 if (ProduceCarry) { 1031 // Replace the carry-use 1032 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1033 } 1034 1035 // Replace the remaining uses. 1036 ReplaceNode(N, RegSequence); 1037 } 1038 1039 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1040 SDLoc DL(N); 1041 SDValue LHS = N->getOperand(0); 1042 SDValue RHS = N->getOperand(1); 1043 SDValue CI = N->getOperand(2); 1044 1045 if (N->isDivergent()) { 1046 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1047 : AMDGPU::V_SUBB_U32_e64; 1048 CurDAG->SelectNodeTo( 1049 N, Opc, N->getVTList(), 1050 {LHS, RHS, CI, 1051 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1052 } else { 1053 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1054 : AMDGPU::S_SUB_CO_PSEUDO; 1055 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1056 } 1057 } 1058 1059 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1060 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1061 // carry out despite the _i32 name. These were renamed in VI to _U32. 1062 // FIXME: We should probably rename the opcodes here. 1063 bool IsAdd = N->getOpcode() == ISD::UADDO; 1064 bool IsVALU = N->isDivergent(); 1065 1066 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1067 ++UI) 1068 if (UI.getUse().getResNo() == 1) { 1069 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1070 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1071 IsVALU = true; 1072 break; 1073 } 1074 } 1075 1076 if (IsVALU) { 1077 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 1078 1079 CurDAG->SelectNodeTo( 1080 N, Opc, N->getVTList(), 1081 {N->getOperand(0), N->getOperand(1), 1082 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1083 } else { 1084 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1085 : AMDGPU::S_USUBO_PSEUDO; 1086 1087 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1088 {N->getOperand(0), N->getOperand(1)}); 1089 } 1090 } 1091 1092 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1093 SDLoc SL(N); 1094 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1095 SDValue Ops[10]; 1096 1097 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1098 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1099 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1100 Ops[8] = N->getOperand(0); 1101 Ops[9] = N->getOperand(4); 1102 1103 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops); 1104 } 1105 1106 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1107 SDLoc SL(N); 1108 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1109 SDValue Ops[8]; 1110 1111 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1112 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1113 Ops[6] = N->getOperand(0); 1114 Ops[7] = N->getOperand(3); 1115 1116 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1117 } 1118 1119 // We need to handle this here because tablegen doesn't support matching 1120 // instructions with multiple outputs. 1121 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1122 SDLoc SL(N); 1123 EVT VT = N->getValueType(0); 1124 1125 assert(VT == MVT::f32 || VT == MVT::f64); 1126 1127 unsigned Opc 1128 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; 1129 1130 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) }; 1131 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1132 } 1133 1134 // We need to handle this here because tablegen doesn't support matching 1135 // instructions with multiple outputs. 1136 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1137 SDLoc SL(N); 1138 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1139 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32; 1140 1141 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1142 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1143 Clamp }; 1144 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1145 } 1146 1147 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset, 1148 unsigned OffsetBits) const { 1149 if ((OffsetBits == 16 && !isUInt<16>(Offset)) || 1150 (OffsetBits == 8 && !isUInt<8>(Offset))) 1151 return false; 1152 1153 if (Subtarget->hasUsableDSOffset() || 1154 Subtarget->unsafeDSOffsetFoldingEnabled()) 1155 return true; 1156 1157 // On Southern Islands instruction with a negative base value and an offset 1158 // don't seem to work. 1159 return CurDAG->SignBitIsZero(Base); 1160 } 1161 1162 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1163 SDValue &Offset) const { 1164 SDLoc DL(Addr); 1165 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1166 SDValue N0 = Addr.getOperand(0); 1167 SDValue N1 = Addr.getOperand(1); 1168 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1169 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) { 1170 // (add n0, c0) 1171 Base = N0; 1172 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1173 return true; 1174 } 1175 } else if (Addr.getOpcode() == ISD::SUB) { 1176 // sub C, x -> add (sub 0, x), C 1177 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1178 int64_t ByteOffset = C->getSExtValue(); 1179 if (isUInt<16>(ByteOffset)) { 1180 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1181 1182 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1183 // the known bits in isDSOffsetLegal. We need to emit the selected node 1184 // here, so this is thrown away. 1185 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1186 Zero, Addr.getOperand(1)); 1187 1188 if (isDSOffsetLegal(Sub, ByteOffset, 16)) { 1189 SmallVector<SDValue, 3> Opnds; 1190 Opnds.push_back(Zero); 1191 Opnds.push_back(Addr.getOperand(1)); 1192 1193 // FIXME: Select to VOP3 version for with-carry. 1194 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1195 if (Subtarget->hasAddNoCarry()) { 1196 SubOp = AMDGPU::V_SUB_U32_e64; 1197 Opnds.push_back( 1198 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1199 } 1200 1201 MachineSDNode *MachineSub = 1202 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1203 1204 Base = SDValue(MachineSub, 0); 1205 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1206 return true; 1207 } 1208 } 1209 } 1210 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1211 // If we have a constant address, prefer to put the constant into the 1212 // offset. This can save moves to load the constant address since multiple 1213 // operations can share the zero base address register, and enables merging 1214 // into read2 / write2 instructions. 1215 1216 SDLoc DL(Addr); 1217 1218 if (isUInt<16>(CAddr->getZExtValue())) { 1219 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1220 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1221 DL, MVT::i32, Zero); 1222 Base = SDValue(MovZero, 0); 1223 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1224 return true; 1225 } 1226 } 1227 1228 // default case 1229 Base = Addr; 1230 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1231 return true; 1232 } 1233 1234 // TODO: If offset is too big, put low 16-bit into offset. 1235 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1236 SDValue &Offset0, 1237 SDValue &Offset1) const { 1238 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, false); 1239 } 1240 1241 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1242 SDValue &Offset0, 1243 SDValue &Offset1) const { 1244 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, true); 1245 } 1246 1247 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1248 SDValue &Offset0, SDValue &Offset1, 1249 bool IsDS128) const { 1250 SDLoc DL(Addr); 1251 unsigned Align = IsDS128 ? 8 : 4; 1252 1253 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1254 SDValue N0 = Addr.getOperand(0); 1255 SDValue N1 = Addr.getOperand(1); 1256 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1257 unsigned OffsetValue0 = C1->getZExtValue() / Align; 1258 unsigned OffsetValue1 = OffsetValue0 + 1; 1259 // (add n0, c0) 1260 if (isDSOffsetLegal(N0, OffsetValue1, 8)) { 1261 Base = N0; 1262 Offset0 = CurDAG->getTargetConstant(OffsetValue0, DL, MVT::i8); 1263 Offset1 = CurDAG->getTargetConstant(OffsetValue1, DL, MVT::i8); 1264 return true; 1265 } 1266 } else if (Addr.getOpcode() == ISD::SUB) { 1267 // sub C, x -> add (sub 0, x), C 1268 if (const ConstantSDNode *C = 1269 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1270 unsigned OffsetValue0 = C->getZExtValue() / Align; 1271 unsigned OffsetValue1 = OffsetValue0 + 1; 1272 1273 if (isUInt<8>(OffsetValue0)) { 1274 SDLoc DL(Addr); 1275 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1276 1277 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1278 // the known bits in isDSOffsetLegal. We need to emit the selected node 1279 // here, so this is thrown away. 1280 SDValue Sub = 1281 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1282 1283 if (isDSOffsetLegal(Sub, OffsetValue1, 8)) { 1284 SmallVector<SDValue, 3> Opnds; 1285 Opnds.push_back(Zero); 1286 Opnds.push_back(Addr.getOperand(1)); 1287 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1288 if (Subtarget->hasAddNoCarry()) { 1289 SubOp = AMDGPU::V_SUB_U32_e64; 1290 Opnds.push_back( 1291 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1292 } 1293 1294 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1295 SubOp, DL, (IsDS128 ? MVT::i64 : MVT::i32), Opnds); 1296 1297 Base = SDValue(MachineSub, 0); 1298 Offset0 = CurDAG->getTargetConstant(OffsetValue0, DL, MVT::i8); 1299 Offset1 = CurDAG->getTargetConstant(OffsetValue1, DL, MVT::i8); 1300 return true; 1301 } 1302 } 1303 } 1304 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1305 unsigned OffsetValue0 = CAddr->getZExtValue() / Align; 1306 unsigned OffsetValue1 = OffsetValue0 + 1; 1307 bool OffsetIsAligned = Align * OffsetValue0 == CAddr->getZExtValue(); 1308 1309 if (isUInt<8>(OffsetValue0) && isUInt<8>(OffsetValue1) && OffsetIsAligned) { 1310 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1311 MachineSDNode *MovZero = 1312 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1313 Base = SDValue(MovZero, 0); 1314 Offset0 = CurDAG->getTargetConstant(OffsetValue0, DL, MVT::i8); 1315 Offset1 = CurDAG->getTargetConstant(OffsetValue1, DL, MVT::i8); 1316 return true; 1317 } 1318 } 1319 1320 // default case 1321 1322 Base = Addr; 1323 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1324 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1325 return true; 1326 } 1327 1328 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 1329 SDValue &VAddr, SDValue &SOffset, 1330 SDValue &Offset, SDValue &Offen, 1331 SDValue &Idxen, SDValue &Addr64, 1332 SDValue &GLC, SDValue &SLC, 1333 SDValue &TFE, SDValue &DLC, 1334 SDValue &SWZ) const { 1335 // Subtarget prefers to use flat instruction 1336 // FIXME: This should be a pattern predicate and not reach here 1337 if (Subtarget->useFlatForGlobal()) 1338 return false; 1339 1340 SDLoc DL(Addr); 1341 1342 if (!GLC.getNode()) 1343 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1344 if (!SLC.getNode()) 1345 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1346 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1347 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1348 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1349 1350 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1351 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1352 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1353 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1354 1355 ConstantSDNode *C1 = nullptr; 1356 SDValue N0 = Addr; 1357 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1358 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1359 if (isUInt<32>(C1->getZExtValue())) 1360 N0 = Addr.getOperand(0); 1361 else 1362 C1 = nullptr; 1363 } 1364 1365 if (N0.getOpcode() == ISD::ADD) { 1366 // (add N2, N3) -> addr64, or 1367 // (add (add N2, N3), C1) -> addr64 1368 SDValue N2 = N0.getOperand(0); 1369 SDValue N3 = N0.getOperand(1); 1370 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1371 1372 if (N2->isDivergent()) { 1373 if (N3->isDivergent()) { 1374 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1375 // addr64, and construct the resource from a 0 address. 1376 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1377 VAddr = N0; 1378 } else { 1379 // N2 is divergent, N3 is not. 1380 Ptr = N3; 1381 VAddr = N2; 1382 } 1383 } else { 1384 // N2 is not divergent. 1385 Ptr = N2; 1386 VAddr = N3; 1387 } 1388 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1389 } else if (N0->isDivergent()) { 1390 // N0 is divergent. Use it as the addr64, and construct the resource from a 1391 // 0 address. 1392 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1393 VAddr = N0; 1394 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1395 } else { 1396 // N0 -> offset, or 1397 // (N0 + C1) -> offset 1398 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1399 Ptr = N0; 1400 } 1401 1402 if (!C1) { 1403 // No offset. 1404 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1405 return true; 1406 } 1407 1408 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1409 // Legal offset for instruction. 1410 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1411 return true; 1412 } 1413 1414 // Illegal offset, store it in soffset. 1415 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1416 SOffset = 1417 SDValue(CurDAG->getMachineNode( 1418 AMDGPU::S_MOV_B32, DL, MVT::i32, 1419 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1420 0); 1421 return true; 1422 } 1423 1424 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1425 SDValue &VAddr, SDValue &SOffset, 1426 SDValue &Offset, SDValue &GLC, 1427 SDValue &SLC, SDValue &TFE, 1428 SDValue &DLC, SDValue &SWZ) const { 1429 SDValue Ptr, Offen, Idxen, Addr64; 1430 1431 // addr64 bit was removed for volcanic islands. 1432 // FIXME: This should be a pattern predicate and not reach here 1433 if (!Subtarget->hasAddr64()) 1434 return false; 1435 1436 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1437 GLC, SLC, TFE, DLC, SWZ)) 1438 return false; 1439 1440 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1441 if (C->getSExtValue()) { 1442 SDLoc DL(Addr); 1443 1444 const SITargetLowering& Lowering = 1445 *static_cast<const SITargetLowering*>(getTargetLowering()); 1446 1447 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1448 return true; 1449 } 1450 1451 return false; 1452 } 1453 1454 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1455 SDValue &VAddr, SDValue &SOffset, 1456 SDValue &Offset, 1457 SDValue &SLC) const { 1458 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1459 SDValue GLC, TFE, DLC, SWZ; 1460 1461 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1462 } 1463 1464 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1465 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1466 return PSV && PSV->isStack(); 1467 } 1468 1469 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1470 SDLoc DL(N); 1471 const MachineFunction &MF = CurDAG->getMachineFunction(); 1472 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1473 1474 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) { 1475 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1476 FI->getValueType(0)); 1477 1478 // If we can resolve this to a frame index access, this will be relative to 1479 // either the stack or frame pointer SGPR. 1480 return std::make_pair( 1481 TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)); 1482 } 1483 1484 // If we don't know this private access is a local stack object, it needs to 1485 // be relative to the entry point's scratch wave offset. 1486 return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1487 } 1488 1489 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1490 SDValue Addr, SDValue &Rsrc, 1491 SDValue &VAddr, SDValue &SOffset, 1492 SDValue &ImmOffset) const { 1493 1494 SDLoc DL(Addr); 1495 MachineFunction &MF = CurDAG->getMachineFunction(); 1496 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1497 1498 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1499 1500 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1501 int64_t Imm = CAddr->getSExtValue(); 1502 const int64_t NullPtr = 1503 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1504 // Don't fold null pointer. 1505 if (Imm != NullPtr) { 1506 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1507 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1508 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1509 VAddr = SDValue(MovHighBits, 0); 1510 1511 // In a call sequence, stores to the argument stack area are relative to the 1512 // stack pointer. 1513 const MachinePointerInfo &PtrInfo 1514 = cast<MemSDNode>(Parent)->getPointerInfo(); 1515 SOffset = isStackPtrRelative(PtrInfo) 1516 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1517 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1518 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1519 return true; 1520 } 1521 } 1522 1523 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1524 // (add n0, c1) 1525 1526 SDValue N0 = Addr.getOperand(0); 1527 SDValue N1 = Addr.getOperand(1); 1528 1529 // Offsets in vaddr must be positive if range checking is enabled. 1530 // 1531 // The total computation of vaddr + soffset + offset must not overflow. If 1532 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1533 // overflowing. 1534 // 1535 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1536 // always perform a range check. If a negative vaddr base index was used, 1537 // this would fail the range check. The overall address computation would 1538 // compute a valid address, but this doesn't happen due to the range 1539 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1540 // 1541 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1542 // MUBUF vaddr, but not on older subtargets which can only do this if the 1543 // sign bit is known 0. 1544 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1545 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1546 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1547 CurDAG->SignBitIsZero(N0))) { 1548 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1549 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1550 return true; 1551 } 1552 } 1553 1554 // (node) 1555 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1556 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1557 return true; 1558 } 1559 1560 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1561 SDValue Addr, 1562 SDValue &SRsrc, 1563 SDValue &SOffset, 1564 SDValue &Offset) const { 1565 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1566 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1567 return false; 1568 1569 SDLoc DL(Addr); 1570 MachineFunction &MF = CurDAG->getMachineFunction(); 1571 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1572 1573 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1574 1575 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1576 1577 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1578 // offset if we know this is in a call sequence. 1579 SOffset = isStackPtrRelative(PtrInfo) 1580 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1581 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1582 1583 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1584 return true; 1585 } 1586 1587 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1588 SDValue &SOffset, SDValue &Offset, 1589 SDValue &GLC, SDValue &SLC, 1590 SDValue &TFE, SDValue &DLC, 1591 SDValue &SWZ) const { 1592 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1593 const SIInstrInfo *TII = 1594 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1595 1596 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1597 GLC, SLC, TFE, DLC, SWZ)) 1598 return false; 1599 1600 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1601 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1602 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1603 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1604 APInt::getAllOnesValue(32).getZExtValue(); // Size 1605 SDLoc DL(Addr); 1606 1607 const SITargetLowering& Lowering = 1608 *static_cast<const SITargetLowering*>(getTargetLowering()); 1609 1610 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1611 return true; 1612 } 1613 return false; 1614 } 1615 1616 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1617 SDValue &Soffset, SDValue &Offset 1618 ) const { 1619 SDValue GLC, SLC, TFE, DLC, SWZ; 1620 1621 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1622 } 1623 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1624 SDValue &Soffset, SDValue &Offset, 1625 SDValue &SLC) const { 1626 SDValue GLC, TFE, DLC, SWZ; 1627 1628 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1629 } 1630 1631 // Find a load or store from corresponding pattern root. 1632 // Roots may be build_vector, bitconvert or their combinations. 1633 static MemSDNode* findMemSDNode(SDNode *N) { 1634 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1635 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1636 return MN; 1637 assert(isa<BuildVectorSDNode>(N)); 1638 for (SDValue V : N->op_values()) 1639 if (MemSDNode *MN = 1640 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1641 return MN; 1642 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1643 } 1644 1645 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 1646 SDValue &N0, SDValue &N1) { 1647 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 1648 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 1649 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 1650 // (i64 (bitcast (v2i32 (build_vector 1651 // (or (extract_vector_elt V, 0), OFFSET), 1652 // (extract_vector_elt V, 1))))) 1653 SDValue Lo = Addr.getOperand(0).getOperand(0); 1654 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 1655 SDValue BaseLo = Lo.getOperand(0); 1656 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 1657 // Check that split base (Lo and Hi) are extracted from the same one. 1658 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 1659 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 1660 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 1661 // Lo is statically extracted from index 0. 1662 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 1663 BaseLo.getConstantOperandVal(1) == 0 && 1664 // Hi is statically extracted from index 0. 1665 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 1666 BaseHi.getConstantOperandVal(1) == 1) { 1667 N0 = BaseLo.getOperand(0).getOperand(0); 1668 N1 = Lo.getOperand(1); 1669 return true; 1670 } 1671 } 1672 } 1673 return false; 1674 } 1675 1676 template <bool IsSigned> 1677 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1678 SDValue Addr, 1679 SDValue &VAddr, 1680 SDValue &Offset) const { 1681 int64_t OffsetVal = 0; 1682 1683 if (Subtarget->hasFlatInstOffsets() && 1684 (!Subtarget->hasFlatSegmentOffsetBug() || 1685 findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) { 1686 SDValue N0, N1; 1687 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1688 N0 = Addr.getOperand(0); 1689 N1 = Addr.getOperand(1); 1690 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1691 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1692 } 1693 if (N0 && N1) { 1694 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1695 1696 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1697 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1698 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1699 Addr = N0; 1700 OffsetVal = COffsetVal; 1701 } else { 1702 // If the offset doesn't fit, put the low bits into the offset field and 1703 // add the rest. 1704 // 1705 // For a FLAT instruction the hardware decides whether to access 1706 // global/scratch/shared memory based on the high bits of vaddr, 1707 // ignoring the offset field, so we have to ensure that when we add 1708 // remainder to vaddr it still points into the same underlying object. 1709 // The easiest way to do that is to make sure that we split the offset 1710 // into two pieces that are both >= 0 or both <= 0. 1711 1712 SDLoc DL(N); 1713 uint64_t RemainderOffset = COffsetVal; 1714 uint64_t ImmField = 0; 1715 const unsigned NumBits = TII->getNumFlatOffsetBits(IsSigned); 1716 if (IsSigned) { 1717 // Use signed division by a power of two to truncate towards 0. 1718 int64_t D = 1LL << (NumBits - 1); 1719 RemainderOffset = (static_cast<int64_t>(COffsetVal) / D) * D; 1720 ImmField = COffsetVal - RemainderOffset; 1721 } else if (static_cast<int64_t>(COffsetVal) >= 0) { 1722 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits); 1723 RemainderOffset = COffsetVal - ImmField; 1724 } 1725 assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned)); 1726 assert(RemainderOffset + ImmField == COffsetVal); 1727 1728 OffsetVal = ImmField; 1729 1730 // TODO: Should this try to use a scalar add pseudo if the base address 1731 // is uniform and saddr is usable? 1732 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1733 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1734 1735 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 1736 MVT::i32, N0, Sub0); 1737 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, 1738 MVT::i32, N0, Sub1); 1739 1740 SDValue AddOffsetLo = 1741 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1742 SDValue AddOffsetHi = 1743 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1744 1745 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1746 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1747 1748 SDNode *Add = 1749 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1750 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1751 1752 SDNode *Addc = CurDAG->getMachineNode( 1753 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1754 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1755 1756 SDValue RegSequenceArgs[] = { 1757 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1758 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1759 1760 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1761 MVT::i64, RegSequenceArgs), 1762 0); 1763 } 1764 } 1765 } 1766 1767 VAddr = Addr; 1768 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1769 return true; 1770 } 1771 1772 // If this matches zero_extend i32:x, return x 1773 static SDValue matchZExtFromI32(SDValue Op) { 1774 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1775 return SDValue(); 1776 1777 SDValue ExtSrc = Op.getOperand(0); 1778 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1779 } 1780 1781 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1782 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1783 SDValue Addr, 1784 SDValue &SAddr, 1785 SDValue &VOffset, 1786 SDValue &Offset) const { 1787 int64_t ImmOffset = 0; 1788 1789 // Match the immediate offset first, which canonically is moved as low as 1790 // possible. 1791 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1792 SDValue LHS = Addr.getOperand(0); 1793 SDValue RHS = Addr.getOperand(1); 1794 1795 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1796 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1797 1798 // TODO: Could split larger constant into VGPR offset. 1799 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true)) { 1800 Addr = LHS; 1801 ImmOffset = COffsetVal; 1802 } 1803 } 1804 1805 // Match the variable offset. 1806 if (Addr.getOpcode() != ISD::ADD) 1807 return false; 1808 1809 SDValue LHS = Addr.getOperand(0); 1810 SDValue RHS = Addr.getOperand(1); 1811 1812 if (!LHS->isDivergent()) { 1813 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1814 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1815 SAddr = LHS; 1816 VOffset = ZextRHS; 1817 } 1818 } 1819 1820 if (!SAddr && !RHS->isDivergent()) { 1821 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1822 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1823 SAddr = RHS; 1824 VOffset = ZextLHS; 1825 } 1826 } 1827 1828 if (!SAddr) 1829 return false; 1830 1831 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1832 return true; 1833 } 1834 1835 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1836 SDValue &Offset, bool &Imm) const { 1837 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1838 if (!C) { 1839 if (ByteOffsetNode.getValueType().isScalarInteger() && 1840 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1841 Offset = ByteOffsetNode; 1842 Imm = false; 1843 return true; 1844 } 1845 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1846 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1847 Offset = ByteOffsetNode.getOperand(0); 1848 Imm = false; 1849 return true; 1850 } 1851 } 1852 return false; 1853 } 1854 1855 SDLoc SL(ByteOffsetNode); 1856 // GFX9 and GFX10 have signed byte immediate offsets. 1857 int64_t ByteOffset = C->getSExtValue(); 1858 Optional<int64_t> EncodedOffset = 1859 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1860 if (EncodedOffset) { 1861 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1862 Imm = true; 1863 return true; 1864 } 1865 1866 // SGPR and literal offsets are unsigned. 1867 if (ByteOffset < 0) 1868 return false; 1869 1870 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1871 if (EncodedOffset) { 1872 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1873 return true; 1874 } 1875 1876 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1877 return false; 1878 1879 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1880 Offset = SDValue( 1881 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1882 1883 return true; 1884 } 1885 1886 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1887 if (Addr.getValueType() != MVT::i32) 1888 return Addr; 1889 1890 // Zero-extend a 32-bit address. 1891 SDLoc SL(Addr); 1892 1893 const MachineFunction &MF = CurDAG->getMachineFunction(); 1894 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1895 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1896 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1897 1898 const SDValue Ops[] = { 1899 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1900 Addr, 1901 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1902 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1903 0), 1904 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1905 }; 1906 1907 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1908 Ops), 0); 1909 } 1910 1911 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1912 SDValue &Offset, bool &Imm) const { 1913 SDLoc SL(Addr); 1914 1915 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1916 // wraparound, because s_load instructions perform the addition in 64 bits. 1917 if ((Addr.getValueType() != MVT::i32 || 1918 Addr->getFlags().hasNoUnsignedWrap())) { 1919 SDValue N0, N1; 1920 // Extract the base and offset if possible. 1921 if (CurDAG->isBaseWithConstantOffset(Addr) || 1922 Addr.getOpcode() == ISD::ADD) { 1923 N0 = Addr.getOperand(0); 1924 N1 = Addr.getOperand(1); 1925 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1926 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1927 } 1928 if (N0 && N1) { 1929 if (SelectSMRDOffset(N1, Offset, Imm)) { 1930 SBase = Expand32BitAddress(N0); 1931 return true; 1932 } 1933 } 1934 } 1935 SBase = Expand32BitAddress(Addr); 1936 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1937 Imm = true; 1938 return true; 1939 } 1940 1941 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1942 SDValue &Offset) const { 1943 bool Imm = false; 1944 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1945 } 1946 1947 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1948 SDValue &Offset) const { 1949 1950 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1951 1952 bool Imm = false; 1953 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1954 return false; 1955 1956 return !Imm && isa<ConstantSDNode>(Offset); 1957 } 1958 1959 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1960 SDValue &Offset) const { 1961 bool Imm = false; 1962 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1963 !isa<ConstantSDNode>(Offset); 1964 } 1965 1966 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1967 SDValue &Offset) const { 1968 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1969 // The immediate offset for S_BUFFER instructions is unsigned. 1970 if (auto Imm = 1971 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 1972 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1973 return true; 1974 } 1975 } 1976 1977 return false; 1978 } 1979 1980 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 1981 SDValue &Offset) const { 1982 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1983 1984 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1985 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 1986 C->getZExtValue())) { 1987 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1988 return true; 1989 } 1990 } 1991 1992 return false; 1993 } 1994 1995 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 1996 SDValue &Base, 1997 SDValue &Offset) const { 1998 SDLoc DL(Index); 1999 2000 if (CurDAG->isBaseWithConstantOffset(Index)) { 2001 SDValue N0 = Index.getOperand(0); 2002 SDValue N1 = Index.getOperand(1); 2003 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2004 2005 // (add n0, c0) 2006 // Don't peel off the offset (c0) if doing so could possibly lead 2007 // the base (n0) to be negative. 2008 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2009 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2010 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2011 Base = N0; 2012 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2013 return true; 2014 } 2015 } 2016 2017 if (isa<ConstantSDNode>(Index)) 2018 return false; 2019 2020 Base = Index; 2021 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2022 return true; 2023 } 2024 2025 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 2026 SDValue Val, uint32_t Offset, 2027 uint32_t Width) { 2028 // Transformation function, pack the offset and width of a BFE into 2029 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2030 // source, bits [5:0] contain the offset and bits [22:16] the width. 2031 uint32_t PackedVal = Offset | (Width << 16); 2032 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2033 2034 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2035 } 2036 2037 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2038 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2039 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2040 // Predicate: 0 < b <= c < 32 2041 2042 const SDValue &Shl = N->getOperand(0); 2043 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2044 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2045 2046 if (B && C) { 2047 uint32_t BVal = B->getZExtValue(); 2048 uint32_t CVal = C->getZExtValue(); 2049 2050 if (0 < BVal && BVal <= CVal && CVal < 32) { 2051 bool Signed = N->getOpcode() == ISD::SRA; 2052 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2053 2054 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2055 32 - CVal)); 2056 return; 2057 } 2058 } 2059 SelectCode(N); 2060 } 2061 2062 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2063 switch (N->getOpcode()) { 2064 case ISD::AND: 2065 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2066 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2067 // Predicate: isMask(mask) 2068 const SDValue &Srl = N->getOperand(0); 2069 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2070 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2071 2072 if (Shift && Mask) { 2073 uint32_t ShiftVal = Shift->getZExtValue(); 2074 uint32_t MaskVal = Mask->getZExtValue(); 2075 2076 if (isMask_32(MaskVal)) { 2077 uint32_t WidthVal = countPopulation(MaskVal); 2078 2079 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2080 Srl.getOperand(0), ShiftVal, WidthVal)); 2081 return; 2082 } 2083 } 2084 } 2085 break; 2086 case ISD::SRL: 2087 if (N->getOperand(0).getOpcode() == ISD::AND) { 2088 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2089 // Predicate: isMask(mask >> b) 2090 const SDValue &And = N->getOperand(0); 2091 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2092 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2093 2094 if (Shift && Mask) { 2095 uint32_t ShiftVal = Shift->getZExtValue(); 2096 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2097 2098 if (isMask_32(MaskVal)) { 2099 uint32_t WidthVal = countPopulation(MaskVal); 2100 2101 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2102 And.getOperand(0), ShiftVal, WidthVal)); 2103 return; 2104 } 2105 } 2106 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2107 SelectS_BFEFromShifts(N); 2108 return; 2109 } 2110 break; 2111 case ISD::SRA: 2112 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2113 SelectS_BFEFromShifts(N); 2114 return; 2115 } 2116 break; 2117 2118 case ISD::SIGN_EXTEND_INREG: { 2119 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2120 SDValue Src = N->getOperand(0); 2121 if (Src.getOpcode() != ISD::SRL) 2122 break; 2123 2124 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2125 if (!Amt) 2126 break; 2127 2128 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2129 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2130 Amt->getZExtValue(), Width)); 2131 return; 2132 } 2133 } 2134 2135 SelectCode(N); 2136 } 2137 2138 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2139 assert(N->getOpcode() == ISD::BRCOND); 2140 if (!N->hasOneUse()) 2141 return false; 2142 2143 SDValue Cond = N->getOperand(1); 2144 if (Cond.getOpcode() == ISD::CopyToReg) 2145 Cond = Cond.getOperand(2); 2146 2147 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2148 return false; 2149 2150 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2151 if (VT == MVT::i32) 2152 return true; 2153 2154 if (VT == MVT::i64) { 2155 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2156 2157 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2158 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2159 } 2160 2161 return false; 2162 } 2163 2164 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2165 SDValue Cond = N->getOperand(1); 2166 2167 if (Cond.isUndef()) { 2168 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2169 N->getOperand(2), N->getOperand(0)); 2170 return; 2171 } 2172 2173 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2174 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2175 2176 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2177 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2178 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2179 SDLoc SL(N); 2180 2181 if (!UseSCCBr) { 2182 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2183 // analyzed what generates the vcc value, so we do not know whether vcc 2184 // bits for disabled lanes are 0. Thus we need to mask out bits for 2185 // disabled lanes. 2186 // 2187 // For the case that we select S_CBRANCH_SCC1 and it gets 2188 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2189 // SIInstrInfo::moveToVALU which inserts the S_AND). 2190 // 2191 // We could add an analysis of what generates the vcc value here and omit 2192 // the S_AND when is unnecessary. But it would be better to add a separate 2193 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2194 // catches both cases. 2195 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2196 : AMDGPU::S_AND_B64, 2197 SL, MVT::i1, 2198 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2199 : AMDGPU::EXEC, 2200 MVT::i1), 2201 Cond), 2202 0); 2203 } 2204 2205 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2206 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2207 N->getOperand(2), // Basic Block 2208 VCC.getValue(0)); 2209 } 2210 2211 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2212 MVT VT = N->getSimpleValueType(0); 2213 bool IsFMA = N->getOpcode() == ISD::FMA; 2214 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2215 !Subtarget->hasFmaMixInsts()) || 2216 ((IsFMA && Subtarget->hasMadMixInsts()) || 2217 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2218 SelectCode(N); 2219 return; 2220 } 2221 2222 SDValue Src0 = N->getOperand(0); 2223 SDValue Src1 = N->getOperand(1); 2224 SDValue Src2 = N->getOperand(2); 2225 unsigned Src0Mods, Src1Mods, Src2Mods; 2226 2227 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2228 // using the conversion from f16. 2229 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2230 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2231 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2232 2233 assert((IsFMA || !Mode.allFP32Denormals()) && 2234 "fmad selected with denormals enabled"); 2235 // TODO: We can select this with f32 denormals enabled if all the sources are 2236 // converted from f16 (in which case fmad isn't legal). 2237 2238 if (Sel0 || Sel1 || Sel2) { 2239 // For dummy operands. 2240 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2241 SDValue Ops[] = { 2242 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2243 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2244 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2245 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2246 Zero, Zero 2247 }; 2248 2249 CurDAG->SelectNodeTo(N, 2250 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2251 MVT::f32, Ops); 2252 } else { 2253 SelectCode(N); 2254 } 2255 } 2256 2257 // This is here because there isn't a way to use the generated sub0_sub1 as the 2258 // subreg index to EXTRACT_SUBREG in tablegen. 2259 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2260 MemSDNode *Mem = cast<MemSDNode>(N); 2261 unsigned AS = Mem->getAddressSpace(); 2262 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2263 SelectCode(N); 2264 return; 2265 } 2266 2267 MVT VT = N->getSimpleValueType(0); 2268 bool Is32 = (VT == MVT::i32); 2269 SDLoc SL(N); 2270 2271 MachineSDNode *CmpSwap = nullptr; 2272 if (Subtarget->hasAddr64()) { 2273 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 2274 2275 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 2276 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2277 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2278 SDValue CmpVal = Mem->getOperand(2); 2279 2280 // XXX - Do we care about glue operands? 2281 2282 SDValue Ops[] = { 2283 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain() 2284 }; 2285 2286 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2287 } 2288 } 2289 2290 if (!CmpSwap) { 2291 SDValue SRsrc, SOffset, Offset, SLC; 2292 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 2293 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2294 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2295 2296 SDValue CmpVal = Mem->getOperand(2); 2297 SDValue Ops[] = { 2298 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain() 2299 }; 2300 2301 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2302 } 2303 } 2304 2305 if (!CmpSwap) { 2306 SelectCode(N); 2307 return; 2308 } 2309 2310 MachineMemOperand *MMO = Mem->getMemOperand(); 2311 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2312 2313 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2314 SDValue Extract 2315 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2316 2317 ReplaceUses(SDValue(N, 0), Extract); 2318 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2319 CurDAG->RemoveDeadNode(N); 2320 } 2321 2322 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2323 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2324 // be copied to an SGPR with readfirstlane. 2325 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2326 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2327 2328 SDValue Chain = N->getOperand(0); 2329 SDValue Ptr = N->getOperand(2); 2330 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2331 MachineMemOperand *MMO = M->getMemOperand(); 2332 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2333 2334 SDValue Offset; 2335 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2336 SDValue PtrBase = Ptr.getOperand(0); 2337 SDValue PtrOffset = Ptr.getOperand(1); 2338 2339 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2340 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) { 2341 N = glueCopyToM0(N, PtrBase); 2342 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2343 } 2344 } 2345 2346 if (!Offset) { 2347 N = glueCopyToM0(N, Ptr); 2348 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2349 } 2350 2351 SDValue Ops[] = { 2352 Offset, 2353 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2354 Chain, 2355 N->getOperand(N->getNumOperands() - 1) // New glue 2356 }; 2357 2358 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2359 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2360 } 2361 2362 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2363 switch (IntrID) { 2364 case Intrinsic::amdgcn_ds_gws_init: 2365 return AMDGPU::DS_GWS_INIT; 2366 case Intrinsic::amdgcn_ds_gws_barrier: 2367 return AMDGPU::DS_GWS_BARRIER; 2368 case Intrinsic::amdgcn_ds_gws_sema_v: 2369 return AMDGPU::DS_GWS_SEMA_V; 2370 case Intrinsic::amdgcn_ds_gws_sema_br: 2371 return AMDGPU::DS_GWS_SEMA_BR; 2372 case Intrinsic::amdgcn_ds_gws_sema_p: 2373 return AMDGPU::DS_GWS_SEMA_P; 2374 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2375 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2376 default: 2377 llvm_unreachable("not a gws intrinsic"); 2378 } 2379 } 2380 2381 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2382 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2383 !Subtarget->hasGWSSemaReleaseAll()) { 2384 // Let this error. 2385 SelectCode(N); 2386 return; 2387 } 2388 2389 // Chain, intrinsic ID, vsrc, offset 2390 const bool HasVSrc = N->getNumOperands() == 4; 2391 assert(HasVSrc || N->getNumOperands() == 3); 2392 2393 SDLoc SL(N); 2394 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2395 int ImmOffset = 0; 2396 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2397 MachineMemOperand *MMO = M->getMemOperand(); 2398 2399 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2400 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2401 2402 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2403 // offset field) % 64. Some versions of the programming guide omit the m0 2404 // part, or claim it's from offset 0. 2405 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2406 // If we have a constant offset, try to use the 0 in m0 as the base. 2407 // TODO: Look into changing the default m0 initialization value. If the 2408 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2409 // the immediate offset. 2410 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2411 ImmOffset = ConstOffset->getZExtValue(); 2412 } else { 2413 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2414 ImmOffset = BaseOffset.getConstantOperandVal(1); 2415 BaseOffset = BaseOffset.getOperand(0); 2416 } 2417 2418 // Prefer to do the shift in an SGPR since it should be possible to use m0 2419 // as the result directly. If it's already an SGPR, it will be eliminated 2420 // later. 2421 SDNode *SGPROffset 2422 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2423 BaseOffset); 2424 // Shift to offset in m0 2425 SDNode *M0Base 2426 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2427 SDValue(SGPROffset, 0), 2428 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2429 glueCopyToM0(N, SDValue(M0Base, 0)); 2430 } 2431 2432 SDValue Chain = N->getOperand(0); 2433 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2434 2435 // TODO: Can this just be removed from the instruction? 2436 SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1); 2437 2438 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2439 SmallVector<SDValue, 5> Ops; 2440 if (HasVSrc) 2441 Ops.push_back(N->getOperand(2)); 2442 Ops.push_back(OffsetField); 2443 Ops.push_back(GDS); 2444 Ops.push_back(Chain); 2445 2446 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2447 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2448 } 2449 2450 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2451 if (Subtarget->getLDSBankCount() != 16) { 2452 // This is a single instruction with a pattern. 2453 SelectCode(N); 2454 return; 2455 } 2456 2457 SDLoc DL(N); 2458 2459 // This requires 2 instructions. It is possible to write a pattern to support 2460 // this, but the generated isel emitter doesn't correctly deal with multiple 2461 // output instructions using the same physical register input. The copy to m0 2462 // is incorrectly placed before the second instruction. 2463 // 2464 // TODO: Match source modifiers. 2465 // 2466 // def : Pat < 2467 // (int_amdgcn_interp_p1_f16 2468 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2469 // (i32 timm:$attrchan), (i32 timm:$attr), 2470 // (i1 timm:$high), M0), 2471 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2472 // timm:$attrchan, 0, 2473 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2474 // let Predicates = [has16BankLDS]; 2475 // } 2476 2477 // 16 bank LDS 2478 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2479 N->getOperand(5), SDValue()); 2480 2481 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2482 2483 SDNode *InterpMov = 2484 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2485 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2486 N->getOperand(3), // Attr 2487 N->getOperand(2), // Attrchan 2488 ToM0.getValue(1) // In glue 2489 }); 2490 2491 SDNode *InterpP1LV = 2492 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2493 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2494 N->getOperand(1), // Src0 2495 N->getOperand(3), // Attr 2496 N->getOperand(2), // Attrchan 2497 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2498 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2499 N->getOperand(4), // high 2500 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2501 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2502 SDValue(InterpMov, 1) 2503 }); 2504 2505 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2506 } 2507 2508 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2509 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2510 switch (IntrID) { 2511 case Intrinsic::amdgcn_ds_append: 2512 case Intrinsic::amdgcn_ds_consume: { 2513 if (N->getValueType(0) != MVT::i32) 2514 break; 2515 SelectDSAppendConsume(N, IntrID); 2516 return; 2517 } 2518 } 2519 2520 SelectCode(N); 2521 } 2522 2523 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2524 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2525 unsigned Opcode; 2526 switch (IntrID) { 2527 case Intrinsic::amdgcn_wqm: 2528 Opcode = AMDGPU::WQM; 2529 break; 2530 case Intrinsic::amdgcn_softwqm: 2531 Opcode = AMDGPU::SOFT_WQM; 2532 break; 2533 case Intrinsic::amdgcn_wwm: 2534 Opcode = AMDGPU::WWM; 2535 break; 2536 case Intrinsic::amdgcn_interp_p1_f16: 2537 SelectInterpP1F16(N); 2538 return; 2539 default: 2540 SelectCode(N); 2541 return; 2542 } 2543 2544 SDValue Src = N->getOperand(1); 2545 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2546 } 2547 2548 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2549 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2550 switch (IntrID) { 2551 case Intrinsic::amdgcn_ds_gws_init: 2552 case Intrinsic::amdgcn_ds_gws_barrier: 2553 case Intrinsic::amdgcn_ds_gws_sema_v: 2554 case Intrinsic::amdgcn_ds_gws_sema_br: 2555 case Intrinsic::amdgcn_ds_gws_sema_p: 2556 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2557 SelectDS_GWS(N, IntrID); 2558 return; 2559 default: 2560 break; 2561 } 2562 2563 SelectCode(N); 2564 } 2565 2566 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2567 unsigned &Mods) const { 2568 Mods = 0; 2569 Src = In; 2570 2571 if (Src.getOpcode() == ISD::FNEG) { 2572 Mods |= SISrcMods::NEG; 2573 Src = Src.getOperand(0); 2574 } 2575 2576 if (Src.getOpcode() == ISD::FABS) { 2577 Mods |= SISrcMods::ABS; 2578 Src = Src.getOperand(0); 2579 } 2580 2581 return true; 2582 } 2583 2584 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2585 SDValue &SrcMods) const { 2586 unsigned Mods; 2587 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2588 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2589 return true; 2590 } 2591 2592 return false; 2593 } 2594 2595 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2596 SDValue &SrcMods) const { 2597 SelectVOP3Mods(In, Src, SrcMods); 2598 return isNoNanSrc(Src); 2599 } 2600 2601 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2602 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2603 return false; 2604 2605 Src = In; 2606 return true; 2607 } 2608 2609 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2610 SDValue &SrcMods, SDValue &Clamp, 2611 SDValue &Omod) const { 2612 SDLoc DL(In); 2613 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2614 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2615 2616 return SelectVOP3Mods(In, Src, SrcMods); 2617 } 2618 2619 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2620 SDValue &Clamp, SDValue &Omod) const { 2621 Src = In; 2622 2623 SDLoc DL(In); 2624 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2625 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2626 2627 return true; 2628 } 2629 2630 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2631 SDValue &SrcMods) const { 2632 unsigned Mods = 0; 2633 Src = In; 2634 2635 if (Src.getOpcode() == ISD::FNEG) { 2636 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2637 Src = Src.getOperand(0); 2638 } 2639 2640 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2641 unsigned VecMods = Mods; 2642 2643 SDValue Lo = stripBitcast(Src.getOperand(0)); 2644 SDValue Hi = stripBitcast(Src.getOperand(1)); 2645 2646 if (Lo.getOpcode() == ISD::FNEG) { 2647 Lo = stripBitcast(Lo.getOperand(0)); 2648 Mods ^= SISrcMods::NEG; 2649 } 2650 2651 if (Hi.getOpcode() == ISD::FNEG) { 2652 Hi = stripBitcast(Hi.getOperand(0)); 2653 Mods ^= SISrcMods::NEG_HI; 2654 } 2655 2656 if (isExtractHiElt(Lo, Lo)) 2657 Mods |= SISrcMods::OP_SEL_0; 2658 2659 if (isExtractHiElt(Hi, Hi)) 2660 Mods |= SISrcMods::OP_SEL_1; 2661 2662 Lo = stripExtractLoElt(Lo); 2663 Hi = stripExtractLoElt(Hi); 2664 2665 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2666 // Really a scalar input. Just select from the low half of the register to 2667 // avoid packing. 2668 2669 Src = Lo; 2670 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2671 return true; 2672 } 2673 2674 Mods = VecMods; 2675 } 2676 2677 // Packed instructions do not have abs modifiers. 2678 Mods |= SISrcMods::OP_SEL_1; 2679 2680 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2681 return true; 2682 } 2683 2684 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2685 SDValue &SrcMods) const { 2686 Src = In; 2687 // FIXME: Handle op_sel 2688 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2689 return true; 2690 } 2691 2692 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2693 SDValue &SrcMods) const { 2694 // FIXME: Handle op_sel 2695 return SelectVOP3Mods(In, Src, SrcMods); 2696 } 2697 2698 // The return value is not whether the match is possible (which it always is), 2699 // but whether or not it a conversion is really used. 2700 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2701 unsigned &Mods) const { 2702 Mods = 0; 2703 SelectVOP3ModsImpl(In, Src, Mods); 2704 2705 if (Src.getOpcode() == ISD::FP_EXTEND) { 2706 Src = Src.getOperand(0); 2707 assert(Src.getValueType() == MVT::f16); 2708 Src = stripBitcast(Src); 2709 2710 // Be careful about folding modifiers if we already have an abs. fneg is 2711 // applied last, so we don't want to apply an earlier fneg. 2712 if ((Mods & SISrcMods::ABS) == 0) { 2713 unsigned ModsTmp; 2714 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2715 2716 if ((ModsTmp & SISrcMods::NEG) != 0) 2717 Mods ^= SISrcMods::NEG; 2718 2719 if ((ModsTmp & SISrcMods::ABS) != 0) 2720 Mods |= SISrcMods::ABS; 2721 } 2722 2723 // op_sel/op_sel_hi decide the source type and source. 2724 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2725 // If the sources's op_sel is set, it picks the high half of the source 2726 // register. 2727 2728 Mods |= SISrcMods::OP_SEL_1; 2729 if (isExtractHiElt(Src, Src)) { 2730 Mods |= SISrcMods::OP_SEL_0; 2731 2732 // TODO: Should we try to look for neg/abs here? 2733 } 2734 2735 return true; 2736 } 2737 2738 return false; 2739 } 2740 2741 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2742 SDValue &SrcMods) const { 2743 unsigned Mods = 0; 2744 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2745 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2746 return true; 2747 } 2748 2749 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2750 if (In.isUndef()) 2751 return CurDAG->getUNDEF(MVT::i32); 2752 2753 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2754 SDLoc SL(In); 2755 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2756 } 2757 2758 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2759 SDLoc SL(In); 2760 return CurDAG->getConstant( 2761 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2762 } 2763 2764 SDValue Src; 2765 if (isExtractHiElt(In, Src)) 2766 return Src; 2767 2768 return SDValue(); 2769 } 2770 2771 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2772 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2773 2774 const SIRegisterInfo *SIRI = 2775 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2776 const SIInstrInfo * SII = 2777 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2778 2779 unsigned Limit = 0; 2780 bool AllUsesAcceptSReg = true; 2781 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2782 Limit < 10 && U != E; ++U, ++Limit) { 2783 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2784 2785 // If the register class is unknown, it could be an unknown 2786 // register class that needs to be an SGPR, e.g. an inline asm 2787 // constraint 2788 if (!RC || SIRI->isSGPRClass(RC)) 2789 return false; 2790 2791 if (RC != &AMDGPU::VS_32RegClass) { 2792 AllUsesAcceptSReg = false; 2793 SDNode * User = *U; 2794 if (User->isMachineOpcode()) { 2795 unsigned Opc = User->getMachineOpcode(); 2796 MCInstrDesc Desc = SII->get(Opc); 2797 if (Desc.isCommutable()) { 2798 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2799 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2800 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2801 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2802 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2803 if (CommutedRC == &AMDGPU::VS_32RegClass) 2804 AllUsesAcceptSReg = true; 2805 } 2806 } 2807 } 2808 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2809 // commuting current user. This means have at least one use 2810 // that strictly require VGPR. Thus, we will not attempt to commute 2811 // other user instructions. 2812 if (!AllUsesAcceptSReg) 2813 break; 2814 } 2815 } 2816 return !AllUsesAcceptSReg && (Limit < 10); 2817 } 2818 2819 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2820 auto Ld = cast<LoadSDNode>(N); 2821 2822 return Ld->getAlignment() >= 4 && 2823 ( 2824 ( 2825 ( 2826 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2827 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2828 ) 2829 && 2830 !N->isDivergent() 2831 ) 2832 || 2833 ( 2834 Subtarget->getScalarizeGlobalBehavior() && 2835 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2836 Ld->isSimple() && 2837 !N->isDivergent() && 2838 static_cast<const SITargetLowering *>( 2839 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2840 ) 2841 ); 2842 } 2843 2844 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2845 const AMDGPUTargetLowering& Lowering = 2846 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2847 bool IsModified = false; 2848 do { 2849 IsModified = false; 2850 2851 // Go over all selected nodes and try to fold them a bit more 2852 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2853 while (Position != CurDAG->allnodes_end()) { 2854 SDNode *Node = &*Position++; 2855 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2856 if (!MachineNode) 2857 continue; 2858 2859 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2860 if (ResNode != Node) { 2861 if (ResNode) 2862 ReplaceUses(Node, ResNode); 2863 IsModified = true; 2864 } 2865 } 2866 CurDAG->RemoveDeadNodes(); 2867 } while (IsModified); 2868 } 2869 2870 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 2871 Subtarget = &MF.getSubtarget<R600Subtarget>(); 2872 return SelectionDAGISel::runOnMachineFunction(MF); 2873 } 2874 2875 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 2876 if (!N->readMem()) 2877 return false; 2878 if (CbId == -1) 2879 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2880 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 2881 2882 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 2883 } 2884 2885 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 2886 SDValue& IntPtr) { 2887 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 2888 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 2889 true); 2890 return true; 2891 } 2892 return false; 2893 } 2894 2895 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 2896 SDValue& BaseReg, SDValue &Offset) { 2897 if (!isa<ConstantSDNode>(Addr)) { 2898 BaseReg = Addr; 2899 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 void R600DAGToDAGISel::Select(SDNode *N) { 2906 unsigned int Opc = N->getOpcode(); 2907 if (N->isMachineOpcode()) { 2908 N->setNodeId(-1); 2909 return; // Already selected. 2910 } 2911 2912 switch (Opc) { 2913 default: break; 2914 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 2915 case ISD::SCALAR_TO_VECTOR: 2916 case ISD::BUILD_VECTOR: { 2917 EVT VT = N->getValueType(0); 2918 unsigned NumVectorElts = VT.getVectorNumElements(); 2919 unsigned RegClassID; 2920 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 2921 // that adds a 128 bits reg copy when going through TwoAddressInstructions 2922 // pass. We want to avoid 128 bits copies as much as possible because they 2923 // can't be bundled by our scheduler. 2924 switch(NumVectorElts) { 2925 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 2926 case 4: 2927 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 2928 RegClassID = R600::R600_Reg128VerticalRegClassID; 2929 else 2930 RegClassID = R600::R600_Reg128RegClassID; 2931 break; 2932 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 2933 } 2934 SelectBuildVector(N, RegClassID); 2935 return; 2936 } 2937 } 2938 2939 SelectCode(N); 2940 } 2941 2942 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 2943 SDValue &Offset) { 2944 ConstantSDNode *C; 2945 SDLoc DL(Addr); 2946 2947 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 2948 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2949 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2950 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 2951 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 2952 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2953 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2954 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 2955 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 2956 Base = Addr.getOperand(0); 2957 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2958 } else { 2959 Base = Addr; 2960 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2961 } 2962 2963 return true; 2964 } 2965 2966 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 2967 SDValue &Offset) { 2968 ConstantSDNode *IMMOffset; 2969 2970 if (Addr.getOpcode() == ISD::ADD 2971 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 2972 && isInt<16>(IMMOffset->getZExtValue())) { 2973 2974 Base = Addr.getOperand(0); 2975 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2976 MVT::i32); 2977 return true; 2978 // If the pointer address is constant, we can move it to the offset field. 2979 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 2980 && isInt<16>(IMMOffset->getZExtValue())) { 2981 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 2982 SDLoc(CurDAG->getEntryNode()), 2983 R600::ZERO, MVT::i32); 2984 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2985 MVT::i32); 2986 return true; 2987 } 2988 2989 // Default case, no offset 2990 Base = Addr; 2991 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2992 return true; 2993 } 2994