1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //==-----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// Defines an instruction selector for the AMDGPU target. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUArgumentUsageInfo.h" 17 #include "AMDGPUISelLowering.h" // For AMDGPUISD 18 #include "AMDGPUInstrInfo.h" 19 #include "AMDGPUPerfHintAnalysis.h" 20 #include "AMDGPURegisterInfo.h" 21 #include "AMDGPUSubtarget.h" 22 #include "AMDGPUTargetMachine.h" 23 #include "SIDefines.h" 24 #include "SIISelLowering.h" 25 #include "SIInstrInfo.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIRegisterInfo.h" 28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/ISDOpcodes.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGISel.h" 40 #include "llvm/CodeGen/SelectionDAGNodes.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/MC/MCInstrDesc.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CodeGen.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MachineValueType.h" 49 #include "llvm/Support/MathExtras.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <new> 53 #include <vector> 54 55 using namespace llvm; 56 57 namespace llvm { 58 59 class R600InstrInfo; 60 61 } // end namespace llvm 62 63 //===----------------------------------------------------------------------===// 64 // Instruction Selector Implementation 65 //===----------------------------------------------------------------------===// 66 67 namespace { 68 69 /// AMDGPU specific code to select AMDGPU machine instructions for 70 /// SelectionDAG operations. 71 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 72 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 73 // make the right decision when generating code for different targets. 74 const GCNSubtarget *Subtarget; 75 bool EnableLateStructurizeCFG; 76 77 public: 78 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 79 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 80 : SelectionDAGISel(*TM, OptLevel) { 81 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 82 } 83 ~AMDGPUDAGToDAGISel() override = default; 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override { 86 AU.addRequired<AMDGPUArgumentUsageInfo>(); 87 AU.addRequired<AMDGPUPerfHintAnalysis>(); 88 AU.addRequired<LegacyDivergenceAnalysis>(); 89 SelectionDAGISel::getAnalysisUsage(AU); 90 } 91 92 bool runOnMachineFunction(MachineFunction &MF) override; 93 void Select(SDNode *N) override; 94 StringRef getPassName() const override; 95 void PostprocessISelDAG() override; 96 97 protected: 98 void SelectBuildVector(SDNode *N, unsigned RegClassID); 99 100 private: 101 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 102 bool isNoNanSrc(SDValue N) const; 103 bool isInlineImmediate(const SDNode *N) const; 104 bool isVGPRImm(const SDNode *N) const; 105 bool isUniformLoad(const SDNode *N) const; 106 bool isUniformBr(const SDNode *N) const; 107 108 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 109 110 SDNode *glueCopyToM0(SDNode *N) const; 111 112 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 113 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 114 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 115 bool isDSOffsetLegal(const SDValue &Base, unsigned Offset, 116 unsigned OffsetBits) const; 117 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 118 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 119 SDValue &Offset1) const; 120 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 121 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 122 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 123 SDValue &TFE) const; 124 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 125 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 126 SDValue &SLC, SDValue &TFE) const; 127 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 128 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 129 SDValue &SLC) const; 130 bool SelectMUBUFScratchOffen(SDNode *Parent, 131 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 132 SDValue &SOffset, SDValue &ImmOffset) const; 133 bool SelectMUBUFScratchOffset(SDNode *Parent, 134 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 135 SDValue &Offset) const; 136 137 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 138 SDValue &Offset, SDValue &GLC, SDValue &SLC, 139 SDValue &TFE) const; 140 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 141 SDValue &Offset, SDValue &SLC) const; 142 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 143 SDValue &Offset) const; 144 145 bool SelectFlatAtomic(SDValue Addr, SDValue &VAddr, 146 SDValue &Offset, SDValue &SLC) const; 147 bool SelectFlatAtomicSigned(SDValue Addr, SDValue &VAddr, 148 SDValue &Offset, SDValue &SLC) const; 149 150 template <bool IsSigned> 151 bool SelectFlatOffset(SDValue Addr, SDValue &VAddr, 152 SDValue &Offset, SDValue &SLC) const; 153 154 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 155 bool &Imm) const; 156 SDValue Expand32BitAddress(SDValue Addr) const; 157 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 158 bool &Imm) const; 159 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 160 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 161 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 162 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 163 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 164 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 165 166 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 167 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const; 168 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 169 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 170 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 171 SDValue &Clamp, SDValue &Omod) const; 172 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 173 SDValue &Clamp, SDValue &Omod) const; 174 175 bool SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, SDValue &SrcMods, 176 SDValue &Clamp, 177 SDValue &Omod) const; 178 179 bool SelectVOP3OMods(SDValue In, SDValue &Src, 180 SDValue &Clamp, SDValue &Omod) const; 181 182 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 183 bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 184 SDValue &Clamp) const; 185 186 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 187 bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods, 188 SDValue &Clamp) const; 189 190 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 191 bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 192 SDValue &Clamp) const; 193 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 194 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 195 196 bool SelectHi16Elt(SDValue In, SDValue &Src) const; 197 198 void SelectADD_SUB_I64(SDNode *N); 199 void SelectUADDO_USUBO(SDNode *N); 200 void SelectDIV_SCALE(SDNode *N); 201 void SelectMAD_64_32(SDNode *N); 202 void SelectFMA_W_CHAIN(SDNode *N); 203 void SelectFMUL_W_CHAIN(SDNode *N); 204 205 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 206 uint32_t Offset, uint32_t Width); 207 void SelectS_BFEFromShifts(SDNode *N); 208 void SelectS_BFE(SDNode *N); 209 bool isCBranchSCC(const SDNode *N) const; 210 void SelectBRCOND(SDNode *N); 211 void SelectFMAD_FMA(SDNode *N); 212 void SelectATOMIC_CMP_SWAP(SDNode *N); 213 214 protected: 215 // Include the pieces autogenerated from the target description. 216 #include "AMDGPUGenDAGISel.inc" 217 }; 218 219 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 220 const R600Subtarget *Subtarget; 221 222 bool isConstantLoad(const MemSDNode *N, int cbID) const; 223 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 224 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 225 SDValue& Offset); 226 public: 227 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 228 AMDGPUDAGToDAGISel(TM, OptLevel) {} 229 230 void Select(SDNode *N) override; 231 232 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 233 SDValue &Offset) override; 234 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 235 SDValue &Offset) override; 236 237 bool runOnMachineFunction(MachineFunction &MF) override; 238 protected: 239 // Include the pieces autogenerated from the target description. 240 #include "R600GenDAGISel.inc" 241 }; 242 243 } // end anonymous namespace 244 245 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 246 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 247 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 248 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 249 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 250 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 251 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 252 253 /// This pass converts a legalized DAG into a AMDGPU-specific 254 // DAG, ready for instruction scheduling. 255 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 256 CodeGenOpt::Level OptLevel) { 257 return new AMDGPUDAGToDAGISel(TM, OptLevel); 258 } 259 260 /// This pass converts a legalized DAG into a R600-specific 261 // DAG, ready for instruction scheduling. 262 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 263 CodeGenOpt::Level OptLevel) { 264 return new R600DAGToDAGISel(TM, OptLevel); 265 } 266 267 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 268 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 269 return SelectionDAGISel::runOnMachineFunction(MF); 270 } 271 272 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 273 if (TM.Options.NoNaNsFPMath) 274 return true; 275 276 // TODO: Move into isKnownNeverNaN 277 if (N->getFlags().isDefined()) 278 return N->getFlags().hasNoNaNs(); 279 280 return CurDAG->isKnownNeverNaN(N); 281 } 282 283 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { 284 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 285 286 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 287 return TII->isInlineConstant(C->getAPIntValue()); 288 289 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 290 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 291 292 return false; 293 } 294 295 /// Determine the register class for \p OpNo 296 /// \returns The register class of the virtual register that will be used for 297 /// the given operand number \OpNo or NULL if the register class cannot be 298 /// determined. 299 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 300 unsigned OpNo) const { 301 if (!N->isMachineOpcode()) { 302 if (N->getOpcode() == ISD::CopyToReg) { 303 unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 304 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 305 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 306 return MRI.getRegClass(Reg); 307 } 308 309 const SIRegisterInfo *TRI 310 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 311 return TRI->getPhysRegClass(Reg); 312 } 313 314 return nullptr; 315 } 316 317 switch (N->getMachineOpcode()) { 318 default: { 319 const MCInstrDesc &Desc = 320 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 321 unsigned OpIdx = Desc.getNumDefs() + OpNo; 322 if (OpIdx >= Desc.getNumOperands()) 323 return nullptr; 324 int RegClass = Desc.OpInfo[OpIdx].RegClass; 325 if (RegClass == -1) 326 return nullptr; 327 328 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 329 } 330 case AMDGPU::REG_SEQUENCE: { 331 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 332 const TargetRegisterClass *SuperRC = 333 Subtarget->getRegisterInfo()->getRegClass(RCID); 334 335 SDValue SubRegOp = N->getOperand(OpNo + 1); 336 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 337 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 338 SubRegIdx); 339 } 340 } 341 } 342 343 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N) const { 344 if (cast<MemSDNode>(N)->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS || 345 !Subtarget->ldsRequiresM0Init()) 346 return N; 347 348 const SITargetLowering& Lowering = 349 *static_cast<const SITargetLowering*>(getTargetLowering()); 350 351 // Write max value to m0 before each load operation 352 353 SDValue M0 = Lowering.copyToM0(*CurDAG, CurDAG->getEntryNode(), SDLoc(N), 354 CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 355 356 SDValue Glue = M0.getValue(1); 357 358 SmallVector <SDValue, 8> Ops; 359 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 360 Ops.push_back(N->getOperand(i)); 361 } 362 Ops.push_back(Glue); 363 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 364 } 365 366 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 367 EVT VT) const { 368 SDNode *Lo = CurDAG->getMachineNode( 369 AMDGPU::S_MOV_B32, DL, MVT::i32, 370 CurDAG->getConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 371 SDNode *Hi = 372 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 373 CurDAG->getConstant(Imm >> 32, DL, MVT::i32)); 374 const SDValue Ops[] = { 375 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 376 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 377 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 378 379 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 380 } 381 382 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) { 383 switch (NumVectorElts) { 384 case 1: 385 return AMDGPU::SReg_32_XM0RegClassID; 386 case 2: 387 return AMDGPU::SReg_64RegClassID; 388 case 4: 389 return AMDGPU::SReg_128RegClassID; 390 case 8: 391 return AMDGPU::SReg_256RegClassID; 392 case 16: 393 return AMDGPU::SReg_512RegClassID; 394 } 395 396 llvm_unreachable("invalid vector size"); 397 } 398 399 static bool getConstantValue(SDValue N, uint32_t &Out) { 400 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 401 Out = C->getAPIntValue().getZExtValue(); 402 return true; 403 } 404 405 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 406 Out = C->getValueAPF().bitcastToAPInt().getZExtValue(); 407 return true; 408 } 409 410 return false; 411 } 412 413 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 414 EVT VT = N->getValueType(0); 415 unsigned NumVectorElts = VT.getVectorNumElements(); 416 EVT EltVT = VT.getVectorElementType(); 417 SDLoc DL(N); 418 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 419 420 if (NumVectorElts == 1) { 421 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 422 RegClass); 423 return; 424 } 425 426 assert(NumVectorElts <= 16 && "Vectors with more than 16 elements not " 427 "supported yet"); 428 // 16 = Max Num Vector Elements 429 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 430 // 1 = Vector Register Class 431 SmallVector<SDValue, 16 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 432 433 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 434 bool IsRegSeq = true; 435 unsigned NOps = N->getNumOperands(); 436 for (unsigned i = 0; i < NOps; i++) { 437 // XXX: Why is this here? 438 if (isa<RegisterSDNode>(N->getOperand(i))) { 439 IsRegSeq = false; 440 break; 441 } 442 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i); 443 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 444 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 445 } 446 if (NOps != NumVectorElts) { 447 // Fill in the missing undef elements if this was a scalar_to_vector. 448 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 449 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 450 DL, EltVT); 451 for (unsigned i = NOps; i < NumVectorElts; ++i) { 452 unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i); 453 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 454 RegSeqArgs[1 + (2 * i) + 1] = 455 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 456 } 457 } 458 459 if (!IsRegSeq) 460 SelectCode(N); 461 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 462 } 463 464 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 465 unsigned int Opc = N->getOpcode(); 466 if (N->isMachineOpcode()) { 467 N->setNodeId(-1); 468 return; // Already selected. 469 } 470 471 if (isa<AtomicSDNode>(N) || 472 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 473 Opc == AMDGPUISD::ATOMIC_LOAD_FADD || 474 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 475 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) 476 N = glueCopyToM0(N); 477 478 switch (Opc) { 479 default: 480 break; 481 // We are selecting i64 ADD here instead of custom lower it during 482 // DAG legalization, so we can fold some i64 ADDs used for address 483 // calculation into the LOAD and STORE instructions. 484 case ISD::ADDC: 485 case ISD::ADDE: 486 case ISD::SUBC: 487 case ISD::SUBE: { 488 if (N->getValueType(0) != MVT::i64) 489 break; 490 491 SelectADD_SUB_I64(N); 492 return; 493 } 494 case ISD::UADDO: 495 case ISD::USUBO: { 496 SelectUADDO_USUBO(N); 497 return; 498 } 499 case AMDGPUISD::FMUL_W_CHAIN: { 500 SelectFMUL_W_CHAIN(N); 501 return; 502 } 503 case AMDGPUISD::FMA_W_CHAIN: { 504 SelectFMA_W_CHAIN(N); 505 return; 506 } 507 508 case ISD::SCALAR_TO_VECTOR: 509 case ISD::BUILD_VECTOR: { 510 EVT VT = N->getValueType(0); 511 unsigned NumVectorElts = VT.getVectorNumElements(); 512 if (VT.getScalarSizeInBits() == 16) { 513 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 514 uint32_t LHSVal, RHSVal; 515 if (getConstantValue(N->getOperand(0), LHSVal) && 516 getConstantValue(N->getOperand(1), RHSVal)) { 517 uint32_t K = LHSVal | (RHSVal << 16); 518 CurDAG->SelectNodeTo(N, AMDGPU::S_MOV_B32, VT, 519 CurDAG->getTargetConstant(K, SDLoc(N), MVT::i32)); 520 return; 521 } 522 } 523 524 break; 525 } 526 527 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 528 unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts); 529 SelectBuildVector(N, RegClassID); 530 return; 531 } 532 case ISD::BUILD_PAIR: { 533 SDValue RC, SubReg0, SubReg1; 534 SDLoc DL(N); 535 if (N->getValueType(0) == MVT::i128) { 536 RC = CurDAG->getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32); 537 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 538 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 539 } else if (N->getValueType(0) == MVT::i64) { 540 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 541 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 542 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 543 } else { 544 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 545 } 546 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 547 N->getOperand(1), SubReg1 }; 548 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 549 N->getValueType(0), Ops)); 550 return; 551 } 552 553 case ISD::Constant: 554 case ISD::ConstantFP: { 555 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 556 break; 557 558 uint64_t Imm; 559 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 560 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 561 else { 562 ConstantSDNode *C = cast<ConstantSDNode>(N); 563 Imm = C->getZExtValue(); 564 } 565 566 SDLoc DL(N); 567 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 568 return; 569 } 570 case ISD::LOAD: 571 case ISD::STORE: 572 case ISD::ATOMIC_LOAD: 573 case ISD::ATOMIC_STORE: { 574 N = glueCopyToM0(N); 575 break; 576 } 577 578 case AMDGPUISD::BFE_I32: 579 case AMDGPUISD::BFE_U32: { 580 // There is a scalar version available, but unlike the vector version which 581 // has a separate operand for the offset and width, the scalar version packs 582 // the width and offset into a single operand. Try to move to the scalar 583 // version if the offsets are constant, so that we can try to keep extended 584 // loads of kernel arguments in SGPRs. 585 586 // TODO: Technically we could try to pattern match scalar bitshifts of 587 // dynamic values, but it's probably not useful. 588 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 589 if (!Offset) 590 break; 591 592 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 593 if (!Width) 594 break; 595 596 bool Signed = Opc == AMDGPUISD::BFE_I32; 597 598 uint32_t OffsetVal = Offset->getZExtValue(); 599 uint32_t WidthVal = Width->getZExtValue(); 600 601 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 602 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 603 return; 604 } 605 case AMDGPUISD::DIV_SCALE: { 606 SelectDIV_SCALE(N); 607 return; 608 } 609 case AMDGPUISD::MAD_I64_I32: 610 case AMDGPUISD::MAD_U64_U32: { 611 SelectMAD_64_32(N); 612 return; 613 } 614 case ISD::CopyToReg: { 615 const SITargetLowering& Lowering = 616 *static_cast<const SITargetLowering*>(getTargetLowering()); 617 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 618 break; 619 } 620 case ISD::AND: 621 case ISD::SRL: 622 case ISD::SRA: 623 case ISD::SIGN_EXTEND_INREG: 624 if (N->getValueType(0) != MVT::i32) 625 break; 626 627 SelectS_BFE(N); 628 return; 629 case ISD::BRCOND: 630 SelectBRCOND(N); 631 return; 632 case ISD::FMAD: 633 case ISD::FMA: 634 SelectFMAD_FMA(N); 635 return; 636 case AMDGPUISD::ATOMIC_CMP_SWAP: 637 SelectATOMIC_CMP_SWAP(N); 638 return; 639 case AMDGPUISD::CVT_PKRTZ_F16_F32: 640 case AMDGPUISD::CVT_PKNORM_I16_F32: 641 case AMDGPUISD::CVT_PKNORM_U16_F32: 642 case AMDGPUISD::CVT_PK_U16_U32: 643 case AMDGPUISD::CVT_PK_I16_I32: { 644 // Hack around using a legal type if f16 is illegal. 645 if (N->getValueType(0) == MVT::i32) { 646 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 647 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 648 { N->getOperand(0), N->getOperand(1) }); 649 SelectCode(N); 650 return; 651 } 652 } 653 } 654 655 SelectCode(N); 656 } 657 658 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 659 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 660 const Instruction *Term = BB->getTerminator(); 661 return Term->getMetadata("amdgpu.uniform") || 662 Term->getMetadata("structurizecfg.uniform"); 663 } 664 665 StringRef AMDGPUDAGToDAGISel::getPassName() const { 666 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 667 } 668 669 //===----------------------------------------------------------------------===// 670 // Complex Patterns 671 //===----------------------------------------------------------------------===// 672 673 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 674 SDValue &Offset) { 675 return false; 676 } 677 678 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 679 SDValue &Offset) { 680 ConstantSDNode *C; 681 SDLoc DL(Addr); 682 683 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 684 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 685 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 686 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 687 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 688 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 689 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 690 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 691 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 692 Base = Addr.getOperand(0); 693 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 694 } else { 695 Base = Addr; 696 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 697 } 698 699 return true; 700 } 701 702 // FIXME: Should only handle addcarry/subcarry 703 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 704 SDLoc DL(N); 705 SDValue LHS = N->getOperand(0); 706 SDValue RHS = N->getOperand(1); 707 708 unsigned Opcode = N->getOpcode(); 709 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 710 bool ProduceCarry = 711 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 712 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 713 714 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 715 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 716 717 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 718 DL, MVT::i32, LHS, Sub0); 719 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 720 DL, MVT::i32, LHS, Sub1); 721 722 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 723 DL, MVT::i32, RHS, Sub0); 724 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 725 DL, MVT::i32, RHS, Sub1); 726 727 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 728 729 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32; 730 unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32; 731 732 SDNode *AddLo; 733 if (!ConsumeCarry) { 734 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 735 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 736 } else { 737 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 738 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 739 } 740 SDValue AddHiArgs[] = { 741 SDValue(Hi0, 0), 742 SDValue(Hi1, 0), 743 SDValue(AddLo, 1) 744 }; 745 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 746 747 SDValue RegSequenceArgs[] = { 748 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 749 SDValue(AddLo,0), 750 Sub0, 751 SDValue(AddHi,0), 752 Sub1, 753 }; 754 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 755 MVT::i64, RegSequenceArgs); 756 757 if (ProduceCarry) { 758 // Replace the carry-use 759 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 760 } 761 762 // Replace the remaining uses. 763 ReplaceNode(N, RegSequence); 764 } 765 766 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 767 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 768 // carry out despite the _i32 name. These were renamed in VI to _U32. 769 // FIXME: We should probably rename the opcodes here. 770 unsigned Opc = N->getOpcode() == ISD::UADDO ? 771 AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64; 772 773 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 774 { N->getOperand(0), N->getOperand(1) }); 775 } 776 777 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 778 SDLoc SL(N); 779 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 780 SDValue Ops[10]; 781 782 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 783 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 784 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 785 Ops[8] = N->getOperand(0); 786 Ops[9] = N->getOperand(4); 787 788 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops); 789 } 790 791 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 792 SDLoc SL(N); 793 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 794 SDValue Ops[8]; 795 796 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 797 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 798 Ops[6] = N->getOperand(0); 799 Ops[7] = N->getOperand(3); 800 801 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 802 } 803 804 // We need to handle this here because tablegen doesn't support matching 805 // instructions with multiple outputs. 806 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 807 SDLoc SL(N); 808 EVT VT = N->getValueType(0); 809 810 assert(VT == MVT::f32 || VT == MVT::f64); 811 812 unsigned Opc 813 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; 814 815 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) }; 816 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 817 } 818 819 // We need to handle this here because tablegen doesn't support matching 820 // instructions with multiple outputs. 821 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 822 SDLoc SL(N); 823 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 824 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32; 825 826 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 827 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 828 Clamp }; 829 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 830 } 831 832 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(const SDValue &Base, unsigned Offset, 833 unsigned OffsetBits) const { 834 if ((OffsetBits == 16 && !isUInt<16>(Offset)) || 835 (OffsetBits == 8 && !isUInt<8>(Offset))) 836 return false; 837 838 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS || 839 Subtarget->unsafeDSOffsetFoldingEnabled()) 840 return true; 841 842 // On Southern Islands instruction with a negative base value and an offset 843 // don't seem to work. 844 return CurDAG->SignBitIsZero(Base); 845 } 846 847 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 848 SDValue &Offset) const { 849 SDLoc DL(Addr); 850 if (CurDAG->isBaseWithConstantOffset(Addr)) { 851 SDValue N0 = Addr.getOperand(0); 852 SDValue N1 = Addr.getOperand(1); 853 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 854 if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) { 855 // (add n0, c0) 856 Base = N0; 857 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 858 return true; 859 } 860 } else if (Addr.getOpcode() == ISD::SUB) { 861 // sub C, x -> add (sub 0, x), C 862 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 863 int64_t ByteOffset = C->getSExtValue(); 864 if (isUInt<16>(ByteOffset)) { 865 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 866 867 // XXX - This is kind of hacky. Create a dummy sub node so we can check 868 // the known bits in isDSOffsetLegal. We need to emit the selected node 869 // here, so this is thrown away. 870 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 871 Zero, Addr.getOperand(1)); 872 873 if (isDSOffsetLegal(Sub, ByteOffset, 16)) { 874 // FIXME: Select to VOP3 version for with-carry. 875 unsigned SubOp = Subtarget->hasAddNoCarry() ? 876 AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32; 877 878 MachineSDNode *MachineSub 879 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, 880 Zero, Addr.getOperand(1)); 881 882 Base = SDValue(MachineSub, 0); 883 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 884 return true; 885 } 886 } 887 } 888 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 889 // If we have a constant address, prefer to put the constant into the 890 // offset. This can save moves to load the constant address since multiple 891 // operations can share the zero base address register, and enables merging 892 // into read2 / write2 instructions. 893 894 SDLoc DL(Addr); 895 896 if (isUInt<16>(CAddr->getZExtValue())) { 897 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 898 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 899 DL, MVT::i32, Zero); 900 Base = SDValue(MovZero, 0); 901 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 902 return true; 903 } 904 } 905 906 // default case 907 Base = Addr; 908 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 909 return true; 910 } 911 912 // TODO: If offset is too big, put low 16-bit into offset. 913 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 914 SDValue &Offset0, 915 SDValue &Offset1) const { 916 SDLoc DL(Addr); 917 918 if (CurDAG->isBaseWithConstantOffset(Addr)) { 919 SDValue N0 = Addr.getOperand(0); 920 SDValue N1 = Addr.getOperand(1); 921 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 922 unsigned DWordOffset0 = C1->getZExtValue() / 4; 923 unsigned DWordOffset1 = DWordOffset0 + 1; 924 // (add n0, c0) 925 if (isDSOffsetLegal(N0, DWordOffset1, 8)) { 926 Base = N0; 927 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 928 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 929 return true; 930 } 931 } else if (Addr.getOpcode() == ISD::SUB) { 932 // sub C, x -> add (sub 0, x), C 933 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 934 unsigned DWordOffset0 = C->getZExtValue() / 4; 935 unsigned DWordOffset1 = DWordOffset0 + 1; 936 937 if (isUInt<8>(DWordOffset0)) { 938 SDLoc DL(Addr); 939 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 940 941 // XXX - This is kind of hacky. Create a dummy sub node so we can check 942 // the known bits in isDSOffsetLegal. We need to emit the selected node 943 // here, so this is thrown away. 944 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 945 Zero, Addr.getOperand(1)); 946 947 if (isDSOffsetLegal(Sub, DWordOffset1, 8)) { 948 unsigned SubOp = Subtarget->hasAddNoCarry() ? 949 AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_I32_e32; 950 951 MachineSDNode *MachineSub 952 = CurDAG->getMachineNode(SubOp, DL, MVT::i32, 953 Zero, Addr.getOperand(1)); 954 955 Base = SDValue(MachineSub, 0); 956 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 957 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 958 return true; 959 } 960 } 961 } 962 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 963 unsigned DWordOffset0 = CAddr->getZExtValue() / 4; 964 unsigned DWordOffset1 = DWordOffset0 + 1; 965 assert(4 * DWordOffset0 == CAddr->getZExtValue()); 966 967 if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) { 968 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 969 MachineSDNode *MovZero 970 = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 971 DL, MVT::i32, Zero); 972 Base = SDValue(MovZero, 0); 973 Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8); 974 Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8); 975 return true; 976 } 977 } 978 979 // default case 980 981 Base = Addr; 982 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 983 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 984 return true; 985 } 986 987 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 988 SDValue &VAddr, SDValue &SOffset, 989 SDValue &Offset, SDValue &Offen, 990 SDValue &Idxen, SDValue &Addr64, 991 SDValue &GLC, SDValue &SLC, 992 SDValue &TFE) const { 993 // Subtarget prefers to use flat instruction 994 if (Subtarget->useFlatForGlobal()) 995 return false; 996 997 SDLoc DL(Addr); 998 999 if (!GLC.getNode()) 1000 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1001 if (!SLC.getNode()) 1002 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1003 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1004 1005 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1006 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1007 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1008 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1009 1010 ConstantSDNode *C1 = nullptr; 1011 SDValue N0 = Addr; 1012 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1013 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1014 if (isUInt<32>(C1->getZExtValue())) 1015 N0 = Addr.getOperand(0); 1016 else 1017 C1 = nullptr; 1018 } 1019 1020 if (N0.getOpcode() == ISD::ADD) { 1021 // (add N2, N3) -> addr64, or 1022 // (add (add N2, N3), C1) -> addr64 1023 SDValue N2 = N0.getOperand(0); 1024 SDValue N3 = N0.getOperand(1); 1025 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1026 1027 if (N2->isDivergent()) { 1028 if (N3->isDivergent()) { 1029 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1030 // addr64, and construct the resource from a 0 address. 1031 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1032 VAddr = N0; 1033 } else { 1034 // N2 is divergent, N3 is not. 1035 Ptr = N3; 1036 VAddr = N2; 1037 } 1038 } else { 1039 // N2 is not divergent. 1040 Ptr = N2; 1041 VAddr = N3; 1042 } 1043 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1044 } else if (N0->isDivergent()) { 1045 // N0 is divergent. Use it as the addr64, and construct the resource from a 1046 // 0 address. 1047 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1048 VAddr = N0; 1049 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1050 } else { 1051 // N0 -> offset, or 1052 // (N0 + C1) -> offset 1053 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1054 Ptr = N0; 1055 } 1056 1057 if (!C1) { 1058 // No offset. 1059 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1060 return true; 1061 } 1062 1063 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1064 // Legal offset for instruction. 1065 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1066 return true; 1067 } 1068 1069 // Illegal offset, store it in soffset. 1070 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1071 SOffset = 1072 SDValue(CurDAG->getMachineNode( 1073 AMDGPU::S_MOV_B32, DL, MVT::i32, 1074 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1075 0); 1076 return true; 1077 } 1078 1079 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1080 SDValue &VAddr, SDValue &SOffset, 1081 SDValue &Offset, SDValue &GLC, 1082 SDValue &SLC, SDValue &TFE) const { 1083 SDValue Ptr, Offen, Idxen, Addr64; 1084 1085 // addr64 bit was removed for volcanic islands. 1086 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1087 return false; 1088 1089 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1090 GLC, SLC, TFE)) 1091 return false; 1092 1093 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1094 if (C->getSExtValue()) { 1095 SDLoc DL(Addr); 1096 1097 const SITargetLowering& Lowering = 1098 *static_cast<const SITargetLowering*>(getTargetLowering()); 1099 1100 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1101 return true; 1102 } 1103 1104 return false; 1105 } 1106 1107 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1108 SDValue &VAddr, SDValue &SOffset, 1109 SDValue &Offset, 1110 SDValue &SLC) const { 1111 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1112 SDValue GLC, TFE; 1113 1114 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE); 1115 } 1116 1117 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1118 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1119 return PSV && PSV->isStack(); 1120 } 1121 1122 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1123 const MachineFunction &MF = CurDAG->getMachineFunction(); 1124 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1125 1126 if (auto FI = dyn_cast<FrameIndexSDNode>(N)) { 1127 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1128 FI->getValueType(0)); 1129 1130 // If we can resolve this to a frame index access, this is relative to the 1131 // frame pointer SGPR. 1132 return std::make_pair(TFI, CurDAG->getRegister(Info->getFrameOffsetReg(), 1133 MVT::i32)); 1134 } 1135 1136 // If we don't know this private access is a local stack object, it needs to 1137 // be relative to the entry point's scratch wave offset register. 1138 return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(), 1139 MVT::i32)); 1140 } 1141 1142 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1143 SDValue Addr, SDValue &Rsrc, 1144 SDValue &VAddr, SDValue &SOffset, 1145 SDValue &ImmOffset) const { 1146 1147 SDLoc DL(Addr); 1148 MachineFunction &MF = CurDAG->getMachineFunction(); 1149 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1150 1151 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1152 1153 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1154 unsigned Imm = CAddr->getZExtValue(); 1155 1156 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1157 MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1158 DL, MVT::i32, HighBits); 1159 VAddr = SDValue(MovHighBits, 0); 1160 1161 // In a call sequence, stores to the argument stack area are relative to the 1162 // stack pointer. 1163 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1164 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ? 1165 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg(); 1166 1167 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32); 1168 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1169 return true; 1170 } 1171 1172 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1173 // (add n0, c1) 1174 1175 SDValue N0 = Addr.getOperand(0); 1176 SDValue N1 = Addr.getOperand(1); 1177 1178 // Offsets in vaddr must be positive if range checking is enabled. 1179 // 1180 // The total computation of vaddr + soffset + offset must not overflow. If 1181 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1182 // overflowing. 1183 // 1184 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1185 // always perform a range check. If a negative vaddr base index was used, 1186 // this would fail the range check. The overall address computation would 1187 // compute a valid address, but this doesn't happen due to the range 1188 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1189 // 1190 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1191 // MUBUF vaddr, but not on older subtargets which can only do this if the 1192 // sign bit is known 0. 1193 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1194 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1195 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1196 CurDAG->SignBitIsZero(N0))) { 1197 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1198 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1199 return true; 1200 } 1201 } 1202 1203 // (node) 1204 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1205 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1206 return true; 1207 } 1208 1209 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1210 SDValue Addr, 1211 SDValue &SRsrc, 1212 SDValue &SOffset, 1213 SDValue &Offset) const { 1214 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1215 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1216 return false; 1217 1218 SDLoc DL(Addr); 1219 MachineFunction &MF = CurDAG->getMachineFunction(); 1220 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1221 1222 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1223 1224 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1225 unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ? 1226 Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg(); 1227 1228 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1229 // offset if we know this is in a call sequence. 1230 SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32); 1231 1232 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1233 return true; 1234 } 1235 1236 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1237 SDValue &SOffset, SDValue &Offset, 1238 SDValue &GLC, SDValue &SLC, 1239 SDValue &TFE) const { 1240 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1241 const SIInstrInfo *TII = 1242 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1243 1244 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1245 GLC, SLC, TFE)) 1246 return false; 1247 1248 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1249 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1250 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1251 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1252 APInt::getAllOnesValue(32).getZExtValue(); // Size 1253 SDLoc DL(Addr); 1254 1255 const SITargetLowering& Lowering = 1256 *static_cast<const SITargetLowering*>(getTargetLowering()); 1257 1258 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1259 return true; 1260 } 1261 return false; 1262 } 1263 1264 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1265 SDValue &Soffset, SDValue &Offset 1266 ) const { 1267 SDValue GLC, SLC, TFE; 1268 1269 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE); 1270 } 1271 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1272 SDValue &Soffset, SDValue &Offset, 1273 SDValue &SLC) const { 1274 SDValue GLC, TFE; 1275 1276 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE); 1277 } 1278 1279 template <bool IsSigned> 1280 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDValue Addr, 1281 SDValue &VAddr, 1282 SDValue &Offset, 1283 SDValue &SLC) const { 1284 int64_t OffsetVal = 0; 1285 1286 if (Subtarget->hasFlatInstOffsets() && 1287 CurDAG->isBaseWithConstantOffset(Addr)) { 1288 SDValue N0 = Addr.getOperand(0); 1289 SDValue N1 = Addr.getOperand(1); 1290 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1291 1292 if ((IsSigned && isInt<13>(COffsetVal)) || 1293 (!IsSigned && isUInt<12>(COffsetVal))) { 1294 Addr = N0; 1295 OffsetVal = COffsetVal; 1296 } 1297 } 1298 1299 VAddr = Addr; 1300 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1301 SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1); 1302 1303 return true; 1304 } 1305 1306 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDValue Addr, 1307 SDValue &VAddr, 1308 SDValue &Offset, 1309 SDValue &SLC) const { 1310 return SelectFlatOffset<false>(Addr, VAddr, Offset, SLC); 1311 } 1312 1313 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDValue Addr, 1314 SDValue &VAddr, 1315 SDValue &Offset, 1316 SDValue &SLC) const { 1317 return SelectFlatOffset<true>(Addr, VAddr, Offset, SLC); 1318 } 1319 1320 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1321 SDValue &Offset, bool &Imm) const { 1322 1323 // FIXME: Handle non-constant offsets. 1324 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1325 if (!C) 1326 return false; 1327 1328 SDLoc SL(ByteOffsetNode); 1329 GCNSubtarget::Generation Gen = Subtarget->getGeneration(); 1330 int64_t ByteOffset = C->getSExtValue(); 1331 int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset); 1332 1333 if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) { 1334 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); 1335 Imm = true; 1336 return true; 1337 } 1338 1339 if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset)) 1340 return false; 1341 1342 if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) { 1343 // 32-bit Immediates are supported on Sea Islands. 1344 Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32); 1345 } else { 1346 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1347 Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, 1348 C32Bit), 0); 1349 } 1350 Imm = false; 1351 return true; 1352 } 1353 1354 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1355 if (Addr.getValueType() != MVT::i32) 1356 return Addr; 1357 1358 // Zero-extend a 32-bit address. 1359 SDLoc SL(Addr); 1360 1361 const MachineFunction &MF = CurDAG->getMachineFunction(); 1362 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1363 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1364 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1365 1366 const SDValue Ops[] = { 1367 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1368 Addr, 1369 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1370 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1371 0), 1372 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1373 }; 1374 1375 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1376 Ops), 0); 1377 } 1378 1379 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1380 SDValue &Offset, bool &Imm) const { 1381 SDLoc SL(Addr); 1382 1383 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1384 // wraparound, because s_load instructions perform the addition in 64 bits. 1385 if ((Addr.getValueType() != MVT::i32 || 1386 Addr->getFlags().hasNoUnsignedWrap()) && 1387 CurDAG->isBaseWithConstantOffset(Addr)) { 1388 SDValue N0 = Addr.getOperand(0); 1389 SDValue N1 = Addr.getOperand(1); 1390 1391 if (SelectSMRDOffset(N1, Offset, Imm)) { 1392 SBase = Expand32BitAddress(N0); 1393 return true; 1394 } 1395 } 1396 SBase = Expand32BitAddress(Addr); 1397 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1398 Imm = true; 1399 return true; 1400 } 1401 1402 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1403 SDValue &Offset) const { 1404 bool Imm; 1405 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1406 } 1407 1408 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1409 SDValue &Offset) const { 1410 1411 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) 1412 return false; 1413 1414 bool Imm; 1415 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1416 return false; 1417 1418 return !Imm && isa<ConstantSDNode>(Offset); 1419 } 1420 1421 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1422 SDValue &Offset) const { 1423 bool Imm; 1424 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1425 !isa<ConstantSDNode>(Offset); 1426 } 1427 1428 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1429 SDValue &Offset) const { 1430 bool Imm; 1431 return SelectSMRDOffset(Addr, Offset, Imm) && Imm; 1432 } 1433 1434 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 1435 SDValue &Offset) const { 1436 if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS) 1437 return false; 1438 1439 bool Imm; 1440 if (!SelectSMRDOffset(Addr, Offset, Imm)) 1441 return false; 1442 1443 return !Imm && isa<ConstantSDNode>(Offset); 1444 } 1445 1446 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 1447 SDValue &Base, 1448 SDValue &Offset) const { 1449 SDLoc DL(Index); 1450 1451 if (CurDAG->isBaseWithConstantOffset(Index)) { 1452 SDValue N0 = Index.getOperand(0); 1453 SDValue N1 = Index.getOperand(1); 1454 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1455 1456 // (add n0, c0) 1457 Base = N0; 1458 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1459 return true; 1460 } 1461 1462 if (isa<ConstantSDNode>(Index)) 1463 return false; 1464 1465 Base = Index; 1466 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1467 return true; 1468 } 1469 1470 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 1471 SDValue Val, uint32_t Offset, 1472 uint32_t Width) { 1473 // Transformation function, pack the offset and width of a BFE into 1474 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 1475 // source, bits [5:0] contain the offset and bits [22:16] the width. 1476 uint32_t PackedVal = Offset | (Width << 16); 1477 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 1478 1479 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 1480 } 1481 1482 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 1483 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 1484 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 1485 // Predicate: 0 < b <= c < 32 1486 1487 const SDValue &Shl = N->getOperand(0); 1488 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 1489 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1490 1491 if (B && C) { 1492 uint32_t BVal = B->getZExtValue(); 1493 uint32_t CVal = C->getZExtValue(); 1494 1495 if (0 < BVal && BVal <= CVal && CVal < 32) { 1496 bool Signed = N->getOpcode() == ISD::SRA; 1497 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 1498 1499 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 1500 32 - CVal)); 1501 return; 1502 } 1503 } 1504 SelectCode(N); 1505 } 1506 1507 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 1508 switch (N->getOpcode()) { 1509 case ISD::AND: 1510 if (N->getOperand(0).getOpcode() == ISD::SRL) { 1511 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 1512 // Predicate: isMask(mask) 1513 const SDValue &Srl = N->getOperand(0); 1514 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 1515 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1516 1517 if (Shift && Mask) { 1518 uint32_t ShiftVal = Shift->getZExtValue(); 1519 uint32_t MaskVal = Mask->getZExtValue(); 1520 1521 if (isMask_32(MaskVal)) { 1522 uint32_t WidthVal = countPopulation(MaskVal); 1523 1524 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 1525 Srl.getOperand(0), ShiftVal, WidthVal)); 1526 return; 1527 } 1528 } 1529 } 1530 break; 1531 case ISD::SRL: 1532 if (N->getOperand(0).getOpcode() == ISD::AND) { 1533 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 1534 // Predicate: isMask(mask >> b) 1535 const SDValue &And = N->getOperand(0); 1536 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1537 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 1538 1539 if (Shift && Mask) { 1540 uint32_t ShiftVal = Shift->getZExtValue(); 1541 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 1542 1543 if (isMask_32(MaskVal)) { 1544 uint32_t WidthVal = countPopulation(MaskVal); 1545 1546 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 1547 And.getOperand(0), ShiftVal, WidthVal)); 1548 return; 1549 } 1550 } 1551 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 1552 SelectS_BFEFromShifts(N); 1553 return; 1554 } 1555 break; 1556 case ISD::SRA: 1557 if (N->getOperand(0).getOpcode() == ISD::SHL) { 1558 SelectS_BFEFromShifts(N); 1559 return; 1560 } 1561 break; 1562 1563 case ISD::SIGN_EXTEND_INREG: { 1564 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 1565 SDValue Src = N->getOperand(0); 1566 if (Src.getOpcode() != ISD::SRL) 1567 break; 1568 1569 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1570 if (!Amt) 1571 break; 1572 1573 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 1574 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 1575 Amt->getZExtValue(), Width)); 1576 return; 1577 } 1578 } 1579 1580 SelectCode(N); 1581 } 1582 1583 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 1584 assert(N->getOpcode() == ISD::BRCOND); 1585 if (!N->hasOneUse()) 1586 return false; 1587 1588 SDValue Cond = N->getOperand(1); 1589 if (Cond.getOpcode() == ISD::CopyToReg) 1590 Cond = Cond.getOperand(2); 1591 1592 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 1593 return false; 1594 1595 MVT VT = Cond.getOperand(0).getSimpleValueType(); 1596 if (VT == MVT::i32) 1597 return true; 1598 1599 if (VT == MVT::i64) { 1600 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 1601 1602 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 1603 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 1604 } 1605 1606 return false; 1607 } 1608 1609 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 1610 SDValue Cond = N->getOperand(1); 1611 1612 if (Cond.isUndef()) { 1613 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 1614 N->getOperand(2), N->getOperand(0)); 1615 return; 1616 } 1617 1618 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 1619 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 1620 unsigned CondReg = UseSCCBr ? AMDGPU::SCC : AMDGPU::VCC; 1621 SDLoc SL(N); 1622 1623 if (!UseSCCBr) { 1624 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 1625 // analyzed what generates the vcc value, so we do not know whether vcc 1626 // bits for disabled lanes are 0. Thus we need to mask out bits for 1627 // disabled lanes. 1628 // 1629 // For the case that we select S_CBRANCH_SCC1 and it gets 1630 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 1631 // SIInstrInfo::moveToVALU which inserts the S_AND). 1632 // 1633 // We could add an analysis of what generates the vcc value here and omit 1634 // the S_AND when is unnecessary. But it would be better to add a separate 1635 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 1636 // catches both cases. 1637 Cond = SDValue(CurDAG->getMachineNode(AMDGPU::S_AND_B64, SL, MVT::i1, 1638 CurDAG->getRegister(AMDGPU::EXEC, MVT::i1), 1639 Cond), 1640 0); 1641 } 1642 1643 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 1644 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 1645 N->getOperand(2), // Basic Block 1646 VCC.getValue(0)); 1647 } 1648 1649 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 1650 MVT VT = N->getSimpleValueType(0); 1651 bool IsFMA = N->getOpcode() == ISD::FMA; 1652 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 1653 !Subtarget->hasFmaMixInsts()) || 1654 ((IsFMA && Subtarget->hasMadMixInsts()) || 1655 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 1656 SelectCode(N); 1657 return; 1658 } 1659 1660 SDValue Src0 = N->getOperand(0); 1661 SDValue Src1 = N->getOperand(1); 1662 SDValue Src2 = N->getOperand(2); 1663 unsigned Src0Mods, Src1Mods, Src2Mods; 1664 1665 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 1666 // using the conversion from f16. 1667 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 1668 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 1669 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 1670 1671 assert((IsFMA || !Subtarget->hasFP32Denormals()) && 1672 "fmad selected with denormals enabled"); 1673 // TODO: We can select this with f32 denormals enabled if all the sources are 1674 // converted from f16 (in which case fmad isn't legal). 1675 1676 if (Sel0 || Sel1 || Sel2) { 1677 // For dummy operands. 1678 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 1679 SDValue Ops[] = { 1680 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 1681 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 1682 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 1683 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 1684 Zero, Zero 1685 }; 1686 1687 CurDAG->SelectNodeTo(N, 1688 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 1689 MVT::f32, Ops); 1690 } else { 1691 SelectCode(N); 1692 } 1693 } 1694 1695 // This is here because there isn't a way to use the generated sub0_sub1 as the 1696 // subreg index to EXTRACT_SUBREG in tablegen. 1697 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 1698 MemSDNode *Mem = cast<MemSDNode>(N); 1699 unsigned AS = Mem->getAddressSpace(); 1700 if (AS == AMDGPUAS::FLAT_ADDRESS) { 1701 SelectCode(N); 1702 return; 1703 } 1704 1705 MVT VT = N->getSimpleValueType(0); 1706 bool Is32 = (VT == MVT::i32); 1707 SDLoc SL(N); 1708 1709 MachineSDNode *CmpSwap = nullptr; 1710 if (Subtarget->hasAddr64()) { 1711 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 1712 1713 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 1714 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 1715 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 1716 SDValue CmpVal = Mem->getOperand(2); 1717 1718 // XXX - Do we care about glue operands? 1719 1720 SDValue Ops[] = { 1721 CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain() 1722 }; 1723 1724 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 1725 } 1726 } 1727 1728 if (!CmpSwap) { 1729 SDValue SRsrc, SOffset, Offset, SLC; 1730 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 1731 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 1732 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 1733 1734 SDValue CmpVal = Mem->getOperand(2); 1735 SDValue Ops[] = { 1736 CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain() 1737 }; 1738 1739 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 1740 } 1741 } 1742 1743 if (!CmpSwap) { 1744 SelectCode(N); 1745 return; 1746 } 1747 1748 MachineMemOperand *MMO = Mem->getMemOperand(); 1749 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 1750 1751 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 1752 SDValue Extract 1753 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 1754 1755 ReplaceUses(SDValue(N, 0), Extract); 1756 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 1757 CurDAG->RemoveDeadNode(N); 1758 } 1759 1760 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 1761 unsigned &Mods) const { 1762 Mods = 0; 1763 Src = In; 1764 1765 if (Src.getOpcode() == ISD::FNEG) { 1766 Mods |= SISrcMods::NEG; 1767 Src = Src.getOperand(0); 1768 } 1769 1770 if (Src.getOpcode() == ISD::FABS) { 1771 Mods |= SISrcMods::ABS; 1772 Src = Src.getOperand(0); 1773 } 1774 1775 return true; 1776 } 1777 1778 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 1779 SDValue &SrcMods) const { 1780 unsigned Mods; 1781 if (SelectVOP3ModsImpl(In, Src, Mods)) { 1782 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 1783 return true; 1784 } 1785 1786 return false; 1787 } 1788 1789 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 1790 SDValue &SrcMods) const { 1791 SelectVOP3Mods(In, Src, SrcMods); 1792 return isNoNanSrc(Src); 1793 } 1794 1795 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 1796 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 1797 return false; 1798 1799 Src = In; 1800 return true; 1801 } 1802 1803 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 1804 SDValue &SrcMods, SDValue &Clamp, 1805 SDValue &Omod) const { 1806 SDLoc DL(In); 1807 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1808 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 1809 1810 return SelectVOP3Mods(In, Src, SrcMods); 1811 } 1812 1813 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0Clamp0OMod(SDValue In, SDValue &Src, 1814 SDValue &SrcMods, 1815 SDValue &Clamp, 1816 SDValue &Omod) const { 1817 Clamp = Omod = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 1818 return SelectVOP3Mods(In, Src, SrcMods); 1819 } 1820 1821 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 1822 SDValue &Clamp, SDValue &Omod) const { 1823 Src = In; 1824 1825 SDLoc DL(In); 1826 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1827 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 1828 1829 return true; 1830 } 1831 1832 static SDValue stripBitcast(SDValue Val) { 1833 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 1834 } 1835 1836 // Figure out if this is really an extract of the high 16-bits of a dword. 1837 static bool isExtractHiElt(SDValue In, SDValue &Out) { 1838 In = stripBitcast(In); 1839 if (In.getOpcode() != ISD::TRUNCATE) 1840 return false; 1841 1842 SDValue Srl = In.getOperand(0); 1843 if (Srl.getOpcode() == ISD::SRL) { 1844 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 1845 if (ShiftAmt->getZExtValue() == 16) { 1846 Out = stripBitcast(Srl.getOperand(0)); 1847 return true; 1848 } 1849 } 1850 } 1851 1852 return false; 1853 } 1854 1855 // Look through operations that obscure just looking at the low 16-bits of the 1856 // same register. 1857 static SDValue stripExtractLoElt(SDValue In) { 1858 if (In.getOpcode() == ISD::TRUNCATE) { 1859 SDValue Src = In.getOperand(0); 1860 if (Src.getValueType().getSizeInBits() == 32) 1861 return stripBitcast(Src); 1862 } 1863 1864 return In; 1865 } 1866 1867 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 1868 SDValue &SrcMods) const { 1869 unsigned Mods = 0; 1870 Src = In; 1871 1872 if (Src.getOpcode() == ISD::FNEG) { 1873 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 1874 Src = Src.getOperand(0); 1875 } 1876 1877 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 1878 unsigned VecMods = Mods; 1879 1880 SDValue Lo = stripBitcast(Src.getOperand(0)); 1881 SDValue Hi = stripBitcast(Src.getOperand(1)); 1882 1883 if (Lo.getOpcode() == ISD::FNEG) { 1884 Lo = stripBitcast(Lo.getOperand(0)); 1885 Mods ^= SISrcMods::NEG; 1886 } 1887 1888 if (Hi.getOpcode() == ISD::FNEG) { 1889 Hi = stripBitcast(Hi.getOperand(0)); 1890 Mods ^= SISrcMods::NEG_HI; 1891 } 1892 1893 if (isExtractHiElt(Lo, Lo)) 1894 Mods |= SISrcMods::OP_SEL_0; 1895 1896 if (isExtractHiElt(Hi, Hi)) 1897 Mods |= SISrcMods::OP_SEL_1; 1898 1899 Lo = stripExtractLoElt(Lo); 1900 Hi = stripExtractLoElt(Hi); 1901 1902 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 1903 // Really a scalar input. Just select from the low half of the register to 1904 // avoid packing. 1905 1906 Src = Lo; 1907 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 1908 return true; 1909 } 1910 1911 Mods = VecMods; 1912 } 1913 1914 // Packed instructions do not have abs modifiers. 1915 Mods |= SISrcMods::OP_SEL_1; 1916 1917 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 1918 return true; 1919 } 1920 1921 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src, 1922 SDValue &SrcMods, 1923 SDValue &Clamp) const { 1924 SDLoc SL(In); 1925 1926 // FIXME: Handle clamp and op_sel 1927 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); 1928 1929 return SelectVOP3PMods(In, Src, SrcMods); 1930 } 1931 1932 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 1933 SDValue &SrcMods) const { 1934 Src = In; 1935 // FIXME: Handle op_sel 1936 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 1937 return true; 1938 } 1939 1940 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src, 1941 SDValue &SrcMods, 1942 SDValue &Clamp) const { 1943 SDLoc SL(In); 1944 1945 // FIXME: Handle clamp 1946 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); 1947 1948 return SelectVOP3OpSel(In, Src, SrcMods); 1949 } 1950 1951 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 1952 SDValue &SrcMods) const { 1953 // FIXME: Handle op_sel 1954 return SelectVOP3Mods(In, Src, SrcMods); 1955 } 1956 1957 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src, 1958 SDValue &SrcMods, 1959 SDValue &Clamp) const { 1960 SDLoc SL(In); 1961 1962 // FIXME: Handle clamp 1963 Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32); 1964 1965 return SelectVOP3OpSelMods(In, Src, SrcMods); 1966 } 1967 1968 // The return value is not whether the match is possible (which it always is), 1969 // but whether or not it a conversion is really used. 1970 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 1971 unsigned &Mods) const { 1972 Mods = 0; 1973 SelectVOP3ModsImpl(In, Src, Mods); 1974 1975 if (Src.getOpcode() == ISD::FP_EXTEND) { 1976 Src = Src.getOperand(0); 1977 assert(Src.getValueType() == MVT::f16); 1978 Src = stripBitcast(Src); 1979 1980 // Be careful about folding modifiers if we already have an abs. fneg is 1981 // applied last, so we don't want to apply an earlier fneg. 1982 if ((Mods & SISrcMods::ABS) == 0) { 1983 unsigned ModsTmp; 1984 SelectVOP3ModsImpl(Src, Src, ModsTmp); 1985 1986 if ((ModsTmp & SISrcMods::NEG) != 0) 1987 Mods ^= SISrcMods::NEG; 1988 1989 if ((ModsTmp & SISrcMods::ABS) != 0) 1990 Mods |= SISrcMods::ABS; 1991 } 1992 1993 // op_sel/op_sel_hi decide the source type and source. 1994 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 1995 // If the sources's op_sel is set, it picks the high half of the source 1996 // register. 1997 1998 Mods |= SISrcMods::OP_SEL_1; 1999 if (isExtractHiElt(Src, Src)) { 2000 Mods |= SISrcMods::OP_SEL_0; 2001 2002 // TODO: Should we try to look for neg/abs here? 2003 } 2004 2005 return true; 2006 } 2007 2008 return false; 2009 } 2010 2011 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2012 SDValue &SrcMods) const { 2013 unsigned Mods = 0; 2014 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2015 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2016 return true; 2017 } 2018 2019 // TODO: Can we identify things like v_mad_mixhi_f16? 2020 bool AMDGPUDAGToDAGISel::SelectHi16Elt(SDValue In, SDValue &Src) const { 2021 if (In.isUndef()) { 2022 Src = In; 2023 return true; 2024 } 2025 2026 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2027 SDLoc SL(In); 2028 SDValue K = CurDAG->getTargetConstant(C->getZExtValue() << 16, SL, MVT::i32); 2029 MachineSDNode *MovK = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 2030 SL, MVT::i32, K); 2031 Src = SDValue(MovK, 0); 2032 return true; 2033 } 2034 2035 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2036 SDLoc SL(In); 2037 SDValue K = CurDAG->getTargetConstant( 2038 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2039 MachineSDNode *MovK = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 2040 SL, MVT::i32, K); 2041 Src = SDValue(MovK, 0); 2042 return true; 2043 } 2044 2045 return isExtractHiElt(In, Src); 2046 } 2047 2048 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2049 if (Subtarget->getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS) { 2050 return false; 2051 } 2052 const SIRegisterInfo *SIRI = 2053 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2054 const SIInstrInfo * SII = 2055 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2056 2057 unsigned Limit = 0; 2058 bool AllUsesAcceptSReg = true; 2059 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2060 Limit < 10 && U != E; ++U, ++Limit) { 2061 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2062 2063 // If the register class is unknown, it could be an unknown 2064 // register class that needs to be an SGPR, e.g. an inline asm 2065 // constraint 2066 if (!RC || SIRI->isSGPRClass(RC)) 2067 return false; 2068 2069 if (RC != &AMDGPU::VS_32RegClass) { 2070 AllUsesAcceptSReg = false; 2071 SDNode * User = *U; 2072 if (User->isMachineOpcode()) { 2073 unsigned Opc = User->getMachineOpcode(); 2074 MCInstrDesc Desc = SII->get(Opc); 2075 if (Desc.isCommutable()) { 2076 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2077 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2078 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2079 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2080 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2081 if (CommutedRC == &AMDGPU::VS_32RegClass) 2082 AllUsesAcceptSReg = true; 2083 } 2084 } 2085 } 2086 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2087 // commuting current user. This means have at least one use 2088 // that strictly require VGPR. Thus, we will not attempt to commute 2089 // other user instructions. 2090 if (!AllUsesAcceptSReg) 2091 break; 2092 } 2093 } 2094 return !AllUsesAcceptSReg && (Limit < 10); 2095 } 2096 2097 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2098 auto Ld = cast<LoadSDNode>(N); 2099 2100 return Ld->getAlignment() >= 4 && 2101 ( 2102 ( 2103 ( 2104 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2105 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2106 ) 2107 && 2108 !N->isDivergent() 2109 ) 2110 || 2111 ( 2112 Subtarget->getScalarizeGlobalBehavior() && 2113 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2114 !Ld->isVolatile() && 2115 !N->isDivergent() && 2116 static_cast<const SITargetLowering *>( 2117 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2118 ) 2119 ); 2120 } 2121 2122 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2123 const AMDGPUTargetLowering& Lowering = 2124 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2125 bool IsModified = false; 2126 do { 2127 IsModified = false; 2128 2129 // Go over all selected nodes and try to fold them a bit more 2130 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2131 while (Position != CurDAG->allnodes_end()) { 2132 SDNode *Node = &*Position++; 2133 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2134 if (!MachineNode) 2135 continue; 2136 2137 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2138 if (ResNode != Node) { 2139 if (ResNode) 2140 ReplaceUses(Node, ResNode); 2141 IsModified = true; 2142 } 2143 } 2144 CurDAG->RemoveDeadNodes(); 2145 } while (IsModified); 2146 } 2147 2148 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 2149 Subtarget = &MF.getSubtarget<R600Subtarget>(); 2150 return SelectionDAGISel::runOnMachineFunction(MF); 2151 } 2152 2153 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 2154 if (!N->readMem()) 2155 return false; 2156 if (CbId == -1) 2157 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2158 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 2159 2160 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 2161 } 2162 2163 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 2164 SDValue& IntPtr) { 2165 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 2166 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 2167 true); 2168 return true; 2169 } 2170 return false; 2171 } 2172 2173 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 2174 SDValue& BaseReg, SDValue &Offset) { 2175 if (!isa<ConstantSDNode>(Addr)) { 2176 BaseReg = Addr; 2177 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 2178 return true; 2179 } 2180 return false; 2181 } 2182 2183 void R600DAGToDAGISel::Select(SDNode *N) { 2184 unsigned int Opc = N->getOpcode(); 2185 if (N->isMachineOpcode()) { 2186 N->setNodeId(-1); 2187 return; // Already selected. 2188 } 2189 2190 switch (Opc) { 2191 default: break; 2192 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 2193 case ISD::SCALAR_TO_VECTOR: 2194 case ISD::BUILD_VECTOR: { 2195 EVT VT = N->getValueType(0); 2196 unsigned NumVectorElts = VT.getVectorNumElements(); 2197 unsigned RegClassID; 2198 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 2199 // that adds a 128 bits reg copy when going through TwoAddressInstructions 2200 // pass. We want to avoid 128 bits copies as much as possible because they 2201 // can't be bundled by our scheduler. 2202 switch(NumVectorElts) { 2203 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 2204 case 4: 2205 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 2206 RegClassID = R600::R600_Reg128VerticalRegClassID; 2207 else 2208 RegClassID = R600::R600_Reg128RegClassID; 2209 break; 2210 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 2211 } 2212 SelectBuildVector(N, RegClassID); 2213 return; 2214 } 2215 } 2216 2217 SelectCode(N); 2218 } 2219 2220 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 2221 SDValue &Offset) { 2222 ConstantSDNode *C; 2223 SDLoc DL(Addr); 2224 2225 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 2226 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2227 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2228 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 2229 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 2230 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 2231 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2232 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 2233 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 2234 Base = Addr.getOperand(0); 2235 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 2236 } else { 2237 Base = Addr; 2238 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2239 } 2240 2241 return true; 2242 } 2243 2244 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 2245 SDValue &Offset) { 2246 ConstantSDNode *IMMOffset; 2247 2248 if (Addr.getOpcode() == ISD::ADD 2249 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 2250 && isInt<16>(IMMOffset->getZExtValue())) { 2251 2252 Base = Addr.getOperand(0); 2253 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2254 MVT::i32); 2255 return true; 2256 // If the pointer address is constant, we can move it to the offset field. 2257 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 2258 && isInt<16>(IMMOffset->getZExtValue())) { 2259 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 2260 SDLoc(CurDAG->getEntryNode()), 2261 R600::ZERO, MVT::i32); 2262 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 2263 MVT::i32); 2264 return true; 2265 } 2266 2267 // Default case, no offset 2268 Base = Addr; 2269 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 2270 return true; 2271 } 2272