1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/InitializePasses.h"
43 #ifdef EXPENSIVE_CHECKS
44 #include "llvm/IR/Dominators.h"
45 #endif
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include <cassert>
54 #include <cstdint>
55 #include <new>
56 #include <vector>
57 
58 #define DEBUG_TYPE "isel"
59 
60 using namespace llvm;
61 
62 namespace llvm {
63 
64 class R600InstrInfo;
65 
66 } // end namespace llvm
67 
68 //===----------------------------------------------------------------------===//
69 // Instruction Selector Implementation
70 //===----------------------------------------------------------------------===//
71 
72 namespace {
73 
74 static bool isNullConstantOrUndef(SDValue V) {
75   if (V.isUndef())
76     return true;
77 
78   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
79   return Const != nullptr && Const->isNullValue();
80 }
81 
82 static bool getConstantValue(SDValue N, uint32_t &Out) {
83   // This is only used for packed vectors, where ussing 0 for undef should
84   // always be good.
85   if (N.isUndef()) {
86     Out = 0;
87     return true;
88   }
89 
90   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
91     Out = C->getAPIntValue().getSExtValue();
92     return true;
93   }
94 
95   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
96     Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
97     return true;
98   }
99 
100   return false;
101 }
102 
103 // TODO: Handle undef as zero
104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
105                                  bool Negate = false) {
106   assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
107   uint32_t LHSVal, RHSVal;
108   if (getConstantValue(N->getOperand(0), LHSVal) &&
109       getConstantValue(N->getOperand(1), RHSVal)) {
110     SDLoc SL(N);
111     uint32_t K = Negate ?
112       (-LHSVal & 0xffff) | (-RHSVal << 16) :
113       (LHSVal & 0xffff) | (RHSVal << 16);
114     return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
115                               DAG.getTargetConstant(K, SL, MVT::i32));
116   }
117 
118   return nullptr;
119 }
120 
121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
122   return packConstantV2I16(N, DAG, true);
123 }
124 
125 /// AMDGPU specific code to select AMDGPU machine instructions for
126 /// SelectionDAG operations.
127 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
128   // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
129   // make the right decision when generating code for different targets.
130   const GCNSubtarget *Subtarget;
131 
132   // Default FP mode for the current function.
133   AMDGPU::SIModeRegisterDefaults Mode;
134 
135   bool EnableLateStructurizeCFG;
136 
137 public:
138   explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
139                               CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
140     : SelectionDAGISel(*TM, OptLevel) {
141     EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
142   }
143   ~AMDGPUDAGToDAGISel() override = default;
144 
145   void getAnalysisUsage(AnalysisUsage &AU) const override {
146     AU.addRequired<AMDGPUArgumentUsageInfo>();
147     AU.addRequired<LegacyDivergenceAnalysis>();
148 #ifdef EXPENSIVE_CHECKS
149     AU.addRequired<DominatorTreeWrapperPass>();
150     AU.addRequired<LoopInfoWrapperPass>();
151 #endif
152     SelectionDAGISel::getAnalysisUsage(AU);
153   }
154 
155   bool matchLoadD16FromBuildVector(SDNode *N) const;
156 
157   bool runOnMachineFunction(MachineFunction &MF) override;
158   void PreprocessISelDAG() override;
159   void Select(SDNode *N) override;
160   StringRef getPassName() const override;
161   void PostprocessISelDAG() override;
162 
163 protected:
164   void SelectBuildVector(SDNode *N, unsigned RegClassID);
165 
166 private:
167   std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
168   bool isNoNanSrc(SDValue N) const;
169   bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
170   bool isNegInlineImmediate(const SDNode *N) const {
171     return isInlineImmediate(N, true);
172   }
173 
174   bool isInlineImmediate16(int64_t Imm) const {
175     return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
176   }
177 
178   bool isInlineImmediate32(int64_t Imm) const {
179     return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
180   }
181 
182   bool isInlineImmediate64(int64_t Imm) const {
183     return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
184   }
185 
186   bool isInlineImmediate(const APFloat &Imm) const {
187     return Subtarget->getInstrInfo()->isInlineConstant(Imm);
188   }
189 
190   bool isVGPRImm(const SDNode *N) const;
191   bool isUniformLoad(const SDNode *N) const;
192   bool isUniformBr(const SDNode *N) const;
193 
194   MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
195 
196   SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
197   SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
198   SDNode *glueCopyToM0LDSInit(SDNode *N) const;
199 
200   const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
201   virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
202   virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
203   bool isDSOffsetLegal(SDValue Base, unsigned Offset,
204                        unsigned OffsetBits) const;
205   bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
206   bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
207                                  SDValue &Offset1) const;
208   bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
209                    SDValue &SOffset, SDValue &Offset, SDValue &Offen,
210                    SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
211                    SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
212   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
213                          SDValue &SOffset, SDValue &Offset, SDValue &GLC,
214                          SDValue &SLC, SDValue &TFE, SDValue &DLC,
215                          SDValue &SWZ) const;
216   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
217                          SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
218                          SDValue &SLC) const;
219   bool SelectMUBUFScratchOffen(SDNode *Parent,
220                                SDValue Addr, SDValue &RSrc, SDValue &VAddr,
221                                SDValue &SOffset, SDValue &ImmOffset) const;
222   bool SelectMUBUFScratchOffset(SDNode *Parent,
223                                 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
224                                 SDValue &Offset) const;
225 
226   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
227                          SDValue &Offset, SDValue &GLC, SDValue &SLC,
228                          SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
229   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
230                          SDValue &Offset, SDValue &SLC) const;
231   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
232                          SDValue &Offset) const;
233 
234   template <bool IsSigned>
235   bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
236                         SDValue &Offset, SDValue &SLC) const;
237   bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
238                         SDValue &Offset, SDValue &SLC) const;
239   bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
240                               SDValue &Offset, SDValue &SLC) const;
241 
242   bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
243                         bool &Imm) const;
244   SDValue Expand32BitAddress(SDValue Addr) const;
245   bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
246                   bool &Imm) const;
247   bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
248   bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
249   bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
250   bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
251   bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
252   bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
253 
254   bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
255   bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
256   bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
257   bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
258   bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
259                        SDValue &Clamp, SDValue &Omod) const;
260   bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
261                          SDValue &Clamp, SDValue &Omod) const;
262 
263   bool SelectVOP3OMods(SDValue In, SDValue &Src,
264                        SDValue &Clamp, SDValue &Omod) const;
265 
266   bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
267 
268   bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
269 
270   bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
271   bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
272   bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
273 
274   SDValue getHi16Elt(SDValue In) const;
275 
276   SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
277 
278   void SelectADD_SUB_I64(SDNode *N);
279   void SelectAddcSubb(SDNode *N);
280   void SelectUADDO_USUBO(SDNode *N);
281   void SelectDIV_SCALE(SDNode *N);
282   void SelectMAD_64_32(SDNode *N);
283   void SelectFMA_W_CHAIN(SDNode *N);
284   void SelectFMUL_W_CHAIN(SDNode *N);
285 
286   SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
287                    uint32_t Offset, uint32_t Width);
288   void SelectS_BFEFromShifts(SDNode *N);
289   void SelectS_BFE(SDNode *N);
290   bool isCBranchSCC(const SDNode *N) const;
291   void SelectBRCOND(SDNode *N);
292   void SelectFMAD_FMA(SDNode *N);
293   void SelectATOMIC_CMP_SWAP(SDNode *N);
294   void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
295   void SelectDS_GWS(SDNode *N, unsigned IntrID);
296   void SelectInterpP1F16(SDNode *N);
297   void SelectINTRINSIC_W_CHAIN(SDNode *N);
298   void SelectINTRINSIC_WO_CHAIN(SDNode *N);
299   void SelectINTRINSIC_VOID(SDNode *N);
300 
301 protected:
302   // Include the pieces autogenerated from the target description.
303 #include "AMDGPUGenDAGISel.inc"
304 };
305 
306 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
307   const R600Subtarget *Subtarget;
308 
309   bool isConstantLoad(const MemSDNode *N, int cbID) const;
310   bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
311   bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
312                                        SDValue& Offset);
313 public:
314   explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
315       AMDGPUDAGToDAGISel(TM, OptLevel) {}
316 
317   void Select(SDNode *N) override;
318 
319   bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
320                           SDValue &Offset) override;
321   bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
322                           SDValue &Offset) override;
323 
324   bool runOnMachineFunction(MachineFunction &MF) override;
325 
326   void PreprocessISelDAG() override {}
327 
328 protected:
329   // Include the pieces autogenerated from the target description.
330 #include "R600GenDAGISel.inc"
331 };
332 
333 static SDValue stripBitcast(SDValue Val) {
334   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
335 }
336 
337 // Figure out if this is really an extract of the high 16-bits of a dword.
338 static bool isExtractHiElt(SDValue In, SDValue &Out) {
339   In = stripBitcast(In);
340   if (In.getOpcode() != ISD::TRUNCATE)
341     return false;
342 
343   SDValue Srl = In.getOperand(0);
344   if (Srl.getOpcode() == ISD::SRL) {
345     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
346       if (ShiftAmt->getZExtValue() == 16) {
347         Out = stripBitcast(Srl.getOperand(0));
348         return true;
349       }
350     }
351   }
352 
353   return false;
354 }
355 
356 // Look through operations that obscure just looking at the low 16-bits of the
357 // same register.
358 static SDValue stripExtractLoElt(SDValue In) {
359   if (In.getOpcode() == ISD::TRUNCATE) {
360     SDValue Src = In.getOperand(0);
361     if (Src.getValueType().getSizeInBits() == 32)
362       return stripBitcast(Src);
363   }
364 
365   return In;
366 }
367 
368 }  // end anonymous namespace
369 
370 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
371                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
372 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
373 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
374 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
375 #ifdef EXPENSIVE_CHECKS
376 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
377 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
378 #endif
379 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
380                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
381 
382 /// This pass converts a legalized DAG into a AMDGPU-specific
383 // DAG, ready for instruction scheduling.
384 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
385                                         CodeGenOpt::Level OptLevel) {
386   return new AMDGPUDAGToDAGISel(TM, OptLevel);
387 }
388 
389 /// This pass converts a legalized DAG into a R600-specific
390 // DAG, ready for instruction scheduling.
391 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
392                                       CodeGenOpt::Level OptLevel) {
393   return new R600DAGToDAGISel(TM, OptLevel);
394 }
395 
396 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
397 #ifdef EXPENSIVE_CHECKS
398   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
399   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
400   for (auto &L : LI->getLoopsInPreorder()) {
401     assert(L->isLCSSAForm(DT));
402   }
403 #endif
404   Subtarget = &MF.getSubtarget<GCNSubtarget>();
405   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
406   return SelectionDAGISel::runOnMachineFunction(MF);
407 }
408 
409 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
410   assert(Subtarget->d16PreservesUnusedBits());
411   MVT VT = N->getValueType(0).getSimpleVT();
412   if (VT != MVT::v2i16 && VT != MVT::v2f16)
413     return false;
414 
415   SDValue Lo = N->getOperand(0);
416   SDValue Hi = N->getOperand(1);
417 
418   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
419 
420   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
421   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
422   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
423 
424   // Need to check for possible indirect dependencies on the other half of the
425   // vector to avoid introducing a cycle.
426   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
427     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
428 
429     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
430     SDValue Ops[] = {
431       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
432     };
433 
434     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
435     if (LdHi->getMemoryVT() == MVT::i8) {
436       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
437         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
438     } else {
439       assert(LdHi->getMemoryVT() == MVT::i16);
440     }
441 
442     SDValue NewLoadHi =
443       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
444                                   Ops, LdHi->getMemoryVT(),
445                                   LdHi->getMemOperand());
446 
447     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
448     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
449     return true;
450   }
451 
452   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
453   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
454   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
455   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
456   if (LdLo && Lo.hasOneUse()) {
457     SDValue TiedIn = getHi16Elt(Hi);
458     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
459       return false;
460 
461     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
462     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
463     if (LdLo->getMemoryVT() == MVT::i8) {
464       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
465         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
466     } else {
467       assert(LdLo->getMemoryVT() == MVT::i16);
468     }
469 
470     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
471 
472     SDValue Ops[] = {
473       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
474     };
475 
476     SDValue NewLoadLo =
477       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
478                                   Ops, LdLo->getMemoryVT(),
479                                   LdLo->getMemOperand());
480 
481     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
482     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
483     return true;
484   }
485 
486   return false;
487 }
488 
489 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
490   if (!Subtarget->d16PreservesUnusedBits())
491     return;
492 
493   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
494 
495   bool MadeChange = false;
496   while (Position != CurDAG->allnodes_begin()) {
497     SDNode *N = &*--Position;
498     if (N->use_empty())
499       continue;
500 
501     switch (N->getOpcode()) {
502     case ISD::BUILD_VECTOR:
503       MadeChange |= matchLoadD16FromBuildVector(N);
504       break;
505     default:
506       break;
507     }
508   }
509 
510   if (MadeChange) {
511     CurDAG->RemoveDeadNodes();
512     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
513                CurDAG->dump(););
514   }
515 }
516 
517 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
518   if (TM.Options.NoNaNsFPMath)
519     return true;
520 
521   // TODO: Move into isKnownNeverNaN
522   if (N->getFlags().isDefined())
523     return N->getFlags().hasNoNaNs();
524 
525   return CurDAG->isKnownNeverNaN(N);
526 }
527 
528 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
529                                            bool Negated) const {
530   if (N->isUndef())
531     return true;
532 
533   const SIInstrInfo *TII = Subtarget->getInstrInfo();
534   if (Negated) {
535     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
536       return TII->isInlineConstant(-C->getAPIntValue());
537 
538     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
539       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
540 
541   } else {
542     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
543       return TII->isInlineConstant(C->getAPIntValue());
544 
545     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
546       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
547   }
548 
549   return false;
550 }
551 
552 /// Determine the register class for \p OpNo
553 /// \returns The register class of the virtual register that will be used for
554 /// the given operand number \OpNo or NULL if the register class cannot be
555 /// determined.
556 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
557                                                           unsigned OpNo) const {
558   if (!N->isMachineOpcode()) {
559     if (N->getOpcode() == ISD::CopyToReg) {
560       unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
561       if (Register::isVirtualRegister(Reg)) {
562         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
563         return MRI.getRegClass(Reg);
564       }
565 
566       const SIRegisterInfo *TRI
567         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
568       return TRI->getPhysRegClass(Reg);
569     }
570 
571     return nullptr;
572   }
573 
574   switch (N->getMachineOpcode()) {
575   default: {
576     const MCInstrDesc &Desc =
577         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
578     unsigned OpIdx = Desc.getNumDefs() + OpNo;
579     if (OpIdx >= Desc.getNumOperands())
580       return nullptr;
581     int RegClass = Desc.OpInfo[OpIdx].RegClass;
582     if (RegClass == -1)
583       return nullptr;
584 
585     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
586   }
587   case AMDGPU::REG_SEQUENCE: {
588     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
589     const TargetRegisterClass *SuperRC =
590         Subtarget->getRegisterInfo()->getRegClass(RCID);
591 
592     SDValue SubRegOp = N->getOperand(OpNo + 1);
593     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
594     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
595                                                               SubRegIdx);
596   }
597   }
598 }
599 
600 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
601                                          SDValue Glue) const {
602   SmallVector <SDValue, 8> Ops;
603   Ops.push_back(NewChain); // Replace the chain.
604   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
605     Ops.push_back(N->getOperand(i));
606 
607   Ops.push_back(Glue);
608   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
609 }
610 
611 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
612   const SITargetLowering& Lowering =
613     *static_cast<const SITargetLowering*>(getTargetLowering());
614 
615   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
616 
617   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
618   return glueCopyToOp(N, M0, M0.getValue(1));
619 }
620 
621 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
622   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
623   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
624     if (Subtarget->ldsRequiresM0Init())
625       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
626   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
627     MachineFunction &MF = CurDAG->getMachineFunction();
628     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
629     return
630         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
631   }
632   return N;
633 }
634 
635 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
636                                                   EVT VT) const {
637   SDNode *Lo = CurDAG->getMachineNode(
638       AMDGPU::S_MOV_B32, DL, MVT::i32,
639       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
640   SDNode *Hi =
641       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
642                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
643   const SDValue Ops[] = {
644       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
645       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
646       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
647 
648   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
649 }
650 
651 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
652   EVT VT = N->getValueType(0);
653   unsigned NumVectorElts = VT.getVectorNumElements();
654   EVT EltVT = VT.getVectorElementType();
655   SDLoc DL(N);
656   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
657 
658   if (NumVectorElts == 1) {
659     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
660                          RegClass);
661     return;
662   }
663 
664   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
665                                   "supported yet");
666   // 32 = Max Num Vector Elements
667   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
668   // 1 = Vector Register Class
669   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
670 
671   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
672                Triple::amdgcn;
673   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
674   bool IsRegSeq = true;
675   unsigned NOps = N->getNumOperands();
676   for (unsigned i = 0; i < NOps; i++) {
677     // XXX: Why is this here?
678     if (isa<RegisterSDNode>(N->getOperand(i))) {
679       IsRegSeq = false;
680       break;
681     }
682     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
683                          : R600RegisterInfo::getSubRegFromChannel(i);
684     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
685     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
686   }
687   if (NOps != NumVectorElts) {
688     // Fill in the missing undef elements if this was a scalar_to_vector.
689     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
690     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
691                                                    DL, EltVT);
692     for (unsigned i = NOps; i < NumVectorElts; ++i) {
693       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
694                            : R600RegisterInfo::getSubRegFromChannel(i);
695       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
696       RegSeqArgs[1 + (2 * i) + 1] =
697           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
698     }
699   }
700 
701   if (!IsRegSeq)
702     SelectCode(N);
703   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
704 }
705 
706 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
707   unsigned int Opc = N->getOpcode();
708   if (N->isMachineOpcode()) {
709     N->setNodeId(-1);
710     return;   // Already selected.
711   }
712 
713   // isa<MemSDNode> almost works but is slightly too permissive for some DS
714   // intrinsics.
715   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
716       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
717        Opc == ISD::ATOMIC_LOAD_FADD ||
718        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
719        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX ||
720        Opc == AMDGPUISD::ATOMIC_LOAD_CSUB)) {
721     N = glueCopyToM0LDSInit(N);
722     SelectCode(N);
723     return;
724   }
725 
726   switch (Opc) {
727   default:
728     break;
729   // We are selecting i64 ADD here instead of custom lower it during
730   // DAG legalization, so we can fold some i64 ADDs used for address
731   // calculation into the LOAD and STORE instructions.
732   case ISD::ADDC:
733   case ISD::ADDE:
734   case ISD::SUBC:
735   case ISD::SUBE: {
736     if (N->getValueType(0) != MVT::i64)
737       break;
738 
739     SelectADD_SUB_I64(N);
740     return;
741   }
742   case ISD::ADDCARRY:
743   case ISD::SUBCARRY:
744     if (N->getValueType(0) != MVT::i32)
745       break;
746 
747     SelectAddcSubb(N);
748     return;
749   case ISD::UADDO:
750   case ISD::USUBO: {
751     SelectUADDO_USUBO(N);
752     return;
753   }
754   case AMDGPUISD::FMUL_W_CHAIN: {
755     SelectFMUL_W_CHAIN(N);
756     return;
757   }
758   case AMDGPUISD::FMA_W_CHAIN: {
759     SelectFMA_W_CHAIN(N);
760     return;
761   }
762 
763   case ISD::SCALAR_TO_VECTOR:
764   case ISD::BUILD_VECTOR: {
765     EVT VT = N->getValueType(0);
766     unsigned NumVectorElts = VT.getVectorNumElements();
767     if (VT.getScalarSizeInBits() == 16) {
768       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
769         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
770           ReplaceNode(N, Packed);
771           return;
772         }
773       }
774 
775       break;
776     }
777 
778     assert(VT.getVectorElementType().bitsEq(MVT::i32));
779     unsigned RegClassID =
780         SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
781     SelectBuildVector(N, RegClassID);
782     return;
783   }
784   case ISD::BUILD_PAIR: {
785     SDValue RC, SubReg0, SubReg1;
786     SDLoc DL(N);
787     if (N->getValueType(0) == MVT::i128) {
788       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
789       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
790       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
791     } else if (N->getValueType(0) == MVT::i64) {
792       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
793       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
794       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
795     } else {
796       llvm_unreachable("Unhandled value type for BUILD_PAIR");
797     }
798     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
799                             N->getOperand(1), SubReg1 };
800     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
801                                           N->getValueType(0), Ops));
802     return;
803   }
804 
805   case ISD::Constant:
806   case ISD::ConstantFP: {
807     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
808       break;
809 
810     uint64_t Imm;
811     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
812       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
813     else {
814       ConstantSDNode *C = cast<ConstantSDNode>(N);
815       Imm = C->getZExtValue();
816     }
817 
818     SDLoc DL(N);
819     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
820     return;
821   }
822   case AMDGPUISD::BFE_I32:
823   case AMDGPUISD::BFE_U32: {
824     // There is a scalar version available, but unlike the vector version which
825     // has a separate operand for the offset and width, the scalar version packs
826     // the width and offset into a single operand. Try to move to the scalar
827     // version if the offsets are constant, so that we can try to keep extended
828     // loads of kernel arguments in SGPRs.
829 
830     // TODO: Technically we could try to pattern match scalar bitshifts of
831     // dynamic values, but it's probably not useful.
832     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
833     if (!Offset)
834       break;
835 
836     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
837     if (!Width)
838       break;
839 
840     bool Signed = Opc == AMDGPUISD::BFE_I32;
841 
842     uint32_t OffsetVal = Offset->getZExtValue();
843     uint32_t WidthVal = Width->getZExtValue();
844 
845     ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
846                             SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
847     return;
848   }
849   case AMDGPUISD::DIV_SCALE: {
850     SelectDIV_SCALE(N);
851     return;
852   }
853   case AMDGPUISD::MAD_I64_I32:
854   case AMDGPUISD::MAD_U64_U32: {
855     SelectMAD_64_32(N);
856     return;
857   }
858   case ISD::CopyToReg: {
859     const SITargetLowering& Lowering =
860       *static_cast<const SITargetLowering*>(getTargetLowering());
861     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
862     break;
863   }
864   case ISD::AND:
865   case ISD::SRL:
866   case ISD::SRA:
867   case ISD::SIGN_EXTEND_INREG:
868     if (N->getValueType(0) != MVT::i32)
869       break;
870 
871     SelectS_BFE(N);
872     return;
873   case ISD::BRCOND:
874     SelectBRCOND(N);
875     return;
876   case ISD::FMAD:
877   case ISD::FMA:
878     SelectFMAD_FMA(N);
879     return;
880   case AMDGPUISD::ATOMIC_CMP_SWAP:
881     SelectATOMIC_CMP_SWAP(N);
882     return;
883   case AMDGPUISD::CVT_PKRTZ_F16_F32:
884   case AMDGPUISD::CVT_PKNORM_I16_F32:
885   case AMDGPUISD::CVT_PKNORM_U16_F32:
886   case AMDGPUISD::CVT_PK_U16_U32:
887   case AMDGPUISD::CVT_PK_I16_I32: {
888     // Hack around using a legal type if f16 is illegal.
889     if (N->getValueType(0) == MVT::i32) {
890       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
891       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
892                               { N->getOperand(0), N->getOperand(1) });
893       SelectCode(N);
894       return;
895     }
896 
897     break;
898   }
899   case ISD::INTRINSIC_W_CHAIN: {
900     SelectINTRINSIC_W_CHAIN(N);
901     return;
902   }
903   case ISD::INTRINSIC_WO_CHAIN: {
904     SelectINTRINSIC_WO_CHAIN(N);
905     return;
906   }
907   case ISD::INTRINSIC_VOID: {
908     SelectINTRINSIC_VOID(N);
909     return;
910   }
911   }
912 
913   SelectCode(N);
914 }
915 
916 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
917   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
918   const Instruction *Term = BB->getTerminator();
919   return Term->getMetadata("amdgpu.uniform") ||
920          Term->getMetadata("structurizecfg.uniform");
921 }
922 
923 StringRef AMDGPUDAGToDAGISel::getPassName() const {
924   return "AMDGPU DAG->DAG Pattern Instruction Selection";
925 }
926 
927 //===----------------------------------------------------------------------===//
928 // Complex Patterns
929 //===----------------------------------------------------------------------===//
930 
931 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
932                                             SDValue &Offset) {
933   return false;
934 }
935 
936 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
937                                             SDValue &Offset) {
938   ConstantSDNode *C;
939   SDLoc DL(Addr);
940 
941   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
942     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
943     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
944   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
945              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
946     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
947     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
948   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
949             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
950     Base = Addr.getOperand(0);
951     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
952   } else {
953     Base = Addr;
954     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
955   }
956 
957   return true;
958 }
959 
960 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
961                                                        const SDLoc &DL) const {
962   SDNode *Mov = CurDAG->getMachineNode(
963     AMDGPU::S_MOV_B32, DL, MVT::i32,
964     CurDAG->getTargetConstant(Val, DL, MVT::i32));
965   return SDValue(Mov, 0);
966 }
967 
968 // FIXME: Should only handle addcarry/subcarry
969 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
970   SDLoc DL(N);
971   SDValue LHS = N->getOperand(0);
972   SDValue RHS = N->getOperand(1);
973 
974   unsigned Opcode = N->getOpcode();
975   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
976   bool ProduceCarry =
977       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
978   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
979 
980   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
981   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
982 
983   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
984                                        DL, MVT::i32, LHS, Sub0);
985   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
986                                        DL, MVT::i32, LHS, Sub1);
987 
988   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
989                                        DL, MVT::i32, RHS, Sub0);
990   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
991                                        DL, MVT::i32, RHS, Sub1);
992 
993   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
994 
995   static const unsigned OpcMap[2][2][2] = {
996       {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
997        {AMDGPU::V_SUB_I32_e32, AMDGPU::V_ADD_I32_e32}},
998       {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
999        {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
1000 
1001   unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
1002   unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
1003 
1004   SDNode *AddLo;
1005   if (!ConsumeCarry) {
1006     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1007     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1008   } else {
1009     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1010     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1011   }
1012   SDValue AddHiArgs[] = {
1013     SDValue(Hi0, 0),
1014     SDValue(Hi1, 0),
1015     SDValue(AddLo, 1)
1016   };
1017   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1018 
1019   SDValue RegSequenceArgs[] = {
1020     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1021     SDValue(AddLo,0),
1022     Sub0,
1023     SDValue(AddHi,0),
1024     Sub1,
1025   };
1026   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1027                                                MVT::i64, RegSequenceArgs);
1028 
1029   if (ProduceCarry) {
1030     // Replace the carry-use
1031     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1032   }
1033 
1034   // Replace the remaining uses.
1035   ReplaceNode(N, RegSequence);
1036 }
1037 
1038 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1039   SDLoc DL(N);
1040   SDValue LHS = N->getOperand(0);
1041   SDValue RHS = N->getOperand(1);
1042   SDValue CI = N->getOperand(2);
1043 
1044   if (N->isDivergent()) {
1045     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1046                                                    : AMDGPU::V_SUBB_U32_e64;
1047     CurDAG->SelectNodeTo(
1048         N, Opc, N->getVTList(),
1049         {LHS, RHS, CI,
1050          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1051   } else {
1052     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
1053                                                    : AMDGPU::S_SUB_CO_PSEUDO;
1054     CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
1055   }
1056 }
1057 
1058 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1059   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1060   // carry out despite the _i32 name. These were renamed in VI to _U32.
1061   // FIXME: We should probably rename the opcodes here.
1062   bool IsAdd = N->getOpcode() == ISD::UADDO;
1063   bool IsVALU = N->isDivergent();
1064 
1065   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
1066        ++UI)
1067     if (UI.getUse().getResNo() == 1) {
1068       if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
1069           (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
1070         IsVALU = true;
1071         break;
1072       }
1073     }
1074 
1075   if (IsVALU) {
1076     unsigned Opc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1077 
1078     CurDAG->SelectNodeTo(
1079         N, Opc, N->getVTList(),
1080         {N->getOperand(0), N->getOperand(1),
1081          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1082   } else {
1083     unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
1084                                                 : AMDGPU::S_USUBO_PSEUDO;
1085 
1086     CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
1087                          {N->getOperand(0), N->getOperand(1)});
1088   }
1089 }
1090 
1091 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1092   SDLoc SL(N);
1093   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1094   SDValue Ops[10];
1095 
1096   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1097   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1098   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1099   Ops[8] = N->getOperand(0);
1100   Ops[9] = N->getOperand(4);
1101 
1102   CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1103 }
1104 
1105 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1106   SDLoc SL(N);
1107   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
1108   SDValue Ops[8];
1109 
1110   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1111   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1112   Ops[6] = N->getOperand(0);
1113   Ops[7] = N->getOperand(3);
1114 
1115   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1116 }
1117 
1118 // We need to handle this here because tablegen doesn't support matching
1119 // instructions with multiple outputs.
1120 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1121   SDLoc SL(N);
1122   EVT VT = N->getValueType(0);
1123 
1124   assert(VT == MVT::f32 || VT == MVT::f64);
1125 
1126   unsigned Opc
1127     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1128 
1129   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1130   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1131 }
1132 
1133 // We need to handle this here because tablegen doesn't support matching
1134 // instructions with multiple outputs.
1135 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1136   SDLoc SL(N);
1137   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1138   unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1139 
1140   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1141   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1142                     Clamp };
1143   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1144 }
1145 
1146 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1147                                          unsigned OffsetBits) const {
1148   if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1149       (OffsetBits == 8 && !isUInt<8>(Offset)))
1150     return false;
1151 
1152   if (Subtarget->hasUsableDSOffset() ||
1153       Subtarget->unsafeDSOffsetFoldingEnabled())
1154     return true;
1155 
1156   // On Southern Islands instruction with a negative base value and an offset
1157   // don't seem to work.
1158   return CurDAG->SignBitIsZero(Base);
1159 }
1160 
1161 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1162                                               SDValue &Offset) const {
1163   SDLoc DL(Addr);
1164   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1165     SDValue N0 = Addr.getOperand(0);
1166     SDValue N1 = Addr.getOperand(1);
1167     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1168     if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1169       // (add n0, c0)
1170       Base = N0;
1171       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1172       return true;
1173     }
1174   } else if (Addr.getOpcode() == ISD::SUB) {
1175     // sub C, x -> add (sub 0, x), C
1176     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1177       int64_t ByteOffset = C->getSExtValue();
1178       if (isUInt<16>(ByteOffset)) {
1179         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1180 
1181         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1182         // the known bits in isDSOffsetLegal. We need to emit the selected node
1183         // here, so this is thrown away.
1184         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1185                                       Zero, Addr.getOperand(1));
1186 
1187         if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1188           SmallVector<SDValue, 3> Opnds;
1189           Opnds.push_back(Zero);
1190           Opnds.push_back(Addr.getOperand(1));
1191 
1192           // FIXME: Select to VOP3 version for with-carry.
1193           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1194           if (Subtarget->hasAddNoCarry()) {
1195             SubOp = AMDGPU::V_SUB_U32_e64;
1196             Opnds.push_back(
1197                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1198           }
1199 
1200           MachineSDNode *MachineSub =
1201               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1202 
1203           Base = SDValue(MachineSub, 0);
1204           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1205           return true;
1206         }
1207       }
1208     }
1209   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1210     // If we have a constant address, prefer to put the constant into the
1211     // offset. This can save moves to load the constant address since multiple
1212     // operations can share the zero base address register, and enables merging
1213     // into read2 / write2 instructions.
1214 
1215     SDLoc DL(Addr);
1216 
1217     if (isUInt<16>(CAddr->getZExtValue())) {
1218       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1219       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1220                                  DL, MVT::i32, Zero);
1221       Base = SDValue(MovZero, 0);
1222       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1223       return true;
1224     }
1225   }
1226 
1227   // default case
1228   Base = Addr;
1229   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1230   return true;
1231 }
1232 
1233 // TODO: If offset is too big, put low 16-bit into offset.
1234 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1235                                                    SDValue &Offset0,
1236                                                    SDValue &Offset1) const {
1237   SDLoc DL(Addr);
1238 
1239   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1240     SDValue N0 = Addr.getOperand(0);
1241     SDValue N1 = Addr.getOperand(1);
1242     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1243     unsigned DWordOffset0 = C1->getZExtValue() / 4;
1244     unsigned DWordOffset1 = DWordOffset0 + 1;
1245     // (add n0, c0)
1246     if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1247       Base = N0;
1248       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1249       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1250       return true;
1251     }
1252   } else if (Addr.getOpcode() == ISD::SUB) {
1253     // sub C, x -> add (sub 0, x), C
1254     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1255       unsigned DWordOffset0 = C->getZExtValue() / 4;
1256       unsigned DWordOffset1 = DWordOffset0 + 1;
1257 
1258       if (isUInt<8>(DWordOffset0)) {
1259         SDLoc DL(Addr);
1260         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1261 
1262         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1263         // the known bits in isDSOffsetLegal. We need to emit the selected node
1264         // here, so this is thrown away.
1265         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1266                                       Zero, Addr.getOperand(1));
1267 
1268         if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1269           SmallVector<SDValue, 3> Opnds;
1270           Opnds.push_back(Zero);
1271           Opnds.push_back(Addr.getOperand(1));
1272           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1273           if (Subtarget->hasAddNoCarry()) {
1274             SubOp = AMDGPU::V_SUB_U32_e64;
1275             Opnds.push_back(
1276                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1277           }
1278 
1279           MachineSDNode *MachineSub
1280             = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1281 
1282           Base = SDValue(MachineSub, 0);
1283           Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1284           Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1285           return true;
1286         }
1287       }
1288     }
1289   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1290     unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1291     unsigned DWordOffset1 = DWordOffset0 + 1;
1292     assert(4 * DWordOffset0 == CAddr->getZExtValue());
1293 
1294     if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1295       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1296       MachineSDNode *MovZero
1297         = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1298                                  DL, MVT::i32, Zero);
1299       Base = SDValue(MovZero, 0);
1300       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1301       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1302       return true;
1303     }
1304   }
1305 
1306   // default case
1307 
1308   Base = Addr;
1309   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1310   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1311   return true;
1312 }
1313 
1314 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1315                                      SDValue &VAddr, SDValue &SOffset,
1316                                      SDValue &Offset, SDValue &Offen,
1317                                      SDValue &Idxen, SDValue &Addr64,
1318                                      SDValue &GLC, SDValue &SLC,
1319                                      SDValue &TFE, SDValue &DLC,
1320                                      SDValue &SWZ) const {
1321   // Subtarget prefers to use flat instruction
1322   // FIXME: This should be a pattern predicate and not reach here
1323   if (Subtarget->useFlatForGlobal())
1324     return false;
1325 
1326   SDLoc DL(Addr);
1327 
1328   if (!GLC.getNode())
1329     GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1330   if (!SLC.getNode())
1331     SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1332   TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1333   DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1334   SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1335 
1336   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1337   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1338   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1339   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1340 
1341   ConstantSDNode *C1 = nullptr;
1342   SDValue N0 = Addr;
1343   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1344     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1345     if (isUInt<32>(C1->getZExtValue()))
1346       N0 = Addr.getOperand(0);
1347     else
1348       C1 = nullptr;
1349   }
1350 
1351   if (N0.getOpcode() == ISD::ADD) {
1352     // (add N2, N3) -> addr64, or
1353     // (add (add N2, N3), C1) -> addr64
1354     SDValue N2 = N0.getOperand(0);
1355     SDValue N3 = N0.getOperand(1);
1356     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1357 
1358     if (N2->isDivergent()) {
1359       if (N3->isDivergent()) {
1360         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1361         // addr64, and construct the resource from a 0 address.
1362         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1363         VAddr = N0;
1364       } else {
1365         // N2 is divergent, N3 is not.
1366         Ptr = N3;
1367         VAddr = N2;
1368       }
1369     } else {
1370       // N2 is not divergent.
1371       Ptr = N2;
1372       VAddr = N3;
1373     }
1374     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1375   } else if (N0->isDivergent()) {
1376     // N0 is divergent. Use it as the addr64, and construct the resource from a
1377     // 0 address.
1378     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1379     VAddr = N0;
1380     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1381   } else {
1382     // N0 -> offset, or
1383     // (N0 + C1) -> offset
1384     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1385     Ptr = N0;
1386   }
1387 
1388   if (!C1) {
1389     // No offset.
1390     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1391     return true;
1392   }
1393 
1394   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1395     // Legal offset for instruction.
1396     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1397     return true;
1398   }
1399 
1400   // Illegal offset, store it in soffset.
1401   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1402   SOffset =
1403       SDValue(CurDAG->getMachineNode(
1404                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1405                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1406               0);
1407   return true;
1408 }
1409 
1410 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1411                                            SDValue &VAddr, SDValue &SOffset,
1412                                            SDValue &Offset, SDValue &GLC,
1413                                            SDValue &SLC, SDValue &TFE,
1414                                            SDValue &DLC, SDValue &SWZ) const {
1415   SDValue Ptr, Offen, Idxen, Addr64;
1416 
1417   // addr64 bit was removed for volcanic islands.
1418   // FIXME: This should be a pattern predicate and not reach here
1419   if (!Subtarget->hasAddr64())
1420     return false;
1421 
1422   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1423               GLC, SLC, TFE, DLC, SWZ))
1424     return false;
1425 
1426   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1427   if (C->getSExtValue()) {
1428     SDLoc DL(Addr);
1429 
1430     const SITargetLowering& Lowering =
1431       *static_cast<const SITargetLowering*>(getTargetLowering());
1432 
1433     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1434     return true;
1435   }
1436 
1437   return false;
1438 }
1439 
1440 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1441                                            SDValue &VAddr, SDValue &SOffset,
1442                                            SDValue &Offset,
1443                                            SDValue &SLC) const {
1444   SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1445   SDValue GLC, TFE, DLC, SWZ;
1446 
1447   return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1448 }
1449 
1450 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1451   auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1452   return PSV && PSV->isStack();
1453 }
1454 
1455 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1456   SDLoc DL(N);
1457   const MachineFunction &MF = CurDAG->getMachineFunction();
1458   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1459 
1460   if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1461     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1462                                               FI->getValueType(0));
1463 
1464     // If we can resolve this to a frame index access, this will be relative to
1465     // either the stack or frame pointer SGPR.
1466     return std::make_pair(
1467         TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1468   }
1469 
1470   // If we don't know this private access is a local stack object, it needs to
1471   // be relative to the entry point's scratch wave offset.
1472   return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32));
1473 }
1474 
1475 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1476                                                  SDValue Addr, SDValue &Rsrc,
1477                                                  SDValue &VAddr, SDValue &SOffset,
1478                                                  SDValue &ImmOffset) const {
1479 
1480   SDLoc DL(Addr);
1481   MachineFunction &MF = CurDAG->getMachineFunction();
1482   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1483 
1484   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1485 
1486   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1487     int64_t Imm = CAddr->getSExtValue();
1488     const int64_t NullPtr =
1489         AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1490     // Don't fold null pointer.
1491     if (Imm != NullPtr) {
1492       SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1493       MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1494         AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1495       VAddr = SDValue(MovHighBits, 0);
1496 
1497       // In a call sequence, stores to the argument stack area are relative to the
1498       // stack pointer.
1499       const MachinePointerInfo &PtrInfo
1500         = cast<MemSDNode>(Parent)->getPointerInfo();
1501       SOffset = isStackPtrRelative(PtrInfo)
1502         ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1503         : CurDAG->getTargetConstant(0, DL, MVT::i32);
1504       ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1505       return true;
1506     }
1507   }
1508 
1509   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1510     // (add n0, c1)
1511 
1512     SDValue N0 = Addr.getOperand(0);
1513     SDValue N1 = Addr.getOperand(1);
1514 
1515     // Offsets in vaddr must be positive if range checking is enabled.
1516     //
1517     // The total computation of vaddr + soffset + offset must not overflow.  If
1518     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1519     // overflowing.
1520     //
1521     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1522     // always perform a range check. If a negative vaddr base index was used,
1523     // this would fail the range check. The overall address computation would
1524     // compute a valid address, but this doesn't happen due to the range
1525     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1526     //
1527     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1528     // MUBUF vaddr, but not on older subtargets which can only do this if the
1529     // sign bit is known 0.
1530     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1531     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1532         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1533          CurDAG->SignBitIsZero(N0))) {
1534       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1535       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1536       return true;
1537     }
1538   }
1539 
1540   // (node)
1541   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1542   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1543   return true;
1544 }
1545 
1546 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1547                                                   SDValue Addr,
1548                                                   SDValue &SRsrc,
1549                                                   SDValue &SOffset,
1550                                                   SDValue &Offset) const {
1551   ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1552   if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1553     return false;
1554 
1555   SDLoc DL(Addr);
1556   MachineFunction &MF = CurDAG->getMachineFunction();
1557   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1558 
1559   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1560 
1561   const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1562 
1563   // FIXME: Get from MachinePointerInfo? We should only be using the frame
1564   // offset if we know this is in a call sequence.
1565   SOffset = isStackPtrRelative(PtrInfo)
1566                 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1567                 : CurDAG->getTargetConstant(0, DL, MVT::i32);
1568 
1569   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1570   return true;
1571 }
1572 
1573 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1574                                            SDValue &SOffset, SDValue &Offset,
1575                                            SDValue &GLC, SDValue &SLC,
1576                                            SDValue &TFE, SDValue &DLC,
1577                                            SDValue &SWZ) const {
1578   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1579   const SIInstrInfo *TII =
1580     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1581 
1582   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1583               GLC, SLC, TFE, DLC, SWZ))
1584     return false;
1585 
1586   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1587       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1588       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1589     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1590                     APInt::getAllOnesValue(32).getZExtValue(); // Size
1591     SDLoc DL(Addr);
1592 
1593     const SITargetLowering& Lowering =
1594       *static_cast<const SITargetLowering*>(getTargetLowering());
1595 
1596     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1597     return true;
1598   }
1599   return false;
1600 }
1601 
1602 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1603                                            SDValue &Soffset, SDValue &Offset
1604                                            ) const {
1605   SDValue GLC, SLC, TFE, DLC, SWZ;
1606 
1607   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1608 }
1609 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1610                                            SDValue &Soffset, SDValue &Offset,
1611                                            SDValue &SLC) const {
1612   SDValue GLC, TFE, DLC, SWZ;
1613 
1614   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1615 }
1616 
1617 // Find a load or store from corresponding pattern root.
1618 // Roots may be build_vector, bitconvert or their combinations.
1619 static MemSDNode* findMemSDNode(SDNode *N) {
1620   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1621   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1622     return MN;
1623   assert(isa<BuildVectorSDNode>(N));
1624   for (SDValue V : N->op_values())
1625     if (MemSDNode *MN =
1626           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1627       return MN;
1628   llvm_unreachable("cannot find MemSDNode in the pattern!");
1629 }
1630 
1631 template <bool IsSigned>
1632 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1633                                           SDValue Addr,
1634                                           SDValue &VAddr,
1635                                           SDValue &Offset,
1636                                           SDValue &SLC) const {
1637   int64_t OffsetVal = 0;
1638 
1639   if (Subtarget->hasFlatInstOffsets() &&
1640       (!Subtarget->hasFlatSegmentOffsetBug() ||
1641        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
1642       CurDAG->isBaseWithConstantOffset(Addr)) {
1643     SDValue N0 = Addr.getOperand(0);
1644     SDValue N1 = Addr.getOperand(1);
1645     uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1646 
1647     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1648     unsigned AS = findMemSDNode(N)->getAddressSpace();
1649     if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
1650       Addr = N0;
1651       OffsetVal = COffsetVal;
1652     } else {
1653       // If the offset doesn't fit, put the low bits into the offset field and
1654       // add the rest.
1655 
1656       SDLoc DL(N);
1657       uint64_t ImmField;
1658       const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
1659       if (IsSigned) {
1660         ImmField = SignExtend64(COffsetVal, NumBits);
1661 
1662         // Don't use a negative offset field if the base offset is positive.
1663         // Since the scheduler currently relies on the offset field, doing so
1664         // could result in strange scheduling decisions.
1665 
1666         // TODO: Should we not do this in the opposite direction as well?
1667         if (static_cast<int64_t>(COffsetVal) > 0) {
1668           if (static_cast<int64_t>(ImmField) < 0) {
1669             const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits - 1);
1670             ImmField = COffsetVal & OffsetMask;
1671           }
1672         }
1673       } else {
1674         // TODO: Should we do this for a negative offset?
1675         const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
1676         ImmField = COffsetVal & OffsetMask;
1677       }
1678 
1679       uint64_t RemainderOffset = COffsetVal - ImmField;
1680 
1681       assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
1682       assert(RemainderOffset + ImmField == COffsetVal);
1683 
1684       OffsetVal = ImmField;
1685 
1686       // TODO: Should this try to use a scalar add pseudo if the base address is
1687       // uniform and saddr is usable?
1688       SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1689       SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1690 
1691       SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1692                                             DL, MVT::i32, N0, Sub0);
1693       SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1694                                             DL, MVT::i32, N0, Sub1);
1695 
1696       SDValue AddOffsetLo
1697         = getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1698       SDValue AddOffsetHi
1699         = getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1700 
1701       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1702       SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1703 
1704       SDNode *Add = CurDAG->getMachineNode(
1705         AMDGPU::V_ADD_I32_e64, DL, VTs,
1706         {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1707 
1708       SDNode *Addc = CurDAG->getMachineNode(
1709         AMDGPU::V_ADDC_U32_e64, DL, VTs,
1710         {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1711 
1712       SDValue RegSequenceArgs[] = {
1713         CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1714         SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1
1715       };
1716 
1717       Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1718                                             MVT::i64, RegSequenceArgs), 0);
1719     }
1720   }
1721 
1722   VAddr = Addr;
1723   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1724   SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1725   return true;
1726 }
1727 
1728 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1729                                           SDValue Addr,
1730                                           SDValue &VAddr,
1731                                           SDValue &Offset,
1732                                           SDValue &SLC) const {
1733   return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1734 }
1735 
1736 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1737                                                 SDValue Addr,
1738                                                 SDValue &VAddr,
1739                                                 SDValue &Offset,
1740                                                 SDValue &SLC) const {
1741   return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1742 }
1743 
1744 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1745                                           SDValue &Offset, bool &Imm) const {
1746   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1747   if (!C) {
1748     if (ByteOffsetNode.getValueType().isScalarInteger() &&
1749         ByteOffsetNode.getValueType().getSizeInBits() == 32) {
1750       Offset = ByteOffsetNode;
1751       Imm = false;
1752       return true;
1753     }
1754     if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
1755       if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
1756         Offset = ByteOffsetNode.getOperand(0);
1757         Imm = false;
1758         return true;
1759       }
1760     }
1761     return false;
1762   }
1763 
1764   SDLoc SL(ByteOffsetNode);
1765   // GFX9 and GFX10 have signed byte immediate offsets.
1766   int64_t ByteOffset = C->getSExtValue();
1767   Optional<int64_t> EncodedOffset =
1768       AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
1769   if (EncodedOffset) {
1770     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1771     Imm = true;
1772     return true;
1773   }
1774 
1775   // SGPR and literal offsets are unsigned.
1776   if (ByteOffset < 0)
1777     return false;
1778 
1779   EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1780   if (EncodedOffset) {
1781     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1782     return true;
1783   }
1784 
1785   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1786     return false;
1787 
1788   SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1789   Offset = SDValue(
1790       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1791 
1792   return true;
1793 }
1794 
1795 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1796   if (Addr.getValueType() != MVT::i32)
1797     return Addr;
1798 
1799   // Zero-extend a 32-bit address.
1800   SDLoc SL(Addr);
1801 
1802   const MachineFunction &MF = CurDAG->getMachineFunction();
1803   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1804   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1805   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1806 
1807   const SDValue Ops[] = {
1808     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1809     Addr,
1810     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1811     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1812             0),
1813     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1814   };
1815 
1816   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1817                                         Ops), 0);
1818 }
1819 
1820 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1821                                      SDValue &Offset, bool &Imm) const {
1822   SDLoc SL(Addr);
1823 
1824   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1825   // wraparound, because s_load instructions perform the addition in 64 bits.
1826   if ((Addr.getValueType() != MVT::i32 ||
1827        Addr->getFlags().hasNoUnsignedWrap()) &&
1828       (CurDAG->isBaseWithConstantOffset(Addr) ||
1829        Addr.getOpcode() == ISD::ADD)) {
1830     SDValue N0 = Addr.getOperand(0);
1831     SDValue N1 = Addr.getOperand(1);
1832 
1833     if (SelectSMRDOffset(N1, Offset, Imm)) {
1834       SBase = Expand32BitAddress(N0);
1835       return true;
1836     }
1837   }
1838   SBase = Expand32BitAddress(Addr);
1839   Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1840   Imm = true;
1841   return true;
1842 }
1843 
1844 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1845                                        SDValue &Offset) const {
1846   bool Imm = false;
1847   return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1848 }
1849 
1850 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1851                                          SDValue &Offset) const {
1852 
1853   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1854 
1855   bool Imm = false;
1856   if (!SelectSMRD(Addr, SBase, Offset, Imm))
1857     return false;
1858 
1859   return !Imm && isa<ConstantSDNode>(Offset);
1860 }
1861 
1862 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1863                                         SDValue &Offset) const {
1864   bool Imm = false;
1865   return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1866          !isa<ConstantSDNode>(Offset);
1867 }
1868 
1869 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1870                                              SDValue &Offset) const {
1871   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1872     // The immediate offset for S_BUFFER instructions is unsigned.
1873     if (auto Imm =
1874             AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
1875       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1876       return true;
1877     }
1878   }
1879 
1880   return false;
1881 }
1882 
1883 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1884                                                SDValue &Offset) const {
1885   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1886 
1887   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1888     if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
1889                                                          C->getZExtValue())) {
1890       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1891       return true;
1892     }
1893   }
1894 
1895   return false;
1896 }
1897 
1898 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1899                                             SDValue &Base,
1900                                             SDValue &Offset) const {
1901   SDLoc DL(Index);
1902 
1903   if (CurDAG->isBaseWithConstantOffset(Index)) {
1904     SDValue N0 = Index.getOperand(0);
1905     SDValue N1 = Index.getOperand(1);
1906     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1907 
1908     // (add n0, c0)
1909     // Don't peel off the offset (c0) if doing so could possibly lead
1910     // the base (n0) to be negative.
1911     // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
1912     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
1913         (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
1914       Base = N0;
1915       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1916       return true;
1917     }
1918   }
1919 
1920   if (isa<ConstantSDNode>(Index))
1921     return false;
1922 
1923   Base = Index;
1924   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1925   return true;
1926 }
1927 
1928 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1929                                      SDValue Val, uint32_t Offset,
1930                                      uint32_t Width) {
1931   // Transformation function, pack the offset and width of a BFE into
1932   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1933   // source, bits [5:0] contain the offset and bits [22:16] the width.
1934   uint32_t PackedVal = Offset | (Width << 16);
1935   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1936 
1937   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1938 }
1939 
1940 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1941   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1942   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1943   // Predicate: 0 < b <= c < 32
1944 
1945   const SDValue &Shl = N->getOperand(0);
1946   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1947   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1948 
1949   if (B && C) {
1950     uint32_t BVal = B->getZExtValue();
1951     uint32_t CVal = C->getZExtValue();
1952 
1953     if (0 < BVal && BVal <= CVal && CVal < 32) {
1954       bool Signed = N->getOpcode() == ISD::SRA;
1955       unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1956 
1957       ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1958                               32 - CVal));
1959       return;
1960     }
1961   }
1962   SelectCode(N);
1963 }
1964 
1965 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1966   switch (N->getOpcode()) {
1967   case ISD::AND:
1968     if (N->getOperand(0).getOpcode() == ISD::SRL) {
1969       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1970       // Predicate: isMask(mask)
1971       const SDValue &Srl = N->getOperand(0);
1972       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1973       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1974 
1975       if (Shift && Mask) {
1976         uint32_t ShiftVal = Shift->getZExtValue();
1977         uint32_t MaskVal = Mask->getZExtValue();
1978 
1979         if (isMask_32(MaskVal)) {
1980           uint32_t WidthVal = countPopulation(MaskVal);
1981 
1982           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1983                                   Srl.getOperand(0), ShiftVal, WidthVal));
1984           return;
1985         }
1986       }
1987     }
1988     break;
1989   case ISD::SRL:
1990     if (N->getOperand(0).getOpcode() == ISD::AND) {
1991       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1992       // Predicate: isMask(mask >> b)
1993       const SDValue &And = N->getOperand(0);
1994       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1995       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
1996 
1997       if (Shift && Mask) {
1998         uint32_t ShiftVal = Shift->getZExtValue();
1999         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2000 
2001         if (isMask_32(MaskVal)) {
2002           uint32_t WidthVal = countPopulation(MaskVal);
2003 
2004           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2005                                   And.getOperand(0), ShiftVal, WidthVal));
2006           return;
2007         }
2008       }
2009     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2010       SelectS_BFEFromShifts(N);
2011       return;
2012     }
2013     break;
2014   case ISD::SRA:
2015     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2016       SelectS_BFEFromShifts(N);
2017       return;
2018     }
2019     break;
2020 
2021   case ISD::SIGN_EXTEND_INREG: {
2022     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2023     SDValue Src = N->getOperand(0);
2024     if (Src.getOpcode() != ISD::SRL)
2025       break;
2026 
2027     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2028     if (!Amt)
2029       break;
2030 
2031     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2032     ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2033                             Amt->getZExtValue(), Width));
2034     return;
2035   }
2036   }
2037 
2038   SelectCode(N);
2039 }
2040 
2041 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2042   assert(N->getOpcode() == ISD::BRCOND);
2043   if (!N->hasOneUse())
2044     return false;
2045 
2046   SDValue Cond = N->getOperand(1);
2047   if (Cond.getOpcode() == ISD::CopyToReg)
2048     Cond = Cond.getOperand(2);
2049 
2050   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2051     return false;
2052 
2053   MVT VT = Cond.getOperand(0).getSimpleValueType();
2054   if (VT == MVT::i32)
2055     return true;
2056 
2057   if (VT == MVT::i64) {
2058     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2059 
2060     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2061     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2062   }
2063 
2064   return false;
2065 }
2066 
2067 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2068   SDValue Cond = N->getOperand(1);
2069 
2070   if (Cond.isUndef()) {
2071     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2072                          N->getOperand(2), N->getOperand(0));
2073     return;
2074   }
2075 
2076   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2077   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2078 
2079   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2080   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2081   Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2082   SDLoc SL(N);
2083 
2084   if (!UseSCCBr) {
2085     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2086     // analyzed what generates the vcc value, so we do not know whether vcc
2087     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2088     // disabled lanes.
2089     //
2090     // For the case that we select S_CBRANCH_SCC1 and it gets
2091     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2092     // SIInstrInfo::moveToVALU which inserts the S_AND).
2093     //
2094     // We could add an analysis of what generates the vcc value here and omit
2095     // the S_AND when is unnecessary. But it would be better to add a separate
2096     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2097     // catches both cases.
2098     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2099                                                          : AMDGPU::S_AND_B64,
2100                      SL, MVT::i1,
2101                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2102                                                         : AMDGPU::EXEC,
2103                                          MVT::i1),
2104                     Cond),
2105                    0);
2106   }
2107 
2108   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2109   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2110                        N->getOperand(2), // Basic Block
2111                        VCC.getValue(0));
2112 }
2113 
2114 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2115   MVT VT = N->getSimpleValueType(0);
2116   bool IsFMA = N->getOpcode() == ISD::FMA;
2117   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2118                          !Subtarget->hasFmaMixInsts()) ||
2119       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2120        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2121     SelectCode(N);
2122     return;
2123   }
2124 
2125   SDValue Src0 = N->getOperand(0);
2126   SDValue Src1 = N->getOperand(1);
2127   SDValue Src2 = N->getOperand(2);
2128   unsigned Src0Mods, Src1Mods, Src2Mods;
2129 
2130   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2131   // using the conversion from f16.
2132   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2133   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2134   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2135 
2136   assert((IsFMA || !Mode.allFP32Denormals()) &&
2137          "fmad selected with denormals enabled");
2138   // TODO: We can select this with f32 denormals enabled if all the sources are
2139   // converted from f16 (in which case fmad isn't legal).
2140 
2141   if (Sel0 || Sel1 || Sel2) {
2142     // For dummy operands.
2143     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2144     SDValue Ops[] = {
2145       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2146       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2147       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2148       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2149       Zero, Zero
2150     };
2151 
2152     CurDAG->SelectNodeTo(N,
2153                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2154                          MVT::f32, Ops);
2155   } else {
2156     SelectCode(N);
2157   }
2158 }
2159 
2160 // This is here because there isn't a way to use the generated sub0_sub1 as the
2161 // subreg index to EXTRACT_SUBREG in tablegen.
2162 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2163   MemSDNode *Mem = cast<MemSDNode>(N);
2164   unsigned AS = Mem->getAddressSpace();
2165   if (AS == AMDGPUAS::FLAT_ADDRESS) {
2166     SelectCode(N);
2167     return;
2168   }
2169 
2170   MVT VT = N->getSimpleValueType(0);
2171   bool Is32 = (VT == MVT::i32);
2172   SDLoc SL(N);
2173 
2174   MachineSDNode *CmpSwap = nullptr;
2175   if (Subtarget->hasAddr64()) {
2176     SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2177 
2178     if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2179       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2180         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2181       SDValue CmpVal = Mem->getOperand(2);
2182 
2183       // XXX - Do we care about glue operands?
2184 
2185       SDValue Ops[] = {
2186         CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2187       };
2188 
2189       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2190     }
2191   }
2192 
2193   if (!CmpSwap) {
2194     SDValue SRsrc, SOffset, Offset, SLC;
2195     if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2196       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2197         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2198 
2199       SDValue CmpVal = Mem->getOperand(2);
2200       SDValue Ops[] = {
2201         CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2202       };
2203 
2204       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2205     }
2206   }
2207 
2208   if (!CmpSwap) {
2209     SelectCode(N);
2210     return;
2211   }
2212 
2213   MachineMemOperand *MMO = Mem->getMemOperand();
2214   CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2215 
2216   unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2217   SDValue Extract
2218     = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2219 
2220   ReplaceUses(SDValue(N, 0), Extract);
2221   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2222   CurDAG->RemoveDeadNode(N);
2223 }
2224 
2225 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2226   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2227   // be copied to an SGPR with readfirstlane.
2228   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2229     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2230 
2231   SDValue Chain = N->getOperand(0);
2232   SDValue Ptr = N->getOperand(2);
2233   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2234   MachineMemOperand *MMO = M->getMemOperand();
2235   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2236 
2237   SDValue Offset;
2238   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2239     SDValue PtrBase = Ptr.getOperand(0);
2240     SDValue PtrOffset = Ptr.getOperand(1);
2241 
2242     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2243     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2244       N = glueCopyToM0(N, PtrBase);
2245       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2246     }
2247   }
2248 
2249   if (!Offset) {
2250     N = glueCopyToM0(N, Ptr);
2251     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2252   }
2253 
2254   SDValue Ops[] = {
2255     Offset,
2256     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2257     Chain,
2258     N->getOperand(N->getNumOperands() - 1) // New glue
2259   };
2260 
2261   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2262   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2263 }
2264 
2265 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2266   switch (IntrID) {
2267   case Intrinsic::amdgcn_ds_gws_init:
2268     return AMDGPU::DS_GWS_INIT;
2269   case Intrinsic::amdgcn_ds_gws_barrier:
2270     return AMDGPU::DS_GWS_BARRIER;
2271   case Intrinsic::amdgcn_ds_gws_sema_v:
2272     return AMDGPU::DS_GWS_SEMA_V;
2273   case Intrinsic::amdgcn_ds_gws_sema_br:
2274     return AMDGPU::DS_GWS_SEMA_BR;
2275   case Intrinsic::amdgcn_ds_gws_sema_p:
2276     return AMDGPU::DS_GWS_SEMA_P;
2277   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2278     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2279   default:
2280     llvm_unreachable("not a gws intrinsic");
2281   }
2282 }
2283 
2284 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2285   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2286       !Subtarget->hasGWSSemaReleaseAll()) {
2287     // Let this error.
2288     SelectCode(N);
2289     return;
2290   }
2291 
2292   // Chain, intrinsic ID, vsrc, offset
2293   const bool HasVSrc = N->getNumOperands() == 4;
2294   assert(HasVSrc || N->getNumOperands() == 3);
2295 
2296   SDLoc SL(N);
2297   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2298   int ImmOffset = 0;
2299   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2300   MachineMemOperand *MMO = M->getMemOperand();
2301 
2302   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2303   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2304 
2305   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2306   // offset field) % 64. Some versions of the programming guide omit the m0
2307   // part, or claim it's from offset 0.
2308   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2309     // If we have a constant offset, try to use the 0 in m0 as the base.
2310     // TODO: Look into changing the default m0 initialization value. If the
2311     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2312     // the immediate offset.
2313     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2314     ImmOffset = ConstOffset->getZExtValue();
2315   } else {
2316     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2317       ImmOffset = BaseOffset.getConstantOperandVal(1);
2318       BaseOffset = BaseOffset.getOperand(0);
2319     }
2320 
2321     // Prefer to do the shift in an SGPR since it should be possible to use m0
2322     // as the result directly. If it's already an SGPR, it will be eliminated
2323     // later.
2324     SDNode *SGPROffset
2325       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2326                                BaseOffset);
2327     // Shift to offset in m0
2328     SDNode *M0Base
2329       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2330                                SDValue(SGPROffset, 0),
2331                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2332     glueCopyToM0(N, SDValue(M0Base, 0));
2333   }
2334 
2335   SDValue Chain = N->getOperand(0);
2336   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2337 
2338   // TODO: Can this just be removed from the instruction?
2339   SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2340 
2341   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2342   SmallVector<SDValue, 5> Ops;
2343   if (HasVSrc)
2344     Ops.push_back(N->getOperand(2));
2345   Ops.push_back(OffsetField);
2346   Ops.push_back(GDS);
2347   Ops.push_back(Chain);
2348 
2349   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2350   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2351 }
2352 
2353 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2354   if (Subtarget->getLDSBankCount() != 16) {
2355     // This is a single instruction with a pattern.
2356     SelectCode(N);
2357     return;
2358   }
2359 
2360   SDLoc DL(N);
2361 
2362   // This requires 2 instructions. It is possible to write a pattern to support
2363   // this, but the generated isel emitter doesn't correctly deal with multiple
2364   // output instructions using the same physical register input. The copy to m0
2365   // is incorrectly placed before the second instruction.
2366   //
2367   // TODO: Match source modifiers.
2368   //
2369   // def : Pat <
2370   //   (int_amdgcn_interp_p1_f16
2371   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2372   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2373   //                             (i1 timm:$high), M0),
2374   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2375   //       timm:$attrchan, 0,
2376   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2377   //   let Predicates = [has16BankLDS];
2378   // }
2379 
2380   // 16 bank LDS
2381   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2382                                       N->getOperand(5), SDValue());
2383 
2384   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2385 
2386   SDNode *InterpMov =
2387     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2388         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2389         N->getOperand(3),  // Attr
2390         N->getOperand(2),  // Attrchan
2391         ToM0.getValue(1) // In glue
2392   });
2393 
2394   SDNode *InterpP1LV =
2395     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2396         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2397         N->getOperand(1), // Src0
2398         N->getOperand(3), // Attr
2399         N->getOperand(2), // Attrchan
2400         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2401         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2402         N->getOperand(4), // high
2403         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2404         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2405         SDValue(InterpMov, 1)
2406   });
2407 
2408   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2409 }
2410 
2411 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2412   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2413   switch (IntrID) {
2414   case Intrinsic::amdgcn_ds_append:
2415   case Intrinsic::amdgcn_ds_consume: {
2416     if (N->getValueType(0) != MVT::i32)
2417       break;
2418     SelectDSAppendConsume(N, IntrID);
2419     return;
2420   }
2421   }
2422 
2423   SelectCode(N);
2424 }
2425 
2426 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2427   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2428   unsigned Opcode;
2429   switch (IntrID) {
2430   case Intrinsic::amdgcn_wqm:
2431     Opcode = AMDGPU::WQM;
2432     break;
2433   case Intrinsic::amdgcn_softwqm:
2434     Opcode = AMDGPU::SOFT_WQM;
2435     break;
2436   case Intrinsic::amdgcn_wwm:
2437     Opcode = AMDGPU::WWM;
2438     break;
2439   case Intrinsic::amdgcn_interp_p1_f16:
2440     SelectInterpP1F16(N);
2441     return;
2442   default:
2443     SelectCode(N);
2444     return;
2445   }
2446 
2447   SDValue Src = N->getOperand(1);
2448   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2449 }
2450 
2451 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2452   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2453   switch (IntrID) {
2454   case Intrinsic::amdgcn_ds_gws_init:
2455   case Intrinsic::amdgcn_ds_gws_barrier:
2456   case Intrinsic::amdgcn_ds_gws_sema_v:
2457   case Intrinsic::amdgcn_ds_gws_sema_br:
2458   case Intrinsic::amdgcn_ds_gws_sema_p:
2459   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2460     SelectDS_GWS(N, IntrID);
2461     return;
2462   default:
2463     break;
2464   }
2465 
2466   SelectCode(N);
2467 }
2468 
2469 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2470                                             unsigned &Mods) const {
2471   Mods = 0;
2472   Src = In;
2473 
2474   if (Src.getOpcode() == ISD::FNEG) {
2475     Mods |= SISrcMods::NEG;
2476     Src = Src.getOperand(0);
2477   }
2478 
2479   if (Src.getOpcode() == ISD::FABS) {
2480     Mods |= SISrcMods::ABS;
2481     Src = Src.getOperand(0);
2482   }
2483 
2484   return true;
2485 }
2486 
2487 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2488                                         SDValue &SrcMods) const {
2489   unsigned Mods;
2490   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2491     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2492     return true;
2493   }
2494 
2495   return false;
2496 }
2497 
2498 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2499                                              SDValue &SrcMods) const {
2500   SelectVOP3Mods(In, Src, SrcMods);
2501   return isNoNanSrc(Src);
2502 }
2503 
2504 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2505   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2506     return false;
2507 
2508   Src = In;
2509   return true;
2510 }
2511 
2512 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2513                                          SDValue &SrcMods, SDValue &Clamp,
2514                                          SDValue &Omod) const {
2515   SDLoc DL(In);
2516   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2517   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2518 
2519   return SelectVOP3Mods(In, Src, SrcMods);
2520 }
2521 
2522 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2523                                          SDValue &Clamp, SDValue &Omod) const {
2524   Src = In;
2525 
2526   SDLoc DL(In);
2527   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2528   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2529 
2530   return true;
2531 }
2532 
2533 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2534                                          SDValue &SrcMods) const {
2535   unsigned Mods = 0;
2536   Src = In;
2537 
2538   if (Src.getOpcode() == ISD::FNEG) {
2539     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2540     Src = Src.getOperand(0);
2541   }
2542 
2543   if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2544     unsigned VecMods = Mods;
2545 
2546     SDValue Lo = stripBitcast(Src.getOperand(0));
2547     SDValue Hi = stripBitcast(Src.getOperand(1));
2548 
2549     if (Lo.getOpcode() == ISD::FNEG) {
2550       Lo = stripBitcast(Lo.getOperand(0));
2551       Mods ^= SISrcMods::NEG;
2552     }
2553 
2554     if (Hi.getOpcode() == ISD::FNEG) {
2555       Hi = stripBitcast(Hi.getOperand(0));
2556       Mods ^= SISrcMods::NEG_HI;
2557     }
2558 
2559     if (isExtractHiElt(Lo, Lo))
2560       Mods |= SISrcMods::OP_SEL_0;
2561 
2562     if (isExtractHiElt(Hi, Hi))
2563       Mods |= SISrcMods::OP_SEL_1;
2564 
2565     Lo = stripExtractLoElt(Lo);
2566     Hi = stripExtractLoElt(Hi);
2567 
2568     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2569       // Really a scalar input. Just select from the low half of the register to
2570       // avoid packing.
2571 
2572       Src = Lo;
2573       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2574       return true;
2575     }
2576 
2577     Mods = VecMods;
2578   }
2579 
2580   // Packed instructions do not have abs modifiers.
2581   Mods |= SISrcMods::OP_SEL_1;
2582 
2583   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2584   return true;
2585 }
2586 
2587 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2588                                          SDValue &SrcMods) const {
2589   Src = In;
2590   // FIXME: Handle op_sel
2591   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2592   return true;
2593 }
2594 
2595 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2596                                              SDValue &SrcMods) const {
2597   // FIXME: Handle op_sel
2598   return SelectVOP3Mods(In, Src, SrcMods);
2599 }
2600 
2601 // The return value is not whether the match is possible (which it always is),
2602 // but whether or not it a conversion is really used.
2603 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2604                                                    unsigned &Mods) const {
2605   Mods = 0;
2606   SelectVOP3ModsImpl(In, Src, Mods);
2607 
2608   if (Src.getOpcode() == ISD::FP_EXTEND) {
2609     Src = Src.getOperand(0);
2610     assert(Src.getValueType() == MVT::f16);
2611     Src = stripBitcast(Src);
2612 
2613     // Be careful about folding modifiers if we already have an abs. fneg is
2614     // applied last, so we don't want to apply an earlier fneg.
2615     if ((Mods & SISrcMods::ABS) == 0) {
2616       unsigned ModsTmp;
2617       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2618 
2619       if ((ModsTmp & SISrcMods::NEG) != 0)
2620         Mods ^= SISrcMods::NEG;
2621 
2622       if ((ModsTmp & SISrcMods::ABS) != 0)
2623         Mods |= SISrcMods::ABS;
2624     }
2625 
2626     // op_sel/op_sel_hi decide the source type and source.
2627     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2628     // If the sources's op_sel is set, it picks the high half of the source
2629     // register.
2630 
2631     Mods |= SISrcMods::OP_SEL_1;
2632     if (isExtractHiElt(Src, Src)) {
2633       Mods |= SISrcMods::OP_SEL_0;
2634 
2635       // TODO: Should we try to look for neg/abs here?
2636     }
2637 
2638     return true;
2639   }
2640 
2641   return false;
2642 }
2643 
2644 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2645                                                SDValue &SrcMods) const {
2646   unsigned Mods = 0;
2647   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2648   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2649   return true;
2650 }
2651 
2652 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2653   if (In.isUndef())
2654     return CurDAG->getUNDEF(MVT::i32);
2655 
2656   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2657     SDLoc SL(In);
2658     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2659   }
2660 
2661   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2662     SDLoc SL(In);
2663     return CurDAG->getConstant(
2664       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2665   }
2666 
2667   SDValue Src;
2668   if (isExtractHiElt(In, Src))
2669     return Src;
2670 
2671   return SDValue();
2672 }
2673 
2674 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2675   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2676 
2677   const SIRegisterInfo *SIRI =
2678     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2679   const SIInstrInfo * SII =
2680     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2681 
2682   unsigned Limit = 0;
2683   bool AllUsesAcceptSReg = true;
2684   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2685     Limit < 10 && U != E; ++U, ++Limit) {
2686     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2687 
2688     // If the register class is unknown, it could be an unknown
2689     // register class that needs to be an SGPR, e.g. an inline asm
2690     // constraint
2691     if (!RC || SIRI->isSGPRClass(RC))
2692       return false;
2693 
2694     if (RC != &AMDGPU::VS_32RegClass) {
2695       AllUsesAcceptSReg = false;
2696       SDNode * User = *U;
2697       if (User->isMachineOpcode()) {
2698         unsigned Opc = User->getMachineOpcode();
2699         MCInstrDesc Desc = SII->get(Opc);
2700         if (Desc.isCommutable()) {
2701           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2702           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2703           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2704             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2705             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2706             if (CommutedRC == &AMDGPU::VS_32RegClass)
2707               AllUsesAcceptSReg = true;
2708           }
2709         }
2710       }
2711       // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2712       // commuting current user. This means have at least one use
2713       // that strictly require VGPR. Thus, we will not attempt to commute
2714       // other user instructions.
2715       if (!AllUsesAcceptSReg)
2716         break;
2717     }
2718   }
2719   return !AllUsesAcceptSReg && (Limit < 10);
2720 }
2721 
2722 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2723   auto Ld = cast<LoadSDNode>(N);
2724 
2725   return Ld->getAlignment() >= 4 &&
2726         (
2727           (
2728             (
2729               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
2730               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2731             )
2732             &&
2733             !N->isDivergent()
2734           )
2735           ||
2736           (
2737             Subtarget->getScalarizeGlobalBehavior() &&
2738             Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2739             Ld->isSimple() &&
2740             !N->isDivergent() &&
2741             static_cast<const SITargetLowering *>(
2742               getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2743           )
2744         );
2745 }
2746 
2747 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2748   const AMDGPUTargetLowering& Lowering =
2749     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2750   bool IsModified = false;
2751   do {
2752     IsModified = false;
2753 
2754     // Go over all selected nodes and try to fold them a bit more
2755     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2756     while (Position != CurDAG->allnodes_end()) {
2757       SDNode *Node = &*Position++;
2758       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2759       if (!MachineNode)
2760         continue;
2761 
2762       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2763       if (ResNode != Node) {
2764         if (ResNode)
2765           ReplaceUses(Node, ResNode);
2766         IsModified = true;
2767       }
2768     }
2769     CurDAG->RemoveDeadNodes();
2770   } while (IsModified);
2771 }
2772 
2773 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2774   Subtarget = &MF.getSubtarget<R600Subtarget>();
2775   return SelectionDAGISel::runOnMachineFunction(MF);
2776 }
2777 
2778 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2779   if (!N->readMem())
2780     return false;
2781   if (CbId == -1)
2782     return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2783            N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2784 
2785   return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2786 }
2787 
2788 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2789                                                          SDValue& IntPtr) {
2790   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2791     IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2792                                        true);
2793     return true;
2794   }
2795   return false;
2796 }
2797 
2798 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2799     SDValue& BaseReg, SDValue &Offset) {
2800   if (!isa<ConstantSDNode>(Addr)) {
2801     BaseReg = Addr;
2802     Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2803     return true;
2804   }
2805   return false;
2806 }
2807 
2808 void R600DAGToDAGISel::Select(SDNode *N) {
2809   unsigned int Opc = N->getOpcode();
2810   if (N->isMachineOpcode()) {
2811     N->setNodeId(-1);
2812     return;   // Already selected.
2813   }
2814 
2815   switch (Opc) {
2816   default: break;
2817   case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2818   case ISD::SCALAR_TO_VECTOR:
2819   case ISD::BUILD_VECTOR: {
2820     EVT VT = N->getValueType(0);
2821     unsigned NumVectorElts = VT.getVectorNumElements();
2822     unsigned RegClassID;
2823     // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2824     // that adds a 128 bits reg copy when going through TwoAddressInstructions
2825     // pass. We want to avoid 128 bits copies as much as possible because they
2826     // can't be bundled by our scheduler.
2827     switch(NumVectorElts) {
2828     case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2829     case 4:
2830       if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2831         RegClassID = R600::R600_Reg128VerticalRegClassID;
2832       else
2833         RegClassID = R600::R600_Reg128RegClassID;
2834       break;
2835     default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2836     }
2837     SelectBuildVector(N, RegClassID);
2838     return;
2839   }
2840   }
2841 
2842   SelectCode(N);
2843 }
2844 
2845 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2846                                           SDValue &Offset) {
2847   ConstantSDNode *C;
2848   SDLoc DL(Addr);
2849 
2850   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2851     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2852     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2853   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2854              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2855     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2856     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2857   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2858             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2859     Base = Addr.getOperand(0);
2860     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2861   } else {
2862     Base = Addr;
2863     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2864   }
2865 
2866   return true;
2867 }
2868 
2869 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2870                                           SDValue &Offset) {
2871   ConstantSDNode *IMMOffset;
2872 
2873   if (Addr.getOpcode() == ISD::ADD
2874       && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2875       && isInt<16>(IMMOffset->getZExtValue())) {
2876 
2877       Base = Addr.getOperand(0);
2878       Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2879                                          MVT::i32);
2880       return true;
2881   // If the pointer address is constant, we can move it to the offset field.
2882   } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2883              && isInt<16>(IMMOffset->getZExtValue())) {
2884     Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2885                                   SDLoc(CurDAG->getEntryNode()),
2886                                   R600::ZERO, MVT::i32);
2887     Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2888                                        MVT::i32);
2889     return true;
2890   }
2891 
2892   // Default case, no offset
2893   Base = Addr;
2894   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2895   return true;
2896 }
2897