1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUTargetMachine.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/SelectionDAGISel.h" 22 #include "llvm/CodeGen/SelectionDAGNodes.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/InitializePasses.h" 25 26 #ifdef EXPENSIVE_CHECKS 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #endif 30 31 #define DEBUG_TYPE "isel" 32 33 using namespace llvm; 34 35 namespace llvm { 36 37 class R600InstrInfo; 38 39 } // end namespace llvm 40 41 //===----------------------------------------------------------------------===// 42 // Instruction Selector Implementation 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 47 static bool isNullConstantOrUndef(SDValue V) { 48 if (V.isUndef()) 49 return true; 50 51 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 52 return Const != nullptr && Const->isNullValue(); 53 } 54 55 static bool getConstantValue(SDValue N, uint32_t &Out) { 56 // This is only used for packed vectors, where ussing 0 for undef should 57 // always be good. 58 if (N.isUndef()) { 59 Out = 0; 60 return true; 61 } 62 63 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 64 Out = C->getAPIntValue().getSExtValue(); 65 return true; 66 } 67 68 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 69 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 70 return true; 71 } 72 73 return false; 74 } 75 76 // TODO: Handle undef as zero 77 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 78 bool Negate = false) { 79 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 80 uint32_t LHSVal, RHSVal; 81 if (getConstantValue(N->getOperand(0), LHSVal) && 82 getConstantValue(N->getOperand(1), RHSVal)) { 83 SDLoc SL(N); 84 uint32_t K = Negate ? 85 (-LHSVal & 0xffff) | (-RHSVal << 16) : 86 (LHSVal & 0xffff) | (RHSVal << 16); 87 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 88 DAG.getTargetConstant(K, SL, MVT::i32)); 89 } 90 91 return nullptr; 92 } 93 94 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 95 return packConstantV2I16(N, DAG, true); 96 } 97 98 /// AMDGPU specific code to select AMDGPU machine instructions for 99 /// SelectionDAG operations. 100 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 101 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 102 // make the right decision when generating code for different targets. 103 const GCNSubtarget *Subtarget; 104 105 // Default FP mode for the current function. 106 AMDGPU::SIModeRegisterDefaults Mode; 107 108 bool EnableLateStructurizeCFG; 109 110 public: 111 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 112 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 113 : SelectionDAGISel(*TM, OptLevel) { 114 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 115 } 116 ~AMDGPUDAGToDAGISel() override = default; 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.addRequired<AMDGPUArgumentUsageInfo>(); 120 AU.addRequired<LegacyDivergenceAnalysis>(); 121 #ifdef EXPENSIVE_CHECKS 122 AU.addRequired<DominatorTreeWrapperPass>(); 123 AU.addRequired<LoopInfoWrapperPass>(); 124 #endif 125 SelectionDAGISel::getAnalysisUsage(AU); 126 } 127 128 bool matchLoadD16FromBuildVector(SDNode *N) const; 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 void PreprocessISelDAG() override; 132 void Select(SDNode *N) override; 133 StringRef getPassName() const override; 134 void PostprocessISelDAG() override; 135 136 protected: 137 void SelectBuildVector(SDNode *N, unsigned RegClassID); 138 139 private: 140 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 141 bool isNoNanSrc(SDValue N) const; 142 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 143 bool isNegInlineImmediate(const SDNode *N) const { 144 return isInlineImmediate(N, true); 145 } 146 147 bool isInlineImmediate16(int64_t Imm) const { 148 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 149 } 150 151 bool isInlineImmediate32(int64_t Imm) const { 152 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 153 } 154 155 bool isInlineImmediate64(int64_t Imm) const { 156 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 157 } 158 159 bool isInlineImmediate(const APFloat &Imm) const { 160 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 161 } 162 163 bool isVGPRImm(const SDNode *N) const; 164 bool isUniformLoad(const SDNode *N) const; 165 bool isUniformBr(const SDNode *N) const; 166 167 bool isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 168 SDValue &RHS) const; 169 170 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 171 172 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 173 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 174 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 175 176 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 177 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 178 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 179 bool isDSOffsetLegal(SDValue Base, unsigned Offset) const; 180 bool isDSOffset2Legal(SDValue Base, unsigned Offset0, unsigned Offset1, 181 unsigned Size) const; 182 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 183 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 184 SDValue &Offset1) const; 185 bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 186 SDValue &Offset1) const; 187 bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0, 188 SDValue &Offset1, unsigned Size) const; 189 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 190 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 191 SDValue &Idxen, SDValue &Addr64, SDValue &CPol, SDValue &TFE, 192 SDValue &SWZ) const; 193 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 194 SDValue &SOffset, SDValue &Offset, SDValue &CPol, 195 SDValue &TFE, SDValue &SWZ) const; 196 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 197 SDValue &SOffset, SDValue &Offset) const; 198 bool SelectMUBUFScratchOffen(SDNode *Parent, 199 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 200 SDValue &SOffset, SDValue &ImmOffset) const; 201 bool SelectMUBUFScratchOffset(SDNode *Parent, 202 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 203 SDValue &Offset) const; 204 205 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 206 SDValue &Offset, SDValue &CPol, SDValue &TFE, 207 SDValue &SWZ) const; 208 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 209 SDValue &Offset) const; 210 211 template <bool IsSigned> 212 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 213 SDValue &Offset) const; 214 bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 215 SDValue &VOffset, SDValue &Offset) const; 216 bool SelectScratchSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 217 SDValue &Offset) const; 218 219 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 220 bool &Imm) const; 221 SDValue Expand32BitAddress(SDValue Addr) const; 222 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 223 bool &Imm) const; 224 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 225 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 226 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 227 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 228 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 229 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 230 231 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 232 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods, 233 bool AllowAbs = true) const; 234 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 235 bool SelectVOP3BMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 236 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 237 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 238 SDValue &Clamp, SDValue &Omod) const; 239 bool SelectVOP3BMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 240 SDValue &Clamp, SDValue &Omod) const; 241 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 242 SDValue &Clamp, SDValue &Omod) const; 243 244 bool SelectVOP3OMods(SDValue In, SDValue &Src, 245 SDValue &Clamp, SDValue &Omod) const; 246 247 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 248 249 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 250 251 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 252 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 253 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 254 255 SDValue getHi16Elt(SDValue In) const; 256 257 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 258 259 void SelectADD_SUB_I64(SDNode *N); 260 void SelectAddcSubb(SDNode *N); 261 void SelectUADDO_USUBO(SDNode *N); 262 void SelectDIV_SCALE(SDNode *N); 263 void SelectMAD_64_32(SDNode *N); 264 void SelectFMA_W_CHAIN(SDNode *N); 265 void SelectFMUL_W_CHAIN(SDNode *N); 266 267 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 268 uint32_t Offset, uint32_t Width); 269 void SelectS_BFEFromShifts(SDNode *N); 270 void SelectS_BFE(SDNode *N); 271 bool isCBranchSCC(const SDNode *N) const; 272 void SelectBRCOND(SDNode *N); 273 void SelectFMAD_FMA(SDNode *N); 274 void SelectATOMIC_CMP_SWAP(SDNode *N); 275 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 276 void SelectDS_GWS(SDNode *N, unsigned IntrID); 277 void SelectInterpP1F16(SDNode *N); 278 void SelectINTRINSIC_W_CHAIN(SDNode *N); 279 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 280 void SelectINTRINSIC_VOID(SDNode *N); 281 282 protected: 283 // Include the pieces autogenerated from the target description. 284 #include "AMDGPUGenDAGISel.inc" 285 }; 286 287 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 288 const R600Subtarget *Subtarget; 289 290 bool isConstantLoad(const MemSDNode *N, int cbID) const; 291 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 292 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 293 SDValue& Offset); 294 public: 295 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 296 AMDGPUDAGToDAGISel(TM, OptLevel) {} 297 298 void Select(SDNode *N) override; 299 300 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 301 SDValue &Offset) override; 302 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 303 SDValue &Offset) override; 304 305 bool runOnMachineFunction(MachineFunction &MF) override; 306 307 void PreprocessISelDAG() override {} 308 309 protected: 310 // Include the pieces autogenerated from the target description. 311 #include "R600GenDAGISel.inc" 312 }; 313 314 static SDValue stripBitcast(SDValue Val) { 315 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 316 } 317 318 // Figure out if this is really an extract of the high 16-bits of a dword. 319 static bool isExtractHiElt(SDValue In, SDValue &Out) { 320 In = stripBitcast(In); 321 322 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 323 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 324 if (!Idx->isOne()) 325 return false; 326 Out = In.getOperand(0); 327 return true; 328 } 329 } 330 331 if (In.getOpcode() != ISD::TRUNCATE) 332 return false; 333 334 SDValue Srl = In.getOperand(0); 335 if (Srl.getOpcode() == ISD::SRL) { 336 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 337 if (ShiftAmt->getZExtValue() == 16) { 338 Out = stripBitcast(Srl.getOperand(0)); 339 return true; 340 } 341 } 342 } 343 344 return false; 345 } 346 347 // Look through operations that obscure just looking at the low 16-bits of the 348 // same register. 349 static SDValue stripExtractLoElt(SDValue In) { 350 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 351 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 352 if (Idx->isNullValue() && In.getValueSizeInBits() <= 32) 353 return In.getOperand(0); 354 } 355 } 356 357 if (In.getOpcode() == ISD::TRUNCATE) { 358 SDValue Src = In.getOperand(0); 359 if (Src.getValueType().getSizeInBits() == 32) 360 return stripBitcast(Src); 361 } 362 363 return In; 364 } 365 366 } // end anonymous namespace 367 368 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 369 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 370 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 371 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 372 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 373 #ifdef EXPENSIVE_CHECKS 374 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 375 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 376 #endif 377 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 378 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 379 380 /// This pass converts a legalized DAG into a AMDGPU-specific 381 // DAG, ready for instruction scheduling. 382 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 383 CodeGenOpt::Level OptLevel) { 384 return new AMDGPUDAGToDAGISel(TM, OptLevel); 385 } 386 387 /// This pass converts a legalized DAG into a R600-specific 388 // DAG, ready for instruction scheduling. 389 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 390 CodeGenOpt::Level OptLevel) { 391 return new R600DAGToDAGISel(TM, OptLevel); 392 } 393 394 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 395 #ifdef EXPENSIVE_CHECKS 396 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 397 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 398 for (auto &L : LI->getLoopsInPreorder()) { 399 assert(L->isLCSSAForm(DT)); 400 } 401 #endif 402 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 403 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 404 return SelectionDAGISel::runOnMachineFunction(MF); 405 } 406 407 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 408 assert(Subtarget->d16PreservesUnusedBits()); 409 MVT VT = N->getValueType(0).getSimpleVT(); 410 if (VT != MVT::v2i16 && VT != MVT::v2f16) 411 return false; 412 413 SDValue Lo = N->getOperand(0); 414 SDValue Hi = N->getOperand(1); 415 416 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 417 418 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 419 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 420 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 421 422 // Need to check for possible indirect dependencies on the other half of the 423 // vector to avoid introducing a cycle. 424 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 425 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 426 427 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 428 SDValue Ops[] = { 429 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 430 }; 431 432 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 433 if (LdHi->getMemoryVT() == MVT::i8) { 434 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 435 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 436 } else { 437 assert(LdHi->getMemoryVT() == MVT::i16); 438 } 439 440 SDValue NewLoadHi = 441 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 442 Ops, LdHi->getMemoryVT(), 443 LdHi->getMemOperand()); 444 445 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 446 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 447 return true; 448 } 449 450 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 451 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 452 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 453 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 454 if (LdLo && Lo.hasOneUse()) { 455 SDValue TiedIn = getHi16Elt(Hi); 456 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 457 return false; 458 459 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 460 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 461 if (LdLo->getMemoryVT() == MVT::i8) { 462 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 463 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 464 } else { 465 assert(LdLo->getMemoryVT() == MVT::i16); 466 } 467 468 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 469 470 SDValue Ops[] = { 471 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 472 }; 473 474 SDValue NewLoadLo = 475 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 476 Ops, LdLo->getMemoryVT(), 477 LdLo->getMemOperand()); 478 479 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 480 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 481 return true; 482 } 483 484 return false; 485 } 486 487 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 488 if (!Subtarget->d16PreservesUnusedBits()) 489 return; 490 491 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 492 493 bool MadeChange = false; 494 while (Position != CurDAG->allnodes_begin()) { 495 SDNode *N = &*--Position; 496 if (N->use_empty()) 497 continue; 498 499 switch (N->getOpcode()) { 500 case ISD::BUILD_VECTOR: 501 MadeChange |= matchLoadD16FromBuildVector(N); 502 break; 503 default: 504 break; 505 } 506 } 507 508 if (MadeChange) { 509 CurDAG->RemoveDeadNodes(); 510 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 511 CurDAG->dump();); 512 } 513 } 514 515 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 516 if (TM.Options.NoNaNsFPMath) 517 return true; 518 519 // TODO: Move into isKnownNeverNaN 520 if (N->getFlags().hasNoNaNs()) 521 return true; 522 523 return CurDAG->isKnownNeverNaN(N); 524 } 525 526 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 527 bool Negated) const { 528 if (N->isUndef()) 529 return true; 530 531 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 532 if (Negated) { 533 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 534 return TII->isInlineConstant(-C->getAPIntValue()); 535 536 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 537 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 538 539 } else { 540 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 541 return TII->isInlineConstant(C->getAPIntValue()); 542 543 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 544 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 545 } 546 547 return false; 548 } 549 550 /// Determine the register class for \p OpNo 551 /// \returns The register class of the virtual register that will be used for 552 /// the given operand number \OpNo or NULL if the register class cannot be 553 /// determined. 554 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 555 unsigned OpNo) const { 556 if (!N->isMachineOpcode()) { 557 if (N->getOpcode() == ISD::CopyToReg) { 558 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 559 if (Reg.isVirtual()) { 560 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 561 return MRI.getRegClass(Reg); 562 } 563 564 const SIRegisterInfo *TRI 565 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 566 return TRI->getPhysRegClass(Reg); 567 } 568 569 return nullptr; 570 } 571 572 switch (N->getMachineOpcode()) { 573 default: { 574 const MCInstrDesc &Desc = 575 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 576 unsigned OpIdx = Desc.getNumDefs() + OpNo; 577 if (OpIdx >= Desc.getNumOperands()) 578 return nullptr; 579 int RegClass = Desc.OpInfo[OpIdx].RegClass; 580 if (RegClass == -1) 581 return nullptr; 582 583 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 584 } 585 case AMDGPU::REG_SEQUENCE: { 586 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 587 const TargetRegisterClass *SuperRC = 588 Subtarget->getRegisterInfo()->getRegClass(RCID); 589 590 SDValue SubRegOp = N->getOperand(OpNo + 1); 591 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 592 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 593 SubRegIdx); 594 } 595 } 596 } 597 598 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 599 SDValue Glue) const { 600 SmallVector <SDValue, 8> Ops; 601 Ops.push_back(NewChain); // Replace the chain. 602 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 603 Ops.push_back(N->getOperand(i)); 604 605 Ops.push_back(Glue); 606 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 607 } 608 609 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 610 const SITargetLowering& Lowering = 611 *static_cast<const SITargetLowering*>(getTargetLowering()); 612 613 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 614 615 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 616 return glueCopyToOp(N, M0, M0.getValue(1)); 617 } 618 619 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 620 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 621 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 622 if (Subtarget->ldsRequiresM0Init()) 623 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 624 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 625 MachineFunction &MF = CurDAG->getMachineFunction(); 626 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 627 return 628 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 629 } 630 return N; 631 } 632 633 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 634 EVT VT) const { 635 SDNode *Lo = CurDAG->getMachineNode( 636 AMDGPU::S_MOV_B32, DL, MVT::i32, 637 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 638 SDNode *Hi = 639 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 640 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 641 const SDValue Ops[] = { 642 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 643 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 644 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 645 646 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 647 } 648 649 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 650 EVT VT = N->getValueType(0); 651 unsigned NumVectorElts = VT.getVectorNumElements(); 652 EVT EltVT = VT.getVectorElementType(); 653 SDLoc DL(N); 654 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 655 656 if (NumVectorElts == 1) { 657 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 658 RegClass); 659 return; 660 } 661 662 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 663 "supported yet"); 664 // 32 = Max Num Vector Elements 665 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 666 // 1 = Vector Register Class 667 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 668 669 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 670 Triple::amdgcn; 671 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 672 bool IsRegSeq = true; 673 unsigned NOps = N->getNumOperands(); 674 for (unsigned i = 0; i < NOps; i++) { 675 // XXX: Why is this here? 676 if (isa<RegisterSDNode>(N->getOperand(i))) { 677 IsRegSeq = false; 678 break; 679 } 680 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 681 : R600RegisterInfo::getSubRegFromChannel(i); 682 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 683 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 684 } 685 if (NOps != NumVectorElts) { 686 // Fill in the missing undef elements if this was a scalar_to_vector. 687 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 688 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 689 DL, EltVT); 690 for (unsigned i = NOps; i < NumVectorElts; ++i) { 691 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 692 : R600RegisterInfo::getSubRegFromChannel(i); 693 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 694 RegSeqArgs[1 + (2 * i) + 1] = 695 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 696 } 697 } 698 699 if (!IsRegSeq) 700 SelectCode(N); 701 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 702 } 703 704 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 705 unsigned int Opc = N->getOpcode(); 706 if (N->isMachineOpcode()) { 707 N->setNodeId(-1); 708 return; // Already selected. 709 } 710 711 // isa<MemSDNode> almost works but is slightly too permissive for some DS 712 // intrinsics. 713 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 714 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 715 Opc == ISD::ATOMIC_LOAD_FADD || 716 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 717 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 718 N = glueCopyToM0LDSInit(N); 719 SelectCode(N); 720 return; 721 } 722 723 switch (Opc) { 724 default: 725 break; 726 // We are selecting i64 ADD here instead of custom lower it during 727 // DAG legalization, so we can fold some i64 ADDs used for address 728 // calculation into the LOAD and STORE instructions. 729 case ISD::ADDC: 730 case ISD::ADDE: 731 case ISD::SUBC: 732 case ISD::SUBE: { 733 if (N->getValueType(0) != MVT::i64) 734 break; 735 736 SelectADD_SUB_I64(N); 737 return; 738 } 739 case ISD::ADDCARRY: 740 case ISD::SUBCARRY: 741 if (N->getValueType(0) != MVT::i32) 742 break; 743 744 SelectAddcSubb(N); 745 return; 746 case ISD::UADDO: 747 case ISD::USUBO: { 748 SelectUADDO_USUBO(N); 749 return; 750 } 751 case AMDGPUISD::FMUL_W_CHAIN: { 752 SelectFMUL_W_CHAIN(N); 753 return; 754 } 755 case AMDGPUISD::FMA_W_CHAIN: { 756 SelectFMA_W_CHAIN(N); 757 return; 758 } 759 760 case ISD::SCALAR_TO_VECTOR: 761 case ISD::BUILD_VECTOR: { 762 EVT VT = N->getValueType(0); 763 unsigned NumVectorElts = VT.getVectorNumElements(); 764 if (VT.getScalarSizeInBits() == 16) { 765 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 766 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 767 ReplaceNode(N, Packed); 768 return; 769 } 770 } 771 772 break; 773 } 774 775 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 776 unsigned RegClassID = 777 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 778 SelectBuildVector(N, RegClassID); 779 return; 780 } 781 case ISD::BUILD_PAIR: { 782 SDValue RC, SubReg0, SubReg1; 783 SDLoc DL(N); 784 if (N->getValueType(0) == MVT::i128) { 785 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 786 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 787 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 788 } else if (N->getValueType(0) == MVT::i64) { 789 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 790 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 791 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 792 } else { 793 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 794 } 795 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 796 N->getOperand(1), SubReg1 }; 797 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 798 N->getValueType(0), Ops)); 799 return; 800 } 801 802 case ISD::Constant: 803 case ISD::ConstantFP: { 804 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 805 break; 806 807 uint64_t Imm; 808 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 809 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 810 else { 811 ConstantSDNode *C = cast<ConstantSDNode>(N); 812 Imm = C->getZExtValue(); 813 } 814 815 SDLoc DL(N); 816 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 817 return; 818 } 819 case AMDGPUISD::BFE_I32: 820 case AMDGPUISD::BFE_U32: { 821 // There is a scalar version available, but unlike the vector version which 822 // has a separate operand for the offset and width, the scalar version packs 823 // the width and offset into a single operand. Try to move to the scalar 824 // version if the offsets are constant, so that we can try to keep extended 825 // loads of kernel arguments in SGPRs. 826 827 // TODO: Technically we could try to pattern match scalar bitshifts of 828 // dynamic values, but it's probably not useful. 829 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 830 if (!Offset) 831 break; 832 833 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 834 if (!Width) 835 break; 836 837 bool Signed = Opc == AMDGPUISD::BFE_I32; 838 839 uint32_t OffsetVal = Offset->getZExtValue(); 840 uint32_t WidthVal = Width->getZExtValue(); 841 842 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 843 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 844 return; 845 } 846 case AMDGPUISD::DIV_SCALE: { 847 SelectDIV_SCALE(N); 848 return; 849 } 850 case AMDGPUISD::MAD_I64_I32: 851 case AMDGPUISD::MAD_U64_U32: { 852 SelectMAD_64_32(N); 853 return; 854 } 855 case ISD::CopyToReg: { 856 const SITargetLowering& Lowering = 857 *static_cast<const SITargetLowering*>(getTargetLowering()); 858 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 859 break; 860 } 861 case ISD::AND: 862 case ISD::SRL: 863 case ISD::SRA: 864 case ISD::SIGN_EXTEND_INREG: 865 if (N->getValueType(0) != MVT::i32) 866 break; 867 868 SelectS_BFE(N); 869 return; 870 case ISD::BRCOND: 871 SelectBRCOND(N); 872 return; 873 case ISD::FMAD: 874 case ISD::FMA: 875 SelectFMAD_FMA(N); 876 return; 877 case AMDGPUISD::ATOMIC_CMP_SWAP: 878 SelectATOMIC_CMP_SWAP(N); 879 return; 880 case AMDGPUISD::CVT_PKRTZ_F16_F32: 881 case AMDGPUISD::CVT_PKNORM_I16_F32: 882 case AMDGPUISD::CVT_PKNORM_U16_F32: 883 case AMDGPUISD::CVT_PK_U16_U32: 884 case AMDGPUISD::CVT_PK_I16_I32: { 885 // Hack around using a legal type if f16 is illegal. 886 if (N->getValueType(0) == MVT::i32) { 887 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 888 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 889 { N->getOperand(0), N->getOperand(1) }); 890 SelectCode(N); 891 return; 892 } 893 894 break; 895 } 896 case ISD::INTRINSIC_W_CHAIN: { 897 SelectINTRINSIC_W_CHAIN(N); 898 return; 899 } 900 case ISD::INTRINSIC_WO_CHAIN: { 901 SelectINTRINSIC_WO_CHAIN(N); 902 return; 903 } 904 case ISD::INTRINSIC_VOID: { 905 SelectINTRINSIC_VOID(N); 906 return; 907 } 908 } 909 910 SelectCode(N); 911 } 912 913 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 914 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 915 const Instruction *Term = BB->getTerminator(); 916 return Term->getMetadata("amdgpu.uniform") || 917 Term->getMetadata("structurizecfg.uniform"); 918 } 919 920 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 921 SDValue &N0, SDValue &N1) { 922 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 923 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 924 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 925 // (i64 (bitcast (v2i32 (build_vector 926 // (or (extract_vector_elt V, 0), OFFSET), 927 // (extract_vector_elt V, 1))))) 928 SDValue Lo = Addr.getOperand(0).getOperand(0); 929 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 930 SDValue BaseLo = Lo.getOperand(0); 931 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 932 // Check that split base (Lo and Hi) are extracted from the same one. 933 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 934 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 935 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 936 // Lo is statically extracted from index 0. 937 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 938 BaseLo.getConstantOperandVal(1) == 0 && 939 // Hi is statically extracted from index 0. 940 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 941 BaseHi.getConstantOperandVal(1) == 1) { 942 N0 = BaseLo.getOperand(0).getOperand(0); 943 N1 = Lo.getOperand(1); 944 return true; 945 } 946 } 947 } 948 return false; 949 } 950 951 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 952 SDValue &RHS) const { 953 if (CurDAG->isBaseWithConstantOffset(Addr)) { 954 LHS = Addr.getOperand(0); 955 RHS = Addr.getOperand(1); 956 return true; 957 } 958 959 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 960 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 961 return true; 962 } 963 964 return false; 965 } 966 967 StringRef AMDGPUDAGToDAGISel::getPassName() const { 968 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 969 } 970 971 //===----------------------------------------------------------------------===// 972 // Complex Patterns 973 //===----------------------------------------------------------------------===// 974 975 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 976 SDValue &Offset) { 977 return false; 978 } 979 980 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 981 SDValue &Offset) { 982 ConstantSDNode *C; 983 SDLoc DL(Addr); 984 985 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 986 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 987 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 988 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 989 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 990 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 991 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 992 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 993 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 994 Base = Addr.getOperand(0); 995 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 996 } else { 997 Base = Addr; 998 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 999 } 1000 1001 return true; 1002 } 1003 1004 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 1005 const SDLoc &DL) const { 1006 SDNode *Mov = CurDAG->getMachineNode( 1007 AMDGPU::S_MOV_B32, DL, MVT::i32, 1008 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 1009 return SDValue(Mov, 0); 1010 } 1011 1012 // FIXME: Should only handle addcarry/subcarry 1013 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 1014 SDLoc DL(N); 1015 SDValue LHS = N->getOperand(0); 1016 SDValue RHS = N->getOperand(1); 1017 1018 unsigned Opcode = N->getOpcode(); 1019 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 1020 bool ProduceCarry = 1021 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 1022 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 1023 1024 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1025 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1026 1027 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1028 DL, MVT::i32, LHS, Sub0); 1029 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1030 DL, MVT::i32, LHS, Sub1); 1031 1032 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1033 DL, MVT::i32, RHS, Sub0); 1034 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1035 DL, MVT::i32, RHS, Sub1); 1036 1037 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 1038 1039 static const unsigned OpcMap[2][2][2] = { 1040 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 1041 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 1042 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 1043 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1044 1045 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1046 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1047 1048 SDNode *AddLo; 1049 if (!ConsumeCarry) { 1050 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1051 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1052 } else { 1053 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1054 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1055 } 1056 SDValue AddHiArgs[] = { 1057 SDValue(Hi0, 0), 1058 SDValue(Hi1, 0), 1059 SDValue(AddLo, 1) 1060 }; 1061 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1062 1063 SDValue RegSequenceArgs[] = { 1064 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1065 SDValue(AddLo,0), 1066 Sub0, 1067 SDValue(AddHi,0), 1068 Sub1, 1069 }; 1070 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1071 MVT::i64, RegSequenceArgs); 1072 1073 if (ProduceCarry) { 1074 // Replace the carry-use 1075 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1076 } 1077 1078 // Replace the remaining uses. 1079 ReplaceNode(N, RegSequence); 1080 } 1081 1082 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1083 SDLoc DL(N); 1084 SDValue LHS = N->getOperand(0); 1085 SDValue RHS = N->getOperand(1); 1086 SDValue CI = N->getOperand(2); 1087 1088 if (N->isDivergent()) { 1089 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1090 : AMDGPU::V_SUBB_U32_e64; 1091 CurDAG->SelectNodeTo( 1092 N, Opc, N->getVTList(), 1093 {LHS, RHS, CI, 1094 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1095 } else { 1096 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1097 : AMDGPU::S_SUB_CO_PSEUDO; 1098 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1099 } 1100 } 1101 1102 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1103 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1104 // carry out despite the _i32 name. These were renamed in VI to _U32. 1105 // FIXME: We should probably rename the opcodes here. 1106 bool IsAdd = N->getOpcode() == ISD::UADDO; 1107 bool IsVALU = N->isDivergent(); 1108 1109 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1110 ++UI) 1111 if (UI.getUse().getResNo() == 1) { 1112 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1113 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1114 IsVALU = true; 1115 break; 1116 } 1117 } 1118 1119 if (IsVALU) { 1120 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 1121 1122 CurDAG->SelectNodeTo( 1123 N, Opc, N->getVTList(), 1124 {N->getOperand(0), N->getOperand(1), 1125 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1126 } else { 1127 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1128 : AMDGPU::S_USUBO_PSEUDO; 1129 1130 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1131 {N->getOperand(0), N->getOperand(1)}); 1132 } 1133 } 1134 1135 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1136 SDLoc SL(N); 1137 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1138 SDValue Ops[10]; 1139 1140 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1141 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1142 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1143 Ops[8] = N->getOperand(0); 1144 Ops[9] = N->getOperand(4); 1145 1146 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32_e64, N->getVTList(), Ops); 1147 } 1148 1149 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1150 SDLoc SL(N); 1151 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1152 SDValue Ops[8]; 1153 1154 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1155 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1156 Ops[6] = N->getOperand(0); 1157 Ops[7] = N->getOperand(3); 1158 1159 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1160 } 1161 1162 // We need to handle this here because tablegen doesn't support matching 1163 // instructions with multiple outputs. 1164 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1165 SDLoc SL(N); 1166 EVT VT = N->getValueType(0); 1167 1168 assert(VT == MVT::f32 || VT == MVT::f64); 1169 1170 unsigned Opc 1171 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 1172 1173 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 1174 // omod 1175 SDValue Ops[8]; 1176 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1177 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1178 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1179 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1180 } 1181 1182 // We need to handle this here because tablegen doesn't support matching 1183 // instructions with multiple outputs. 1184 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1185 SDLoc SL(N); 1186 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1187 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1188 1189 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1190 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1191 Clamp }; 1192 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1193 } 1194 1195 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1196 if (!isUInt<16>(Offset)) 1197 return false; 1198 1199 if (!Base || Subtarget->hasUsableDSOffset() || 1200 Subtarget->unsafeDSOffsetFoldingEnabled()) 1201 return true; 1202 1203 // On Southern Islands instruction with a negative base value and an offset 1204 // don't seem to work. 1205 return CurDAG->SignBitIsZero(Base); 1206 } 1207 1208 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1209 SDValue &Offset) const { 1210 SDLoc DL(Addr); 1211 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1212 SDValue N0 = Addr.getOperand(0); 1213 SDValue N1 = Addr.getOperand(1); 1214 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1215 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1216 // (add n0, c0) 1217 Base = N0; 1218 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1219 return true; 1220 } 1221 } else if (Addr.getOpcode() == ISD::SUB) { 1222 // sub C, x -> add (sub 0, x), C 1223 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1224 int64_t ByteOffset = C->getSExtValue(); 1225 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1226 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1227 1228 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1229 // the known bits in isDSOffsetLegal. We need to emit the selected node 1230 // here, so this is thrown away. 1231 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1232 Zero, Addr.getOperand(1)); 1233 1234 if (isDSOffsetLegal(Sub, ByteOffset)) { 1235 SmallVector<SDValue, 3> Opnds; 1236 Opnds.push_back(Zero); 1237 Opnds.push_back(Addr.getOperand(1)); 1238 1239 // FIXME: Select to VOP3 version for with-carry. 1240 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1241 if (Subtarget->hasAddNoCarry()) { 1242 SubOp = AMDGPU::V_SUB_U32_e64; 1243 Opnds.push_back( 1244 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1245 } 1246 1247 MachineSDNode *MachineSub = 1248 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1249 1250 Base = SDValue(MachineSub, 0); 1251 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1252 return true; 1253 } 1254 } 1255 } 1256 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1257 // If we have a constant address, prefer to put the constant into the 1258 // offset. This can save moves to load the constant address since multiple 1259 // operations can share the zero base address register, and enables merging 1260 // into read2 / write2 instructions. 1261 1262 SDLoc DL(Addr); 1263 1264 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1265 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1266 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1267 DL, MVT::i32, Zero); 1268 Base = SDValue(MovZero, 0); 1269 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1270 return true; 1271 } 1272 } 1273 1274 // default case 1275 Base = Addr; 1276 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1277 return true; 1278 } 1279 1280 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1281 unsigned Offset1, 1282 unsigned Size) const { 1283 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1284 return false; 1285 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1286 return false; 1287 1288 if (!Base || Subtarget->hasUsableDSOffset() || 1289 Subtarget->unsafeDSOffsetFoldingEnabled()) 1290 return true; 1291 1292 // On Southern Islands instruction with a negative base value and an offset 1293 // don't seem to work. 1294 return CurDAG->SignBitIsZero(Base); 1295 } 1296 1297 // TODO: If offset is too big, put low 16-bit into offset. 1298 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1299 SDValue &Offset0, 1300 SDValue &Offset1) const { 1301 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1302 } 1303 1304 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1305 SDValue &Offset0, 1306 SDValue &Offset1) const { 1307 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1308 } 1309 1310 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1311 SDValue &Offset0, SDValue &Offset1, 1312 unsigned Size) const { 1313 SDLoc DL(Addr); 1314 1315 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1316 SDValue N0 = Addr.getOperand(0); 1317 SDValue N1 = Addr.getOperand(1); 1318 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1319 unsigned OffsetValue0 = C1->getZExtValue(); 1320 unsigned OffsetValue1 = OffsetValue0 + Size; 1321 1322 // (add n0, c0) 1323 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1324 Base = N0; 1325 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1326 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1327 return true; 1328 } 1329 } else if (Addr.getOpcode() == ISD::SUB) { 1330 // sub C, x -> add (sub 0, x), C 1331 if (const ConstantSDNode *C = 1332 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1333 unsigned OffsetValue0 = C->getZExtValue(); 1334 unsigned OffsetValue1 = OffsetValue0 + Size; 1335 1336 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1337 SDLoc DL(Addr); 1338 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1339 1340 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1341 // the known bits in isDSOffsetLegal. We need to emit the selected node 1342 // here, so this is thrown away. 1343 SDValue Sub = 1344 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1345 1346 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1347 SmallVector<SDValue, 3> Opnds; 1348 Opnds.push_back(Zero); 1349 Opnds.push_back(Addr.getOperand(1)); 1350 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1351 if (Subtarget->hasAddNoCarry()) { 1352 SubOp = AMDGPU::V_SUB_U32_e64; 1353 Opnds.push_back( 1354 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1355 } 1356 1357 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1358 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1359 1360 Base = SDValue(MachineSub, 0); 1361 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1362 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1363 return true; 1364 } 1365 } 1366 } 1367 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1368 unsigned OffsetValue0 = CAddr->getZExtValue(); 1369 unsigned OffsetValue1 = OffsetValue0 + Size; 1370 1371 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1372 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1373 MachineSDNode *MovZero = 1374 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1375 Base = SDValue(MovZero, 0); 1376 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1377 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1378 return true; 1379 } 1380 } 1381 1382 // default case 1383 1384 Base = Addr; 1385 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1386 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1387 return true; 1388 } 1389 1390 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1391 SDValue &SOffset, SDValue &Offset, 1392 SDValue &Offen, SDValue &Idxen, 1393 SDValue &Addr64, SDValue &CPol, 1394 SDValue &TFE, SDValue &SWZ) const { 1395 // Subtarget prefers to use flat instruction 1396 // FIXME: This should be a pattern predicate and not reach here 1397 if (Subtarget->useFlatForGlobal()) 1398 return false; 1399 1400 SDLoc DL(Addr); 1401 1402 if (!CPol) 1403 CPol = CurDAG->getTargetConstant(0, DL, MVT::i32); 1404 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1405 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1406 1407 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1408 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1409 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1410 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1411 1412 ConstantSDNode *C1 = nullptr; 1413 SDValue N0 = Addr; 1414 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1415 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1416 if (isUInt<32>(C1->getZExtValue())) 1417 N0 = Addr.getOperand(0); 1418 else 1419 C1 = nullptr; 1420 } 1421 1422 if (N0.getOpcode() == ISD::ADD) { 1423 // (add N2, N3) -> addr64, or 1424 // (add (add N2, N3), C1) -> addr64 1425 SDValue N2 = N0.getOperand(0); 1426 SDValue N3 = N0.getOperand(1); 1427 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1428 1429 if (N2->isDivergent()) { 1430 if (N3->isDivergent()) { 1431 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1432 // addr64, and construct the resource from a 0 address. 1433 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1434 VAddr = N0; 1435 } else { 1436 // N2 is divergent, N3 is not. 1437 Ptr = N3; 1438 VAddr = N2; 1439 } 1440 } else { 1441 // N2 is not divergent. 1442 Ptr = N2; 1443 VAddr = N3; 1444 } 1445 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1446 } else if (N0->isDivergent()) { 1447 // N0 is divergent. Use it as the addr64, and construct the resource from a 1448 // 0 address. 1449 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1450 VAddr = N0; 1451 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1452 } else { 1453 // N0 -> offset, or 1454 // (N0 + C1) -> offset 1455 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1456 Ptr = N0; 1457 } 1458 1459 if (!C1) { 1460 // No offset. 1461 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1462 return true; 1463 } 1464 1465 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1466 // Legal offset for instruction. 1467 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1468 return true; 1469 } 1470 1471 // Illegal offset, store it in soffset. 1472 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1473 SOffset = 1474 SDValue(CurDAG->getMachineNode( 1475 AMDGPU::S_MOV_B32, DL, MVT::i32, 1476 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1477 0); 1478 return true; 1479 } 1480 1481 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1482 SDValue &VAddr, SDValue &SOffset, 1483 SDValue &Offset, SDValue &CPol, 1484 SDValue &TFE, SDValue &SWZ) const { 1485 SDValue Ptr, Offen, Idxen, Addr64; 1486 1487 // addr64 bit was removed for volcanic islands. 1488 // FIXME: This should be a pattern predicate and not reach here 1489 if (!Subtarget->hasAddr64()) 1490 return false; 1491 1492 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1493 CPol, TFE, SWZ)) 1494 return false; 1495 1496 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1497 if (C->getSExtValue()) { 1498 SDLoc DL(Addr); 1499 1500 const SITargetLowering& Lowering = 1501 *static_cast<const SITargetLowering*>(getTargetLowering()); 1502 1503 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1504 return true; 1505 } 1506 1507 return false; 1508 } 1509 1510 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1511 SDValue &VAddr, SDValue &SOffset, 1512 SDValue &Offset) const { 1513 SDValue CPol, TFE, SWZ; 1514 1515 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, CPol, TFE, SWZ); 1516 } 1517 1518 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1519 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1520 return PSV && PSV->isStack(); 1521 } 1522 1523 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1524 SDLoc DL(N); 1525 1526 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1527 SDValue TFI = 1528 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1529 1530 // We rebase the base address into an absolute stack address and hence 1531 // use constant 0 for soffset. This value must be retained until 1532 // frame elimination and eliminateFrameIndex will choose the appropriate 1533 // frame register if need be. 1534 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1535 } 1536 1537 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1538 SDValue Addr, SDValue &Rsrc, 1539 SDValue &VAddr, SDValue &SOffset, 1540 SDValue &ImmOffset) const { 1541 1542 SDLoc DL(Addr); 1543 MachineFunction &MF = CurDAG->getMachineFunction(); 1544 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1545 1546 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1547 1548 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1549 int64_t Imm = CAddr->getSExtValue(); 1550 const int64_t NullPtr = 1551 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1552 // Don't fold null pointer. 1553 if (Imm != NullPtr) { 1554 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1555 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1556 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1557 VAddr = SDValue(MovHighBits, 0); 1558 1559 // In a call sequence, stores to the argument stack area are relative to the 1560 // stack pointer. 1561 const MachinePointerInfo &PtrInfo 1562 = cast<MemSDNode>(Parent)->getPointerInfo(); 1563 SOffset = isStackPtrRelative(PtrInfo) 1564 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1565 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1566 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1567 return true; 1568 } 1569 } 1570 1571 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1572 // (add n0, c1) 1573 1574 SDValue N0 = Addr.getOperand(0); 1575 SDValue N1 = Addr.getOperand(1); 1576 1577 // Offsets in vaddr must be positive if range checking is enabled. 1578 // 1579 // The total computation of vaddr + soffset + offset must not overflow. If 1580 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1581 // overflowing. 1582 // 1583 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1584 // always perform a range check. If a negative vaddr base index was used, 1585 // this would fail the range check. The overall address computation would 1586 // compute a valid address, but this doesn't happen due to the range 1587 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1588 // 1589 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1590 // MUBUF vaddr, but not on older subtargets which can only do this if the 1591 // sign bit is known 0. 1592 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1593 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1594 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1595 CurDAG->SignBitIsZero(N0))) { 1596 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1597 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1598 return true; 1599 } 1600 } 1601 1602 // (node) 1603 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1604 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1605 return true; 1606 } 1607 1608 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1609 SDValue Addr, 1610 SDValue &SRsrc, 1611 SDValue &SOffset, 1612 SDValue &Offset) const { 1613 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1614 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1615 return false; 1616 1617 SDLoc DL(Addr); 1618 MachineFunction &MF = CurDAG->getMachineFunction(); 1619 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1620 1621 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1622 1623 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1624 1625 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1626 // offset if we know this is in a call sequence. 1627 SOffset = isStackPtrRelative(PtrInfo) 1628 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1629 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1630 1631 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1632 return true; 1633 } 1634 1635 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1636 SDValue &SOffset, SDValue &Offset, 1637 SDValue &CPol, SDValue &TFE, 1638 SDValue &SWZ) const { 1639 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1640 const SIInstrInfo *TII = 1641 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1642 1643 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1644 CPol, TFE, SWZ)) 1645 return false; 1646 1647 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1648 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1649 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1650 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1651 APInt::getAllOnesValue(32).getZExtValue(); // Size 1652 SDLoc DL(Addr); 1653 1654 const SITargetLowering& Lowering = 1655 *static_cast<const SITargetLowering*>(getTargetLowering()); 1656 1657 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1658 return true; 1659 } 1660 return false; 1661 } 1662 1663 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1664 SDValue &Soffset, SDValue &Offset 1665 ) const { 1666 SDValue CPol, TFE, SWZ; 1667 1668 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, CPol, TFE, SWZ); 1669 } 1670 1671 // Find a load or store from corresponding pattern root. 1672 // Roots may be build_vector, bitconvert or their combinations. 1673 static MemSDNode* findMemSDNode(SDNode *N) { 1674 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1675 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1676 return MN; 1677 assert(isa<BuildVectorSDNode>(N)); 1678 for (SDValue V : N->op_values()) 1679 if (MemSDNode *MN = 1680 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1681 return MN; 1682 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1683 } 1684 1685 template <bool IsSigned> 1686 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1687 SDValue Addr, 1688 SDValue &VAddr, 1689 SDValue &Offset) const { 1690 int64_t OffsetVal = 0; 1691 1692 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1693 1694 if (Subtarget->hasFlatInstOffsets() && 1695 (!Subtarget->hasFlatSegmentOffsetBug() || 1696 AS != AMDGPUAS::FLAT_ADDRESS)) { 1697 SDValue N0, N1; 1698 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1699 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1700 1701 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1702 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1703 Addr = N0; 1704 OffsetVal = COffsetVal; 1705 } else { 1706 // If the offset doesn't fit, put the low bits into the offset field and 1707 // add the rest. 1708 // 1709 // For a FLAT instruction the hardware decides whether to access 1710 // global/scratch/shared memory based on the high bits of vaddr, 1711 // ignoring the offset field, so we have to ensure that when we add 1712 // remainder to vaddr it still points into the same underlying object. 1713 // The easiest way to do that is to make sure that we split the offset 1714 // into two pieces that are both >= 0 or both <= 0. 1715 1716 SDLoc DL(N); 1717 uint64_t RemainderOffset; 1718 1719 std::tie(OffsetVal, RemainderOffset) 1720 = TII->splitFlatOffset(COffsetVal, AS, IsSigned); 1721 1722 SDValue AddOffsetLo = 1723 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1724 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1725 1726 if (Addr.getValueType().getSizeInBits() == 32) { 1727 SmallVector<SDValue, 3> Opnds; 1728 Opnds.push_back(N0); 1729 Opnds.push_back(AddOffsetLo); 1730 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1731 if (Subtarget->hasAddNoCarry()) { 1732 AddOp = AMDGPU::V_ADD_U32_e64; 1733 Opnds.push_back(Clamp); 1734 } 1735 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1736 } else { 1737 // TODO: Should this try to use a scalar add pseudo if the base address 1738 // is uniform and saddr is usable? 1739 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1740 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1741 1742 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1743 DL, MVT::i32, N0, Sub0); 1744 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1745 DL, MVT::i32, N0, Sub1); 1746 1747 SDValue AddOffsetHi = 1748 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1749 1750 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1751 1752 SDNode *Add = 1753 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1754 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1755 1756 SDNode *Addc = CurDAG->getMachineNode( 1757 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1758 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1759 1760 SDValue RegSequenceArgs[] = { 1761 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1762 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1763 1764 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1765 MVT::i64, RegSequenceArgs), 1766 0); 1767 } 1768 } 1769 } 1770 } 1771 1772 VAddr = Addr; 1773 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1774 return true; 1775 } 1776 1777 // If this matches zero_extend i32:x, return x 1778 static SDValue matchZExtFromI32(SDValue Op) { 1779 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1780 return SDValue(); 1781 1782 SDValue ExtSrc = Op.getOperand(0); 1783 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1784 } 1785 1786 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1787 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1788 SDValue Addr, 1789 SDValue &SAddr, 1790 SDValue &VOffset, 1791 SDValue &Offset) const { 1792 int64_t ImmOffset = 0; 1793 1794 // Match the immediate offset first, which canonically is moved as low as 1795 // possible. 1796 1797 SDValue LHS, RHS; 1798 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1799 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1800 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1801 1802 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true)) { 1803 Addr = LHS; 1804 ImmOffset = COffsetVal; 1805 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1806 SDLoc SL(N); 1807 // saddr + large_offset -> saddr + (voffset = large_offset & ~MaxOffset) + 1808 // (large_offset & MaxOffset); 1809 int64_t SplitImmOffset, RemainderOffset; 1810 std::tie(SplitImmOffset, RemainderOffset) 1811 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true); 1812 1813 if (isUInt<32>(RemainderOffset)) { 1814 SDNode *VMov = CurDAG->getMachineNode( 1815 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1816 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1817 VOffset = SDValue(VMov, 0); 1818 SAddr = LHS; 1819 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1820 return true; 1821 } 1822 } 1823 } 1824 1825 // Match the variable offset. 1826 if (Addr.getOpcode() != ISD::ADD) { 1827 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1828 isa<ConstantSDNode>(Addr)) 1829 return false; 1830 1831 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1832 // moves required to copy a 64-bit SGPR to VGPR. 1833 SAddr = Addr; 1834 SDNode *VMov = CurDAG->getMachineNode( 1835 AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1836 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1837 VOffset = SDValue(VMov, 0); 1838 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1839 return true; 1840 } 1841 1842 LHS = Addr.getOperand(0); 1843 RHS = Addr.getOperand(1); 1844 1845 if (!LHS->isDivergent()) { 1846 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1847 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1848 SAddr = LHS; 1849 VOffset = ZextRHS; 1850 } 1851 } 1852 1853 if (!SAddr && !RHS->isDivergent()) { 1854 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1855 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1856 SAddr = RHS; 1857 VOffset = ZextLHS; 1858 } 1859 } 1860 1861 if (!SAddr) 1862 return false; 1863 1864 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1865 return true; 1866 } 1867 1868 // Match (32-bit SGPR base) + sext(imm offset) 1869 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *N, 1870 SDValue Addr, 1871 SDValue &SAddr, 1872 SDValue &Offset) const { 1873 if (Addr->isDivergent()) 1874 return false; 1875 1876 SAddr = Addr; 1877 int64_t COffsetVal = 0; 1878 1879 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1880 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1881 SAddr = Addr.getOperand(0); 1882 } 1883 1884 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1885 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1886 } else if (SAddr.getOpcode() == ISD::ADD && 1887 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1888 // Materialize this into a scalar move for scalar address to avoid 1889 // readfirstlane. 1890 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1891 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1892 FI->getValueType(0)); 1893 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, SDLoc(SAddr), 1894 MVT::i32, TFI, SAddr.getOperand(1)), 1895 0); 1896 } 1897 1898 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1899 1900 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1901 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(*Subtarget, true); 1902 // Use signed division by a power of two to truncate towards 0. 1903 int64_t D = 1LL << (NumBits - 1); 1904 int64_t RemainderOffset = (COffsetVal / D) * D; 1905 int64_t ImmField = COffsetVal - RemainderOffset; 1906 1907 assert(TII->isLegalFLATOffset(ImmField, AMDGPUAS::PRIVATE_ADDRESS, true)); 1908 assert(RemainderOffset + ImmField == COffsetVal); 1909 1910 COffsetVal = ImmField; 1911 1912 SDLoc DL(N); 1913 SDValue AddOffset = 1914 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1915 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, DL, MVT::i32, 1916 SAddr, AddOffset), 0); 1917 } 1918 1919 Offset = CurDAG->getTargetConstant(COffsetVal, SDLoc(), MVT::i16); 1920 1921 return true; 1922 } 1923 1924 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1925 SDValue &Offset, bool &Imm) const { 1926 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1927 if (!C) { 1928 if (ByteOffsetNode.getValueType().isScalarInteger() && 1929 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1930 Offset = ByteOffsetNode; 1931 Imm = false; 1932 return true; 1933 } 1934 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1935 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1936 Offset = ByteOffsetNode.getOperand(0); 1937 Imm = false; 1938 return true; 1939 } 1940 } 1941 return false; 1942 } 1943 1944 SDLoc SL(ByteOffsetNode); 1945 // GFX9 and GFX10 have signed byte immediate offsets. 1946 int64_t ByteOffset = C->getSExtValue(); 1947 Optional<int64_t> EncodedOffset = 1948 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1949 if (EncodedOffset) { 1950 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1951 Imm = true; 1952 return true; 1953 } 1954 1955 // SGPR and literal offsets are unsigned. 1956 if (ByteOffset < 0) 1957 return false; 1958 1959 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1960 if (EncodedOffset) { 1961 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1962 return true; 1963 } 1964 1965 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1966 return false; 1967 1968 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1969 Offset = SDValue( 1970 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1971 1972 return true; 1973 } 1974 1975 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1976 if (Addr.getValueType() != MVT::i32) 1977 return Addr; 1978 1979 // Zero-extend a 32-bit address. 1980 SDLoc SL(Addr); 1981 1982 const MachineFunction &MF = CurDAG->getMachineFunction(); 1983 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1984 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1985 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1986 1987 const SDValue Ops[] = { 1988 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1989 Addr, 1990 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1991 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1992 0), 1993 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1994 }; 1995 1996 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1997 Ops), 0); 1998 } 1999 2000 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2001 SDValue &Offset, bool &Imm) const { 2002 SDLoc SL(Addr); 2003 2004 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2005 // wraparound, because s_load instructions perform the addition in 64 bits. 2006 if ((Addr.getValueType() != MVT::i32 || 2007 Addr->getFlags().hasNoUnsignedWrap())) { 2008 SDValue N0, N1; 2009 // Extract the base and offset if possible. 2010 if (CurDAG->isBaseWithConstantOffset(Addr) || 2011 Addr.getOpcode() == ISD::ADD) { 2012 N0 = Addr.getOperand(0); 2013 N1 = Addr.getOperand(1); 2014 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2015 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2016 } 2017 if (N0 && N1) { 2018 if (SelectSMRDOffset(N1, Offset, Imm)) { 2019 SBase = Expand32BitAddress(N0); 2020 return true; 2021 } 2022 } 2023 } 2024 SBase = Expand32BitAddress(Addr); 2025 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 2026 Imm = true; 2027 return true; 2028 } 2029 2030 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2031 SDValue &Offset) const { 2032 bool Imm = false; 2033 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 2034 } 2035 2036 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2037 SDValue &Offset) const { 2038 2039 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2040 2041 bool Imm = false; 2042 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 2043 return false; 2044 2045 return !Imm && isa<ConstantSDNode>(Offset); 2046 } 2047 2048 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2049 SDValue &Offset) const { 2050 bool Imm = false; 2051 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 2052 !isa<ConstantSDNode>(Offset); 2053 } 2054 2055 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 2056 SDValue &Offset) const { 2057 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2058 // The immediate offset for S_BUFFER instructions is unsigned. 2059 if (auto Imm = 2060 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 2061 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2062 return true; 2063 } 2064 } 2065 2066 return false; 2067 } 2068 2069 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2070 SDValue &Offset) const { 2071 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2072 2073 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2074 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2075 C->getZExtValue())) { 2076 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2077 return true; 2078 } 2079 } 2080 2081 return false; 2082 } 2083 2084 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2085 SDValue &Base, 2086 SDValue &Offset) const { 2087 SDLoc DL(Index); 2088 2089 if (CurDAG->isBaseWithConstantOffset(Index)) { 2090 SDValue N0 = Index.getOperand(0); 2091 SDValue N1 = Index.getOperand(1); 2092 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2093 2094 // (add n0, c0) 2095 // Don't peel off the offset (c0) if doing so could possibly lead 2096 // the base (n0) to be negative. 2097 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2098 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2099 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2100 Base = N0; 2101 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2102 return true; 2103 } 2104 } 2105 2106 if (isa<ConstantSDNode>(Index)) 2107 return false; 2108 2109 Base = Index; 2110 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2111 return true; 2112 } 2113 2114 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 2115 SDValue Val, uint32_t Offset, 2116 uint32_t Width) { 2117 // Transformation function, pack the offset and width of a BFE into 2118 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2119 // source, bits [5:0] contain the offset and bits [22:16] the width. 2120 uint32_t PackedVal = Offset | (Width << 16); 2121 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2122 2123 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2124 } 2125 2126 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2127 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2128 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2129 // Predicate: 0 < b <= c < 32 2130 2131 const SDValue &Shl = N->getOperand(0); 2132 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2133 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2134 2135 if (B && C) { 2136 uint32_t BVal = B->getZExtValue(); 2137 uint32_t CVal = C->getZExtValue(); 2138 2139 if (0 < BVal && BVal <= CVal && CVal < 32) { 2140 bool Signed = N->getOpcode() == ISD::SRA; 2141 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2142 2143 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2144 32 - CVal)); 2145 return; 2146 } 2147 } 2148 SelectCode(N); 2149 } 2150 2151 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2152 switch (N->getOpcode()) { 2153 case ISD::AND: 2154 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2155 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2156 // Predicate: isMask(mask) 2157 const SDValue &Srl = N->getOperand(0); 2158 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2159 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2160 2161 if (Shift && Mask) { 2162 uint32_t ShiftVal = Shift->getZExtValue(); 2163 uint32_t MaskVal = Mask->getZExtValue(); 2164 2165 if (isMask_32(MaskVal)) { 2166 uint32_t WidthVal = countPopulation(MaskVal); 2167 2168 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2169 Srl.getOperand(0), ShiftVal, WidthVal)); 2170 return; 2171 } 2172 } 2173 } 2174 break; 2175 case ISD::SRL: 2176 if (N->getOperand(0).getOpcode() == ISD::AND) { 2177 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2178 // Predicate: isMask(mask >> b) 2179 const SDValue &And = N->getOperand(0); 2180 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2181 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2182 2183 if (Shift && Mask) { 2184 uint32_t ShiftVal = Shift->getZExtValue(); 2185 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2186 2187 if (isMask_32(MaskVal)) { 2188 uint32_t WidthVal = countPopulation(MaskVal); 2189 2190 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2191 And.getOperand(0), ShiftVal, WidthVal)); 2192 return; 2193 } 2194 } 2195 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2196 SelectS_BFEFromShifts(N); 2197 return; 2198 } 2199 break; 2200 case ISD::SRA: 2201 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2202 SelectS_BFEFromShifts(N); 2203 return; 2204 } 2205 break; 2206 2207 case ISD::SIGN_EXTEND_INREG: { 2208 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2209 SDValue Src = N->getOperand(0); 2210 if (Src.getOpcode() != ISD::SRL) 2211 break; 2212 2213 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2214 if (!Amt) 2215 break; 2216 2217 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2218 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2219 Amt->getZExtValue(), Width)); 2220 return; 2221 } 2222 } 2223 2224 SelectCode(N); 2225 } 2226 2227 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2228 assert(N->getOpcode() == ISD::BRCOND); 2229 if (!N->hasOneUse()) 2230 return false; 2231 2232 SDValue Cond = N->getOperand(1); 2233 if (Cond.getOpcode() == ISD::CopyToReg) 2234 Cond = Cond.getOperand(2); 2235 2236 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2237 return false; 2238 2239 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2240 if (VT == MVT::i32) 2241 return true; 2242 2243 if (VT == MVT::i64) { 2244 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2245 2246 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2247 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2248 } 2249 2250 return false; 2251 } 2252 2253 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2254 SDValue Cond = N->getOperand(1); 2255 2256 if (Cond.isUndef()) { 2257 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2258 N->getOperand(2), N->getOperand(0)); 2259 return; 2260 } 2261 2262 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2263 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2264 2265 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2266 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2267 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2268 SDLoc SL(N); 2269 2270 if (!UseSCCBr) { 2271 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2272 // analyzed what generates the vcc value, so we do not know whether vcc 2273 // bits for disabled lanes are 0. Thus we need to mask out bits for 2274 // disabled lanes. 2275 // 2276 // For the case that we select S_CBRANCH_SCC1 and it gets 2277 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2278 // SIInstrInfo::moveToVALU which inserts the S_AND). 2279 // 2280 // We could add an analysis of what generates the vcc value here and omit 2281 // the S_AND when is unnecessary. But it would be better to add a separate 2282 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2283 // catches both cases. 2284 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2285 : AMDGPU::S_AND_B64, 2286 SL, MVT::i1, 2287 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2288 : AMDGPU::EXEC, 2289 MVT::i1), 2290 Cond), 2291 0); 2292 } 2293 2294 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2295 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2296 N->getOperand(2), // Basic Block 2297 VCC.getValue(0)); 2298 } 2299 2300 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2301 MVT VT = N->getSimpleValueType(0); 2302 bool IsFMA = N->getOpcode() == ISD::FMA; 2303 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2304 !Subtarget->hasFmaMixInsts()) || 2305 ((IsFMA && Subtarget->hasMadMixInsts()) || 2306 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2307 SelectCode(N); 2308 return; 2309 } 2310 2311 SDValue Src0 = N->getOperand(0); 2312 SDValue Src1 = N->getOperand(1); 2313 SDValue Src2 = N->getOperand(2); 2314 unsigned Src0Mods, Src1Mods, Src2Mods; 2315 2316 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2317 // using the conversion from f16. 2318 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2319 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2320 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2321 2322 assert((IsFMA || !Mode.allFP32Denormals()) && 2323 "fmad selected with denormals enabled"); 2324 // TODO: We can select this with f32 denormals enabled if all the sources are 2325 // converted from f16 (in which case fmad isn't legal). 2326 2327 if (Sel0 || Sel1 || Sel2) { 2328 // For dummy operands. 2329 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2330 SDValue Ops[] = { 2331 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2332 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2333 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2334 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2335 Zero, Zero 2336 }; 2337 2338 CurDAG->SelectNodeTo(N, 2339 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2340 MVT::f32, Ops); 2341 } else { 2342 SelectCode(N); 2343 } 2344 } 2345 2346 // This is here because there isn't a way to use the generated sub0_sub1 as the 2347 // subreg index to EXTRACT_SUBREG in tablegen. 2348 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2349 MemSDNode *Mem = cast<MemSDNode>(N); 2350 unsigned AS = Mem->getAddressSpace(); 2351 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2352 SelectCode(N); 2353 return; 2354 } 2355 2356 MVT VT = N->getSimpleValueType(0); 2357 bool Is32 = (VT == MVT::i32); 2358 SDLoc SL(N); 2359 2360 MachineSDNode *CmpSwap = nullptr; 2361 if (Subtarget->hasAddr64()) { 2362 SDValue SRsrc, VAddr, SOffset, Offset; 2363 2364 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) { 2365 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2366 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2367 SDValue CmpVal = Mem->getOperand(2); 2368 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2369 2370 // XXX - Do we care about glue operands? 2371 2372 SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol, 2373 Mem->getChain()}; 2374 2375 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2376 } 2377 } 2378 2379 if (!CmpSwap) { 2380 SDValue SRsrc, SOffset, Offset; 2381 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) { 2382 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2383 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2384 2385 SDValue CmpVal = Mem->getOperand(2); 2386 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2387 SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()}; 2388 2389 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2390 } 2391 } 2392 2393 if (!CmpSwap) { 2394 SelectCode(N); 2395 return; 2396 } 2397 2398 MachineMemOperand *MMO = Mem->getMemOperand(); 2399 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2400 2401 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2402 SDValue Extract 2403 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2404 2405 ReplaceUses(SDValue(N, 0), Extract); 2406 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2407 CurDAG->RemoveDeadNode(N); 2408 } 2409 2410 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2411 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2412 // be copied to an SGPR with readfirstlane. 2413 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2414 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2415 2416 SDValue Chain = N->getOperand(0); 2417 SDValue Ptr = N->getOperand(2); 2418 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2419 MachineMemOperand *MMO = M->getMemOperand(); 2420 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2421 2422 SDValue Offset; 2423 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2424 SDValue PtrBase = Ptr.getOperand(0); 2425 SDValue PtrOffset = Ptr.getOperand(1); 2426 2427 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2428 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2429 N = glueCopyToM0(N, PtrBase); 2430 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2431 } 2432 } 2433 2434 if (!Offset) { 2435 N = glueCopyToM0(N, Ptr); 2436 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2437 } 2438 2439 SDValue Ops[] = { 2440 Offset, 2441 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2442 Chain, 2443 N->getOperand(N->getNumOperands() - 1) // New glue 2444 }; 2445 2446 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2447 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2448 } 2449 2450 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2451 switch (IntrID) { 2452 case Intrinsic::amdgcn_ds_gws_init: 2453 return AMDGPU::DS_GWS_INIT; 2454 case Intrinsic::amdgcn_ds_gws_barrier: 2455 return AMDGPU::DS_GWS_BARRIER; 2456 case Intrinsic::amdgcn_ds_gws_sema_v: 2457 return AMDGPU::DS_GWS_SEMA_V; 2458 case Intrinsic::amdgcn_ds_gws_sema_br: 2459 return AMDGPU::DS_GWS_SEMA_BR; 2460 case Intrinsic::amdgcn_ds_gws_sema_p: 2461 return AMDGPU::DS_GWS_SEMA_P; 2462 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2463 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2464 default: 2465 llvm_unreachable("not a gws intrinsic"); 2466 } 2467 } 2468 2469 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2470 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2471 !Subtarget->hasGWSSemaReleaseAll()) { 2472 // Let this error. 2473 SelectCode(N); 2474 return; 2475 } 2476 2477 // Chain, intrinsic ID, vsrc, offset 2478 const bool HasVSrc = N->getNumOperands() == 4; 2479 assert(HasVSrc || N->getNumOperands() == 3); 2480 2481 SDLoc SL(N); 2482 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2483 int ImmOffset = 0; 2484 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2485 MachineMemOperand *MMO = M->getMemOperand(); 2486 2487 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2488 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2489 2490 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2491 // offset field) % 64. Some versions of the programming guide omit the m0 2492 // part, or claim it's from offset 0. 2493 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2494 // If we have a constant offset, try to use the 0 in m0 as the base. 2495 // TODO: Look into changing the default m0 initialization value. If the 2496 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2497 // the immediate offset. 2498 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2499 ImmOffset = ConstOffset->getZExtValue(); 2500 } else { 2501 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2502 ImmOffset = BaseOffset.getConstantOperandVal(1); 2503 BaseOffset = BaseOffset.getOperand(0); 2504 } 2505 2506 // Prefer to do the shift in an SGPR since it should be possible to use m0 2507 // as the result directly. If it's already an SGPR, it will be eliminated 2508 // later. 2509 SDNode *SGPROffset 2510 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2511 BaseOffset); 2512 // Shift to offset in m0 2513 SDNode *M0Base 2514 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2515 SDValue(SGPROffset, 0), 2516 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2517 glueCopyToM0(N, SDValue(M0Base, 0)); 2518 } 2519 2520 SDValue Chain = N->getOperand(0); 2521 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2522 2523 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2524 SmallVector<SDValue, 5> Ops; 2525 if (HasVSrc) 2526 Ops.push_back(N->getOperand(2)); 2527 Ops.push_back(OffsetField); 2528 Ops.push_back(Chain); 2529 2530 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2531 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2532 } 2533 2534 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2535 if (Subtarget->getLDSBankCount() != 16) { 2536 // This is a single instruction with a pattern. 2537 SelectCode(N); 2538 return; 2539 } 2540 2541 SDLoc DL(N); 2542 2543 // This requires 2 instructions. It is possible to write a pattern to support 2544 // this, but the generated isel emitter doesn't correctly deal with multiple 2545 // output instructions using the same physical register input. The copy to m0 2546 // is incorrectly placed before the second instruction. 2547 // 2548 // TODO: Match source modifiers. 2549 // 2550 // def : Pat < 2551 // (int_amdgcn_interp_p1_f16 2552 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2553 // (i32 timm:$attrchan), (i32 timm:$attr), 2554 // (i1 timm:$high), M0), 2555 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2556 // timm:$attrchan, 0, 2557 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2558 // let Predicates = [has16BankLDS]; 2559 // } 2560 2561 // 16 bank LDS 2562 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2563 N->getOperand(5), SDValue()); 2564 2565 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2566 2567 SDNode *InterpMov = 2568 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2569 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2570 N->getOperand(3), // Attr 2571 N->getOperand(2), // Attrchan 2572 ToM0.getValue(1) // In glue 2573 }); 2574 2575 SDNode *InterpP1LV = 2576 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2577 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2578 N->getOperand(1), // Src0 2579 N->getOperand(3), // Attr 2580 N->getOperand(2), // Attrchan 2581 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2582 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2583 N->getOperand(4), // high 2584 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2585 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2586 SDValue(InterpMov, 1) 2587 }); 2588 2589 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2590 } 2591 2592 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2593 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2594 switch (IntrID) { 2595 case Intrinsic::amdgcn_ds_append: 2596 case Intrinsic::amdgcn_ds_consume: { 2597 if (N->getValueType(0) != MVT::i32) 2598 break; 2599 SelectDSAppendConsume(N, IntrID); 2600 return; 2601 } 2602 } 2603 2604 SelectCode(N); 2605 } 2606 2607 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2608 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2609 unsigned Opcode; 2610 switch (IntrID) { 2611 case Intrinsic::amdgcn_wqm: 2612 Opcode = AMDGPU::WQM; 2613 break; 2614 case Intrinsic::amdgcn_softwqm: 2615 Opcode = AMDGPU::SOFT_WQM; 2616 break; 2617 case Intrinsic::amdgcn_wwm: 2618 case Intrinsic::amdgcn_strict_wwm: 2619 Opcode = AMDGPU::STRICT_WWM; 2620 break; 2621 case Intrinsic::amdgcn_strict_wqm: 2622 Opcode = AMDGPU::STRICT_WQM; 2623 break; 2624 case Intrinsic::amdgcn_interp_p1_f16: 2625 SelectInterpP1F16(N); 2626 return; 2627 default: 2628 SelectCode(N); 2629 return; 2630 } 2631 2632 SDValue Src = N->getOperand(1); 2633 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2634 } 2635 2636 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2637 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2638 switch (IntrID) { 2639 case Intrinsic::amdgcn_ds_gws_init: 2640 case Intrinsic::amdgcn_ds_gws_barrier: 2641 case Intrinsic::amdgcn_ds_gws_sema_v: 2642 case Intrinsic::amdgcn_ds_gws_sema_br: 2643 case Intrinsic::amdgcn_ds_gws_sema_p: 2644 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2645 SelectDS_GWS(N, IntrID); 2646 return; 2647 default: 2648 break; 2649 } 2650 2651 SelectCode(N); 2652 } 2653 2654 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2655 unsigned &Mods, 2656 bool AllowAbs) const { 2657 Mods = 0; 2658 Src = In; 2659 2660 if (Src.getOpcode() == ISD::FNEG) { 2661 Mods |= SISrcMods::NEG; 2662 Src = Src.getOperand(0); 2663 } 2664 2665 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2666 Mods |= SISrcMods::ABS; 2667 Src = Src.getOperand(0); 2668 } 2669 2670 return true; 2671 } 2672 2673 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2674 SDValue &SrcMods) const { 2675 unsigned Mods; 2676 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2677 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2678 return true; 2679 } 2680 2681 return false; 2682 } 2683 2684 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2685 SDValue &SrcMods) const { 2686 unsigned Mods; 2687 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2688 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2689 return true; 2690 } 2691 2692 return false; 2693 } 2694 2695 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2696 SDValue &SrcMods) const { 2697 SelectVOP3Mods(In, Src, SrcMods); 2698 return isNoNanSrc(Src); 2699 } 2700 2701 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2702 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2703 return false; 2704 2705 Src = In; 2706 return true; 2707 } 2708 2709 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2710 SDValue &SrcMods, SDValue &Clamp, 2711 SDValue &Omod) const { 2712 SDLoc DL(In); 2713 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2714 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2715 2716 return SelectVOP3Mods(In, Src, SrcMods); 2717 } 2718 2719 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2720 SDValue &SrcMods, SDValue &Clamp, 2721 SDValue &Omod) const { 2722 SDLoc DL(In); 2723 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2724 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2725 2726 return SelectVOP3BMods(In, Src, SrcMods); 2727 } 2728 2729 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2730 SDValue &Clamp, SDValue &Omod) const { 2731 Src = In; 2732 2733 SDLoc DL(In); 2734 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2735 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2736 2737 return true; 2738 } 2739 2740 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2741 SDValue &SrcMods) const { 2742 unsigned Mods = 0; 2743 Src = In; 2744 2745 if (Src.getOpcode() == ISD::FNEG) { 2746 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2747 Src = Src.getOperand(0); 2748 } 2749 2750 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2751 unsigned VecMods = Mods; 2752 2753 SDValue Lo = stripBitcast(Src.getOperand(0)); 2754 SDValue Hi = stripBitcast(Src.getOperand(1)); 2755 2756 if (Lo.getOpcode() == ISD::FNEG) { 2757 Lo = stripBitcast(Lo.getOperand(0)); 2758 Mods ^= SISrcMods::NEG; 2759 } 2760 2761 if (Hi.getOpcode() == ISD::FNEG) { 2762 Hi = stripBitcast(Hi.getOperand(0)); 2763 Mods ^= SISrcMods::NEG_HI; 2764 } 2765 2766 if (isExtractHiElt(Lo, Lo)) 2767 Mods |= SISrcMods::OP_SEL_0; 2768 2769 if (isExtractHiElt(Hi, Hi)) 2770 Mods |= SISrcMods::OP_SEL_1; 2771 2772 unsigned VecSize = Src.getValueSizeInBits(); 2773 Lo = stripExtractLoElt(Lo); 2774 Hi = stripExtractLoElt(Hi); 2775 2776 if (Lo.getValueSizeInBits() > VecSize) { 2777 Lo = CurDAG->getTargetExtractSubreg( 2778 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2779 MVT::getIntegerVT(VecSize), Lo); 2780 } 2781 2782 if (Hi.getValueSizeInBits() > VecSize) { 2783 Hi = CurDAG->getTargetExtractSubreg( 2784 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2785 MVT::getIntegerVT(VecSize), Hi); 2786 } 2787 2788 assert(Lo.getValueSizeInBits() <= VecSize && 2789 Hi.getValueSizeInBits() <= VecSize); 2790 2791 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2792 // Really a scalar input. Just select from the low half of the register to 2793 // avoid packing. 2794 2795 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2796 Src = Lo; 2797 } else { 2798 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2799 2800 SDLoc SL(In); 2801 SDValue Undef = SDValue( 2802 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2803 Lo.getValueType()), 0); 2804 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2805 : AMDGPU::SReg_64RegClassID; 2806 const SDValue Ops[] = { 2807 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2808 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2809 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2810 2811 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2812 Src.getValueType(), Ops), 0); 2813 } 2814 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2815 return true; 2816 } 2817 2818 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2819 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2820 .bitcastToAPInt().getZExtValue(); 2821 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2822 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2823 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2824 return true; 2825 } 2826 } 2827 2828 Mods = VecMods; 2829 } 2830 2831 // Packed instructions do not have abs modifiers. 2832 Mods |= SISrcMods::OP_SEL_1; 2833 2834 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2835 return true; 2836 } 2837 2838 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2839 SDValue &SrcMods) const { 2840 Src = In; 2841 // FIXME: Handle op_sel 2842 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2843 return true; 2844 } 2845 2846 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2847 SDValue &SrcMods) const { 2848 // FIXME: Handle op_sel 2849 return SelectVOP3Mods(In, Src, SrcMods); 2850 } 2851 2852 // The return value is not whether the match is possible (which it always is), 2853 // but whether or not it a conversion is really used. 2854 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2855 unsigned &Mods) const { 2856 Mods = 0; 2857 SelectVOP3ModsImpl(In, Src, Mods); 2858 2859 if (Src.getOpcode() == ISD::FP_EXTEND) { 2860 Src = Src.getOperand(0); 2861 assert(Src.getValueType() == MVT::f16); 2862 Src = stripBitcast(Src); 2863 2864 // Be careful about folding modifiers if we already have an abs. fneg is 2865 // applied last, so we don't want to apply an earlier fneg. 2866 if ((Mods & SISrcMods::ABS) == 0) { 2867 unsigned ModsTmp; 2868 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2869 2870 if ((ModsTmp & SISrcMods::NEG) != 0) 2871 Mods ^= SISrcMods::NEG; 2872 2873 if ((ModsTmp & SISrcMods::ABS) != 0) 2874 Mods |= SISrcMods::ABS; 2875 } 2876 2877 // op_sel/op_sel_hi decide the source type and source. 2878 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2879 // If the sources's op_sel is set, it picks the high half of the source 2880 // register. 2881 2882 Mods |= SISrcMods::OP_SEL_1; 2883 if (isExtractHiElt(Src, Src)) { 2884 Mods |= SISrcMods::OP_SEL_0; 2885 2886 // TODO: Should we try to look for neg/abs here? 2887 } 2888 2889 return true; 2890 } 2891 2892 return false; 2893 } 2894 2895 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2896 SDValue &SrcMods) const { 2897 unsigned Mods = 0; 2898 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2899 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2900 return true; 2901 } 2902 2903 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2904 if (In.isUndef()) 2905 return CurDAG->getUNDEF(MVT::i32); 2906 2907 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2908 SDLoc SL(In); 2909 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2910 } 2911 2912 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2913 SDLoc SL(In); 2914 return CurDAG->getConstant( 2915 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2916 } 2917 2918 SDValue Src; 2919 if (isExtractHiElt(In, Src)) 2920 return Src; 2921 2922 return SDValue(); 2923 } 2924 2925 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2926 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2927 2928 const SIRegisterInfo *SIRI = 2929 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2930 const SIInstrInfo * SII = 2931 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2932 2933 unsigned Limit = 0; 2934 bool AllUsesAcceptSReg = true; 2935 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2936 Limit < 10 && U != E; ++U, ++Limit) { 2937 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2938 2939 // If the register class is unknown, it could be an unknown 2940 // register class that needs to be an SGPR, e.g. an inline asm 2941 // constraint 2942 if (!RC || SIRI->isSGPRClass(RC)) 2943 return false; 2944 2945 if (RC != &AMDGPU::VS_32RegClass) { 2946 AllUsesAcceptSReg = false; 2947 SDNode * User = *U; 2948 if (User->isMachineOpcode()) { 2949 unsigned Opc = User->getMachineOpcode(); 2950 MCInstrDesc Desc = SII->get(Opc); 2951 if (Desc.isCommutable()) { 2952 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2953 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2954 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2955 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2956 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2957 if (CommutedRC == &AMDGPU::VS_32RegClass) 2958 AllUsesAcceptSReg = true; 2959 } 2960 } 2961 } 2962 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2963 // commuting current user. This means have at least one use 2964 // that strictly require VGPR. Thus, we will not attempt to commute 2965 // other user instructions. 2966 if (!AllUsesAcceptSReg) 2967 break; 2968 } 2969 } 2970 return !AllUsesAcceptSReg && (Limit < 10); 2971 } 2972 2973 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2974 auto Ld = cast<LoadSDNode>(N); 2975 2976 return Ld->getAlignment() >= 4 && 2977 ( 2978 ( 2979 ( 2980 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2981 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2982 ) 2983 && 2984 !N->isDivergent() 2985 ) 2986 || 2987 ( 2988 Subtarget->getScalarizeGlobalBehavior() && 2989 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2990 Ld->isSimple() && 2991 !N->isDivergent() && 2992 static_cast<const SITargetLowering *>( 2993 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2994 ) 2995 ); 2996 } 2997 2998 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2999 const AMDGPUTargetLowering& Lowering = 3000 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3001 bool IsModified = false; 3002 do { 3003 IsModified = false; 3004 3005 // Go over all selected nodes and try to fold them a bit more 3006 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3007 while (Position != CurDAG->allnodes_end()) { 3008 SDNode *Node = &*Position++; 3009 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3010 if (!MachineNode) 3011 continue; 3012 3013 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3014 if (ResNode != Node) { 3015 if (ResNode) 3016 ReplaceUses(Node, ResNode); 3017 IsModified = true; 3018 } 3019 } 3020 CurDAG->RemoveDeadNodes(); 3021 } while (IsModified); 3022 } 3023 3024 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 3025 Subtarget = &MF.getSubtarget<R600Subtarget>(); 3026 return SelectionDAGISel::runOnMachineFunction(MF); 3027 } 3028 3029 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 3030 if (!N->readMem()) 3031 return false; 3032 if (CbId == -1) 3033 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3034 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 3035 3036 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 3037 } 3038 3039 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 3040 SDValue& IntPtr) { 3041 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 3042 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 3043 true); 3044 return true; 3045 } 3046 return false; 3047 } 3048 3049 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 3050 SDValue& BaseReg, SDValue &Offset) { 3051 if (!isa<ConstantSDNode>(Addr)) { 3052 BaseReg = Addr; 3053 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 3054 return true; 3055 } 3056 return false; 3057 } 3058 3059 void R600DAGToDAGISel::Select(SDNode *N) { 3060 unsigned int Opc = N->getOpcode(); 3061 if (N->isMachineOpcode()) { 3062 N->setNodeId(-1); 3063 return; // Already selected. 3064 } 3065 3066 switch (Opc) { 3067 default: break; 3068 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 3069 case ISD::SCALAR_TO_VECTOR: 3070 case ISD::BUILD_VECTOR: { 3071 EVT VT = N->getValueType(0); 3072 unsigned NumVectorElts = VT.getVectorNumElements(); 3073 unsigned RegClassID; 3074 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 3075 // that adds a 128 bits reg copy when going through TwoAddressInstructions 3076 // pass. We want to avoid 128 bits copies as much as possible because they 3077 // can't be bundled by our scheduler. 3078 switch(NumVectorElts) { 3079 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 3080 case 4: 3081 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 3082 RegClassID = R600::R600_Reg128VerticalRegClassID; 3083 else 3084 RegClassID = R600::R600_Reg128RegClassID; 3085 break; 3086 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 3087 } 3088 SelectBuildVector(N, RegClassID); 3089 return; 3090 } 3091 } 3092 3093 SelectCode(N); 3094 } 3095 3096 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 3097 SDValue &Offset) { 3098 ConstantSDNode *C; 3099 SDLoc DL(Addr); 3100 3101 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 3102 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3103 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3104 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 3105 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 3106 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3107 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3108 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 3109 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 3110 Base = Addr.getOperand(0); 3111 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3112 } else { 3113 Base = Addr; 3114 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 3115 } 3116 3117 return true; 3118 } 3119 3120 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 3121 SDValue &Offset) { 3122 ConstantSDNode *IMMOffset; 3123 3124 if (Addr.getOpcode() == ISD::ADD 3125 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 3126 && isInt<16>(IMMOffset->getZExtValue())) { 3127 3128 Base = Addr.getOperand(0); 3129 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3130 MVT::i32); 3131 return true; 3132 // If the pointer address is constant, we can move it to the offset field. 3133 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 3134 && isInt<16>(IMMOffset->getZExtValue())) { 3135 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 3136 SDLoc(CurDAG->getEntryNode()), 3137 R600::ZERO, MVT::i32); 3138 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3139 MVT::i32); 3140 return true; 3141 } 3142 3143 // Default case, no offset 3144 Base = Addr; 3145 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 3146 return true; 3147 } 3148