1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPUISelDAGToDAG.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "MCTargetDesc/R600MCTargetDesc.h"
20 #include "R600RegisterInfo.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/IR/IntrinsicsAMDGPU.h"
29 #include "llvm/InitializePasses.h"
30
31 #ifdef EXPENSIVE_CHECKS
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/IR/Dominators.h"
34 #endif
35
36 #define DEBUG_TYPE "amdgpu-isel"
37
38 using namespace llvm;
39
40 //===----------------------------------------------------------------------===//
41 // Instruction Selector Implementation
42 //===----------------------------------------------------------------------===//
43
44 namespace {
45
stripBitcast(SDValue Val)46 static SDValue stripBitcast(SDValue Val) {
47 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
48 }
49
50 // Figure out if this is really an extract of the high 16-bits of a dword.
isExtractHiElt(SDValue In,SDValue & Out)51 static bool isExtractHiElt(SDValue In, SDValue &Out) {
52 In = stripBitcast(In);
53
54 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
55 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
56 if (!Idx->isOne())
57 return false;
58 Out = In.getOperand(0);
59 return true;
60 }
61 }
62
63 if (In.getOpcode() != ISD::TRUNCATE)
64 return false;
65
66 SDValue Srl = In.getOperand(0);
67 if (Srl.getOpcode() == ISD::SRL) {
68 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
69 if (ShiftAmt->getZExtValue() == 16) {
70 Out = stripBitcast(Srl.getOperand(0));
71 return true;
72 }
73 }
74 }
75
76 return false;
77 }
78
79 // Look through operations that obscure just looking at the low 16-bits of the
80 // same register.
stripExtractLoElt(SDValue In)81 static SDValue stripExtractLoElt(SDValue In) {
82 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
83 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
84 if (Idx->isZero() && In.getValueSizeInBits() <= 32)
85 return In.getOperand(0);
86 }
87 }
88
89 if (In.getOpcode() == ISD::TRUNCATE) {
90 SDValue Src = In.getOperand(0);
91 if (Src.getValueType().getSizeInBits() == 32)
92 return stripBitcast(Src);
93 }
94
95 return In;
96 }
97
98 } // end anonymous namespace
99
100 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
101 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)102 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
103 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
104 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
105 #ifdef EXPENSIVE_CHECKS
106 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
107 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
108 #endif
109 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
110 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
111
112 /// This pass converts a legalized DAG into a AMDGPU-specific
113 // DAG, ready for instruction scheduling.
114 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
115 CodeGenOpt::Level OptLevel) {
116 return new AMDGPUDAGToDAGISel(TM, OptLevel);
117 }
118
AMDGPUDAGToDAGISel(TargetMachine * TM,CodeGenOpt::Level OptLevel)119 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(
120 TargetMachine *TM /*= nullptr*/,
121 CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/)
122 : SelectionDAGISel(*TM, OptLevel) {
123 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
124 }
125
runOnMachineFunction(MachineFunction & MF)126 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
127 #ifdef EXPENSIVE_CHECKS
128 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
129 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
130 for (auto &L : LI->getLoopsInPreorder()) {
131 assert(L->isLCSSAForm(DT));
132 }
133 #endif
134 Subtarget = &MF.getSubtarget<GCNSubtarget>();
135 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
136 return SelectionDAGISel::runOnMachineFunction(MF);
137 }
138
fp16SrcZerosHighBits(unsigned Opc) const139 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const {
140 // XXX - only need to list legal operations.
141 switch (Opc) {
142 case ISD::FADD:
143 case ISD::FSUB:
144 case ISD::FMUL:
145 case ISD::FDIV:
146 case ISD::FREM:
147 case ISD::FCANONICALIZE:
148 case ISD::UINT_TO_FP:
149 case ISD::SINT_TO_FP:
150 case ISD::FABS:
151 // Fabs is lowered to a bit operation, but it's an and which will clear the
152 // high bits anyway.
153 case ISD::FSQRT:
154 case ISD::FSIN:
155 case ISD::FCOS:
156 case ISD::FPOWI:
157 case ISD::FPOW:
158 case ISD::FLOG:
159 case ISD::FLOG2:
160 case ISD::FLOG10:
161 case ISD::FEXP:
162 case ISD::FEXP2:
163 case ISD::FCEIL:
164 case ISD::FTRUNC:
165 case ISD::FRINT:
166 case ISD::FNEARBYINT:
167 case ISD::FROUND:
168 case ISD::FFLOOR:
169 case ISD::FMINNUM:
170 case ISD::FMAXNUM:
171 case AMDGPUISD::FRACT:
172 case AMDGPUISD::CLAMP:
173 case AMDGPUISD::COS_HW:
174 case AMDGPUISD::SIN_HW:
175 case AMDGPUISD::FMIN3:
176 case AMDGPUISD::FMAX3:
177 case AMDGPUISD::FMED3:
178 case AMDGPUISD::FMAD_FTZ:
179 case AMDGPUISD::RCP:
180 case AMDGPUISD::RSQ:
181 case AMDGPUISD::RCP_IFLAG:
182 case AMDGPUISD::LDEXP:
183 // On gfx10, all 16-bit instructions preserve the high bits.
184 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9;
185 case ISD::FP_ROUND:
186 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the
187 // high bits on gfx9.
188 // TODO: If we had the source node we could see if the source was fma/mad
189 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
190 case ISD::FMA:
191 case ISD::FMAD:
192 case AMDGPUISD::DIV_FIXUP:
193 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS;
194 default:
195 // fcopysign, select and others may be lowered to 32-bit bit operations
196 // which don't zero the high bits.
197 return false;
198 }
199 }
200
getAnalysisUsage(AnalysisUsage & AU) const201 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
202 AU.addRequired<AMDGPUArgumentUsageInfo>();
203 AU.addRequired<LegacyDivergenceAnalysis>();
204 #ifdef EXPENSIVE_CHECKS
205 AU.addRequired<DominatorTreeWrapperPass>();
206 AU.addRequired<LoopInfoWrapperPass>();
207 #endif
208 SelectionDAGISel::getAnalysisUsage(AU);
209 }
210
matchLoadD16FromBuildVector(SDNode * N) const211 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
212 assert(Subtarget->d16PreservesUnusedBits());
213 MVT VT = N->getValueType(0).getSimpleVT();
214 if (VT != MVT::v2i16 && VT != MVT::v2f16)
215 return false;
216
217 SDValue Lo = N->getOperand(0);
218 SDValue Hi = N->getOperand(1);
219
220 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
221
222 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
223 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
224 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
225
226 // Need to check for possible indirect dependencies on the other half of the
227 // vector to avoid introducing a cycle.
228 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
229 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
230
231 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
232 SDValue Ops[] = {
233 LdHi->getChain(), LdHi->getBasePtr(), TiedIn
234 };
235
236 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
237 if (LdHi->getMemoryVT() == MVT::i8) {
238 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
239 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
240 } else {
241 assert(LdHi->getMemoryVT() == MVT::i16);
242 }
243
244 SDValue NewLoadHi =
245 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
246 Ops, LdHi->getMemoryVT(),
247 LdHi->getMemOperand());
248
249 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
250 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
251 return true;
252 }
253
254 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
255 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
256 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
257 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
258 if (LdLo && Lo.hasOneUse()) {
259 SDValue TiedIn = getHi16Elt(Hi);
260 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
261 return false;
262
263 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
264 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
265 if (LdLo->getMemoryVT() == MVT::i8) {
266 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
267 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
268 } else {
269 assert(LdLo->getMemoryVT() == MVT::i16);
270 }
271
272 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
273
274 SDValue Ops[] = {
275 LdLo->getChain(), LdLo->getBasePtr(), TiedIn
276 };
277
278 SDValue NewLoadLo =
279 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
280 Ops, LdLo->getMemoryVT(),
281 LdLo->getMemOperand());
282
283 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
284 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
285 return true;
286 }
287
288 return false;
289 }
290
PreprocessISelDAG()291 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
292 if (!Subtarget->d16PreservesUnusedBits())
293 return;
294
295 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
296
297 bool MadeChange = false;
298 while (Position != CurDAG->allnodes_begin()) {
299 SDNode *N = &*--Position;
300 if (N->use_empty())
301 continue;
302
303 switch (N->getOpcode()) {
304 case ISD::BUILD_VECTOR:
305 MadeChange |= matchLoadD16FromBuildVector(N);
306 break;
307 default:
308 break;
309 }
310 }
311
312 if (MadeChange) {
313 CurDAG->RemoveDeadNodes();
314 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
315 CurDAG->dump(););
316 }
317 }
318
isNoNanSrc(SDValue N) const319 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
320 if (TM.Options.NoNaNsFPMath)
321 return true;
322
323 // TODO: Move into isKnownNeverNaN
324 if (N->getFlags().hasNoNaNs())
325 return true;
326
327 return CurDAG->isKnownNeverNaN(N);
328 }
329
isInlineImmediate(const SDNode * N,bool Negated) const330 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
331 bool Negated) const {
332 if (N->isUndef())
333 return true;
334
335 const SIInstrInfo *TII = Subtarget->getInstrInfo();
336 if (Negated) {
337 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
338 return TII->isInlineConstant(-C->getAPIntValue());
339
340 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
341 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
342
343 } else {
344 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
345 return TII->isInlineConstant(C->getAPIntValue());
346
347 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
348 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
349 }
350
351 return false;
352 }
353
354 /// Determine the register class for \p OpNo
355 /// \returns The register class of the virtual register that will be used for
356 /// the given operand number \OpNo or NULL if the register class cannot be
357 /// determined.
getOperandRegClass(SDNode * N,unsigned OpNo) const358 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
359 unsigned OpNo) const {
360 if (!N->isMachineOpcode()) {
361 if (N->getOpcode() == ISD::CopyToReg) {
362 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
363 if (Reg.isVirtual()) {
364 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
365 return MRI.getRegClass(Reg);
366 }
367
368 const SIRegisterInfo *TRI
369 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
370 return TRI->getPhysRegClass(Reg);
371 }
372
373 return nullptr;
374 }
375
376 switch (N->getMachineOpcode()) {
377 default: {
378 const MCInstrDesc &Desc =
379 Subtarget->getInstrInfo()->get(N->getMachineOpcode());
380 unsigned OpIdx = Desc.getNumDefs() + OpNo;
381 if (OpIdx >= Desc.getNumOperands())
382 return nullptr;
383 int RegClass = Desc.OpInfo[OpIdx].RegClass;
384 if (RegClass == -1)
385 return nullptr;
386
387 return Subtarget->getRegisterInfo()->getRegClass(RegClass);
388 }
389 case AMDGPU::REG_SEQUENCE: {
390 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
391 const TargetRegisterClass *SuperRC =
392 Subtarget->getRegisterInfo()->getRegClass(RCID);
393
394 SDValue SubRegOp = N->getOperand(OpNo + 1);
395 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
396 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
397 SubRegIdx);
398 }
399 }
400 }
401
glueCopyToOp(SDNode * N,SDValue NewChain,SDValue Glue) const402 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
403 SDValue Glue) const {
404 SmallVector <SDValue, 8> Ops;
405 Ops.push_back(NewChain); // Replace the chain.
406 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
407 Ops.push_back(N->getOperand(i));
408
409 Ops.push_back(Glue);
410 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
411 }
412
glueCopyToM0(SDNode * N,SDValue Val) const413 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
414 const SITargetLowering& Lowering =
415 *static_cast<const SITargetLowering*>(getTargetLowering());
416
417 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
418
419 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
420 return glueCopyToOp(N, M0, M0.getValue(1));
421 }
422
glueCopyToM0LDSInit(SDNode * N) const423 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
424 unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
425 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
426 if (Subtarget->ldsRequiresM0Init())
427 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
428 } else if (AS == AMDGPUAS::REGION_ADDRESS) {
429 MachineFunction &MF = CurDAG->getMachineFunction();
430 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
431 return
432 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
433 }
434 return N;
435 }
436
buildSMovImm64(SDLoc & DL,uint64_t Imm,EVT VT) const437 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
438 EVT VT) const {
439 SDNode *Lo = CurDAG->getMachineNode(
440 AMDGPU::S_MOV_B32, DL, MVT::i32,
441 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
442 SDNode *Hi =
443 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
444 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
445 const SDValue Ops[] = {
446 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
447 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
448 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
449
450 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
451 }
452
SelectBuildVector(SDNode * N,unsigned RegClassID)453 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
454 EVT VT = N->getValueType(0);
455 unsigned NumVectorElts = VT.getVectorNumElements();
456 EVT EltVT = VT.getVectorElementType();
457 SDLoc DL(N);
458 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
459
460 if (NumVectorElts == 1) {
461 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
462 RegClass);
463 return;
464 }
465
466 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
467 "supported yet");
468 // 32 = Max Num Vector Elements
469 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
470 // 1 = Vector Register Class
471 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
472
473 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
474 Triple::amdgcn;
475 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
476 bool IsRegSeq = true;
477 unsigned NOps = N->getNumOperands();
478 for (unsigned i = 0; i < NOps; i++) {
479 // XXX: Why is this here?
480 if (isa<RegisterSDNode>(N->getOperand(i))) {
481 IsRegSeq = false;
482 break;
483 }
484 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
485 : R600RegisterInfo::getSubRegFromChannel(i);
486 RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
487 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
488 }
489 if (NOps != NumVectorElts) {
490 // Fill in the missing undef elements if this was a scalar_to_vector.
491 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
492 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
493 DL, EltVT);
494 for (unsigned i = NOps; i < NumVectorElts; ++i) {
495 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
496 : R600RegisterInfo::getSubRegFromChannel(i);
497 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
498 RegSeqArgs[1 + (2 * i) + 1] =
499 CurDAG->getTargetConstant(Sub, DL, MVT::i32);
500 }
501 }
502
503 if (!IsRegSeq)
504 SelectCode(N);
505 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
506 }
507
Select(SDNode * N)508 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
509 unsigned int Opc = N->getOpcode();
510 if (N->isMachineOpcode()) {
511 N->setNodeId(-1);
512 return; // Already selected.
513 }
514
515 // isa<MemSDNode> almost works but is slightly too permissive for some DS
516 // intrinsics.
517 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
518 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
519 Opc == ISD::ATOMIC_LOAD_FADD ||
520 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
521 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
522 N = glueCopyToM0LDSInit(N);
523 SelectCode(N);
524 return;
525 }
526
527 switch (Opc) {
528 default:
529 break;
530 // We are selecting i64 ADD here instead of custom lower it during
531 // DAG legalization, so we can fold some i64 ADDs used for address
532 // calculation into the LOAD and STORE instructions.
533 case ISD::ADDC:
534 case ISD::ADDE:
535 case ISD::SUBC:
536 case ISD::SUBE: {
537 if (N->getValueType(0) != MVT::i64)
538 break;
539
540 SelectADD_SUB_I64(N);
541 return;
542 }
543 case ISD::ADDCARRY:
544 case ISD::SUBCARRY:
545 if (N->getValueType(0) != MVT::i32)
546 break;
547
548 SelectAddcSubb(N);
549 return;
550 case ISD::UADDO:
551 case ISD::USUBO: {
552 SelectUADDO_USUBO(N);
553 return;
554 }
555 case AMDGPUISD::FMUL_W_CHAIN: {
556 SelectFMUL_W_CHAIN(N);
557 return;
558 }
559 case AMDGPUISD::FMA_W_CHAIN: {
560 SelectFMA_W_CHAIN(N);
561 return;
562 }
563
564 case ISD::SCALAR_TO_VECTOR:
565 case ISD::BUILD_VECTOR: {
566 EVT VT = N->getValueType(0);
567 unsigned NumVectorElts = VT.getVectorNumElements();
568 if (VT.getScalarSizeInBits() == 16) {
569 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
570 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
571 ReplaceNode(N, Packed);
572 return;
573 }
574 }
575
576 break;
577 }
578
579 assert(VT.getVectorElementType().bitsEq(MVT::i32));
580 unsigned RegClassID =
581 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
582 SelectBuildVector(N, RegClassID);
583 return;
584 }
585 case ISD::BUILD_PAIR: {
586 SDValue RC, SubReg0, SubReg1;
587 SDLoc DL(N);
588 if (N->getValueType(0) == MVT::i128) {
589 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
590 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
591 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
592 } else if (N->getValueType(0) == MVT::i64) {
593 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
594 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
595 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
596 } else {
597 llvm_unreachable("Unhandled value type for BUILD_PAIR");
598 }
599 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
600 N->getOperand(1), SubReg1 };
601 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
602 N->getValueType(0), Ops));
603 return;
604 }
605
606 case ISD::Constant:
607 case ISD::ConstantFP: {
608 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
609 break;
610
611 uint64_t Imm;
612 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
613 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
614 else {
615 ConstantSDNode *C = cast<ConstantSDNode>(N);
616 Imm = C->getZExtValue();
617 }
618
619 SDLoc DL(N);
620 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
621 return;
622 }
623 case AMDGPUISD::BFE_I32:
624 case AMDGPUISD::BFE_U32: {
625 // There is a scalar version available, but unlike the vector version which
626 // has a separate operand for the offset and width, the scalar version packs
627 // the width and offset into a single operand. Try to move to the scalar
628 // version if the offsets are constant, so that we can try to keep extended
629 // loads of kernel arguments in SGPRs.
630
631 // TODO: Technically we could try to pattern match scalar bitshifts of
632 // dynamic values, but it's probably not useful.
633 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
634 if (!Offset)
635 break;
636
637 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
638 if (!Width)
639 break;
640
641 bool Signed = Opc == AMDGPUISD::BFE_I32;
642
643 uint32_t OffsetVal = Offset->getZExtValue();
644 uint32_t WidthVal = Width->getZExtValue();
645
646 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal,
647 WidthVal));
648 return;
649 }
650 case AMDGPUISD::DIV_SCALE: {
651 SelectDIV_SCALE(N);
652 return;
653 }
654 case AMDGPUISD::MAD_I64_I32:
655 case AMDGPUISD::MAD_U64_U32: {
656 SelectMAD_64_32(N);
657 return;
658 }
659 case ISD::SMUL_LOHI:
660 case ISD::UMUL_LOHI:
661 return SelectMUL_LOHI(N);
662 case ISD::CopyToReg: {
663 const SITargetLowering& Lowering =
664 *static_cast<const SITargetLowering*>(getTargetLowering());
665 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
666 break;
667 }
668 case ISD::AND:
669 case ISD::SRL:
670 case ISD::SRA:
671 case ISD::SIGN_EXTEND_INREG:
672 if (N->getValueType(0) != MVT::i32)
673 break;
674
675 SelectS_BFE(N);
676 return;
677 case ISD::BRCOND:
678 SelectBRCOND(N);
679 return;
680 case ISD::FMAD:
681 case ISD::FMA:
682 SelectFMAD_FMA(N);
683 return;
684 case AMDGPUISD::CVT_PKRTZ_F16_F32:
685 case AMDGPUISD::CVT_PKNORM_I16_F32:
686 case AMDGPUISD::CVT_PKNORM_U16_F32:
687 case AMDGPUISD::CVT_PK_U16_U32:
688 case AMDGPUISD::CVT_PK_I16_I32: {
689 // Hack around using a legal type if f16 is illegal.
690 if (N->getValueType(0) == MVT::i32) {
691 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
692 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
693 { N->getOperand(0), N->getOperand(1) });
694 SelectCode(N);
695 return;
696 }
697
698 break;
699 }
700 case ISD::INTRINSIC_W_CHAIN: {
701 SelectINTRINSIC_W_CHAIN(N);
702 return;
703 }
704 case ISD::INTRINSIC_WO_CHAIN: {
705 SelectINTRINSIC_WO_CHAIN(N);
706 return;
707 }
708 case ISD::INTRINSIC_VOID: {
709 SelectINTRINSIC_VOID(N);
710 return;
711 }
712 }
713
714 SelectCode(N);
715 }
716
isUniformBr(const SDNode * N) const717 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
718 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
719 const Instruction *Term = BB->getTerminator();
720 return Term->getMetadata("amdgpu.uniform") ||
721 Term->getMetadata("structurizecfg.uniform");
722 }
723
isUnneededShiftMask(const SDNode * N,unsigned ShAmtBits) const724 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N,
725 unsigned ShAmtBits) const {
726 assert(N->getOpcode() == ISD::AND);
727
728 const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
729 if (RHS.countTrailingOnes() >= ShAmtBits)
730 return true;
731
732 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero;
733 return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits;
734 }
735
getBaseWithOffsetUsingSplitOR(SelectionDAG & DAG,SDValue Addr,SDValue & N0,SDValue & N1)736 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
737 SDValue &N0, SDValue &N1) {
738 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
739 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
740 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
741 // (i64 (bitcast (v2i32 (build_vector
742 // (or (extract_vector_elt V, 0), OFFSET),
743 // (extract_vector_elt V, 1)))))
744 SDValue Lo = Addr.getOperand(0).getOperand(0);
745 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
746 SDValue BaseLo = Lo.getOperand(0);
747 SDValue BaseHi = Addr.getOperand(0).getOperand(1);
748 // Check that split base (Lo and Hi) are extracted from the same one.
749 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
750 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
751 BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
752 // Lo is statically extracted from index 0.
753 isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
754 BaseLo.getConstantOperandVal(1) == 0 &&
755 // Hi is statically extracted from index 0.
756 isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
757 BaseHi.getConstantOperandVal(1) == 1) {
758 N0 = BaseLo.getOperand(0).getOperand(0);
759 N1 = Lo.getOperand(1);
760 return true;
761 }
762 }
763 }
764 return false;
765 }
766
isBaseWithConstantOffset64(SDValue Addr,SDValue & LHS,SDValue & RHS) const767 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
768 SDValue &RHS) const {
769 if (CurDAG->isBaseWithConstantOffset(Addr)) {
770 LHS = Addr.getOperand(0);
771 RHS = Addr.getOperand(1);
772 return true;
773 }
774
775 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) {
776 assert(LHS && RHS && isa<ConstantSDNode>(RHS));
777 return true;
778 }
779
780 return false;
781 }
782
getPassName() const783 StringRef AMDGPUDAGToDAGISel::getPassName() const {
784 return "AMDGPU DAG->DAG Pattern Instruction Selection";
785 }
786
787 //===----------------------------------------------------------------------===//
788 // Complex Patterns
789 //===----------------------------------------------------------------------===//
790
SelectADDRVTX_READ(SDValue Addr,SDValue & Base,SDValue & Offset)791 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
792 SDValue &Offset) {
793 return false;
794 }
795
SelectADDRIndirect(SDValue Addr,SDValue & Base,SDValue & Offset)796 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
797 SDValue &Offset) {
798 ConstantSDNode *C;
799 SDLoc DL(Addr);
800
801 if ((C = dyn_cast<ConstantSDNode>(Addr))) {
802 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
803 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
804 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
805 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
806 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
807 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
808 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
809 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
810 Base = Addr.getOperand(0);
811 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
812 } else {
813 Base = Addr;
814 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
815 }
816
817 return true;
818 }
819
getMaterializedScalarImm32(int64_t Val,const SDLoc & DL) const820 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
821 const SDLoc &DL) const {
822 SDNode *Mov = CurDAG->getMachineNode(
823 AMDGPU::S_MOV_B32, DL, MVT::i32,
824 CurDAG->getTargetConstant(Val, DL, MVT::i32));
825 return SDValue(Mov, 0);
826 }
827
828 // FIXME: Should only handle addcarry/subcarry
SelectADD_SUB_I64(SDNode * N)829 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
830 SDLoc DL(N);
831 SDValue LHS = N->getOperand(0);
832 SDValue RHS = N->getOperand(1);
833
834 unsigned Opcode = N->getOpcode();
835 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
836 bool ProduceCarry =
837 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
838 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
839
840 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
841 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
842
843 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
844 DL, MVT::i32, LHS, Sub0);
845 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
846 DL, MVT::i32, LHS, Sub1);
847
848 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
849 DL, MVT::i32, RHS, Sub0);
850 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
851 DL, MVT::i32, RHS, Sub1);
852
853 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
854
855 static const unsigned OpcMap[2][2][2] = {
856 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
857 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
858 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
859 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
860
861 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
862 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
863
864 SDNode *AddLo;
865 if (!ConsumeCarry) {
866 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
867 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
868 } else {
869 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
870 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
871 }
872 SDValue AddHiArgs[] = {
873 SDValue(Hi0, 0),
874 SDValue(Hi1, 0),
875 SDValue(AddLo, 1)
876 };
877 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
878
879 SDValue RegSequenceArgs[] = {
880 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
881 SDValue(AddLo,0),
882 Sub0,
883 SDValue(AddHi,0),
884 Sub1,
885 };
886 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
887 MVT::i64, RegSequenceArgs);
888
889 if (ProduceCarry) {
890 // Replace the carry-use
891 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
892 }
893
894 // Replace the remaining uses.
895 ReplaceNode(N, RegSequence);
896 }
897
SelectAddcSubb(SDNode * N)898 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
899 SDLoc DL(N);
900 SDValue LHS = N->getOperand(0);
901 SDValue RHS = N->getOperand(1);
902 SDValue CI = N->getOperand(2);
903
904 if (N->isDivergent()) {
905 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
906 : AMDGPU::V_SUBB_U32_e64;
907 CurDAG->SelectNodeTo(
908 N, Opc, N->getVTList(),
909 {LHS, RHS, CI,
910 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
911 } else {
912 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
913 : AMDGPU::S_SUB_CO_PSEUDO;
914 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
915 }
916 }
917
SelectUADDO_USUBO(SDNode * N)918 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
919 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
920 // carry out despite the _i32 name. These were renamed in VI to _U32.
921 // FIXME: We should probably rename the opcodes here.
922 bool IsAdd = N->getOpcode() == ISD::UADDO;
923 bool IsVALU = N->isDivergent();
924
925 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
926 ++UI)
927 if (UI.getUse().getResNo() == 1) {
928 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
929 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
930 IsVALU = true;
931 break;
932 }
933 }
934
935 if (IsVALU) {
936 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
937
938 CurDAG->SelectNodeTo(
939 N, Opc, N->getVTList(),
940 {N->getOperand(0), N->getOperand(1),
941 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
942 } else {
943 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
944 : AMDGPU::S_USUBO_PSEUDO;
945
946 CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
947 {N->getOperand(0), N->getOperand(1)});
948 }
949 }
950
SelectFMA_W_CHAIN(SDNode * N)951 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
952 SDLoc SL(N);
953 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
954 SDValue Ops[10];
955
956 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
957 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
958 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
959 Ops[8] = N->getOperand(0);
960 Ops[9] = N->getOperand(4);
961
962 // If there are no source modifiers, prefer fmac over fma because it can use
963 // the smaller VOP2 encoding.
964 bool UseFMAC = Subtarget->hasDLInsts() &&
965 cast<ConstantSDNode>(Ops[0])->isZero() &&
966 cast<ConstantSDNode>(Ops[2])->isZero() &&
967 cast<ConstantSDNode>(Ops[4])->isZero();
968 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64;
969 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops);
970 }
971
SelectFMUL_W_CHAIN(SDNode * N)972 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
973 SDLoc SL(N);
974 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
975 SDValue Ops[8];
976
977 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
978 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
979 Ops[6] = N->getOperand(0);
980 Ops[7] = N->getOperand(3);
981
982 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
983 }
984
985 // We need to handle this here because tablegen doesn't support matching
986 // instructions with multiple outputs.
SelectDIV_SCALE(SDNode * N)987 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
988 SDLoc SL(N);
989 EVT VT = N->getValueType(0);
990
991 assert(VT == MVT::f32 || VT == MVT::f64);
992
993 unsigned Opc
994 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64;
995
996 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
997 // omod
998 SDValue Ops[8];
999 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1000 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]);
1001 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]);
1002 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1003 }
1004
1005 // We need to handle this here because tablegen doesn't support matching
1006 // instructions with multiple outputs.
SelectMAD_64_32(SDNode * N)1007 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1008 SDLoc SL(N);
1009 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1010 unsigned Opc;
1011 if (Subtarget->getGeneration() == AMDGPUSubtarget::GFX11)
1012 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1013 : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1014 else
1015 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1016
1017 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1018 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1019 Clamp };
1020 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1021 }
1022
1023 // We need to handle this here because tablegen doesn't support matching
1024 // instructions with multiple outputs.
SelectMUL_LOHI(SDNode * N)1025 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) {
1026 SDLoc SL(N);
1027 bool Signed = N->getOpcode() == ISD::SMUL_LOHI;
1028 unsigned Opc;
1029 if (Subtarget->getGeneration() == AMDGPUSubtarget::GFX11)
1030 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64
1031 : AMDGPU::V_MAD_U64_U32_gfx11_e64;
1032 else
1033 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1034
1035 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64);
1036 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1037 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp};
1038 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops);
1039 if (!SDValue(N, 0).use_empty()) {
1040 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32);
1041 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1042 MVT::i32, SDValue(Mad, 0), Sub0);
1043 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0));
1044 }
1045 if (!SDValue(N, 1).use_empty()) {
1046 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32);
1047 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL,
1048 MVT::i32, SDValue(Mad, 0), Sub1);
1049 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0));
1050 }
1051 CurDAG->RemoveDeadNode(N);
1052 }
1053
isDSOffsetLegal(SDValue Base,unsigned Offset) const1054 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const {
1055 if (!isUInt<16>(Offset))
1056 return false;
1057
1058 if (!Base || Subtarget->hasUsableDSOffset() ||
1059 Subtarget->unsafeDSOffsetFoldingEnabled())
1060 return true;
1061
1062 // On Southern Islands instruction with a negative base value and an offset
1063 // don't seem to work.
1064 return CurDAG->SignBitIsZero(Base);
1065 }
1066
SelectDS1Addr1Offset(SDValue Addr,SDValue & Base,SDValue & Offset) const1067 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1068 SDValue &Offset) const {
1069 SDLoc DL(Addr);
1070 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1071 SDValue N0 = Addr.getOperand(0);
1072 SDValue N1 = Addr.getOperand(1);
1073 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1074 if (isDSOffsetLegal(N0, C1->getSExtValue())) {
1075 // (add n0, c0)
1076 Base = N0;
1077 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1078 return true;
1079 }
1080 } else if (Addr.getOpcode() == ISD::SUB) {
1081 // sub C, x -> add (sub 0, x), C
1082 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1083 int64_t ByteOffset = C->getSExtValue();
1084 if (isDSOffsetLegal(SDValue(), ByteOffset)) {
1085 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1086
1087 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1088 // the known bits in isDSOffsetLegal. We need to emit the selected node
1089 // here, so this is thrown away.
1090 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1091 Zero, Addr.getOperand(1));
1092
1093 if (isDSOffsetLegal(Sub, ByteOffset)) {
1094 SmallVector<SDValue, 3> Opnds;
1095 Opnds.push_back(Zero);
1096 Opnds.push_back(Addr.getOperand(1));
1097
1098 // FIXME: Select to VOP3 version for with-carry.
1099 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1100 if (Subtarget->hasAddNoCarry()) {
1101 SubOp = AMDGPU::V_SUB_U32_e64;
1102 Opnds.push_back(
1103 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1104 }
1105
1106 MachineSDNode *MachineSub =
1107 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1108
1109 Base = SDValue(MachineSub, 0);
1110 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1111 return true;
1112 }
1113 }
1114 }
1115 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1116 // If we have a constant address, prefer to put the constant into the
1117 // offset. This can save moves to load the constant address since multiple
1118 // operations can share the zero base address register, and enables merging
1119 // into read2 / write2 instructions.
1120
1121 SDLoc DL(Addr);
1122
1123 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) {
1124 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1125 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1126 DL, MVT::i32, Zero);
1127 Base = SDValue(MovZero, 0);
1128 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1129 return true;
1130 }
1131 }
1132
1133 // default case
1134 Base = Addr;
1135 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1136 return true;
1137 }
1138
isDSOffset2Legal(SDValue Base,unsigned Offset0,unsigned Offset1,unsigned Size) const1139 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0,
1140 unsigned Offset1,
1141 unsigned Size) const {
1142 if (Offset0 % Size != 0 || Offset1 % Size != 0)
1143 return false;
1144 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size))
1145 return false;
1146
1147 if (!Base || Subtarget->hasUsableDSOffset() ||
1148 Subtarget->unsafeDSOffsetFoldingEnabled())
1149 return true;
1150
1151 // On Southern Islands instruction with a negative base value and an offset
1152 // don't seem to work.
1153 return CurDAG->SignBitIsZero(Base);
1154 }
1155
1156 // TODO: If offset is too big, put low 16-bit into offset.
SelectDS64Bit4ByteAligned(SDValue Addr,SDValue & Base,SDValue & Offset0,SDValue & Offset1) const1157 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1158 SDValue &Offset0,
1159 SDValue &Offset1) const {
1160 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4);
1161 }
1162
SelectDS128Bit8ByteAligned(SDValue Addr,SDValue & Base,SDValue & Offset0,SDValue & Offset1) const1163 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
1164 SDValue &Offset0,
1165 SDValue &Offset1) const {
1166 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8);
1167 }
1168
SelectDSReadWrite2(SDValue Addr,SDValue & Base,SDValue & Offset0,SDValue & Offset1,unsigned Size) const1169 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
1170 SDValue &Offset0, SDValue &Offset1,
1171 unsigned Size) const {
1172 SDLoc DL(Addr);
1173
1174 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1175 SDValue N0 = Addr.getOperand(0);
1176 SDValue N1 = Addr.getOperand(1);
1177 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1178 unsigned OffsetValue0 = C1->getZExtValue();
1179 unsigned OffsetValue1 = OffsetValue0 + Size;
1180
1181 // (add n0, c0)
1182 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) {
1183 Base = N0;
1184 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1185 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1186 return true;
1187 }
1188 } else if (Addr.getOpcode() == ISD::SUB) {
1189 // sub C, x -> add (sub 0, x), C
1190 if (const ConstantSDNode *C =
1191 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1192 unsigned OffsetValue0 = C->getZExtValue();
1193 unsigned OffsetValue1 = OffsetValue0 + Size;
1194
1195 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1196 SDLoc DL(Addr);
1197 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1198
1199 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1200 // the known bits in isDSOffsetLegal. We need to emit the selected node
1201 // here, so this is thrown away.
1202 SDValue Sub =
1203 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
1204
1205 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) {
1206 SmallVector<SDValue, 3> Opnds;
1207 Opnds.push_back(Zero);
1208 Opnds.push_back(Addr.getOperand(1));
1209 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1210 if (Subtarget->hasAddNoCarry()) {
1211 SubOp = AMDGPU::V_SUB_U32_e64;
1212 Opnds.push_back(
1213 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1214 }
1215
1216 MachineSDNode *MachineSub = CurDAG->getMachineNode(
1217 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds);
1218
1219 Base = SDValue(MachineSub, 0);
1220 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1221 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1222 return true;
1223 }
1224 }
1225 }
1226 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1227 unsigned OffsetValue0 = CAddr->getZExtValue();
1228 unsigned OffsetValue1 = OffsetValue0 + Size;
1229
1230 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1231 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1232 MachineSDNode *MovZero =
1233 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
1234 Base = SDValue(MovZero, 0);
1235 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1236 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1237 return true;
1238 }
1239 }
1240
1241 // default case
1242
1243 Base = Addr;
1244 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1245 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1246 return true;
1247 }
1248
SelectMUBUF(SDValue Addr,SDValue & Ptr,SDValue & VAddr,SDValue & SOffset,SDValue & Offset,SDValue & Offen,SDValue & Idxen,SDValue & Addr64) const1249 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr,
1250 SDValue &SOffset, SDValue &Offset,
1251 SDValue &Offen, SDValue &Idxen,
1252 SDValue &Addr64) const {
1253 // Subtarget prefers to use flat instruction
1254 // FIXME: This should be a pattern predicate and not reach here
1255 if (Subtarget->useFlatForGlobal())
1256 return false;
1257
1258 SDLoc DL(Addr);
1259
1260 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1261 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1262 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1263 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1264
1265 ConstantSDNode *C1 = nullptr;
1266 SDValue N0 = Addr;
1267 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1268 C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1269 if (isUInt<32>(C1->getZExtValue()))
1270 N0 = Addr.getOperand(0);
1271 else
1272 C1 = nullptr;
1273 }
1274
1275 if (N0.getOpcode() == ISD::ADD) {
1276 // (add N2, N3) -> addr64, or
1277 // (add (add N2, N3), C1) -> addr64
1278 SDValue N2 = N0.getOperand(0);
1279 SDValue N3 = N0.getOperand(1);
1280 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1281
1282 if (N2->isDivergent()) {
1283 if (N3->isDivergent()) {
1284 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1285 // addr64, and construct the resource from a 0 address.
1286 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1287 VAddr = N0;
1288 } else {
1289 // N2 is divergent, N3 is not.
1290 Ptr = N3;
1291 VAddr = N2;
1292 }
1293 } else {
1294 // N2 is not divergent.
1295 Ptr = N2;
1296 VAddr = N3;
1297 }
1298 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1299 } else if (N0->isDivergent()) {
1300 // N0 is divergent. Use it as the addr64, and construct the resource from a
1301 // 0 address.
1302 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1303 VAddr = N0;
1304 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1305 } else {
1306 // N0 -> offset, or
1307 // (N0 + C1) -> offset
1308 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1309 Ptr = N0;
1310 }
1311
1312 if (!C1) {
1313 // No offset.
1314 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1315 return true;
1316 }
1317
1318 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1319 // Legal offset for instruction.
1320 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1321 return true;
1322 }
1323
1324 // Illegal offset, store it in soffset.
1325 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1326 SOffset =
1327 SDValue(CurDAG->getMachineNode(
1328 AMDGPU::S_MOV_B32, DL, MVT::i32,
1329 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1330 0);
1331 return true;
1332 }
1333
SelectMUBUFAddr64(SDValue Addr,SDValue & SRsrc,SDValue & VAddr,SDValue & SOffset,SDValue & Offset) const1334 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1335 SDValue &VAddr, SDValue &SOffset,
1336 SDValue &Offset) const {
1337 SDValue Ptr, Offen, Idxen, Addr64;
1338
1339 // addr64 bit was removed for volcanic islands.
1340 // FIXME: This should be a pattern predicate and not reach here
1341 if (!Subtarget->hasAddr64())
1342 return false;
1343
1344 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1345 return false;
1346
1347 ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1348 if (C->getSExtValue()) {
1349 SDLoc DL(Addr);
1350
1351 const SITargetLowering& Lowering =
1352 *static_cast<const SITargetLowering*>(getTargetLowering());
1353
1354 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1355 return true;
1356 }
1357
1358 return false;
1359 }
1360
foldFrameIndex(SDValue N) const1361 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1362 SDLoc DL(N);
1363
1364 auto *FI = dyn_cast<FrameIndexSDNode>(N);
1365 SDValue TFI =
1366 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N;
1367
1368 // We rebase the base address into an absolute stack address and hence
1369 // use constant 0 for soffset. This value must be retained until
1370 // frame elimination and eliminateFrameIndex will choose the appropriate
1371 // frame register if need be.
1372 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32));
1373 }
1374
SelectMUBUFScratchOffen(SDNode * Parent,SDValue Addr,SDValue & Rsrc,SDValue & VAddr,SDValue & SOffset,SDValue & ImmOffset) const1375 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1376 SDValue Addr, SDValue &Rsrc,
1377 SDValue &VAddr, SDValue &SOffset,
1378 SDValue &ImmOffset) const {
1379
1380 SDLoc DL(Addr);
1381 MachineFunction &MF = CurDAG->getMachineFunction();
1382 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1383
1384 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1385
1386 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1387 int64_t Imm = CAddr->getSExtValue();
1388 const int64_t NullPtr =
1389 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1390 // Don't fold null pointer.
1391 if (Imm != NullPtr) {
1392 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1393 MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1394 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1395 VAddr = SDValue(MovHighBits, 0);
1396
1397 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1398 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1399 return true;
1400 }
1401 }
1402
1403 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1404 // (add n0, c1)
1405
1406 SDValue N0 = Addr.getOperand(0);
1407 SDValue N1 = Addr.getOperand(1);
1408
1409 // Offsets in vaddr must be positive if range checking is enabled.
1410 //
1411 // The total computation of vaddr + soffset + offset must not overflow. If
1412 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1413 // overflowing.
1414 //
1415 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1416 // always perform a range check. If a negative vaddr base index was used,
1417 // this would fail the range check. The overall address computation would
1418 // compute a valid address, but this doesn't happen due to the range
1419 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1420 //
1421 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1422 // MUBUF vaddr, but not on older subtargets which can only do this if the
1423 // sign bit is known 0.
1424 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1425 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1426 (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1427 CurDAG->SignBitIsZero(N0))) {
1428 std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1429 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1430 return true;
1431 }
1432 }
1433
1434 // (node)
1435 std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1436 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1437 return true;
1438 }
1439
IsCopyFromSGPR(const SIRegisterInfo & TRI,SDValue Val)1440 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) {
1441 if (Val.getOpcode() != ISD::CopyFromReg)
1442 return false;
1443 auto RC =
1444 TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg());
1445 return RC && TRI.isSGPRClass(RC);
1446 }
1447
SelectMUBUFScratchOffset(SDNode * Parent,SDValue Addr,SDValue & SRsrc,SDValue & SOffset,SDValue & Offset) const1448 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1449 SDValue Addr,
1450 SDValue &SRsrc,
1451 SDValue &SOffset,
1452 SDValue &Offset) const {
1453 const SIRegisterInfo *TRI =
1454 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1455 MachineFunction &MF = CurDAG->getMachineFunction();
1456 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1457 SDLoc DL(Addr);
1458
1459 // CopyFromReg <sgpr>
1460 if (IsCopyFromSGPR(*TRI, Addr)) {
1461 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1462 SOffset = Addr;
1463 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1464 return true;
1465 }
1466
1467 ConstantSDNode *CAddr;
1468 if (Addr.getOpcode() == ISD::ADD) {
1469 // Add (CopyFromReg <sgpr>) <constant>
1470 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
1471 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1472 return false;
1473 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0)))
1474 return false;
1475
1476 SOffset = Addr.getOperand(0);
1477 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) &&
1478 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) {
1479 // <constant>
1480 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1481 } else {
1482 return false;
1483 }
1484
1485 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1486
1487 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1488 return true;
1489 }
1490
SelectMUBUFOffset(SDValue Addr,SDValue & SRsrc,SDValue & SOffset,SDValue & Offset) const1491 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1492 SDValue &SOffset, SDValue &Offset
1493 ) const {
1494 SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1495 const SIInstrInfo *TII =
1496 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1497
1498 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1499 return false;
1500
1501 if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1502 !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1503 !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1504 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1505 APInt::getAllOnes(32).getZExtValue(); // Size
1506 SDLoc DL(Addr);
1507
1508 const SITargetLowering& Lowering =
1509 *static_cast<const SITargetLowering*>(getTargetLowering());
1510
1511 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1512 return true;
1513 }
1514 return false;
1515 }
1516
1517 // Find a load or store from corresponding pattern root.
1518 // Roots may be build_vector, bitconvert or their combinations.
findMemSDNode(SDNode * N)1519 static MemSDNode* findMemSDNode(SDNode *N) {
1520 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1521 if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1522 return MN;
1523 assert(isa<BuildVectorSDNode>(N));
1524 for (SDValue V : N->op_values())
1525 if (MemSDNode *MN =
1526 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1527 return MN;
1528 llvm_unreachable("cannot find MemSDNode in the pattern!");
1529 }
1530
SelectFlatOffsetImpl(SDNode * N,SDValue Addr,SDValue & VAddr,SDValue & Offset,uint64_t FlatVariant) const1531 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr,
1532 SDValue &VAddr, SDValue &Offset,
1533 uint64_t FlatVariant) const {
1534 int64_t OffsetVal = 0;
1535
1536 unsigned AS = findMemSDNode(N)->getAddressSpace();
1537
1538 bool CanHaveFlatSegmentOffsetBug =
1539 Subtarget->hasFlatSegmentOffsetBug() &&
1540 FlatVariant == SIInstrFlags::FLAT &&
1541 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS);
1542
1543 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) {
1544 SDValue N0, N1;
1545 if (isBaseWithConstantOffset64(Addr, N0, N1)) {
1546 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1547
1548 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1549 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) {
1550 Addr = N0;
1551 OffsetVal = COffsetVal;
1552 } else {
1553 // If the offset doesn't fit, put the low bits into the offset field and
1554 // add the rest.
1555 //
1556 // For a FLAT instruction the hardware decides whether to access
1557 // global/scratch/shared memory based on the high bits of vaddr,
1558 // ignoring the offset field, so we have to ensure that when we add
1559 // remainder to vaddr it still points into the same underlying object.
1560 // The easiest way to do that is to make sure that we split the offset
1561 // into two pieces that are both >= 0 or both <= 0.
1562
1563 SDLoc DL(N);
1564 uint64_t RemainderOffset;
1565
1566 std::tie(OffsetVal, RemainderOffset) =
1567 TII->splitFlatOffset(COffsetVal, AS, FlatVariant);
1568
1569 SDValue AddOffsetLo =
1570 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1571 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1572
1573 if (Addr.getValueType().getSizeInBits() == 32) {
1574 SmallVector<SDValue, 3> Opnds;
1575 Opnds.push_back(N0);
1576 Opnds.push_back(AddOffsetLo);
1577 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32;
1578 if (Subtarget->hasAddNoCarry()) {
1579 AddOp = AMDGPU::V_ADD_U32_e64;
1580 Opnds.push_back(Clamp);
1581 }
1582 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0);
1583 } else {
1584 // TODO: Should this try to use a scalar add pseudo if the base address
1585 // is uniform and saddr is usable?
1586 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1587 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1588
1589 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1590 DL, MVT::i32, N0, Sub0);
1591 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1592 DL, MVT::i32, N0, Sub1);
1593
1594 SDValue AddOffsetHi =
1595 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1596
1597 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1598
1599 SDNode *Add =
1600 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
1601 {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1602
1603 SDNode *Addc = CurDAG->getMachineNode(
1604 AMDGPU::V_ADDC_U32_e64, DL, VTs,
1605 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1606
1607 SDValue RegSequenceArgs[] = {
1608 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1609 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
1610
1611 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1612 MVT::i64, RegSequenceArgs),
1613 0);
1614 }
1615 }
1616 }
1617 }
1618
1619 VAddr = Addr;
1620 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1621 return true;
1622 }
1623
SelectFlatOffset(SDNode * N,SDValue Addr,SDValue & VAddr,SDValue & Offset) const1624 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr,
1625 SDValue &VAddr,
1626 SDValue &Offset) const {
1627 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT);
1628 }
1629
SelectGlobalOffset(SDNode * N,SDValue Addr,SDValue & VAddr,SDValue & Offset) const1630 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr,
1631 SDValue &VAddr,
1632 SDValue &Offset) const {
1633 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal);
1634 }
1635
SelectScratchOffset(SDNode * N,SDValue Addr,SDValue & VAddr,SDValue & Offset) const1636 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr,
1637 SDValue &VAddr,
1638 SDValue &Offset) const {
1639 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset,
1640 SIInstrFlags::FlatScratch);
1641 }
1642
1643 // If this matches zero_extend i32:x, return x
matchZExtFromI32(SDValue Op)1644 static SDValue matchZExtFromI32(SDValue Op) {
1645 if (Op.getOpcode() != ISD::ZERO_EXTEND)
1646 return SDValue();
1647
1648 SDValue ExtSrc = Op.getOperand(0);
1649 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
1650 }
1651
1652 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
SelectGlobalSAddr(SDNode * N,SDValue Addr,SDValue & SAddr,SDValue & VOffset,SDValue & Offset) const1653 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
1654 SDValue Addr,
1655 SDValue &SAddr,
1656 SDValue &VOffset,
1657 SDValue &Offset) const {
1658 int64_t ImmOffset = 0;
1659
1660 // Match the immediate offset first, which canonically is moved as low as
1661 // possible.
1662
1663 SDValue LHS, RHS;
1664 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1665 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1666 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1667
1668 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS,
1669 SIInstrFlags::FlatGlobal)) {
1670 Addr = LHS;
1671 ImmOffset = COffsetVal;
1672 } else if (!LHS->isDivergent()) {
1673 if (COffsetVal > 0) {
1674 SDLoc SL(N);
1675 // saddr + large_offset -> saddr +
1676 // (voffset = large_offset & ~MaxOffset) +
1677 // (large_offset & MaxOffset);
1678 int64_t SplitImmOffset, RemainderOffset;
1679 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1680 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal);
1681
1682 if (isUInt<32>(RemainderOffset)) {
1683 SDNode *VMov = CurDAG->getMachineNode(
1684 AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1685 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1686 VOffset = SDValue(VMov, 0);
1687 SAddr = LHS;
1688 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
1689 return true;
1690 }
1691 }
1692
1693 // We are adding a 64 bit SGPR and a constant. If constant bus limit
1694 // is 1 we would need to perform 1 or 2 extra moves for each half of
1695 // the constant and it is better to do a scalar add and then issue a
1696 // single VALU instruction to materialize zero. Otherwise it is less
1697 // instructions to perform VALU adds with immediates or inline literals.
1698 unsigned NumLiterals =
1699 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) +
1700 !TII->isInlineConstant(APInt(32, COffsetVal >> 32));
1701 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals)
1702 return false;
1703 }
1704 }
1705
1706 // Match the variable offset.
1707 if (Addr.getOpcode() == ISD::ADD) {
1708 LHS = Addr.getOperand(0);
1709 RHS = Addr.getOperand(1);
1710
1711 if (!LHS->isDivergent()) {
1712 // add (i64 sgpr), (zero_extend (i32 vgpr))
1713 if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
1714 SAddr = LHS;
1715 VOffset = ZextRHS;
1716 }
1717 }
1718
1719 if (!SAddr && !RHS->isDivergent()) {
1720 // add (zero_extend (i32 vgpr)), (i64 sgpr)
1721 if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
1722 SAddr = RHS;
1723 VOffset = ZextLHS;
1724 }
1725 }
1726
1727 if (SAddr) {
1728 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1729 return true;
1730 }
1731 }
1732
1733 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF ||
1734 isa<ConstantSDNode>(Addr))
1735 return false;
1736
1737 // It's cheaper to materialize a single 32-bit zero for vaddr than the two
1738 // moves required to copy a 64-bit SGPR to VGPR.
1739 SAddr = Addr;
1740 SDNode *VMov =
1741 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32,
1742 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32));
1743 VOffset = SDValue(VMov, 0);
1744 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1745 return true;
1746 }
1747
SelectSAddrFI(SelectionDAG * CurDAG,SDValue SAddr)1748 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) {
1749 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) {
1750 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0));
1751 } else if (SAddr.getOpcode() == ISD::ADD &&
1752 isa<FrameIndexSDNode>(SAddr.getOperand(0))) {
1753 // Materialize this into a scalar move for scalar address to avoid
1754 // readfirstlane.
1755 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0));
1756 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1757 FI->getValueType(0));
1758 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr),
1759 MVT::i32, TFI, SAddr.getOperand(1)),
1760 0);
1761 }
1762
1763 return SAddr;
1764 }
1765
1766 // Match (32-bit SGPR base) + sext(imm offset)
SelectScratchSAddr(SDNode * Parent,SDValue Addr,SDValue & SAddr,SDValue & Offset) const1767 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr,
1768 SDValue &SAddr,
1769 SDValue &Offset) const {
1770 if (Addr->isDivergent())
1771 return false;
1772
1773 SDLoc DL(Addr);
1774
1775 int64_t COffsetVal = 0;
1776
1777 if (CurDAG->isBaseWithConstantOffset(Addr)) {
1778 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
1779 SAddr = Addr.getOperand(0);
1780 } else {
1781 SAddr = Addr;
1782 }
1783
1784 SAddr = SelectSAddrFI(CurDAG, SAddr);
1785
1786 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1787
1788 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS,
1789 SIInstrFlags::FlatScratch)) {
1790 int64_t SplitImmOffset, RemainderOffset;
1791 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1792 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch);
1793
1794 COffsetVal = SplitImmOffset;
1795
1796 SDValue AddOffset =
1797 SAddr.getOpcode() == ISD::TargetFrameIndex
1798 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL)
1799 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32);
1800 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32,
1801 SAddr, AddOffset),
1802 0);
1803 }
1804
1805 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16);
1806
1807 return true;
1808 }
1809
1810 // Check whether the flat scratch SVS swizzle bug affects this access.
checkFlatScratchSVSSwizzleBug(SDValue VAddr,SDValue SAddr,uint64_t ImmOffset) const1811 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug(
1812 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const {
1813 if (!Subtarget->hasFlatScratchSVSSwizzleBug())
1814 return false;
1815
1816 // The bug affects the swizzling of SVS accesses if there is any carry out
1817 // from the two low order bits (i.e. from bit 1 into bit 2) when adding
1818 // voffset to (soffset + inst_offset).
1819 KnownBits VKnown = CurDAG->computeKnownBits(VAddr);
1820 KnownBits SKnown = KnownBits::computeForAddSub(
1821 true, false, CurDAG->computeKnownBits(SAddr),
1822 KnownBits::makeConstant(APInt(32, ImmOffset)));
1823 uint64_t VMax = VKnown.getMaxValue().getZExtValue();
1824 uint64_t SMax = SKnown.getMaxValue().getZExtValue();
1825 return (VMax & 3) + (SMax & 3) >= 4;
1826 }
1827
SelectScratchSVAddr(SDNode * N,SDValue Addr,SDValue & VAddr,SDValue & SAddr,SDValue & Offset) const1828 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr,
1829 SDValue &VAddr, SDValue &SAddr,
1830 SDValue &Offset) const {
1831 int64_t ImmOffset = 0;
1832
1833 SDValue LHS, RHS;
1834 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1835 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1836 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1837
1838 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) {
1839 Addr = LHS;
1840 ImmOffset = COffsetVal;
1841 } else if (!LHS->isDivergent() && COffsetVal > 0) {
1842 SDLoc SL(N);
1843 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) +
1844 // (large_offset & MaxOffset);
1845 int64_t SplitImmOffset, RemainderOffset;
1846 std::tie(SplitImmOffset, RemainderOffset)
1847 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true);
1848
1849 if (isUInt<32>(RemainderOffset)) {
1850 SDNode *VMov = CurDAG->getMachineNode(
1851 AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1852 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1853 VAddr = SDValue(VMov, 0);
1854 SAddr = LHS;
1855 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset))
1856 return false;
1857 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
1858 return true;
1859 }
1860 }
1861 }
1862
1863 if (Addr.getOpcode() != ISD::ADD)
1864 return false;
1865
1866 LHS = Addr.getOperand(0);
1867 RHS = Addr.getOperand(1);
1868
1869 if (!LHS->isDivergent() && RHS->isDivergent()) {
1870 SAddr = LHS;
1871 VAddr = RHS;
1872 } else if (!RHS->isDivergent() && LHS->isDivergent()) {
1873 SAddr = RHS;
1874 VAddr = LHS;
1875 } else {
1876 return false;
1877 }
1878
1879 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset))
1880 return false;
1881 SAddr = SelectSAddrFI(CurDAG, SAddr);
1882 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1883 return true;
1884 }
1885
1886 // Match an immediate (if Imm is true) or an SGPR (if Imm is false)
1887 // offset. If Imm32Only is true, match only 32-bit immediate offsets
1888 // available on CI.
SelectSMRDOffset(SDValue Addr,SDValue ByteOffsetNode,SDValue * SOffset,SDValue * Offset,bool Imm32Only) const1889 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue Addr, SDValue ByteOffsetNode,
1890 SDValue *SOffset, SDValue *Offset,
1891 bool Imm32Only) const {
1892 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1893 if (!C) {
1894 if (!SOffset)
1895 return false;
1896 if (ByteOffsetNode.getValueType().isScalarInteger() &&
1897 ByteOffsetNode.getValueType().getSizeInBits() == 32) {
1898 *SOffset = ByteOffsetNode;
1899 return true;
1900 }
1901 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
1902 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
1903 *SOffset = ByteOffsetNode.getOperand(0);
1904 return true;
1905 }
1906 }
1907 return false;
1908 }
1909
1910 SDLoc SL(ByteOffsetNode);
1911 // GFX9 and GFX10 have signed byte immediate offsets.
1912 int64_t ByteOffset = C->getSExtValue();
1913 Optional<int64_t> EncodedOffset =
1914 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
1915 if (EncodedOffset && Offset && !Imm32Only) {
1916 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1917 return true;
1918 }
1919
1920 // SGPR and literal offsets are unsigned.
1921 if (ByteOffset < 0)
1922 return false;
1923
1924 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1925 if (EncodedOffset && Offset && Imm32Only) {
1926 *Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1927 return true;
1928 }
1929
1930 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1931 return false;
1932
1933 if (SOffset) {
1934 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1935 *SOffset = SDValue(
1936 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1937 return true;
1938 }
1939
1940 return false;
1941 }
1942
Expand32BitAddress(SDValue Addr) const1943 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1944 if (Addr.getValueType() != MVT::i32)
1945 return Addr;
1946
1947 // Zero-extend a 32-bit address.
1948 SDLoc SL(Addr);
1949
1950 const MachineFunction &MF = CurDAG->getMachineFunction();
1951 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1952 unsigned AddrHiVal = Info->get32BitAddressHighBits();
1953 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1954
1955 const SDValue Ops[] = {
1956 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1957 Addr,
1958 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1959 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1960 0),
1961 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1962 };
1963
1964 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1965 Ops), 0);
1966 }
1967
1968 // Match a base and an immediate (if Imm is true) or an SGPR
1969 // (if Imm is false) offset. If Imm32Only is true, match only 32-bit
1970 // immediate offsets available on CI.
SelectSMRDBaseOffset(SDValue Addr,SDValue & SBase,SDValue * SOffset,SDValue * Offset,bool Imm32Only) const1971 bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase,
1972 SDValue *SOffset, SDValue *Offset,
1973 bool Imm32Only) const {
1974 SDLoc SL(Addr);
1975
1976 if (SOffset && Offset) {
1977 assert(!Imm32Only);
1978 SDValue B;
1979 return SelectSMRDBaseOffset(Addr, B, nullptr, Offset) &&
1980 SelectSMRDBaseOffset(B, SBase, SOffset, nullptr);
1981 }
1982
1983 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1984 // wraparound, because s_load instructions perform the addition in 64 bits.
1985 if ((Addr.getValueType() != MVT::i32 ||
1986 Addr->getFlags().hasNoUnsignedWrap())) {
1987 SDValue N0, N1;
1988 // Extract the base and offset if possible.
1989 if (CurDAG->isBaseWithConstantOffset(Addr) ||
1990 Addr.getOpcode() == ISD::ADD) {
1991 N0 = Addr.getOperand(0);
1992 N1 = Addr.getOperand(1);
1993 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
1994 assert(N0 && N1 && isa<ConstantSDNode>(N1));
1995 }
1996 if (N0 && N1) {
1997 if (SelectSMRDOffset(N0, N1, SOffset, Offset, Imm32Only)) {
1998 SBase = N0;
1999 return true;
2000 }
2001 if (SelectSMRDOffset(N1, N0, SOffset, Offset, Imm32Only)) {
2002 SBase = N1;
2003 return true;
2004 }
2005 }
2006 return false;
2007 }
2008 if (Offset && !SOffset) {
2009 SBase = Addr;
2010 *Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
2011 return true;
2012 }
2013 return false;
2014 }
2015
SelectSMRD(SDValue Addr,SDValue & SBase,SDValue * SOffset,SDValue * Offset,bool Imm32Only) const2016 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
2017 SDValue *SOffset, SDValue *Offset,
2018 bool Imm32Only) const {
2019 if (!SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only))
2020 return false;
2021 SBase = Expand32BitAddress(SBase);
2022 return true;
2023 }
2024
SelectSMRDImm(SDValue Addr,SDValue & SBase,SDValue & Offset) const2025 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
2026 SDValue &Offset) const {
2027 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset);
2028 }
2029
SelectSMRDImm32(SDValue Addr,SDValue & SBase,SDValue & Offset) const2030 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
2031 SDValue &Offset) const {
2032 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2033 return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, &Offset,
2034 /* Imm32Only */ true);
2035 }
2036
SelectSMRDSgpr(SDValue Addr,SDValue & SBase,SDValue & SOffset) const2037 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
2038 SDValue &SOffset) const {
2039 return SelectSMRD(Addr, SBase, &SOffset, /* Offset */ nullptr);
2040 }
2041
SelectSMRDSgprImm(SDValue Addr,SDValue & SBase,SDValue & SOffset,SDValue & Offset) const2042 bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase,
2043 SDValue &SOffset,
2044 SDValue &Offset) const {
2045 return SelectSMRD(Addr, SBase, &SOffset, &Offset);
2046 }
2047
SelectSMRDBufferImm(SDValue Addr,SDValue & Offset) const2048 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
2049 SDValue &Offset) const {
2050 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
2051 // The immediate offset for S_BUFFER instructions is unsigned.
2052 if (auto Imm =
2053 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
2054 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
2055 return true;
2056 }
2057 }
2058
2059 return false;
2060 }
2061
SelectSMRDBufferImm32(SDValue Addr,SDValue & Offset) const2062 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
2063 SDValue &Offset) const {
2064 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2065
2066 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
2067 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
2068 C->getZExtValue())) {
2069 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
2070 return true;
2071 }
2072 }
2073
2074 return false;
2075 }
2076
SelectMOVRELOffset(SDValue Index,SDValue & Base,SDValue & Offset) const2077 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
2078 SDValue &Base,
2079 SDValue &Offset) const {
2080 SDLoc DL(Index);
2081
2082 if (CurDAG->isBaseWithConstantOffset(Index)) {
2083 SDValue N0 = Index.getOperand(0);
2084 SDValue N1 = Index.getOperand(1);
2085 ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
2086
2087 // (add n0, c0)
2088 // Don't peel off the offset (c0) if doing so could possibly lead
2089 // the base (n0) to be negative.
2090 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
2091 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
2092 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
2093 Base = N0;
2094 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
2095 return true;
2096 }
2097 }
2098
2099 if (isa<ConstantSDNode>(Index))
2100 return false;
2101
2102 Base = Index;
2103 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2104 return true;
2105 }
2106
getBFE32(bool IsSigned,const SDLoc & DL,SDValue Val,uint32_t Offset,uint32_t Width)2107 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL,
2108 SDValue Val, uint32_t Offset,
2109 uint32_t Width) {
2110 if (Val->isDivergent()) {
2111 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64;
2112 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32);
2113 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32);
2114
2115 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W);
2116 }
2117 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
2118 // Transformation function, pack the offset and width of a BFE into
2119 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
2120 // source, bits [5:0] contain the offset and bits [22:16] the width.
2121 uint32_t PackedVal = Offset | (Width << 16);
2122 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
2123
2124 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
2125 }
2126
SelectS_BFEFromShifts(SDNode * N)2127 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
2128 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
2129 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
2130 // Predicate: 0 < b <= c < 32
2131
2132 const SDValue &Shl = N->getOperand(0);
2133 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
2134 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2135
2136 if (B && C) {
2137 uint32_t BVal = B->getZExtValue();
2138 uint32_t CVal = C->getZExtValue();
2139
2140 if (0 < BVal && BVal <= CVal && CVal < 32) {
2141 bool Signed = N->getOpcode() == ISD::SRA;
2142 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal,
2143 32 - CVal));
2144 return;
2145 }
2146 }
2147 SelectCode(N);
2148 }
2149
SelectS_BFE(SDNode * N)2150 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
2151 switch (N->getOpcode()) {
2152 case ISD::AND:
2153 if (N->getOperand(0).getOpcode() == ISD::SRL) {
2154 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2155 // Predicate: isMask(mask)
2156 const SDValue &Srl = N->getOperand(0);
2157 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
2158 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
2159
2160 if (Shift && Mask) {
2161 uint32_t ShiftVal = Shift->getZExtValue();
2162 uint32_t MaskVal = Mask->getZExtValue();
2163
2164 if (isMask_32(MaskVal)) {
2165 uint32_t WidthVal = countPopulation(MaskVal);
2166 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal,
2167 WidthVal));
2168 return;
2169 }
2170 }
2171 }
2172 break;
2173 case ISD::SRL:
2174 if (N->getOperand(0).getOpcode() == ISD::AND) {
2175 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2176 // Predicate: isMask(mask >> b)
2177 const SDValue &And = N->getOperand(0);
2178 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2179 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2180
2181 if (Shift && Mask) {
2182 uint32_t ShiftVal = Shift->getZExtValue();
2183 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2184
2185 if (isMask_32(MaskVal)) {
2186 uint32_t WidthVal = countPopulation(MaskVal);
2187 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal,
2188 WidthVal));
2189 return;
2190 }
2191 }
2192 } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2193 SelectS_BFEFromShifts(N);
2194 return;
2195 }
2196 break;
2197 case ISD::SRA:
2198 if (N->getOperand(0).getOpcode() == ISD::SHL) {
2199 SelectS_BFEFromShifts(N);
2200 return;
2201 }
2202 break;
2203
2204 case ISD::SIGN_EXTEND_INREG: {
2205 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2206 SDValue Src = N->getOperand(0);
2207 if (Src.getOpcode() != ISD::SRL)
2208 break;
2209
2210 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2211 if (!Amt)
2212 break;
2213
2214 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2215 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0),
2216 Amt->getZExtValue(), Width));
2217 return;
2218 }
2219 }
2220
2221 SelectCode(N);
2222 }
2223
isCBranchSCC(const SDNode * N) const2224 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2225 assert(N->getOpcode() == ISD::BRCOND);
2226 if (!N->hasOneUse())
2227 return false;
2228
2229 SDValue Cond = N->getOperand(1);
2230 if (Cond.getOpcode() == ISD::CopyToReg)
2231 Cond = Cond.getOperand(2);
2232
2233 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2234 return false;
2235
2236 MVT VT = Cond.getOperand(0).getSimpleValueType();
2237 if (VT == MVT::i32)
2238 return true;
2239
2240 if (VT == MVT::i64) {
2241 auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2242
2243 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2244 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2245 }
2246
2247 return false;
2248 }
2249
SelectBRCOND(SDNode * N)2250 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2251 SDValue Cond = N->getOperand(1);
2252
2253 if (Cond.isUndef()) {
2254 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2255 N->getOperand(2), N->getOperand(0));
2256 return;
2257 }
2258
2259 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2260 const SIRegisterInfo *TRI = ST->getRegisterInfo();
2261
2262 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2263 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2264 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2265 SDLoc SL(N);
2266
2267 if (!UseSCCBr) {
2268 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
2269 // analyzed what generates the vcc value, so we do not know whether vcc
2270 // bits for disabled lanes are 0. Thus we need to mask out bits for
2271 // disabled lanes.
2272 //
2273 // For the case that we select S_CBRANCH_SCC1 and it gets
2274 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2275 // SIInstrInfo::moveToVALU which inserts the S_AND).
2276 //
2277 // We could add an analysis of what generates the vcc value here and omit
2278 // the S_AND when is unnecessary. But it would be better to add a separate
2279 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2280 // catches both cases.
2281 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2282 : AMDGPU::S_AND_B64,
2283 SL, MVT::i1,
2284 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2285 : AMDGPU::EXEC,
2286 MVT::i1),
2287 Cond),
2288 0);
2289 }
2290
2291 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2292 CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2293 N->getOperand(2), // Basic Block
2294 VCC.getValue(0));
2295 }
2296
SelectFMAD_FMA(SDNode * N)2297 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2298 MVT VT = N->getSimpleValueType(0);
2299 bool IsFMA = N->getOpcode() == ISD::FMA;
2300 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2301 !Subtarget->hasFmaMixInsts()) ||
2302 ((IsFMA && Subtarget->hasMadMixInsts()) ||
2303 (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2304 SelectCode(N);
2305 return;
2306 }
2307
2308 SDValue Src0 = N->getOperand(0);
2309 SDValue Src1 = N->getOperand(1);
2310 SDValue Src2 = N->getOperand(2);
2311 unsigned Src0Mods, Src1Mods, Src2Mods;
2312
2313 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2314 // using the conversion from f16.
2315 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2316 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2317 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2318
2319 assert((IsFMA || !Mode.allFP32Denormals()) &&
2320 "fmad selected with denormals enabled");
2321 // TODO: We can select this with f32 denormals enabled if all the sources are
2322 // converted from f16 (in which case fmad isn't legal).
2323
2324 if (Sel0 || Sel1 || Sel2) {
2325 // For dummy operands.
2326 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2327 SDValue Ops[] = {
2328 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2329 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2330 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2331 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2332 Zero, Zero
2333 };
2334
2335 CurDAG->SelectNodeTo(N,
2336 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2337 MVT::f32, Ops);
2338 } else {
2339 SelectCode(N);
2340 }
2341 }
2342
SelectDSAppendConsume(SDNode * N,unsigned IntrID)2343 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2344 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2345 // be copied to an SGPR with readfirstlane.
2346 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2347 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2348
2349 SDValue Chain = N->getOperand(0);
2350 SDValue Ptr = N->getOperand(2);
2351 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2352 MachineMemOperand *MMO = M->getMemOperand();
2353 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2354
2355 SDValue Offset;
2356 if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2357 SDValue PtrBase = Ptr.getOperand(0);
2358 SDValue PtrOffset = Ptr.getOperand(1);
2359
2360 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2361 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) {
2362 N = glueCopyToM0(N, PtrBase);
2363 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2364 }
2365 }
2366
2367 if (!Offset) {
2368 N = glueCopyToM0(N, Ptr);
2369 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2370 }
2371
2372 SDValue Ops[] = {
2373 Offset,
2374 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2375 Chain,
2376 N->getOperand(N->getNumOperands() - 1) // New glue
2377 };
2378
2379 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2380 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2381 }
2382
gwsIntrinToOpcode(unsigned IntrID)2383 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2384 switch (IntrID) {
2385 case Intrinsic::amdgcn_ds_gws_init:
2386 return AMDGPU::DS_GWS_INIT;
2387 case Intrinsic::amdgcn_ds_gws_barrier:
2388 return AMDGPU::DS_GWS_BARRIER;
2389 case Intrinsic::amdgcn_ds_gws_sema_v:
2390 return AMDGPU::DS_GWS_SEMA_V;
2391 case Intrinsic::amdgcn_ds_gws_sema_br:
2392 return AMDGPU::DS_GWS_SEMA_BR;
2393 case Intrinsic::amdgcn_ds_gws_sema_p:
2394 return AMDGPU::DS_GWS_SEMA_P;
2395 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2396 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2397 default:
2398 llvm_unreachable("not a gws intrinsic");
2399 }
2400 }
2401
SelectDS_GWS(SDNode * N,unsigned IntrID)2402 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2403 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2404 !Subtarget->hasGWSSemaReleaseAll()) {
2405 // Let this error.
2406 SelectCode(N);
2407 return;
2408 }
2409
2410 // Chain, intrinsic ID, vsrc, offset
2411 const bool HasVSrc = N->getNumOperands() == 4;
2412 assert(HasVSrc || N->getNumOperands() == 3);
2413
2414 SDLoc SL(N);
2415 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2416 int ImmOffset = 0;
2417 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2418 MachineMemOperand *MMO = M->getMemOperand();
2419
2420 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2421 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2422
2423 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2424 // offset field) % 64. Some versions of the programming guide omit the m0
2425 // part, or claim it's from offset 0.
2426 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2427 // If we have a constant offset, try to use the 0 in m0 as the base.
2428 // TODO: Look into changing the default m0 initialization value. If the
2429 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2430 // the immediate offset.
2431 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2432 ImmOffset = ConstOffset->getZExtValue();
2433 } else {
2434 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2435 ImmOffset = BaseOffset.getConstantOperandVal(1);
2436 BaseOffset = BaseOffset.getOperand(0);
2437 }
2438
2439 // Prefer to do the shift in an SGPR since it should be possible to use m0
2440 // as the result directly. If it's already an SGPR, it will be eliminated
2441 // later.
2442 SDNode *SGPROffset
2443 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2444 BaseOffset);
2445 // Shift to offset in m0
2446 SDNode *M0Base
2447 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2448 SDValue(SGPROffset, 0),
2449 CurDAG->getTargetConstant(16, SL, MVT::i32));
2450 glueCopyToM0(N, SDValue(M0Base, 0));
2451 }
2452
2453 SDValue Chain = N->getOperand(0);
2454 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2455
2456 const unsigned Opc = gwsIntrinToOpcode(IntrID);
2457 SmallVector<SDValue, 5> Ops;
2458 if (HasVSrc)
2459 Ops.push_back(N->getOperand(2));
2460 Ops.push_back(OffsetField);
2461 Ops.push_back(Chain);
2462
2463 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2464 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2465 }
2466
SelectInterpP1F16(SDNode * N)2467 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2468 if (Subtarget->getLDSBankCount() != 16) {
2469 // This is a single instruction with a pattern.
2470 SelectCode(N);
2471 return;
2472 }
2473
2474 SDLoc DL(N);
2475
2476 // This requires 2 instructions. It is possible to write a pattern to support
2477 // this, but the generated isel emitter doesn't correctly deal with multiple
2478 // output instructions using the same physical register input. The copy to m0
2479 // is incorrectly placed before the second instruction.
2480 //
2481 // TODO: Match source modifiers.
2482 //
2483 // def : Pat <
2484 // (int_amdgcn_interp_p1_f16
2485 // (VOP3Mods f32:$src0, i32:$src0_modifiers),
2486 // (i32 timm:$attrchan), (i32 timm:$attr),
2487 // (i1 timm:$high), M0),
2488 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2489 // timm:$attrchan, 0,
2490 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2491 // let Predicates = [has16BankLDS];
2492 // }
2493
2494 // 16 bank LDS
2495 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2496 N->getOperand(5), SDValue());
2497
2498 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2499
2500 SDNode *InterpMov =
2501 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2502 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2503 N->getOperand(3), // Attr
2504 N->getOperand(2), // Attrchan
2505 ToM0.getValue(1) // In glue
2506 });
2507
2508 SDNode *InterpP1LV =
2509 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2510 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2511 N->getOperand(1), // Src0
2512 N->getOperand(3), // Attr
2513 N->getOperand(2), // Attrchan
2514 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2515 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2516 N->getOperand(4), // high
2517 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2518 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2519 SDValue(InterpMov, 1)
2520 });
2521
2522 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2523 }
2524
SelectINTRINSIC_W_CHAIN(SDNode * N)2525 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2526 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2527 switch (IntrID) {
2528 case Intrinsic::amdgcn_ds_append:
2529 case Intrinsic::amdgcn_ds_consume: {
2530 if (N->getValueType(0) != MVT::i32)
2531 break;
2532 SelectDSAppendConsume(N, IntrID);
2533 return;
2534 }
2535 }
2536
2537 SelectCode(N);
2538 }
2539
SelectINTRINSIC_WO_CHAIN(SDNode * N)2540 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2541 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2542 unsigned Opcode;
2543 switch (IntrID) {
2544 case Intrinsic::amdgcn_wqm:
2545 Opcode = AMDGPU::WQM;
2546 break;
2547 case Intrinsic::amdgcn_softwqm:
2548 Opcode = AMDGPU::SOFT_WQM;
2549 break;
2550 case Intrinsic::amdgcn_wwm:
2551 case Intrinsic::amdgcn_strict_wwm:
2552 Opcode = AMDGPU::STRICT_WWM;
2553 break;
2554 case Intrinsic::amdgcn_strict_wqm:
2555 Opcode = AMDGPU::STRICT_WQM;
2556 break;
2557 case Intrinsic::amdgcn_interp_p1_f16:
2558 SelectInterpP1F16(N);
2559 return;
2560 default:
2561 SelectCode(N);
2562 return;
2563 }
2564
2565 SDValue Src = N->getOperand(1);
2566 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2567 }
2568
SelectINTRINSIC_VOID(SDNode * N)2569 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2570 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2571 switch (IntrID) {
2572 case Intrinsic::amdgcn_ds_gws_init:
2573 case Intrinsic::amdgcn_ds_gws_barrier:
2574 case Intrinsic::amdgcn_ds_gws_sema_v:
2575 case Intrinsic::amdgcn_ds_gws_sema_br:
2576 case Intrinsic::amdgcn_ds_gws_sema_p:
2577 case Intrinsic::amdgcn_ds_gws_sema_release_all:
2578 SelectDS_GWS(N, IntrID);
2579 return;
2580 default:
2581 break;
2582 }
2583
2584 SelectCode(N);
2585 }
2586
SelectVOP3ModsImpl(SDValue In,SDValue & Src,unsigned & Mods,bool AllowAbs) const2587 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2588 unsigned &Mods,
2589 bool AllowAbs) const {
2590 Mods = 0;
2591 Src = In;
2592
2593 if (Src.getOpcode() == ISD::FNEG) {
2594 Mods |= SISrcMods::NEG;
2595 Src = Src.getOperand(0);
2596 }
2597
2598 if (AllowAbs && Src.getOpcode() == ISD::FABS) {
2599 Mods |= SISrcMods::ABS;
2600 Src = Src.getOperand(0);
2601 }
2602
2603 return true;
2604 }
2605
SelectVOP3Mods(SDValue In,SDValue & Src,SDValue & SrcMods) const2606 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2607 SDValue &SrcMods) const {
2608 unsigned Mods;
2609 if (SelectVOP3ModsImpl(In, Src, Mods)) {
2610 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2611 return true;
2612 }
2613
2614 return false;
2615 }
2616
SelectVOP3BMods(SDValue In,SDValue & Src,SDValue & SrcMods) const2617 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src,
2618 SDValue &SrcMods) const {
2619 unsigned Mods;
2620 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) {
2621 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2622 return true;
2623 }
2624
2625 return false;
2626 }
2627
SelectVOP3Mods_NNaN(SDValue In,SDValue & Src,SDValue & SrcMods) const2628 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2629 SDValue &SrcMods) const {
2630 SelectVOP3Mods(In, Src, SrcMods);
2631 return isNoNanSrc(Src);
2632 }
2633
SelectVOP3NoMods(SDValue In,SDValue & Src) const2634 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2635 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2636 return false;
2637
2638 Src = In;
2639 return true;
2640 }
2641
SelectVINTERPModsImpl(SDValue In,SDValue & Src,SDValue & SrcMods,bool OpSel) const2642 bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src,
2643 SDValue &SrcMods,
2644 bool OpSel) const {
2645 unsigned Mods;
2646 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) {
2647 if (OpSel)
2648 Mods |= SISrcMods::OP_SEL_0;
2649 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2650 return true;
2651 }
2652
2653 return false;
2654 }
2655
SelectVINTERPMods(SDValue In,SDValue & Src,SDValue & SrcMods) const2656 bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src,
2657 SDValue &SrcMods) const {
2658 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false);
2659 }
2660
SelectVINTERPModsHi(SDValue In,SDValue & Src,SDValue & SrcMods) const2661 bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src,
2662 SDValue &SrcMods) const {
2663 return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true);
2664 }
2665
SelectVOP3Mods0(SDValue In,SDValue & Src,SDValue & SrcMods,SDValue & Clamp,SDValue & Omod) const2666 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2667 SDValue &SrcMods, SDValue &Clamp,
2668 SDValue &Omod) const {
2669 SDLoc DL(In);
2670 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2671 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2672
2673 return SelectVOP3Mods(In, Src, SrcMods);
2674 }
2675
SelectVOP3BMods0(SDValue In,SDValue & Src,SDValue & SrcMods,SDValue & Clamp,SDValue & Omod) const2676 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src,
2677 SDValue &SrcMods, SDValue &Clamp,
2678 SDValue &Omod) const {
2679 SDLoc DL(In);
2680 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2681 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2682
2683 return SelectVOP3BMods(In, Src, SrcMods);
2684 }
2685
SelectVOP3OMods(SDValue In,SDValue & Src,SDValue & Clamp,SDValue & Omod) const2686 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2687 SDValue &Clamp, SDValue &Omod) const {
2688 Src = In;
2689
2690 SDLoc DL(In);
2691 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2692 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2693
2694 return true;
2695 }
2696
SelectVOP3PMods(SDValue In,SDValue & Src,SDValue & SrcMods,bool IsDOT) const2697 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2698 SDValue &SrcMods, bool IsDOT) const {
2699 unsigned Mods = 0;
2700 Src = In;
2701
2702 if (Src.getOpcode() == ISD::FNEG) {
2703 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2704 Src = Src.getOperand(0);
2705 }
2706
2707 if (Src.getOpcode() == ISD::BUILD_VECTOR &&
2708 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) {
2709 unsigned VecMods = Mods;
2710
2711 SDValue Lo = stripBitcast(Src.getOperand(0));
2712 SDValue Hi = stripBitcast(Src.getOperand(1));
2713
2714 if (Lo.getOpcode() == ISD::FNEG) {
2715 Lo = stripBitcast(Lo.getOperand(0));
2716 Mods ^= SISrcMods::NEG;
2717 }
2718
2719 if (Hi.getOpcode() == ISD::FNEG) {
2720 Hi = stripBitcast(Hi.getOperand(0));
2721 Mods ^= SISrcMods::NEG_HI;
2722 }
2723
2724 if (isExtractHiElt(Lo, Lo))
2725 Mods |= SISrcMods::OP_SEL_0;
2726
2727 if (isExtractHiElt(Hi, Hi))
2728 Mods |= SISrcMods::OP_SEL_1;
2729
2730 unsigned VecSize = Src.getValueSizeInBits();
2731 Lo = stripExtractLoElt(Lo);
2732 Hi = stripExtractLoElt(Hi);
2733
2734 if (Lo.getValueSizeInBits() > VecSize) {
2735 Lo = CurDAG->getTargetExtractSubreg(
2736 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
2737 MVT::getIntegerVT(VecSize), Lo);
2738 }
2739
2740 if (Hi.getValueSizeInBits() > VecSize) {
2741 Hi = CurDAG->getTargetExtractSubreg(
2742 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
2743 MVT::getIntegerVT(VecSize), Hi);
2744 }
2745
2746 assert(Lo.getValueSizeInBits() <= VecSize &&
2747 Hi.getValueSizeInBits() <= VecSize);
2748
2749 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2750 // Really a scalar input. Just select from the low half of the register to
2751 // avoid packing.
2752
2753 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) {
2754 Src = Lo;
2755 } else {
2756 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64);
2757
2758 SDLoc SL(In);
2759 SDValue Undef = SDValue(
2760 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL,
2761 Lo.getValueType()), 0);
2762 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID
2763 : AMDGPU::SReg_64RegClassID;
2764 const SDValue Ops[] = {
2765 CurDAG->getTargetConstant(RC, SL, MVT::i32),
2766 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
2767 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) };
2768
2769 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL,
2770 Src.getValueType(), Ops), 0);
2771 }
2772 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2773 return true;
2774 }
2775
2776 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) {
2777 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF()
2778 .bitcastToAPInt().getZExtValue();
2779 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) {
2780 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);;
2781 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2782 return true;
2783 }
2784 }
2785
2786 Mods = VecMods;
2787 }
2788
2789 // Packed instructions do not have abs modifiers.
2790 Mods |= SISrcMods::OP_SEL_1;
2791
2792 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2793 return true;
2794 }
2795
SelectVOP3PModsDOT(SDValue In,SDValue & Src,SDValue & SrcMods) const2796 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src,
2797 SDValue &SrcMods) const {
2798 return SelectVOP3PMods(In, Src, SrcMods, true);
2799 }
2800
SelectDotIUVOP3PMods(SDValue In,SDValue & Src) const2801 bool AMDGPUDAGToDAGISel::SelectDotIUVOP3PMods(SDValue In, SDValue &Src) const {
2802 const ConstantSDNode *C = cast<ConstantSDNode>(In);
2803 // Literal i1 value set in intrinsic, represents SrcMods for the next operand.
2804 // 1 promotes packed values to signed, 0 treats them as unsigned.
2805 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
2806
2807 unsigned Mods = SISrcMods::OP_SEL_1;
2808 unsigned SrcSign = C->getAPIntValue().getZExtValue();
2809 if (SrcSign == 1)
2810 Mods ^= SISrcMods::NEG;
2811
2812 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2813 return true;
2814 }
2815
SelectWMMAOpSelVOP3PMods(SDValue In,SDValue & Src) const2816 bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In,
2817 SDValue &Src) const {
2818 const ConstantSDNode *C = cast<ConstantSDNode>(In);
2819 assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value");
2820
2821 unsigned Mods = SISrcMods::OP_SEL_1;
2822 unsigned SrcVal = C->getAPIntValue().getZExtValue();
2823 if (SrcVal == 1)
2824 Mods |= SISrcMods::OP_SEL_0;
2825
2826 Src = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2827 return true;
2828 }
2829
SelectVOP3OpSel(SDValue In,SDValue & Src,SDValue & SrcMods) const2830 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2831 SDValue &SrcMods) const {
2832 Src = In;
2833 // FIXME: Handle op_sel
2834 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2835 return true;
2836 }
2837
SelectVOP3OpSelMods(SDValue In,SDValue & Src,SDValue & SrcMods) const2838 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2839 SDValue &SrcMods) const {
2840 // FIXME: Handle op_sel
2841 return SelectVOP3Mods(In, Src, SrcMods);
2842 }
2843
2844 // The return value is not whether the match is possible (which it always is),
2845 // but whether or not it a conversion is really used.
SelectVOP3PMadMixModsImpl(SDValue In,SDValue & Src,unsigned & Mods) const2846 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2847 unsigned &Mods) const {
2848 Mods = 0;
2849 SelectVOP3ModsImpl(In, Src, Mods);
2850
2851 if (Src.getOpcode() == ISD::FP_EXTEND) {
2852 Src = Src.getOperand(0);
2853 assert(Src.getValueType() == MVT::f16);
2854 Src = stripBitcast(Src);
2855
2856 // Be careful about folding modifiers if we already have an abs. fneg is
2857 // applied last, so we don't want to apply an earlier fneg.
2858 if ((Mods & SISrcMods::ABS) == 0) {
2859 unsigned ModsTmp;
2860 SelectVOP3ModsImpl(Src, Src, ModsTmp);
2861
2862 if ((ModsTmp & SISrcMods::NEG) != 0)
2863 Mods ^= SISrcMods::NEG;
2864
2865 if ((ModsTmp & SISrcMods::ABS) != 0)
2866 Mods |= SISrcMods::ABS;
2867 }
2868
2869 // op_sel/op_sel_hi decide the source type and source.
2870 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2871 // If the sources's op_sel is set, it picks the high half of the source
2872 // register.
2873
2874 Mods |= SISrcMods::OP_SEL_1;
2875 if (isExtractHiElt(Src, Src)) {
2876 Mods |= SISrcMods::OP_SEL_0;
2877
2878 // TODO: Should we try to look for neg/abs here?
2879 }
2880
2881 return true;
2882 }
2883
2884 return false;
2885 }
2886
SelectVOP3PMadMixMods(SDValue In,SDValue & Src,SDValue & SrcMods) const2887 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2888 SDValue &SrcMods) const {
2889 unsigned Mods = 0;
2890 SelectVOP3PMadMixModsImpl(In, Src, Mods);
2891 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2892 return true;
2893 }
2894
getHi16Elt(SDValue In) const2895 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2896 if (In.isUndef())
2897 return CurDAG->getUNDEF(MVT::i32);
2898
2899 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2900 SDLoc SL(In);
2901 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2902 }
2903
2904 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2905 SDLoc SL(In);
2906 return CurDAG->getConstant(
2907 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2908 }
2909
2910 SDValue Src;
2911 if (isExtractHiElt(In, Src))
2912 return Src;
2913
2914 return SDValue();
2915 }
2916
isVGPRImm(const SDNode * N) const2917 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2918 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2919
2920 const SIRegisterInfo *SIRI =
2921 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2922 const SIInstrInfo * SII =
2923 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2924
2925 unsigned Limit = 0;
2926 bool AllUsesAcceptSReg = true;
2927 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2928 Limit < 10 && U != E; ++U, ++Limit) {
2929 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2930
2931 // If the register class is unknown, it could be an unknown
2932 // register class that needs to be an SGPR, e.g. an inline asm
2933 // constraint
2934 if (!RC || SIRI->isSGPRClass(RC))
2935 return false;
2936
2937 if (RC != &AMDGPU::VS_32RegClass) {
2938 AllUsesAcceptSReg = false;
2939 SDNode * User = *U;
2940 if (User->isMachineOpcode()) {
2941 unsigned Opc = User->getMachineOpcode();
2942 MCInstrDesc Desc = SII->get(Opc);
2943 if (Desc.isCommutable()) {
2944 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2945 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2946 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2947 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2948 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2949 if (CommutedRC == &AMDGPU::VS_32RegClass)
2950 AllUsesAcceptSReg = true;
2951 }
2952 }
2953 }
2954 // If "AllUsesAcceptSReg == false" so far we haven't succeeded
2955 // commuting current user. This means have at least one use
2956 // that strictly require VGPR. Thus, we will not attempt to commute
2957 // other user instructions.
2958 if (!AllUsesAcceptSReg)
2959 break;
2960 }
2961 }
2962 return !AllUsesAcceptSReg && (Limit < 10);
2963 }
2964
isUniformLoad(const SDNode * N) const2965 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2966 auto Ld = cast<LoadSDNode>(N);
2967
2968 return Ld->getAlign() >= Align(4) &&
2969 (((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2970 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
2971 !N->isDivergent()) ||
2972 (Subtarget->getScalarizeGlobalBehavior() &&
2973 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2974 Ld->isSimple() && !N->isDivergent() &&
2975 static_cast<const SITargetLowering *>(getTargetLowering())
2976 ->isMemOpHasNoClobberedMemOperand(N)));
2977 }
2978
PostprocessISelDAG()2979 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2980 const AMDGPUTargetLowering& Lowering =
2981 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2982 bool IsModified = false;
2983 do {
2984 IsModified = false;
2985
2986 // Go over all selected nodes and try to fold them a bit more
2987 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2988 while (Position != CurDAG->allnodes_end()) {
2989 SDNode *Node = &*Position++;
2990 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2991 if (!MachineNode)
2992 continue;
2993
2994 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2995 if (ResNode != Node) {
2996 if (ResNode)
2997 ReplaceUses(Node, ResNode);
2998 IsModified = true;
2999 }
3000 }
3001 CurDAG->RemoveDeadNodes();
3002 } while (IsModified);
3003 }
3004