1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUTargetMachine.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/SelectionDAGISel.h" 22 #include "llvm/CodeGen/SelectionDAGNodes.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/InitializePasses.h" 25 26 #ifdef EXPENSIVE_CHECKS 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #endif 30 31 #define DEBUG_TYPE "isel" 32 33 using namespace llvm; 34 35 namespace llvm { 36 37 class R600InstrInfo; 38 39 } // end namespace llvm 40 41 //===----------------------------------------------------------------------===// 42 // Instruction Selector Implementation 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 47 static bool isNullConstantOrUndef(SDValue V) { 48 if (V.isUndef()) 49 return true; 50 51 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 52 return Const != nullptr && Const->isNullValue(); 53 } 54 55 static bool getConstantValue(SDValue N, uint32_t &Out) { 56 // This is only used for packed vectors, where ussing 0 for undef should 57 // always be good. 58 if (N.isUndef()) { 59 Out = 0; 60 return true; 61 } 62 63 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 64 Out = C->getAPIntValue().getSExtValue(); 65 return true; 66 } 67 68 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 69 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 70 return true; 71 } 72 73 return false; 74 } 75 76 // TODO: Handle undef as zero 77 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 78 bool Negate = false) { 79 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 80 uint32_t LHSVal, RHSVal; 81 if (getConstantValue(N->getOperand(0), LHSVal) && 82 getConstantValue(N->getOperand(1), RHSVal)) { 83 SDLoc SL(N); 84 uint32_t K = Negate ? 85 (-LHSVal & 0xffff) | (-RHSVal << 16) : 86 (LHSVal & 0xffff) | (RHSVal << 16); 87 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 88 DAG.getTargetConstant(K, SL, MVT::i32)); 89 } 90 91 return nullptr; 92 } 93 94 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 95 return packConstantV2I16(N, DAG, true); 96 } 97 98 /// AMDGPU specific code to select AMDGPU machine instructions for 99 /// SelectionDAG operations. 100 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 101 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 102 // make the right decision when generating code for different targets. 103 const GCNSubtarget *Subtarget; 104 105 // Default FP mode for the current function. 106 AMDGPU::SIModeRegisterDefaults Mode; 107 108 bool EnableLateStructurizeCFG; 109 110 public: 111 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 112 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 113 : SelectionDAGISel(*TM, OptLevel) { 114 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 115 } 116 ~AMDGPUDAGToDAGISel() override = default; 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.addRequired<AMDGPUArgumentUsageInfo>(); 120 AU.addRequired<LegacyDivergenceAnalysis>(); 121 #ifdef EXPENSIVE_CHECKS 122 AU.addRequired<DominatorTreeWrapperPass>(); 123 AU.addRequired<LoopInfoWrapperPass>(); 124 #endif 125 SelectionDAGISel::getAnalysisUsage(AU); 126 } 127 128 bool matchLoadD16FromBuildVector(SDNode *N) const; 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 void PreprocessISelDAG() override; 132 void Select(SDNode *N) override; 133 StringRef getPassName() const override; 134 void PostprocessISelDAG() override; 135 136 protected: 137 void SelectBuildVector(SDNode *N, unsigned RegClassID); 138 139 private: 140 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 141 bool isNoNanSrc(SDValue N) const; 142 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 143 bool isNegInlineImmediate(const SDNode *N) const { 144 return isInlineImmediate(N, true); 145 } 146 147 bool isInlineImmediate16(int64_t Imm) const { 148 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 149 } 150 151 bool isInlineImmediate32(int64_t Imm) const { 152 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 153 } 154 155 bool isInlineImmediate64(int64_t Imm) const { 156 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 157 } 158 159 bool isInlineImmediate(const APFloat &Imm) const { 160 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 161 } 162 163 bool isVGPRImm(const SDNode *N) const; 164 bool isUniformLoad(const SDNode *N) const; 165 bool isUniformBr(const SDNode *N) const; 166 167 bool isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 168 SDValue &RHS) const; 169 170 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 171 172 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 173 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 174 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 175 176 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 177 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 178 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 179 bool isDSOffsetLegal(SDValue Base, unsigned Offset) const; 180 bool isDSOffset2Legal(SDValue Base, unsigned Offset0, unsigned Offset1, 181 unsigned Size) const; 182 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 183 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 184 SDValue &Offset1) const; 185 bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 186 SDValue &Offset1) const; 187 bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0, 188 SDValue &Offset1, unsigned Size) const; 189 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 190 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 191 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 192 SDValue &TFE, SDValue &DLC, SDValue &SWZ, 193 SDValue &SCCB) const; 194 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 195 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 196 SDValue &SLC, SDValue &TFE, SDValue &DLC, 197 SDValue &SWZ, SDValue &SCCB) const; 198 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 199 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 200 SDValue &SLC) const; 201 bool SelectMUBUFScratchOffen(SDNode *Parent, 202 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 203 SDValue &SOffset, SDValue &ImmOffset) const; 204 bool SelectMUBUFScratchOffset(SDNode *Parent, 205 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 206 SDValue &Offset) const; 207 208 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 209 SDValue &Offset, SDValue &GLC, SDValue &SLC, 210 SDValue &TFE, SDValue &DLC, SDValue &SWZ, 211 SDValue &SCCB) const; 212 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 213 SDValue &Offset, SDValue &SLC) const; 214 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 215 SDValue &Offset) const; 216 217 template <bool IsSigned> 218 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 219 SDValue &Offset) const; 220 bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 221 SDValue &VOffset, SDValue &Offset) const; 222 bool SelectScratchSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 223 SDValue &Offset) const; 224 225 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 226 bool &Imm) const; 227 SDValue Expand32BitAddress(SDValue Addr) const; 228 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 229 bool &Imm) const; 230 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 231 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 232 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 233 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 234 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 235 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 236 237 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 238 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods, 239 bool AllowAbs = true) const; 240 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 241 bool SelectVOP3BMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 242 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 243 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 244 SDValue &Clamp, SDValue &Omod) const; 245 bool SelectVOP3BMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 246 SDValue &Clamp, SDValue &Omod) const; 247 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 248 SDValue &Clamp, SDValue &Omod) const; 249 250 bool SelectVOP3OMods(SDValue In, SDValue &Src, 251 SDValue &Clamp, SDValue &Omod) const; 252 253 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 254 255 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 256 257 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 258 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 259 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 260 261 SDValue getHi16Elt(SDValue In) const; 262 263 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 264 265 void SelectADD_SUB_I64(SDNode *N); 266 void SelectAddcSubb(SDNode *N); 267 void SelectUADDO_USUBO(SDNode *N); 268 void SelectDIV_SCALE(SDNode *N); 269 void SelectMAD_64_32(SDNode *N); 270 void SelectFMA_W_CHAIN(SDNode *N); 271 void SelectFMUL_W_CHAIN(SDNode *N); 272 273 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 274 uint32_t Offset, uint32_t Width); 275 void SelectS_BFEFromShifts(SDNode *N); 276 void SelectS_BFE(SDNode *N); 277 bool isCBranchSCC(const SDNode *N) const; 278 void SelectBRCOND(SDNode *N); 279 void SelectFMAD_FMA(SDNode *N); 280 void SelectATOMIC_CMP_SWAP(SDNode *N); 281 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 282 void SelectDS_GWS(SDNode *N, unsigned IntrID); 283 void SelectInterpP1F16(SDNode *N); 284 void SelectINTRINSIC_W_CHAIN(SDNode *N); 285 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 286 void SelectINTRINSIC_VOID(SDNode *N); 287 288 protected: 289 // Include the pieces autogenerated from the target description. 290 #include "AMDGPUGenDAGISel.inc" 291 }; 292 293 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 294 const R600Subtarget *Subtarget; 295 296 bool isConstantLoad(const MemSDNode *N, int cbID) const; 297 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 298 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 299 SDValue& Offset); 300 public: 301 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 302 AMDGPUDAGToDAGISel(TM, OptLevel) {} 303 304 void Select(SDNode *N) override; 305 306 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 307 SDValue &Offset) override; 308 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 309 SDValue &Offset) override; 310 311 bool runOnMachineFunction(MachineFunction &MF) override; 312 313 void PreprocessISelDAG() override {} 314 315 protected: 316 // Include the pieces autogenerated from the target description. 317 #include "R600GenDAGISel.inc" 318 }; 319 320 static SDValue stripBitcast(SDValue Val) { 321 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 322 } 323 324 // Figure out if this is really an extract of the high 16-bits of a dword. 325 static bool isExtractHiElt(SDValue In, SDValue &Out) { 326 In = stripBitcast(In); 327 328 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 329 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 330 if (!Idx->isOne()) 331 return false; 332 Out = In.getOperand(0); 333 return true; 334 } 335 } 336 337 if (In.getOpcode() != ISD::TRUNCATE) 338 return false; 339 340 SDValue Srl = In.getOperand(0); 341 if (Srl.getOpcode() == ISD::SRL) { 342 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 343 if (ShiftAmt->getZExtValue() == 16) { 344 Out = stripBitcast(Srl.getOperand(0)); 345 return true; 346 } 347 } 348 } 349 350 return false; 351 } 352 353 // Look through operations that obscure just looking at the low 16-bits of the 354 // same register. 355 static SDValue stripExtractLoElt(SDValue In) { 356 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 357 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 358 if (Idx->isNullValue() && In.getValueSizeInBits() <= 32) 359 return In.getOperand(0); 360 } 361 } 362 363 if (In.getOpcode() == ISD::TRUNCATE) { 364 SDValue Src = In.getOperand(0); 365 if (Src.getValueType().getSizeInBits() == 32) 366 return stripBitcast(Src); 367 } 368 369 return In; 370 } 371 372 } // end anonymous namespace 373 374 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 375 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 376 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 377 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 378 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 379 #ifdef EXPENSIVE_CHECKS 380 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 381 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 382 #endif 383 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 384 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 385 386 /// This pass converts a legalized DAG into a AMDGPU-specific 387 // DAG, ready for instruction scheduling. 388 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 389 CodeGenOpt::Level OptLevel) { 390 return new AMDGPUDAGToDAGISel(TM, OptLevel); 391 } 392 393 /// This pass converts a legalized DAG into a R600-specific 394 // DAG, ready for instruction scheduling. 395 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 396 CodeGenOpt::Level OptLevel) { 397 return new R600DAGToDAGISel(TM, OptLevel); 398 } 399 400 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 401 #ifdef EXPENSIVE_CHECKS 402 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 403 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 404 for (auto &L : LI->getLoopsInPreorder()) { 405 assert(L->isLCSSAForm(DT)); 406 } 407 #endif 408 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 409 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 410 return SelectionDAGISel::runOnMachineFunction(MF); 411 } 412 413 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 414 assert(Subtarget->d16PreservesUnusedBits()); 415 MVT VT = N->getValueType(0).getSimpleVT(); 416 if (VT != MVT::v2i16 && VT != MVT::v2f16) 417 return false; 418 419 SDValue Lo = N->getOperand(0); 420 SDValue Hi = N->getOperand(1); 421 422 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 423 424 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 425 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 426 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 427 428 // Need to check for possible indirect dependencies on the other half of the 429 // vector to avoid introducing a cycle. 430 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 431 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 432 433 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 434 SDValue Ops[] = { 435 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 436 }; 437 438 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 439 if (LdHi->getMemoryVT() == MVT::i8) { 440 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 441 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 442 } else { 443 assert(LdHi->getMemoryVT() == MVT::i16); 444 } 445 446 SDValue NewLoadHi = 447 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 448 Ops, LdHi->getMemoryVT(), 449 LdHi->getMemOperand()); 450 451 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 452 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 453 return true; 454 } 455 456 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 457 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 458 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 459 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 460 if (LdLo && Lo.hasOneUse()) { 461 SDValue TiedIn = getHi16Elt(Hi); 462 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 463 return false; 464 465 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 466 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 467 if (LdLo->getMemoryVT() == MVT::i8) { 468 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 469 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 470 } else { 471 assert(LdLo->getMemoryVT() == MVT::i16); 472 } 473 474 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 475 476 SDValue Ops[] = { 477 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 478 }; 479 480 SDValue NewLoadLo = 481 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 482 Ops, LdLo->getMemoryVT(), 483 LdLo->getMemOperand()); 484 485 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 486 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 487 return true; 488 } 489 490 return false; 491 } 492 493 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 494 if (!Subtarget->d16PreservesUnusedBits()) 495 return; 496 497 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 498 499 bool MadeChange = false; 500 while (Position != CurDAG->allnodes_begin()) { 501 SDNode *N = &*--Position; 502 if (N->use_empty()) 503 continue; 504 505 switch (N->getOpcode()) { 506 case ISD::BUILD_VECTOR: 507 MadeChange |= matchLoadD16FromBuildVector(N); 508 break; 509 default: 510 break; 511 } 512 } 513 514 if (MadeChange) { 515 CurDAG->RemoveDeadNodes(); 516 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 517 CurDAG->dump();); 518 } 519 } 520 521 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 522 if (TM.Options.NoNaNsFPMath) 523 return true; 524 525 // TODO: Move into isKnownNeverNaN 526 if (N->getFlags().hasNoNaNs()) 527 return true; 528 529 return CurDAG->isKnownNeverNaN(N); 530 } 531 532 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 533 bool Negated) const { 534 if (N->isUndef()) 535 return true; 536 537 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 538 if (Negated) { 539 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 540 return TII->isInlineConstant(-C->getAPIntValue()); 541 542 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 543 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 544 545 } else { 546 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 547 return TII->isInlineConstant(C->getAPIntValue()); 548 549 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 550 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 551 } 552 553 return false; 554 } 555 556 /// Determine the register class for \p OpNo 557 /// \returns The register class of the virtual register that will be used for 558 /// the given operand number \OpNo or NULL if the register class cannot be 559 /// determined. 560 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 561 unsigned OpNo) const { 562 if (!N->isMachineOpcode()) { 563 if (N->getOpcode() == ISD::CopyToReg) { 564 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 565 if (Reg.isVirtual()) { 566 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 567 return MRI.getRegClass(Reg); 568 } 569 570 const SIRegisterInfo *TRI 571 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 572 return TRI->getPhysRegClass(Reg); 573 } 574 575 return nullptr; 576 } 577 578 switch (N->getMachineOpcode()) { 579 default: { 580 const MCInstrDesc &Desc = 581 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 582 unsigned OpIdx = Desc.getNumDefs() + OpNo; 583 if (OpIdx >= Desc.getNumOperands()) 584 return nullptr; 585 int RegClass = Desc.OpInfo[OpIdx].RegClass; 586 if (RegClass == -1) 587 return nullptr; 588 589 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 590 } 591 case AMDGPU::REG_SEQUENCE: { 592 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 593 const TargetRegisterClass *SuperRC = 594 Subtarget->getRegisterInfo()->getRegClass(RCID); 595 596 SDValue SubRegOp = N->getOperand(OpNo + 1); 597 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 598 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 599 SubRegIdx); 600 } 601 } 602 } 603 604 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 605 SDValue Glue) const { 606 SmallVector <SDValue, 8> Ops; 607 Ops.push_back(NewChain); // Replace the chain. 608 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 609 Ops.push_back(N->getOperand(i)); 610 611 Ops.push_back(Glue); 612 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 613 } 614 615 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 616 const SITargetLowering& Lowering = 617 *static_cast<const SITargetLowering*>(getTargetLowering()); 618 619 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 620 621 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 622 return glueCopyToOp(N, M0, M0.getValue(1)); 623 } 624 625 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 626 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 627 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 628 if (Subtarget->ldsRequiresM0Init()) 629 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 630 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 631 MachineFunction &MF = CurDAG->getMachineFunction(); 632 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 633 return 634 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 635 } 636 return N; 637 } 638 639 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 640 EVT VT) const { 641 SDNode *Lo = CurDAG->getMachineNode( 642 AMDGPU::S_MOV_B32, DL, MVT::i32, 643 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 644 SDNode *Hi = 645 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 646 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 647 const SDValue Ops[] = { 648 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 649 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 650 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 651 652 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 653 } 654 655 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 656 EVT VT = N->getValueType(0); 657 unsigned NumVectorElts = VT.getVectorNumElements(); 658 EVT EltVT = VT.getVectorElementType(); 659 SDLoc DL(N); 660 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 661 662 if (NumVectorElts == 1) { 663 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 664 RegClass); 665 return; 666 } 667 668 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 669 "supported yet"); 670 // 32 = Max Num Vector Elements 671 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 672 // 1 = Vector Register Class 673 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 674 675 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 676 Triple::amdgcn; 677 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 678 bool IsRegSeq = true; 679 unsigned NOps = N->getNumOperands(); 680 for (unsigned i = 0; i < NOps; i++) { 681 // XXX: Why is this here? 682 if (isa<RegisterSDNode>(N->getOperand(i))) { 683 IsRegSeq = false; 684 break; 685 } 686 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 687 : R600RegisterInfo::getSubRegFromChannel(i); 688 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 689 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 690 } 691 if (NOps != NumVectorElts) { 692 // Fill in the missing undef elements if this was a scalar_to_vector. 693 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 694 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 695 DL, EltVT); 696 for (unsigned i = NOps; i < NumVectorElts; ++i) { 697 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 698 : R600RegisterInfo::getSubRegFromChannel(i); 699 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 700 RegSeqArgs[1 + (2 * i) + 1] = 701 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 702 } 703 } 704 705 if (!IsRegSeq) 706 SelectCode(N); 707 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 708 } 709 710 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 711 unsigned int Opc = N->getOpcode(); 712 if (N->isMachineOpcode()) { 713 N->setNodeId(-1); 714 return; // Already selected. 715 } 716 717 // isa<MemSDNode> almost works but is slightly too permissive for some DS 718 // intrinsics. 719 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 720 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 721 Opc == ISD::ATOMIC_LOAD_FADD || 722 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 723 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 724 N = glueCopyToM0LDSInit(N); 725 SelectCode(N); 726 return; 727 } 728 729 switch (Opc) { 730 default: 731 break; 732 // We are selecting i64 ADD here instead of custom lower it during 733 // DAG legalization, so we can fold some i64 ADDs used for address 734 // calculation into the LOAD and STORE instructions. 735 case ISD::ADDC: 736 case ISD::ADDE: 737 case ISD::SUBC: 738 case ISD::SUBE: { 739 if (N->getValueType(0) != MVT::i64) 740 break; 741 742 SelectADD_SUB_I64(N); 743 return; 744 } 745 case ISD::ADDCARRY: 746 case ISD::SUBCARRY: 747 if (N->getValueType(0) != MVT::i32) 748 break; 749 750 SelectAddcSubb(N); 751 return; 752 case ISD::UADDO: 753 case ISD::USUBO: { 754 SelectUADDO_USUBO(N); 755 return; 756 } 757 case AMDGPUISD::FMUL_W_CHAIN: { 758 SelectFMUL_W_CHAIN(N); 759 return; 760 } 761 case AMDGPUISD::FMA_W_CHAIN: { 762 SelectFMA_W_CHAIN(N); 763 return; 764 } 765 766 case ISD::SCALAR_TO_VECTOR: 767 case ISD::BUILD_VECTOR: { 768 EVT VT = N->getValueType(0); 769 unsigned NumVectorElts = VT.getVectorNumElements(); 770 if (VT.getScalarSizeInBits() == 16) { 771 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 772 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 773 ReplaceNode(N, Packed); 774 return; 775 } 776 } 777 778 break; 779 } 780 781 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 782 unsigned RegClassID = 783 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 784 SelectBuildVector(N, RegClassID); 785 return; 786 } 787 case ISD::BUILD_PAIR: { 788 SDValue RC, SubReg0, SubReg1; 789 SDLoc DL(N); 790 if (N->getValueType(0) == MVT::i128) { 791 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 792 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 793 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 794 } else if (N->getValueType(0) == MVT::i64) { 795 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 796 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 797 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 798 } else { 799 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 800 } 801 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 802 N->getOperand(1), SubReg1 }; 803 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 804 N->getValueType(0), Ops)); 805 return; 806 } 807 808 case ISD::Constant: 809 case ISD::ConstantFP: { 810 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 811 break; 812 813 uint64_t Imm; 814 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 815 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 816 else { 817 ConstantSDNode *C = cast<ConstantSDNode>(N); 818 Imm = C->getZExtValue(); 819 } 820 821 SDLoc DL(N); 822 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 823 return; 824 } 825 case AMDGPUISD::BFE_I32: 826 case AMDGPUISD::BFE_U32: { 827 // There is a scalar version available, but unlike the vector version which 828 // has a separate operand for the offset and width, the scalar version packs 829 // the width and offset into a single operand. Try to move to the scalar 830 // version if the offsets are constant, so that we can try to keep extended 831 // loads of kernel arguments in SGPRs. 832 833 // TODO: Technically we could try to pattern match scalar bitshifts of 834 // dynamic values, but it's probably not useful. 835 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 836 if (!Offset) 837 break; 838 839 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 840 if (!Width) 841 break; 842 843 bool Signed = Opc == AMDGPUISD::BFE_I32; 844 845 uint32_t OffsetVal = Offset->getZExtValue(); 846 uint32_t WidthVal = Width->getZExtValue(); 847 848 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 849 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 850 return; 851 } 852 case AMDGPUISD::DIV_SCALE: { 853 SelectDIV_SCALE(N); 854 return; 855 } 856 case AMDGPUISD::MAD_I64_I32: 857 case AMDGPUISD::MAD_U64_U32: { 858 SelectMAD_64_32(N); 859 return; 860 } 861 case ISD::CopyToReg: { 862 const SITargetLowering& Lowering = 863 *static_cast<const SITargetLowering*>(getTargetLowering()); 864 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 865 break; 866 } 867 case ISD::AND: 868 case ISD::SRL: 869 case ISD::SRA: 870 case ISD::SIGN_EXTEND_INREG: 871 if (N->getValueType(0) != MVT::i32) 872 break; 873 874 SelectS_BFE(N); 875 return; 876 case ISD::BRCOND: 877 SelectBRCOND(N); 878 return; 879 case ISD::FMAD: 880 case ISD::FMA: 881 SelectFMAD_FMA(N); 882 return; 883 case AMDGPUISD::ATOMIC_CMP_SWAP: 884 SelectATOMIC_CMP_SWAP(N); 885 return; 886 case AMDGPUISD::CVT_PKRTZ_F16_F32: 887 case AMDGPUISD::CVT_PKNORM_I16_F32: 888 case AMDGPUISD::CVT_PKNORM_U16_F32: 889 case AMDGPUISD::CVT_PK_U16_U32: 890 case AMDGPUISD::CVT_PK_I16_I32: { 891 // Hack around using a legal type if f16 is illegal. 892 if (N->getValueType(0) == MVT::i32) { 893 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 894 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 895 { N->getOperand(0), N->getOperand(1) }); 896 SelectCode(N); 897 return; 898 } 899 900 break; 901 } 902 case ISD::INTRINSIC_W_CHAIN: { 903 SelectINTRINSIC_W_CHAIN(N); 904 return; 905 } 906 case ISD::INTRINSIC_WO_CHAIN: { 907 SelectINTRINSIC_WO_CHAIN(N); 908 return; 909 } 910 case ISD::INTRINSIC_VOID: { 911 SelectINTRINSIC_VOID(N); 912 return; 913 } 914 } 915 916 SelectCode(N); 917 } 918 919 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 920 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 921 const Instruction *Term = BB->getTerminator(); 922 return Term->getMetadata("amdgpu.uniform") || 923 Term->getMetadata("structurizecfg.uniform"); 924 } 925 926 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 927 SDValue &N0, SDValue &N1) { 928 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 929 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 930 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 931 // (i64 (bitcast (v2i32 (build_vector 932 // (or (extract_vector_elt V, 0), OFFSET), 933 // (extract_vector_elt V, 1))))) 934 SDValue Lo = Addr.getOperand(0).getOperand(0); 935 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 936 SDValue BaseLo = Lo.getOperand(0); 937 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 938 // Check that split base (Lo and Hi) are extracted from the same one. 939 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 940 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 941 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 942 // Lo is statically extracted from index 0. 943 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 944 BaseLo.getConstantOperandVal(1) == 0 && 945 // Hi is statically extracted from index 0. 946 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 947 BaseHi.getConstantOperandVal(1) == 1) { 948 N0 = BaseLo.getOperand(0).getOperand(0); 949 N1 = Lo.getOperand(1); 950 return true; 951 } 952 } 953 } 954 return false; 955 } 956 957 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 958 SDValue &RHS) const { 959 if (CurDAG->isBaseWithConstantOffset(Addr)) { 960 LHS = Addr.getOperand(0); 961 RHS = Addr.getOperand(1); 962 return true; 963 } 964 965 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 966 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 967 return true; 968 } 969 970 return false; 971 } 972 973 StringRef AMDGPUDAGToDAGISel::getPassName() const { 974 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 975 } 976 977 //===----------------------------------------------------------------------===// 978 // Complex Patterns 979 //===----------------------------------------------------------------------===// 980 981 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 982 SDValue &Offset) { 983 return false; 984 } 985 986 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 987 SDValue &Offset) { 988 ConstantSDNode *C; 989 SDLoc DL(Addr); 990 991 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 992 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 993 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 994 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 995 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 996 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 997 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 998 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 999 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 1000 Base = Addr.getOperand(0); 1001 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 1002 } else { 1003 Base = Addr; 1004 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1005 } 1006 1007 return true; 1008 } 1009 1010 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 1011 const SDLoc &DL) const { 1012 SDNode *Mov = CurDAG->getMachineNode( 1013 AMDGPU::S_MOV_B32, DL, MVT::i32, 1014 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 1015 return SDValue(Mov, 0); 1016 } 1017 1018 // FIXME: Should only handle addcarry/subcarry 1019 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 1020 SDLoc DL(N); 1021 SDValue LHS = N->getOperand(0); 1022 SDValue RHS = N->getOperand(1); 1023 1024 unsigned Opcode = N->getOpcode(); 1025 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 1026 bool ProduceCarry = 1027 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 1028 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 1029 1030 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1031 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1032 1033 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1034 DL, MVT::i32, LHS, Sub0); 1035 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1036 DL, MVT::i32, LHS, Sub1); 1037 1038 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1039 DL, MVT::i32, RHS, Sub0); 1040 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1041 DL, MVT::i32, RHS, Sub1); 1042 1043 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 1044 1045 static const unsigned OpcMap[2][2][2] = { 1046 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 1047 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 1048 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 1049 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1050 1051 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1052 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1053 1054 SDNode *AddLo; 1055 if (!ConsumeCarry) { 1056 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1057 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1058 } else { 1059 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1060 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1061 } 1062 SDValue AddHiArgs[] = { 1063 SDValue(Hi0, 0), 1064 SDValue(Hi1, 0), 1065 SDValue(AddLo, 1) 1066 }; 1067 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1068 1069 SDValue RegSequenceArgs[] = { 1070 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1071 SDValue(AddLo,0), 1072 Sub0, 1073 SDValue(AddHi,0), 1074 Sub1, 1075 }; 1076 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1077 MVT::i64, RegSequenceArgs); 1078 1079 if (ProduceCarry) { 1080 // Replace the carry-use 1081 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1082 } 1083 1084 // Replace the remaining uses. 1085 ReplaceNode(N, RegSequence); 1086 } 1087 1088 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1089 SDLoc DL(N); 1090 SDValue LHS = N->getOperand(0); 1091 SDValue RHS = N->getOperand(1); 1092 SDValue CI = N->getOperand(2); 1093 1094 if (N->isDivergent()) { 1095 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1096 : AMDGPU::V_SUBB_U32_e64; 1097 CurDAG->SelectNodeTo( 1098 N, Opc, N->getVTList(), 1099 {LHS, RHS, CI, 1100 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1101 } else { 1102 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1103 : AMDGPU::S_SUB_CO_PSEUDO; 1104 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1105 } 1106 } 1107 1108 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1109 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1110 // carry out despite the _i32 name. These were renamed in VI to _U32. 1111 // FIXME: We should probably rename the opcodes here. 1112 bool IsAdd = N->getOpcode() == ISD::UADDO; 1113 bool IsVALU = N->isDivergent(); 1114 1115 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1116 ++UI) 1117 if (UI.getUse().getResNo() == 1) { 1118 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1119 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1120 IsVALU = true; 1121 break; 1122 } 1123 } 1124 1125 if (IsVALU) { 1126 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 1127 1128 CurDAG->SelectNodeTo( 1129 N, Opc, N->getVTList(), 1130 {N->getOperand(0), N->getOperand(1), 1131 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1132 } else { 1133 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1134 : AMDGPU::S_USUBO_PSEUDO; 1135 1136 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1137 {N->getOperand(0), N->getOperand(1)}); 1138 } 1139 } 1140 1141 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1142 SDLoc SL(N); 1143 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1144 SDValue Ops[10]; 1145 1146 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1147 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1148 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1149 Ops[8] = N->getOperand(0); 1150 Ops[9] = N->getOperand(4); 1151 1152 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32_e64, N->getVTList(), Ops); 1153 } 1154 1155 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1156 SDLoc SL(N); 1157 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1158 SDValue Ops[8]; 1159 1160 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1161 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1162 Ops[6] = N->getOperand(0); 1163 Ops[7] = N->getOperand(3); 1164 1165 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1166 } 1167 1168 // We need to handle this here because tablegen doesn't support matching 1169 // instructions with multiple outputs. 1170 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1171 SDLoc SL(N); 1172 EVT VT = N->getValueType(0); 1173 1174 assert(VT == MVT::f32 || VT == MVT::f64); 1175 1176 unsigned Opc 1177 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 1178 1179 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 1180 // omod 1181 SDValue Ops[8]; 1182 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1183 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1184 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1185 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1186 } 1187 1188 // We need to handle this here because tablegen doesn't support matching 1189 // instructions with multiple outputs. 1190 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1191 SDLoc SL(N); 1192 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1193 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1194 1195 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1196 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1197 Clamp }; 1198 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1199 } 1200 1201 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1202 if (!isUInt<16>(Offset)) 1203 return false; 1204 1205 if (!Base || Subtarget->hasUsableDSOffset() || 1206 Subtarget->unsafeDSOffsetFoldingEnabled()) 1207 return true; 1208 1209 // On Southern Islands instruction with a negative base value and an offset 1210 // don't seem to work. 1211 return CurDAG->SignBitIsZero(Base); 1212 } 1213 1214 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1215 SDValue &Offset) const { 1216 SDLoc DL(Addr); 1217 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1218 SDValue N0 = Addr.getOperand(0); 1219 SDValue N1 = Addr.getOperand(1); 1220 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1221 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1222 // (add n0, c0) 1223 Base = N0; 1224 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1225 return true; 1226 } 1227 } else if (Addr.getOpcode() == ISD::SUB) { 1228 // sub C, x -> add (sub 0, x), C 1229 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1230 int64_t ByteOffset = C->getSExtValue(); 1231 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1232 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1233 1234 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1235 // the known bits in isDSOffsetLegal. We need to emit the selected node 1236 // here, so this is thrown away. 1237 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1238 Zero, Addr.getOperand(1)); 1239 1240 if (isDSOffsetLegal(Sub, ByteOffset)) { 1241 SmallVector<SDValue, 3> Opnds; 1242 Opnds.push_back(Zero); 1243 Opnds.push_back(Addr.getOperand(1)); 1244 1245 // FIXME: Select to VOP3 version for with-carry. 1246 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1247 if (Subtarget->hasAddNoCarry()) { 1248 SubOp = AMDGPU::V_SUB_U32_e64; 1249 Opnds.push_back( 1250 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1251 } 1252 1253 MachineSDNode *MachineSub = 1254 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1255 1256 Base = SDValue(MachineSub, 0); 1257 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1258 return true; 1259 } 1260 } 1261 } 1262 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1263 // If we have a constant address, prefer to put the constant into the 1264 // offset. This can save moves to load the constant address since multiple 1265 // operations can share the zero base address register, and enables merging 1266 // into read2 / write2 instructions. 1267 1268 SDLoc DL(Addr); 1269 1270 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1271 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1272 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1273 DL, MVT::i32, Zero); 1274 Base = SDValue(MovZero, 0); 1275 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1276 return true; 1277 } 1278 } 1279 1280 // default case 1281 Base = Addr; 1282 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1283 return true; 1284 } 1285 1286 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1287 unsigned Offset1, 1288 unsigned Size) const { 1289 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1290 return false; 1291 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1292 return false; 1293 1294 if (!Base || Subtarget->hasUsableDSOffset() || 1295 Subtarget->unsafeDSOffsetFoldingEnabled()) 1296 return true; 1297 1298 // On Southern Islands instruction with a negative base value and an offset 1299 // don't seem to work. 1300 return CurDAG->SignBitIsZero(Base); 1301 } 1302 1303 // TODO: If offset is too big, put low 16-bit into offset. 1304 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1305 SDValue &Offset0, 1306 SDValue &Offset1) const { 1307 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1308 } 1309 1310 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1311 SDValue &Offset0, 1312 SDValue &Offset1) const { 1313 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1314 } 1315 1316 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1317 SDValue &Offset0, SDValue &Offset1, 1318 unsigned Size) const { 1319 SDLoc DL(Addr); 1320 1321 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1322 SDValue N0 = Addr.getOperand(0); 1323 SDValue N1 = Addr.getOperand(1); 1324 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1325 unsigned OffsetValue0 = C1->getZExtValue(); 1326 unsigned OffsetValue1 = OffsetValue0 + Size; 1327 1328 // (add n0, c0) 1329 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1330 Base = N0; 1331 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1332 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1333 return true; 1334 } 1335 } else if (Addr.getOpcode() == ISD::SUB) { 1336 // sub C, x -> add (sub 0, x), C 1337 if (const ConstantSDNode *C = 1338 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1339 unsigned OffsetValue0 = C->getZExtValue(); 1340 unsigned OffsetValue1 = OffsetValue0 + Size; 1341 1342 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1343 SDLoc DL(Addr); 1344 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1345 1346 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1347 // the known bits in isDSOffsetLegal. We need to emit the selected node 1348 // here, so this is thrown away. 1349 SDValue Sub = 1350 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1351 1352 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1353 SmallVector<SDValue, 3> Opnds; 1354 Opnds.push_back(Zero); 1355 Opnds.push_back(Addr.getOperand(1)); 1356 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1357 if (Subtarget->hasAddNoCarry()) { 1358 SubOp = AMDGPU::V_SUB_U32_e64; 1359 Opnds.push_back( 1360 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1361 } 1362 1363 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1364 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1365 1366 Base = SDValue(MachineSub, 0); 1367 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1368 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1369 return true; 1370 } 1371 } 1372 } 1373 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1374 unsigned OffsetValue0 = CAddr->getZExtValue(); 1375 unsigned OffsetValue1 = OffsetValue0 + Size; 1376 1377 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1378 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1379 MachineSDNode *MovZero = 1380 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1381 Base = SDValue(MovZero, 0); 1382 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1383 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1384 return true; 1385 } 1386 } 1387 1388 // default case 1389 1390 Base = Addr; 1391 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1392 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1393 return true; 1394 } 1395 1396 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 1397 SDValue &VAddr, SDValue &SOffset, 1398 SDValue &Offset, SDValue &Offen, 1399 SDValue &Idxen, SDValue &Addr64, 1400 SDValue &GLC, SDValue &SLC, 1401 SDValue &TFE, SDValue &DLC, 1402 SDValue &SWZ, SDValue &SCCB) const { 1403 // Subtarget prefers to use flat instruction 1404 // FIXME: This should be a pattern predicate and not reach here 1405 if (Subtarget->useFlatForGlobal()) 1406 return false; 1407 1408 SDLoc DL(Addr); 1409 1410 if (!GLC.getNode()) 1411 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1412 if (!SLC.getNode()) 1413 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1414 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1415 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1416 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1417 SCCB = CurDAG->getTargetConstant(0, DL, MVT::i1); 1418 1419 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1420 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1421 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1422 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1423 1424 ConstantSDNode *C1 = nullptr; 1425 SDValue N0 = Addr; 1426 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1427 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1428 if (isUInt<32>(C1->getZExtValue())) 1429 N0 = Addr.getOperand(0); 1430 else 1431 C1 = nullptr; 1432 } 1433 1434 if (N0.getOpcode() == ISD::ADD) { 1435 // (add N2, N3) -> addr64, or 1436 // (add (add N2, N3), C1) -> addr64 1437 SDValue N2 = N0.getOperand(0); 1438 SDValue N3 = N0.getOperand(1); 1439 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1440 1441 if (N2->isDivergent()) { 1442 if (N3->isDivergent()) { 1443 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1444 // addr64, and construct the resource from a 0 address. 1445 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1446 VAddr = N0; 1447 } else { 1448 // N2 is divergent, N3 is not. 1449 Ptr = N3; 1450 VAddr = N2; 1451 } 1452 } else { 1453 // N2 is not divergent. 1454 Ptr = N2; 1455 VAddr = N3; 1456 } 1457 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1458 } else if (N0->isDivergent()) { 1459 // N0 is divergent. Use it as the addr64, and construct the resource from a 1460 // 0 address. 1461 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1462 VAddr = N0; 1463 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1464 } else { 1465 // N0 -> offset, or 1466 // (N0 + C1) -> offset 1467 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1468 Ptr = N0; 1469 } 1470 1471 if (!C1) { 1472 // No offset. 1473 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1474 return true; 1475 } 1476 1477 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1478 // Legal offset for instruction. 1479 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1480 return true; 1481 } 1482 1483 // Illegal offset, store it in soffset. 1484 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1485 SOffset = 1486 SDValue(CurDAG->getMachineNode( 1487 AMDGPU::S_MOV_B32, DL, MVT::i32, 1488 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1489 0); 1490 return true; 1491 } 1492 1493 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1494 SDValue &VAddr, SDValue &SOffset, 1495 SDValue &Offset, SDValue &GLC, 1496 SDValue &SLC, SDValue &TFE, 1497 SDValue &DLC, SDValue &SWZ, 1498 SDValue &SCCB) const { 1499 SDValue Ptr, Offen, Idxen, Addr64; 1500 1501 // addr64 bit was removed for volcanic islands. 1502 // FIXME: This should be a pattern predicate and not reach here 1503 if (!Subtarget->hasAddr64()) 1504 return false; 1505 1506 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1507 GLC, SLC, TFE, DLC, SWZ, SCCB)) 1508 return false; 1509 1510 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1511 if (C->getSExtValue()) { 1512 SDLoc DL(Addr); 1513 1514 const SITargetLowering& Lowering = 1515 *static_cast<const SITargetLowering*>(getTargetLowering()); 1516 1517 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1518 return true; 1519 } 1520 1521 return false; 1522 } 1523 1524 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1525 SDValue &VAddr, SDValue &SOffset, 1526 SDValue &Offset, 1527 SDValue &SLC) const { 1528 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1529 SDValue GLC, TFE, DLC, SWZ, SCCB; 1530 1531 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ, SCCB); 1532 } 1533 1534 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1535 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1536 return PSV && PSV->isStack(); 1537 } 1538 1539 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1540 SDLoc DL(N); 1541 1542 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1543 SDValue TFI = 1544 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1545 1546 // We rebase the base address into an absolute stack address and hence 1547 // use constant 0 for soffset. This value must be retained until 1548 // frame elimination and eliminateFrameIndex will choose the appropriate 1549 // frame register if need be. 1550 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1551 } 1552 1553 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1554 SDValue Addr, SDValue &Rsrc, 1555 SDValue &VAddr, SDValue &SOffset, 1556 SDValue &ImmOffset) const { 1557 1558 SDLoc DL(Addr); 1559 MachineFunction &MF = CurDAG->getMachineFunction(); 1560 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1561 1562 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1563 1564 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1565 int64_t Imm = CAddr->getSExtValue(); 1566 const int64_t NullPtr = 1567 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1568 // Don't fold null pointer. 1569 if (Imm != NullPtr) { 1570 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1571 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1572 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1573 VAddr = SDValue(MovHighBits, 0); 1574 1575 // In a call sequence, stores to the argument stack area are relative to the 1576 // stack pointer. 1577 const MachinePointerInfo &PtrInfo 1578 = cast<MemSDNode>(Parent)->getPointerInfo(); 1579 SOffset = isStackPtrRelative(PtrInfo) 1580 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1581 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1582 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1583 return true; 1584 } 1585 } 1586 1587 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1588 // (add n0, c1) 1589 1590 SDValue N0 = Addr.getOperand(0); 1591 SDValue N1 = Addr.getOperand(1); 1592 1593 // Offsets in vaddr must be positive if range checking is enabled. 1594 // 1595 // The total computation of vaddr + soffset + offset must not overflow. If 1596 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1597 // overflowing. 1598 // 1599 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1600 // always perform a range check. If a negative vaddr base index was used, 1601 // this would fail the range check. The overall address computation would 1602 // compute a valid address, but this doesn't happen due to the range 1603 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1604 // 1605 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1606 // MUBUF vaddr, but not on older subtargets which can only do this if the 1607 // sign bit is known 0. 1608 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1609 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1610 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1611 CurDAG->SignBitIsZero(N0))) { 1612 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1613 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1614 return true; 1615 } 1616 } 1617 1618 // (node) 1619 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1620 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1621 return true; 1622 } 1623 1624 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1625 SDValue Addr, 1626 SDValue &SRsrc, 1627 SDValue &SOffset, 1628 SDValue &Offset) const { 1629 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1630 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1631 return false; 1632 1633 SDLoc DL(Addr); 1634 MachineFunction &MF = CurDAG->getMachineFunction(); 1635 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1636 1637 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1638 1639 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1640 1641 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1642 // offset if we know this is in a call sequence. 1643 SOffset = isStackPtrRelative(PtrInfo) 1644 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1645 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1646 1647 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1648 return true; 1649 } 1650 1651 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1652 SDValue &SOffset, SDValue &Offset, 1653 SDValue &GLC, SDValue &SLC, 1654 SDValue &TFE, SDValue &DLC, 1655 SDValue &SWZ, SDValue &SCCB) const { 1656 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1657 const SIInstrInfo *TII = 1658 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1659 1660 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1661 GLC, SLC, TFE, DLC, SWZ, SCCB)) 1662 return false; 1663 1664 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1665 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1666 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1667 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1668 APInt::getAllOnesValue(32).getZExtValue(); // Size 1669 SDLoc DL(Addr); 1670 1671 const SITargetLowering& Lowering = 1672 *static_cast<const SITargetLowering*>(getTargetLowering()); 1673 1674 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1675 return true; 1676 } 1677 return false; 1678 } 1679 1680 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1681 SDValue &Soffset, SDValue &Offset 1682 ) const { 1683 SDValue GLC, SLC, TFE, DLC, SWZ, SCCB; 1684 1685 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ, SCCB); 1686 } 1687 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1688 SDValue &Soffset, SDValue &Offset, 1689 SDValue &SLC) const { 1690 SDValue GLC, TFE, DLC, SWZ, SCCB; 1691 1692 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ, SCCB); 1693 } 1694 1695 // Find a load or store from corresponding pattern root. 1696 // Roots may be build_vector, bitconvert or their combinations. 1697 static MemSDNode* findMemSDNode(SDNode *N) { 1698 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1699 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1700 return MN; 1701 assert(isa<BuildVectorSDNode>(N)); 1702 for (SDValue V : N->op_values()) 1703 if (MemSDNode *MN = 1704 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1705 return MN; 1706 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1707 } 1708 1709 template <bool IsSigned> 1710 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1711 SDValue Addr, 1712 SDValue &VAddr, 1713 SDValue &Offset) const { 1714 int64_t OffsetVal = 0; 1715 1716 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1717 1718 if (Subtarget->hasFlatInstOffsets() && 1719 (!Subtarget->hasFlatSegmentOffsetBug() || 1720 AS != AMDGPUAS::FLAT_ADDRESS)) { 1721 SDValue N0, N1; 1722 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1723 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1724 1725 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1726 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1727 Addr = N0; 1728 OffsetVal = COffsetVal; 1729 } else { 1730 // If the offset doesn't fit, put the low bits into the offset field and 1731 // add the rest. 1732 // 1733 // For a FLAT instruction the hardware decides whether to access 1734 // global/scratch/shared memory based on the high bits of vaddr, 1735 // ignoring the offset field, so we have to ensure that when we add 1736 // remainder to vaddr it still points into the same underlying object. 1737 // The easiest way to do that is to make sure that we split the offset 1738 // into two pieces that are both >= 0 or both <= 0. 1739 1740 SDLoc DL(N); 1741 uint64_t RemainderOffset; 1742 1743 std::tie(OffsetVal, RemainderOffset) 1744 = TII->splitFlatOffset(COffsetVal, AS, IsSigned); 1745 1746 SDValue AddOffsetLo = 1747 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1748 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1749 1750 if (Addr.getValueType().getSizeInBits() == 32) { 1751 SmallVector<SDValue, 3> Opnds; 1752 Opnds.push_back(N0); 1753 Opnds.push_back(AddOffsetLo); 1754 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1755 if (Subtarget->hasAddNoCarry()) { 1756 AddOp = AMDGPU::V_ADD_U32_e64; 1757 Opnds.push_back(Clamp); 1758 } 1759 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1760 } else { 1761 // TODO: Should this try to use a scalar add pseudo if the base address 1762 // is uniform and saddr is usable? 1763 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1764 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1765 1766 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1767 DL, MVT::i32, N0, Sub0); 1768 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1769 DL, MVT::i32, N0, Sub1); 1770 1771 SDValue AddOffsetHi = 1772 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1773 1774 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1775 1776 SDNode *Add = 1777 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1778 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1779 1780 SDNode *Addc = CurDAG->getMachineNode( 1781 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1782 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1783 1784 SDValue RegSequenceArgs[] = { 1785 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1786 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1787 1788 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1789 MVT::i64, RegSequenceArgs), 1790 0); 1791 } 1792 } 1793 } 1794 } 1795 1796 VAddr = Addr; 1797 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1798 return true; 1799 } 1800 1801 // If this matches zero_extend i32:x, return x 1802 static SDValue matchZExtFromI32(SDValue Op) { 1803 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1804 return SDValue(); 1805 1806 SDValue ExtSrc = Op.getOperand(0); 1807 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1808 } 1809 1810 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1811 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1812 SDValue Addr, 1813 SDValue &SAddr, 1814 SDValue &VOffset, 1815 SDValue &Offset) const { 1816 int64_t ImmOffset = 0; 1817 1818 // Match the immediate offset first, which canonically is moved as low as 1819 // possible. 1820 1821 SDValue LHS, RHS; 1822 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1823 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1824 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1825 1826 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true)) { 1827 Addr = LHS; 1828 ImmOffset = COffsetVal; 1829 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1830 SDLoc SL(N); 1831 // saddr + large_offset -> saddr + (voffset = large_offset & ~MaxOffset) + 1832 // (large_offset & MaxOffset); 1833 int64_t SplitImmOffset, RemainderOffset; 1834 std::tie(SplitImmOffset, RemainderOffset) 1835 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true); 1836 1837 if (isUInt<32>(RemainderOffset)) { 1838 SDNode *VMov = CurDAG->getMachineNode( 1839 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1840 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1841 VOffset = SDValue(VMov, 0); 1842 SAddr = LHS; 1843 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1844 return true; 1845 } 1846 } 1847 } 1848 1849 // Match the variable offset. 1850 if (Addr.getOpcode() != ISD::ADD) { 1851 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1852 isa<ConstantSDNode>(Addr)) 1853 return false; 1854 1855 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1856 // moves required to copy a 64-bit SGPR to VGPR. 1857 SAddr = Addr; 1858 SDNode *VMov = CurDAG->getMachineNode( 1859 AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1860 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1861 VOffset = SDValue(VMov, 0); 1862 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1863 return true; 1864 } 1865 1866 LHS = Addr.getOperand(0); 1867 RHS = Addr.getOperand(1); 1868 1869 if (!LHS->isDivergent()) { 1870 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1871 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1872 SAddr = LHS; 1873 VOffset = ZextRHS; 1874 } 1875 } 1876 1877 if (!SAddr && !RHS->isDivergent()) { 1878 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1879 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1880 SAddr = RHS; 1881 VOffset = ZextLHS; 1882 } 1883 } 1884 1885 if (!SAddr) 1886 return false; 1887 1888 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1889 return true; 1890 } 1891 1892 // Match (32-bit SGPR base) + sext(imm offset) 1893 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *N, 1894 SDValue Addr, 1895 SDValue &SAddr, 1896 SDValue &Offset) const { 1897 if (Addr->isDivergent()) 1898 return false; 1899 1900 SAddr = Addr; 1901 int64_t COffsetVal = 0; 1902 1903 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1904 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1905 SAddr = Addr.getOperand(0); 1906 } 1907 1908 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1909 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1910 } else if (SAddr.getOpcode() == ISD::ADD && 1911 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1912 // Materialize this into a scalar move for scalar address to avoid 1913 // readfirstlane. 1914 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1915 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1916 FI->getValueType(0)); 1917 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, SDLoc(SAddr), 1918 MVT::i32, TFI, SAddr.getOperand(1)), 1919 0); 1920 } 1921 1922 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1923 1924 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1925 int64_t RemainderOffset = COffsetVal; 1926 int64_t ImmField = 0; 1927 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(*Subtarget, true); 1928 // Use signed division by a power of two to truncate towards 0. 1929 int64_t D = 1LL << (NumBits - 1); 1930 RemainderOffset = (COffsetVal / D) * D; 1931 ImmField = COffsetVal - RemainderOffset; 1932 1933 assert(TII->isLegalFLATOffset(ImmField, AMDGPUAS::PRIVATE_ADDRESS, true)); 1934 assert(RemainderOffset + ImmField == COffsetVal); 1935 1936 COffsetVal = ImmField; 1937 1938 SDLoc DL(N); 1939 SDValue AddOffset = 1940 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1941 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, DL, MVT::i32, 1942 SAddr, AddOffset), 0); 1943 } 1944 1945 Offset = CurDAG->getTargetConstant(COffsetVal, SDLoc(), MVT::i16); 1946 1947 return true; 1948 } 1949 1950 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1951 SDValue &Offset, bool &Imm) const { 1952 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1953 if (!C) { 1954 if (ByteOffsetNode.getValueType().isScalarInteger() && 1955 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1956 Offset = ByteOffsetNode; 1957 Imm = false; 1958 return true; 1959 } 1960 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1961 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1962 Offset = ByteOffsetNode.getOperand(0); 1963 Imm = false; 1964 return true; 1965 } 1966 } 1967 return false; 1968 } 1969 1970 SDLoc SL(ByteOffsetNode); 1971 // GFX9 and GFX10 have signed byte immediate offsets. 1972 int64_t ByteOffset = C->getSExtValue(); 1973 Optional<int64_t> EncodedOffset = 1974 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1975 if (EncodedOffset) { 1976 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1977 Imm = true; 1978 return true; 1979 } 1980 1981 // SGPR and literal offsets are unsigned. 1982 if (ByteOffset < 0) 1983 return false; 1984 1985 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1986 if (EncodedOffset) { 1987 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1988 return true; 1989 } 1990 1991 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1992 return false; 1993 1994 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1995 Offset = SDValue( 1996 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1997 1998 return true; 1999 } 2000 2001 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 2002 if (Addr.getValueType() != MVT::i32) 2003 return Addr; 2004 2005 // Zero-extend a 32-bit address. 2006 SDLoc SL(Addr); 2007 2008 const MachineFunction &MF = CurDAG->getMachineFunction(); 2009 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2010 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 2011 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 2012 2013 const SDValue Ops[] = { 2014 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 2015 Addr, 2016 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2017 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 2018 0), 2019 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 2020 }; 2021 2022 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2023 Ops), 0); 2024 } 2025 2026 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2027 SDValue &Offset, bool &Imm) const { 2028 SDLoc SL(Addr); 2029 2030 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2031 // wraparound, because s_load instructions perform the addition in 64 bits. 2032 if ((Addr.getValueType() != MVT::i32 || 2033 Addr->getFlags().hasNoUnsignedWrap())) { 2034 SDValue N0, N1; 2035 // Extract the base and offset if possible. 2036 if (CurDAG->isBaseWithConstantOffset(Addr) || 2037 Addr.getOpcode() == ISD::ADD) { 2038 N0 = Addr.getOperand(0); 2039 N1 = Addr.getOperand(1); 2040 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2041 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2042 } 2043 if (N0 && N1) { 2044 if (SelectSMRDOffset(N1, Offset, Imm)) { 2045 SBase = Expand32BitAddress(N0); 2046 return true; 2047 } 2048 } 2049 } 2050 SBase = Expand32BitAddress(Addr); 2051 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 2052 Imm = true; 2053 return true; 2054 } 2055 2056 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2057 SDValue &Offset) const { 2058 bool Imm = false; 2059 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 2060 } 2061 2062 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2063 SDValue &Offset) const { 2064 2065 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2066 2067 bool Imm = false; 2068 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 2069 return false; 2070 2071 return !Imm && isa<ConstantSDNode>(Offset); 2072 } 2073 2074 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2075 SDValue &Offset) const { 2076 bool Imm = false; 2077 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 2078 !isa<ConstantSDNode>(Offset); 2079 } 2080 2081 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 2082 SDValue &Offset) const { 2083 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2084 // The immediate offset for S_BUFFER instructions is unsigned. 2085 if (auto Imm = 2086 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 2087 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2088 return true; 2089 } 2090 } 2091 2092 return false; 2093 } 2094 2095 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2096 SDValue &Offset) const { 2097 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2098 2099 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2100 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2101 C->getZExtValue())) { 2102 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2103 return true; 2104 } 2105 } 2106 2107 return false; 2108 } 2109 2110 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2111 SDValue &Base, 2112 SDValue &Offset) const { 2113 SDLoc DL(Index); 2114 2115 if (CurDAG->isBaseWithConstantOffset(Index)) { 2116 SDValue N0 = Index.getOperand(0); 2117 SDValue N1 = Index.getOperand(1); 2118 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2119 2120 // (add n0, c0) 2121 // Don't peel off the offset (c0) if doing so could possibly lead 2122 // the base (n0) to be negative. 2123 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2124 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2125 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2126 Base = N0; 2127 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2128 return true; 2129 } 2130 } 2131 2132 if (isa<ConstantSDNode>(Index)) 2133 return false; 2134 2135 Base = Index; 2136 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2137 return true; 2138 } 2139 2140 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 2141 SDValue Val, uint32_t Offset, 2142 uint32_t Width) { 2143 // Transformation function, pack the offset and width of a BFE into 2144 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2145 // source, bits [5:0] contain the offset and bits [22:16] the width. 2146 uint32_t PackedVal = Offset | (Width << 16); 2147 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2148 2149 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2150 } 2151 2152 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2153 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2154 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2155 // Predicate: 0 < b <= c < 32 2156 2157 const SDValue &Shl = N->getOperand(0); 2158 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2159 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2160 2161 if (B && C) { 2162 uint32_t BVal = B->getZExtValue(); 2163 uint32_t CVal = C->getZExtValue(); 2164 2165 if (0 < BVal && BVal <= CVal && CVal < 32) { 2166 bool Signed = N->getOpcode() == ISD::SRA; 2167 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2168 2169 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2170 32 - CVal)); 2171 return; 2172 } 2173 } 2174 SelectCode(N); 2175 } 2176 2177 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2178 switch (N->getOpcode()) { 2179 case ISD::AND: 2180 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2181 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2182 // Predicate: isMask(mask) 2183 const SDValue &Srl = N->getOperand(0); 2184 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2185 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2186 2187 if (Shift && Mask) { 2188 uint32_t ShiftVal = Shift->getZExtValue(); 2189 uint32_t MaskVal = Mask->getZExtValue(); 2190 2191 if (isMask_32(MaskVal)) { 2192 uint32_t WidthVal = countPopulation(MaskVal); 2193 2194 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2195 Srl.getOperand(0), ShiftVal, WidthVal)); 2196 return; 2197 } 2198 } 2199 } 2200 break; 2201 case ISD::SRL: 2202 if (N->getOperand(0).getOpcode() == ISD::AND) { 2203 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2204 // Predicate: isMask(mask >> b) 2205 const SDValue &And = N->getOperand(0); 2206 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2207 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2208 2209 if (Shift && Mask) { 2210 uint32_t ShiftVal = Shift->getZExtValue(); 2211 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2212 2213 if (isMask_32(MaskVal)) { 2214 uint32_t WidthVal = countPopulation(MaskVal); 2215 2216 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2217 And.getOperand(0), ShiftVal, WidthVal)); 2218 return; 2219 } 2220 } 2221 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2222 SelectS_BFEFromShifts(N); 2223 return; 2224 } 2225 break; 2226 case ISD::SRA: 2227 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2228 SelectS_BFEFromShifts(N); 2229 return; 2230 } 2231 break; 2232 2233 case ISD::SIGN_EXTEND_INREG: { 2234 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2235 SDValue Src = N->getOperand(0); 2236 if (Src.getOpcode() != ISD::SRL) 2237 break; 2238 2239 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2240 if (!Amt) 2241 break; 2242 2243 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2244 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2245 Amt->getZExtValue(), Width)); 2246 return; 2247 } 2248 } 2249 2250 SelectCode(N); 2251 } 2252 2253 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2254 assert(N->getOpcode() == ISD::BRCOND); 2255 if (!N->hasOneUse()) 2256 return false; 2257 2258 SDValue Cond = N->getOperand(1); 2259 if (Cond.getOpcode() == ISD::CopyToReg) 2260 Cond = Cond.getOperand(2); 2261 2262 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2263 return false; 2264 2265 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2266 if (VT == MVT::i32) 2267 return true; 2268 2269 if (VT == MVT::i64) { 2270 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2271 2272 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2273 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2274 } 2275 2276 return false; 2277 } 2278 2279 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2280 SDValue Cond = N->getOperand(1); 2281 2282 if (Cond.isUndef()) { 2283 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2284 N->getOperand(2), N->getOperand(0)); 2285 return; 2286 } 2287 2288 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2289 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2290 2291 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2292 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2293 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2294 SDLoc SL(N); 2295 2296 if (!UseSCCBr) { 2297 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2298 // analyzed what generates the vcc value, so we do not know whether vcc 2299 // bits for disabled lanes are 0. Thus we need to mask out bits for 2300 // disabled lanes. 2301 // 2302 // For the case that we select S_CBRANCH_SCC1 and it gets 2303 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2304 // SIInstrInfo::moveToVALU which inserts the S_AND). 2305 // 2306 // We could add an analysis of what generates the vcc value here and omit 2307 // the S_AND when is unnecessary. But it would be better to add a separate 2308 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2309 // catches both cases. 2310 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2311 : AMDGPU::S_AND_B64, 2312 SL, MVT::i1, 2313 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2314 : AMDGPU::EXEC, 2315 MVT::i1), 2316 Cond), 2317 0); 2318 } 2319 2320 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2321 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2322 N->getOperand(2), // Basic Block 2323 VCC.getValue(0)); 2324 } 2325 2326 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2327 MVT VT = N->getSimpleValueType(0); 2328 bool IsFMA = N->getOpcode() == ISD::FMA; 2329 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2330 !Subtarget->hasFmaMixInsts()) || 2331 ((IsFMA && Subtarget->hasMadMixInsts()) || 2332 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2333 SelectCode(N); 2334 return; 2335 } 2336 2337 SDValue Src0 = N->getOperand(0); 2338 SDValue Src1 = N->getOperand(1); 2339 SDValue Src2 = N->getOperand(2); 2340 unsigned Src0Mods, Src1Mods, Src2Mods; 2341 2342 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2343 // using the conversion from f16. 2344 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2345 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2346 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2347 2348 assert((IsFMA || !Mode.allFP32Denormals()) && 2349 "fmad selected with denormals enabled"); 2350 // TODO: We can select this with f32 denormals enabled if all the sources are 2351 // converted from f16 (in which case fmad isn't legal). 2352 2353 if (Sel0 || Sel1 || Sel2) { 2354 // For dummy operands. 2355 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2356 SDValue Ops[] = { 2357 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2358 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2359 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2360 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2361 Zero, Zero 2362 }; 2363 2364 CurDAG->SelectNodeTo(N, 2365 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2366 MVT::f32, Ops); 2367 } else { 2368 SelectCode(N); 2369 } 2370 } 2371 2372 // This is here because there isn't a way to use the generated sub0_sub1 as the 2373 // subreg index to EXTRACT_SUBREG in tablegen. 2374 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2375 MemSDNode *Mem = cast<MemSDNode>(N); 2376 unsigned AS = Mem->getAddressSpace(); 2377 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2378 SelectCode(N); 2379 return; 2380 } 2381 2382 MVT VT = N->getSimpleValueType(0); 2383 bool Is32 = (VT == MVT::i32); 2384 SDLoc SL(N); 2385 2386 MachineSDNode *CmpSwap = nullptr; 2387 if (Subtarget->hasAddr64()) { 2388 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 2389 2390 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 2391 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2392 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2393 SDValue CmpVal = Mem->getOperand(2); 2394 SDValue GLC = CurDAG->getTargetConstant(1, SL, MVT::i1); 2395 2396 // XXX - Do we care about glue operands? 2397 2398 SDValue Ops[] = { 2399 CmpVal, VAddr, SRsrc, SOffset, Offset, GLC, SLC, Mem->getChain() 2400 }; 2401 2402 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2403 } 2404 } 2405 2406 if (!CmpSwap) { 2407 SDValue SRsrc, SOffset, Offset, SLC; 2408 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 2409 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2410 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2411 2412 SDValue CmpVal = Mem->getOperand(2); 2413 SDValue GLC = CurDAG->getTargetConstant(1, SL, MVT::i1); 2414 SDValue Ops[] = { 2415 CmpVal, SRsrc, SOffset, Offset, GLC, SLC, Mem->getChain() 2416 }; 2417 2418 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2419 } 2420 } 2421 2422 if (!CmpSwap) { 2423 SelectCode(N); 2424 return; 2425 } 2426 2427 MachineMemOperand *MMO = Mem->getMemOperand(); 2428 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2429 2430 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2431 SDValue Extract 2432 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2433 2434 ReplaceUses(SDValue(N, 0), Extract); 2435 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2436 CurDAG->RemoveDeadNode(N); 2437 } 2438 2439 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2440 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2441 // be copied to an SGPR with readfirstlane. 2442 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2443 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2444 2445 SDValue Chain = N->getOperand(0); 2446 SDValue Ptr = N->getOperand(2); 2447 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2448 MachineMemOperand *MMO = M->getMemOperand(); 2449 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2450 2451 SDValue Offset; 2452 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2453 SDValue PtrBase = Ptr.getOperand(0); 2454 SDValue PtrOffset = Ptr.getOperand(1); 2455 2456 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2457 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2458 N = glueCopyToM0(N, PtrBase); 2459 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2460 } 2461 } 2462 2463 if (!Offset) { 2464 N = glueCopyToM0(N, Ptr); 2465 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2466 } 2467 2468 SDValue Ops[] = { 2469 Offset, 2470 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2471 Chain, 2472 N->getOperand(N->getNumOperands() - 1) // New glue 2473 }; 2474 2475 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2476 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2477 } 2478 2479 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2480 switch (IntrID) { 2481 case Intrinsic::amdgcn_ds_gws_init: 2482 return AMDGPU::DS_GWS_INIT; 2483 case Intrinsic::amdgcn_ds_gws_barrier: 2484 return AMDGPU::DS_GWS_BARRIER; 2485 case Intrinsic::amdgcn_ds_gws_sema_v: 2486 return AMDGPU::DS_GWS_SEMA_V; 2487 case Intrinsic::amdgcn_ds_gws_sema_br: 2488 return AMDGPU::DS_GWS_SEMA_BR; 2489 case Intrinsic::amdgcn_ds_gws_sema_p: 2490 return AMDGPU::DS_GWS_SEMA_P; 2491 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2492 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2493 default: 2494 llvm_unreachable("not a gws intrinsic"); 2495 } 2496 } 2497 2498 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2499 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2500 !Subtarget->hasGWSSemaReleaseAll()) { 2501 // Let this error. 2502 SelectCode(N); 2503 return; 2504 } 2505 2506 // Chain, intrinsic ID, vsrc, offset 2507 const bool HasVSrc = N->getNumOperands() == 4; 2508 assert(HasVSrc || N->getNumOperands() == 3); 2509 2510 SDLoc SL(N); 2511 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2512 int ImmOffset = 0; 2513 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2514 MachineMemOperand *MMO = M->getMemOperand(); 2515 2516 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2517 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2518 2519 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2520 // offset field) % 64. Some versions of the programming guide omit the m0 2521 // part, or claim it's from offset 0. 2522 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2523 // If we have a constant offset, try to use the 0 in m0 as the base. 2524 // TODO: Look into changing the default m0 initialization value. If the 2525 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2526 // the immediate offset. 2527 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2528 ImmOffset = ConstOffset->getZExtValue(); 2529 } else { 2530 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2531 ImmOffset = BaseOffset.getConstantOperandVal(1); 2532 BaseOffset = BaseOffset.getOperand(0); 2533 } 2534 2535 // Prefer to do the shift in an SGPR since it should be possible to use m0 2536 // as the result directly. If it's already an SGPR, it will be eliminated 2537 // later. 2538 SDNode *SGPROffset 2539 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2540 BaseOffset); 2541 // Shift to offset in m0 2542 SDNode *M0Base 2543 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2544 SDValue(SGPROffset, 0), 2545 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2546 glueCopyToM0(N, SDValue(M0Base, 0)); 2547 } 2548 2549 SDValue Chain = N->getOperand(0); 2550 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2551 2552 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2553 SmallVector<SDValue, 5> Ops; 2554 if (HasVSrc) 2555 Ops.push_back(N->getOperand(2)); 2556 Ops.push_back(OffsetField); 2557 Ops.push_back(Chain); 2558 2559 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2560 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2561 } 2562 2563 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2564 if (Subtarget->getLDSBankCount() != 16) { 2565 // This is a single instruction with a pattern. 2566 SelectCode(N); 2567 return; 2568 } 2569 2570 SDLoc DL(N); 2571 2572 // This requires 2 instructions. It is possible to write a pattern to support 2573 // this, but the generated isel emitter doesn't correctly deal with multiple 2574 // output instructions using the same physical register input. The copy to m0 2575 // is incorrectly placed before the second instruction. 2576 // 2577 // TODO: Match source modifiers. 2578 // 2579 // def : Pat < 2580 // (int_amdgcn_interp_p1_f16 2581 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2582 // (i32 timm:$attrchan), (i32 timm:$attr), 2583 // (i1 timm:$high), M0), 2584 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2585 // timm:$attrchan, 0, 2586 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2587 // let Predicates = [has16BankLDS]; 2588 // } 2589 2590 // 16 bank LDS 2591 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2592 N->getOperand(5), SDValue()); 2593 2594 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2595 2596 SDNode *InterpMov = 2597 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2598 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2599 N->getOperand(3), // Attr 2600 N->getOperand(2), // Attrchan 2601 ToM0.getValue(1) // In glue 2602 }); 2603 2604 SDNode *InterpP1LV = 2605 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2606 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2607 N->getOperand(1), // Src0 2608 N->getOperand(3), // Attr 2609 N->getOperand(2), // Attrchan 2610 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2611 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2612 N->getOperand(4), // high 2613 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2614 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2615 SDValue(InterpMov, 1) 2616 }); 2617 2618 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2619 } 2620 2621 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2622 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2623 switch (IntrID) { 2624 case Intrinsic::amdgcn_ds_append: 2625 case Intrinsic::amdgcn_ds_consume: { 2626 if (N->getValueType(0) != MVT::i32) 2627 break; 2628 SelectDSAppendConsume(N, IntrID); 2629 return; 2630 } 2631 } 2632 2633 SelectCode(N); 2634 } 2635 2636 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2637 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2638 unsigned Opcode; 2639 switch (IntrID) { 2640 case Intrinsic::amdgcn_wqm: 2641 Opcode = AMDGPU::WQM; 2642 break; 2643 case Intrinsic::amdgcn_softwqm: 2644 Opcode = AMDGPU::SOFT_WQM; 2645 break; 2646 case Intrinsic::amdgcn_wwm: 2647 Opcode = AMDGPU::WWM; 2648 break; 2649 case Intrinsic::amdgcn_interp_p1_f16: 2650 SelectInterpP1F16(N); 2651 return; 2652 default: 2653 SelectCode(N); 2654 return; 2655 } 2656 2657 SDValue Src = N->getOperand(1); 2658 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2659 } 2660 2661 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2662 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2663 switch (IntrID) { 2664 case Intrinsic::amdgcn_ds_gws_init: 2665 case Intrinsic::amdgcn_ds_gws_barrier: 2666 case Intrinsic::amdgcn_ds_gws_sema_v: 2667 case Intrinsic::amdgcn_ds_gws_sema_br: 2668 case Intrinsic::amdgcn_ds_gws_sema_p: 2669 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2670 SelectDS_GWS(N, IntrID); 2671 return; 2672 default: 2673 break; 2674 } 2675 2676 SelectCode(N); 2677 } 2678 2679 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2680 unsigned &Mods, 2681 bool AllowAbs) const { 2682 Mods = 0; 2683 Src = In; 2684 2685 if (Src.getOpcode() == ISD::FNEG) { 2686 Mods |= SISrcMods::NEG; 2687 Src = Src.getOperand(0); 2688 } 2689 2690 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2691 Mods |= SISrcMods::ABS; 2692 Src = Src.getOperand(0); 2693 } 2694 2695 return true; 2696 } 2697 2698 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2699 SDValue &SrcMods) const { 2700 unsigned Mods; 2701 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2702 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2703 return true; 2704 } 2705 2706 return false; 2707 } 2708 2709 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2710 SDValue &SrcMods) const { 2711 unsigned Mods; 2712 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2713 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2714 return true; 2715 } 2716 2717 return false; 2718 } 2719 2720 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2721 SDValue &SrcMods) const { 2722 SelectVOP3Mods(In, Src, SrcMods); 2723 return isNoNanSrc(Src); 2724 } 2725 2726 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2727 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2728 return false; 2729 2730 Src = In; 2731 return true; 2732 } 2733 2734 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2735 SDValue &SrcMods, SDValue &Clamp, 2736 SDValue &Omod) const { 2737 SDLoc DL(In); 2738 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2739 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2740 2741 return SelectVOP3Mods(In, Src, SrcMods); 2742 } 2743 2744 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2745 SDValue &SrcMods, SDValue &Clamp, 2746 SDValue &Omod) const { 2747 SDLoc DL(In); 2748 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2749 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2750 2751 return SelectVOP3BMods(In, Src, SrcMods); 2752 } 2753 2754 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2755 SDValue &Clamp, SDValue &Omod) const { 2756 Src = In; 2757 2758 SDLoc DL(In); 2759 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2760 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2761 2762 return true; 2763 } 2764 2765 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2766 SDValue &SrcMods) const { 2767 unsigned Mods = 0; 2768 Src = In; 2769 2770 if (Src.getOpcode() == ISD::FNEG) { 2771 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2772 Src = Src.getOperand(0); 2773 } 2774 2775 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2776 unsigned VecMods = Mods; 2777 2778 SDValue Lo = stripBitcast(Src.getOperand(0)); 2779 SDValue Hi = stripBitcast(Src.getOperand(1)); 2780 2781 if (Lo.getOpcode() == ISD::FNEG) { 2782 Lo = stripBitcast(Lo.getOperand(0)); 2783 Mods ^= SISrcMods::NEG; 2784 } 2785 2786 if (Hi.getOpcode() == ISD::FNEG) { 2787 Hi = stripBitcast(Hi.getOperand(0)); 2788 Mods ^= SISrcMods::NEG_HI; 2789 } 2790 2791 if (isExtractHiElt(Lo, Lo)) 2792 Mods |= SISrcMods::OP_SEL_0; 2793 2794 if (isExtractHiElt(Hi, Hi)) 2795 Mods |= SISrcMods::OP_SEL_1; 2796 2797 unsigned VecSize = Src.getValueSizeInBits(); 2798 Lo = stripExtractLoElt(Lo); 2799 Hi = stripExtractLoElt(Hi); 2800 2801 if (Lo.getValueSizeInBits() > VecSize) { 2802 Lo = CurDAG->getTargetExtractSubreg( 2803 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2804 MVT::getIntegerVT(VecSize), Lo); 2805 } 2806 2807 if (Hi.getValueSizeInBits() > VecSize) { 2808 Hi = CurDAG->getTargetExtractSubreg( 2809 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2810 MVT::getIntegerVT(VecSize), Hi); 2811 } 2812 2813 assert(Lo.getValueSizeInBits() <= VecSize && 2814 Hi.getValueSizeInBits() <= VecSize); 2815 2816 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2817 // Really a scalar input. Just select from the low half of the register to 2818 // avoid packing. 2819 2820 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2821 Src = Lo; 2822 } else { 2823 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2824 2825 SDLoc SL(In); 2826 SDValue Undef = SDValue( 2827 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2828 Lo.getValueType()), 0); 2829 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2830 : AMDGPU::SReg_64RegClassID; 2831 const SDValue Ops[] = { 2832 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2833 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2834 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2835 2836 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2837 Src.getValueType(), Ops), 0); 2838 } 2839 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2840 return true; 2841 } 2842 2843 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2844 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2845 .bitcastToAPInt().getZExtValue(); 2846 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2847 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2848 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2849 return true; 2850 } 2851 } 2852 2853 Mods = VecMods; 2854 } 2855 2856 // Packed instructions do not have abs modifiers. 2857 Mods |= SISrcMods::OP_SEL_1; 2858 2859 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2860 return true; 2861 } 2862 2863 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2864 SDValue &SrcMods) const { 2865 Src = In; 2866 // FIXME: Handle op_sel 2867 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2868 return true; 2869 } 2870 2871 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2872 SDValue &SrcMods) const { 2873 // FIXME: Handle op_sel 2874 return SelectVOP3Mods(In, Src, SrcMods); 2875 } 2876 2877 // The return value is not whether the match is possible (which it always is), 2878 // but whether or not it a conversion is really used. 2879 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2880 unsigned &Mods) const { 2881 Mods = 0; 2882 SelectVOP3ModsImpl(In, Src, Mods); 2883 2884 if (Src.getOpcode() == ISD::FP_EXTEND) { 2885 Src = Src.getOperand(0); 2886 assert(Src.getValueType() == MVT::f16); 2887 Src = stripBitcast(Src); 2888 2889 // Be careful about folding modifiers if we already have an abs. fneg is 2890 // applied last, so we don't want to apply an earlier fneg. 2891 if ((Mods & SISrcMods::ABS) == 0) { 2892 unsigned ModsTmp; 2893 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2894 2895 if ((ModsTmp & SISrcMods::NEG) != 0) 2896 Mods ^= SISrcMods::NEG; 2897 2898 if ((ModsTmp & SISrcMods::ABS) != 0) 2899 Mods |= SISrcMods::ABS; 2900 } 2901 2902 // op_sel/op_sel_hi decide the source type and source. 2903 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2904 // If the sources's op_sel is set, it picks the high half of the source 2905 // register. 2906 2907 Mods |= SISrcMods::OP_SEL_1; 2908 if (isExtractHiElt(Src, Src)) { 2909 Mods |= SISrcMods::OP_SEL_0; 2910 2911 // TODO: Should we try to look for neg/abs here? 2912 } 2913 2914 return true; 2915 } 2916 2917 return false; 2918 } 2919 2920 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2921 SDValue &SrcMods) const { 2922 unsigned Mods = 0; 2923 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2924 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2925 return true; 2926 } 2927 2928 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2929 if (In.isUndef()) 2930 return CurDAG->getUNDEF(MVT::i32); 2931 2932 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2933 SDLoc SL(In); 2934 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2935 } 2936 2937 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2938 SDLoc SL(In); 2939 return CurDAG->getConstant( 2940 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2941 } 2942 2943 SDValue Src; 2944 if (isExtractHiElt(In, Src)) 2945 return Src; 2946 2947 return SDValue(); 2948 } 2949 2950 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2951 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2952 2953 const SIRegisterInfo *SIRI = 2954 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2955 const SIInstrInfo * SII = 2956 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2957 2958 unsigned Limit = 0; 2959 bool AllUsesAcceptSReg = true; 2960 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2961 Limit < 10 && U != E; ++U, ++Limit) { 2962 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2963 2964 // If the register class is unknown, it could be an unknown 2965 // register class that needs to be an SGPR, e.g. an inline asm 2966 // constraint 2967 if (!RC || SIRI->isSGPRClass(RC)) 2968 return false; 2969 2970 if (RC != &AMDGPU::VS_32RegClass) { 2971 AllUsesAcceptSReg = false; 2972 SDNode * User = *U; 2973 if (User->isMachineOpcode()) { 2974 unsigned Opc = User->getMachineOpcode(); 2975 MCInstrDesc Desc = SII->get(Opc); 2976 if (Desc.isCommutable()) { 2977 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2978 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2979 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2980 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2981 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2982 if (CommutedRC == &AMDGPU::VS_32RegClass) 2983 AllUsesAcceptSReg = true; 2984 } 2985 } 2986 } 2987 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2988 // commuting current user. This means have at least one use 2989 // that strictly require VGPR. Thus, we will not attempt to commute 2990 // other user instructions. 2991 if (!AllUsesAcceptSReg) 2992 break; 2993 } 2994 } 2995 return !AllUsesAcceptSReg && (Limit < 10); 2996 } 2997 2998 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2999 auto Ld = cast<LoadSDNode>(N); 3000 3001 return Ld->getAlignment() >= 4 && 3002 ( 3003 ( 3004 ( 3005 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3006 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 3007 ) 3008 && 3009 !N->isDivergent() 3010 ) 3011 || 3012 ( 3013 Subtarget->getScalarizeGlobalBehavior() && 3014 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 3015 Ld->isSimple() && 3016 !N->isDivergent() && 3017 static_cast<const SITargetLowering *>( 3018 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 3019 ) 3020 ); 3021 } 3022 3023 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 3024 const AMDGPUTargetLowering& Lowering = 3025 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3026 bool IsModified = false; 3027 do { 3028 IsModified = false; 3029 3030 // Go over all selected nodes and try to fold them a bit more 3031 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3032 while (Position != CurDAG->allnodes_end()) { 3033 SDNode *Node = &*Position++; 3034 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3035 if (!MachineNode) 3036 continue; 3037 3038 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3039 if (ResNode != Node) { 3040 if (ResNode) 3041 ReplaceUses(Node, ResNode); 3042 IsModified = true; 3043 } 3044 } 3045 CurDAG->RemoveDeadNodes(); 3046 } while (IsModified); 3047 } 3048 3049 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 3050 Subtarget = &MF.getSubtarget<R600Subtarget>(); 3051 return SelectionDAGISel::runOnMachineFunction(MF); 3052 } 3053 3054 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 3055 if (!N->readMem()) 3056 return false; 3057 if (CbId == -1) 3058 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3059 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 3060 3061 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 3062 } 3063 3064 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 3065 SDValue& IntPtr) { 3066 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 3067 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 3068 true); 3069 return true; 3070 } 3071 return false; 3072 } 3073 3074 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 3075 SDValue& BaseReg, SDValue &Offset) { 3076 if (!isa<ConstantSDNode>(Addr)) { 3077 BaseReg = Addr; 3078 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 3079 return true; 3080 } 3081 return false; 3082 } 3083 3084 void R600DAGToDAGISel::Select(SDNode *N) { 3085 unsigned int Opc = N->getOpcode(); 3086 if (N->isMachineOpcode()) { 3087 N->setNodeId(-1); 3088 return; // Already selected. 3089 } 3090 3091 switch (Opc) { 3092 default: break; 3093 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 3094 case ISD::SCALAR_TO_VECTOR: 3095 case ISD::BUILD_VECTOR: { 3096 EVT VT = N->getValueType(0); 3097 unsigned NumVectorElts = VT.getVectorNumElements(); 3098 unsigned RegClassID; 3099 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 3100 // that adds a 128 bits reg copy when going through TwoAddressInstructions 3101 // pass. We want to avoid 128 bits copies as much as possible because they 3102 // can't be bundled by our scheduler. 3103 switch(NumVectorElts) { 3104 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 3105 case 4: 3106 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 3107 RegClassID = R600::R600_Reg128VerticalRegClassID; 3108 else 3109 RegClassID = R600::R600_Reg128RegClassID; 3110 break; 3111 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 3112 } 3113 SelectBuildVector(N, RegClassID); 3114 return; 3115 } 3116 } 3117 3118 SelectCode(N); 3119 } 3120 3121 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 3122 SDValue &Offset) { 3123 ConstantSDNode *C; 3124 SDLoc DL(Addr); 3125 3126 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 3127 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3128 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3129 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 3130 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 3131 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3132 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3133 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 3134 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 3135 Base = Addr.getOperand(0); 3136 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3137 } else { 3138 Base = Addr; 3139 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 3140 } 3141 3142 return true; 3143 } 3144 3145 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 3146 SDValue &Offset) { 3147 ConstantSDNode *IMMOffset; 3148 3149 if (Addr.getOpcode() == ISD::ADD 3150 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 3151 && isInt<16>(IMMOffset->getZExtValue())) { 3152 3153 Base = Addr.getOperand(0); 3154 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3155 MVT::i32); 3156 return true; 3157 // If the pointer address is constant, we can move it to the offset field. 3158 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 3159 && isInt<16>(IMMOffset->getZExtValue())) { 3160 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 3161 SDLoc(CurDAG->getEntryNode()), 3162 R600::ZERO, MVT::i32); 3163 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3164 MVT::i32); 3165 return true; 3166 } 3167 3168 // Default case, no offset 3169 Base = Addr; 3170 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 3171 return true; 3172 } 3173