1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "MCTargetDesc/R600MCTargetDesc.h" 18 #include "R600RegisterInfo.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/SelectionDAGISel.h" 25 #include "llvm/CodeGen/SelectionDAGNodes.h" 26 #include "llvm/IR/IntrinsicsAMDGPU.h" 27 #include "llvm/InitializePasses.h" 28 29 #ifdef EXPENSIVE_CHECKS 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #endif 33 34 #define DEBUG_TYPE "isel" 35 36 using namespace llvm; 37 38 //===----------------------------------------------------------------------===// 39 // Instruction Selector Implementation 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 44 static SDValue stripBitcast(SDValue Val) { 45 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 46 } 47 48 // Figure out if this is really an extract of the high 16-bits of a dword. 49 static bool isExtractHiElt(SDValue In, SDValue &Out) { 50 In = stripBitcast(In); 51 52 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 53 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 54 if (!Idx->isOne()) 55 return false; 56 Out = In.getOperand(0); 57 return true; 58 } 59 } 60 61 if (In.getOpcode() != ISD::TRUNCATE) 62 return false; 63 64 SDValue Srl = In.getOperand(0); 65 if (Srl.getOpcode() == ISD::SRL) { 66 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 67 if (ShiftAmt->getZExtValue() == 16) { 68 Out = stripBitcast(Srl.getOperand(0)); 69 return true; 70 } 71 } 72 } 73 74 return false; 75 } 76 77 // Look through operations that obscure just looking at the low 16-bits of the 78 // same register. 79 static SDValue stripExtractLoElt(SDValue In) { 80 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 81 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 82 if (Idx->isZero() && In.getValueSizeInBits() <= 32) 83 return In.getOperand(0); 84 } 85 } 86 87 if (In.getOpcode() == ISD::TRUNCATE) { 88 SDValue Src = In.getOperand(0); 89 if (Src.getValueType().getSizeInBits() == 32) 90 return stripBitcast(Src); 91 } 92 93 return In; 94 } 95 96 } // end anonymous namespace 97 98 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 99 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 100 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 101 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 102 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 103 #ifdef EXPENSIVE_CHECKS 104 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 105 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 106 #endif 107 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 108 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 109 110 /// This pass converts a legalized DAG into a AMDGPU-specific 111 // DAG, ready for instruction scheduling. 112 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 113 CodeGenOpt::Level OptLevel) { 114 return new AMDGPUDAGToDAGISel(TM, OptLevel); 115 } 116 117 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel( 118 TargetMachine *TM /*= nullptr*/, 119 CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/) 120 : SelectionDAGISel(*TM, OptLevel) { 121 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 122 } 123 124 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 125 #ifdef EXPENSIVE_CHECKS 126 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 127 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 128 for (auto &L : LI->getLoopsInPreorder()) { 129 assert(L->isLCSSAForm(DT)); 130 } 131 #endif 132 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 133 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 134 return SelectionDAGISel::runOnMachineFunction(MF); 135 } 136 137 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 138 // XXX - only need to list legal operations. 139 switch (Opc) { 140 case ISD::FADD: 141 case ISD::FSUB: 142 case ISD::FMUL: 143 case ISD::FDIV: 144 case ISD::FREM: 145 case ISD::FCANONICALIZE: 146 case ISD::UINT_TO_FP: 147 case ISD::SINT_TO_FP: 148 case ISD::FABS: 149 // Fabs is lowered to a bit operation, but it's an and which will clear the 150 // high bits anyway. 151 case ISD::FSQRT: 152 case ISD::FSIN: 153 case ISD::FCOS: 154 case ISD::FPOWI: 155 case ISD::FPOW: 156 case ISD::FLOG: 157 case ISD::FLOG2: 158 case ISD::FLOG10: 159 case ISD::FEXP: 160 case ISD::FEXP2: 161 case ISD::FCEIL: 162 case ISD::FTRUNC: 163 case ISD::FRINT: 164 case ISD::FNEARBYINT: 165 case ISD::FROUND: 166 case ISD::FFLOOR: 167 case ISD::FMINNUM: 168 case ISD::FMAXNUM: 169 case AMDGPUISD::FRACT: 170 case AMDGPUISD::CLAMP: 171 case AMDGPUISD::COS_HW: 172 case AMDGPUISD::SIN_HW: 173 case AMDGPUISD::FMIN3: 174 case AMDGPUISD::FMAX3: 175 case AMDGPUISD::FMED3: 176 case AMDGPUISD::FMAD_FTZ: 177 case AMDGPUISD::RCP: 178 case AMDGPUISD::RSQ: 179 case AMDGPUISD::RCP_IFLAG: 180 case AMDGPUISD::LDEXP: 181 // On gfx10, all 16-bit instructions preserve the high bits. 182 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 183 case ISD::FP_ROUND: 184 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 185 // high bits on gfx9. 186 // TODO: If we had the source node we could see if the source was fma/mad 187 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 188 case ISD::FMA: 189 case ISD::FMAD: 190 case AMDGPUISD::DIV_FIXUP: 191 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 192 default: 193 // fcopysign, select and others may be lowered to 32-bit bit operations 194 // which don't zero the high bits. 195 return false; 196 } 197 } 198 199 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.addRequired<AMDGPUArgumentUsageInfo>(); 201 AU.addRequired<LegacyDivergenceAnalysis>(); 202 #ifdef EXPENSIVE_CHECKS 203 AU.addRequired<DominatorTreeWrapperPass>(); 204 AU.addRequired<LoopInfoWrapperPass>(); 205 #endif 206 SelectionDAGISel::getAnalysisUsage(AU); 207 } 208 209 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 210 assert(Subtarget->d16PreservesUnusedBits()); 211 MVT VT = N->getValueType(0).getSimpleVT(); 212 if (VT != MVT::v2i16 && VT != MVT::v2f16) 213 return false; 214 215 SDValue Lo = N->getOperand(0); 216 SDValue Hi = N->getOperand(1); 217 218 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 219 220 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 221 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 222 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 223 224 // Need to check for possible indirect dependencies on the other half of the 225 // vector to avoid introducing a cycle. 226 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 227 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 228 229 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 230 SDValue Ops[] = { 231 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 232 }; 233 234 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 235 if (LdHi->getMemoryVT() == MVT::i8) { 236 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 237 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 238 } else { 239 assert(LdHi->getMemoryVT() == MVT::i16); 240 } 241 242 SDValue NewLoadHi = 243 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 244 Ops, LdHi->getMemoryVT(), 245 LdHi->getMemOperand()); 246 247 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 248 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 249 return true; 250 } 251 252 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 253 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 254 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 255 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 256 if (LdLo && Lo.hasOneUse()) { 257 SDValue TiedIn = getHi16Elt(Hi); 258 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 259 return false; 260 261 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 262 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 263 if (LdLo->getMemoryVT() == MVT::i8) { 264 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 265 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 266 } else { 267 assert(LdLo->getMemoryVT() == MVT::i16); 268 } 269 270 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 271 272 SDValue Ops[] = { 273 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 274 }; 275 276 SDValue NewLoadLo = 277 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 278 Ops, LdLo->getMemoryVT(), 279 LdLo->getMemOperand()); 280 281 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 282 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 283 return true; 284 } 285 286 return false; 287 } 288 289 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 290 if (!Subtarget->d16PreservesUnusedBits()) 291 return; 292 293 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 294 295 bool MadeChange = false; 296 while (Position != CurDAG->allnodes_begin()) { 297 SDNode *N = &*--Position; 298 if (N->use_empty()) 299 continue; 300 301 switch (N->getOpcode()) { 302 case ISD::BUILD_VECTOR: 303 MadeChange |= matchLoadD16FromBuildVector(N); 304 break; 305 default: 306 break; 307 } 308 } 309 310 if (MadeChange) { 311 CurDAG->RemoveDeadNodes(); 312 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 313 CurDAG->dump();); 314 } 315 } 316 317 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 318 if (TM.Options.NoNaNsFPMath) 319 return true; 320 321 // TODO: Move into isKnownNeverNaN 322 if (N->getFlags().hasNoNaNs()) 323 return true; 324 325 return CurDAG->isKnownNeverNaN(N); 326 } 327 328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 329 bool Negated) const { 330 if (N->isUndef()) 331 return true; 332 333 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 334 if (Negated) { 335 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 336 return TII->isInlineConstant(-C->getAPIntValue()); 337 338 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 339 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 340 341 } else { 342 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 343 return TII->isInlineConstant(C->getAPIntValue()); 344 345 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 346 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 347 } 348 349 return false; 350 } 351 352 /// Determine the register class for \p OpNo 353 /// \returns The register class of the virtual register that will be used for 354 /// the given operand number \OpNo or NULL if the register class cannot be 355 /// determined. 356 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 357 unsigned OpNo) const { 358 if (!N->isMachineOpcode()) { 359 if (N->getOpcode() == ISD::CopyToReg) { 360 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 361 if (Reg.isVirtual()) { 362 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 363 return MRI.getRegClass(Reg); 364 } 365 366 const SIRegisterInfo *TRI 367 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 368 return TRI->getPhysRegClass(Reg); 369 } 370 371 return nullptr; 372 } 373 374 switch (N->getMachineOpcode()) { 375 default: { 376 const MCInstrDesc &Desc = 377 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 378 unsigned OpIdx = Desc.getNumDefs() + OpNo; 379 if (OpIdx >= Desc.getNumOperands()) 380 return nullptr; 381 int RegClass = Desc.OpInfo[OpIdx].RegClass; 382 if (RegClass == -1) 383 return nullptr; 384 385 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 386 } 387 case AMDGPU::REG_SEQUENCE: { 388 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 389 const TargetRegisterClass *SuperRC = 390 Subtarget->getRegisterInfo()->getRegClass(RCID); 391 392 SDValue SubRegOp = N->getOperand(OpNo + 1); 393 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 394 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 395 SubRegIdx); 396 } 397 } 398 } 399 400 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 401 SDValue Glue) const { 402 SmallVector <SDValue, 8> Ops; 403 Ops.push_back(NewChain); // Replace the chain. 404 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 405 Ops.push_back(N->getOperand(i)); 406 407 Ops.push_back(Glue); 408 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 409 } 410 411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 412 const SITargetLowering& Lowering = 413 *static_cast<const SITargetLowering*>(getTargetLowering()); 414 415 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 416 417 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 418 return glueCopyToOp(N, M0, M0.getValue(1)); 419 } 420 421 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 422 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 423 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 424 if (Subtarget->ldsRequiresM0Init()) 425 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 426 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 427 MachineFunction &MF = CurDAG->getMachineFunction(); 428 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 429 return 430 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 431 } 432 return N; 433 } 434 435 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 436 EVT VT) const { 437 SDNode *Lo = CurDAG->getMachineNode( 438 AMDGPU::S_MOV_B32, DL, MVT::i32, 439 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 440 SDNode *Hi = 441 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 442 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 443 const SDValue Ops[] = { 444 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 445 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 446 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 447 448 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 449 } 450 451 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 452 EVT VT = N->getValueType(0); 453 unsigned NumVectorElts = VT.getVectorNumElements(); 454 EVT EltVT = VT.getVectorElementType(); 455 SDLoc DL(N); 456 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 458 if (NumVectorElts == 1) { 459 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 460 RegClass); 461 return; 462 } 463 464 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 465 "supported yet"); 466 // 32 = Max Num Vector Elements 467 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 468 // 1 = Vector Register Class 469 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 470 471 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 472 Triple::amdgcn; 473 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 474 bool IsRegSeq = true; 475 unsigned NOps = N->getNumOperands(); 476 for (unsigned i = 0; i < NOps; i++) { 477 // XXX: Why is this here? 478 if (isa<RegisterSDNode>(N->getOperand(i))) { 479 IsRegSeq = false; 480 break; 481 } 482 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 483 : R600RegisterInfo::getSubRegFromChannel(i); 484 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 485 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 486 } 487 if (NOps != NumVectorElts) { 488 // Fill in the missing undef elements if this was a scalar_to_vector. 489 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 490 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 491 DL, EltVT); 492 for (unsigned i = NOps; i < NumVectorElts; ++i) { 493 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 494 : R600RegisterInfo::getSubRegFromChannel(i); 495 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 496 RegSeqArgs[1 + (2 * i) + 1] = 497 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 498 } 499 } 500 501 if (!IsRegSeq) 502 SelectCode(N); 503 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 504 } 505 506 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 507 unsigned int Opc = N->getOpcode(); 508 if (N->isMachineOpcode()) { 509 N->setNodeId(-1); 510 return; // Already selected. 511 } 512 513 // isa<MemSDNode> almost works but is slightly too permissive for some DS 514 // intrinsics. 515 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 516 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 517 Opc == ISD::ATOMIC_LOAD_FADD || 518 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 519 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 520 N = glueCopyToM0LDSInit(N); 521 SelectCode(N); 522 return; 523 } 524 525 switch (Opc) { 526 default: 527 break; 528 // We are selecting i64 ADD here instead of custom lower it during 529 // DAG legalization, so we can fold some i64 ADDs used for address 530 // calculation into the LOAD and STORE instructions. 531 case ISD::ADDC: 532 case ISD::ADDE: 533 case ISD::SUBC: 534 case ISD::SUBE: { 535 if (N->getValueType(0) != MVT::i64) 536 break; 537 538 SelectADD_SUB_I64(N); 539 return; 540 } 541 case ISD::ADDCARRY: 542 case ISD::SUBCARRY: 543 if (N->getValueType(0) != MVT::i32) 544 break; 545 546 SelectAddcSubb(N); 547 return; 548 case ISD::UADDO: 549 case ISD::USUBO: { 550 SelectUADDO_USUBO(N); 551 return; 552 } 553 case AMDGPUISD::FMUL_W_CHAIN: { 554 SelectFMUL_W_CHAIN(N); 555 return; 556 } 557 case AMDGPUISD::FMA_W_CHAIN: { 558 SelectFMA_W_CHAIN(N); 559 return; 560 } 561 562 case ISD::SCALAR_TO_VECTOR: 563 case ISD::BUILD_VECTOR: { 564 EVT VT = N->getValueType(0); 565 unsigned NumVectorElts = VT.getVectorNumElements(); 566 if (VT.getScalarSizeInBits() == 16) { 567 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 568 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 569 ReplaceNode(N, Packed); 570 return; 571 } 572 } 573 574 break; 575 } 576 577 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 578 unsigned RegClassID = 579 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 580 SelectBuildVector(N, RegClassID); 581 return; 582 } 583 case ISD::BUILD_PAIR: { 584 SDValue RC, SubReg0, SubReg1; 585 SDLoc DL(N); 586 if (N->getValueType(0) == MVT::i128) { 587 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 588 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 589 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 590 } else if (N->getValueType(0) == MVT::i64) { 591 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 592 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 593 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 594 } else { 595 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 596 } 597 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 598 N->getOperand(1), SubReg1 }; 599 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 600 N->getValueType(0), Ops)); 601 return; 602 } 603 604 case ISD::Constant: 605 case ISD::ConstantFP: { 606 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 607 break; 608 609 uint64_t Imm; 610 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 611 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 612 else { 613 ConstantSDNode *C = cast<ConstantSDNode>(N); 614 Imm = C->getZExtValue(); 615 } 616 617 SDLoc DL(N); 618 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 619 return; 620 } 621 case AMDGPUISD::BFE_I32: 622 case AMDGPUISD::BFE_U32: { 623 // There is a scalar version available, but unlike the vector version which 624 // has a separate operand for the offset and width, the scalar version packs 625 // the width and offset into a single operand. Try to move to the scalar 626 // version if the offsets are constant, so that we can try to keep extended 627 // loads of kernel arguments in SGPRs. 628 629 // TODO: Technically we could try to pattern match scalar bitshifts of 630 // dynamic values, but it's probably not useful. 631 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 632 if (!Offset) 633 break; 634 635 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 636 if (!Width) 637 break; 638 639 bool Signed = Opc == AMDGPUISD::BFE_I32; 640 641 uint32_t OffsetVal = Offset->getZExtValue(); 642 uint32_t WidthVal = Width->getZExtValue(); 643 644 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 645 WidthVal)); 646 return; 647 } 648 case AMDGPUISD::DIV_SCALE: { 649 SelectDIV_SCALE(N); 650 return; 651 } 652 case AMDGPUISD::MAD_I64_I32: 653 case AMDGPUISD::MAD_U64_U32: { 654 SelectMAD_64_32(N); 655 return; 656 } 657 case ISD::SMUL_LOHI: 658 case ISD::UMUL_LOHI: 659 return SelectMUL_LOHI(N); 660 case ISD::CopyToReg: { 661 const SITargetLowering& Lowering = 662 *static_cast<const SITargetLowering*>(getTargetLowering()); 663 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 664 break; 665 } 666 case ISD::AND: 667 case ISD::SRL: 668 case ISD::SRA: 669 case ISD::SIGN_EXTEND_INREG: 670 if (N->getValueType(0) != MVT::i32) 671 break; 672 673 SelectS_BFE(N); 674 return; 675 case ISD::BRCOND: 676 SelectBRCOND(N); 677 return; 678 case ISD::FMAD: 679 case ISD::FMA: 680 SelectFMAD_FMA(N); 681 return; 682 case AMDGPUISD::CVT_PKRTZ_F16_F32: 683 case AMDGPUISD::CVT_PKNORM_I16_F32: 684 case AMDGPUISD::CVT_PKNORM_U16_F32: 685 case AMDGPUISD::CVT_PK_U16_U32: 686 case AMDGPUISD::CVT_PK_I16_I32: { 687 // Hack around using a legal type if f16 is illegal. 688 if (N->getValueType(0) == MVT::i32) { 689 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 690 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 691 { N->getOperand(0), N->getOperand(1) }); 692 SelectCode(N); 693 return; 694 } 695 696 break; 697 } 698 case ISD::INTRINSIC_W_CHAIN: { 699 SelectINTRINSIC_W_CHAIN(N); 700 return; 701 } 702 case ISD::INTRINSIC_WO_CHAIN: { 703 SelectINTRINSIC_WO_CHAIN(N); 704 return; 705 } 706 case ISD::INTRINSIC_VOID: { 707 SelectINTRINSIC_VOID(N); 708 return; 709 } 710 } 711 712 SelectCode(N); 713 } 714 715 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 716 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 717 const Instruction *Term = BB->getTerminator(); 718 return Term->getMetadata("amdgpu.uniform") || 719 Term->getMetadata("structurizecfg.uniform"); 720 } 721 722 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 723 unsigned ShAmtBits) const { 724 assert(N->getOpcode() == ISD::AND); 725 726 const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 727 if (RHS.countTrailingOnes() >= ShAmtBits) 728 return true; 729 730 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 731 return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits; 732 } 733 734 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 735 SDValue &N0, SDValue &N1) { 736 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 737 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 738 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 739 // (i64 (bitcast (v2i32 (build_vector 740 // (or (extract_vector_elt V, 0), OFFSET), 741 // (extract_vector_elt V, 1))))) 742 SDValue Lo = Addr.getOperand(0).getOperand(0); 743 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 744 SDValue BaseLo = Lo.getOperand(0); 745 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 746 // Check that split base (Lo and Hi) are extracted from the same one. 747 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 748 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 749 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 750 // Lo is statically extracted from index 0. 751 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 752 BaseLo.getConstantOperandVal(1) == 0 && 753 // Hi is statically extracted from index 0. 754 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 755 BaseHi.getConstantOperandVal(1) == 1) { 756 N0 = BaseLo.getOperand(0).getOperand(0); 757 N1 = Lo.getOperand(1); 758 return true; 759 } 760 } 761 } 762 return false; 763 } 764 765 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 766 SDValue &RHS) const { 767 if (CurDAG->isBaseWithConstantOffset(Addr)) { 768 LHS = Addr.getOperand(0); 769 RHS = Addr.getOperand(1); 770 return true; 771 } 772 773 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 774 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 775 return true; 776 } 777 778 return false; 779 } 780 781 StringRef AMDGPUDAGToDAGISel::getPassName() const { 782 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 783 } 784 785 //===----------------------------------------------------------------------===// 786 // Complex Patterns 787 //===----------------------------------------------------------------------===// 788 789 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 790 SDValue &Offset) { 791 return false; 792 } 793 794 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 795 SDValue &Offset) { 796 ConstantSDNode *C; 797 SDLoc DL(Addr); 798 799 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 800 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 801 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 802 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 803 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 804 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 805 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 806 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 807 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 808 Base = Addr.getOperand(0); 809 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 810 } else { 811 Base = Addr; 812 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 813 } 814 815 return true; 816 } 817 818 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 819 const SDLoc &DL) const { 820 SDNode *Mov = CurDAG->getMachineNode( 821 AMDGPU::S_MOV_B32, DL, MVT::i32, 822 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 823 return SDValue(Mov, 0); 824 } 825 826 // FIXME: Should only handle addcarry/subcarry 827 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 828 SDLoc DL(N); 829 SDValue LHS = N->getOperand(0); 830 SDValue RHS = N->getOperand(1); 831 832 unsigned Opcode = N->getOpcode(); 833 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 834 bool ProduceCarry = 835 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 836 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 837 838 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 839 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 840 841 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 842 DL, MVT::i32, LHS, Sub0); 843 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 844 DL, MVT::i32, LHS, Sub1); 845 846 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 847 DL, MVT::i32, RHS, Sub0); 848 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 849 DL, MVT::i32, RHS, Sub1); 850 851 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 852 853 static const unsigned OpcMap[2][2][2] = { 854 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 855 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 856 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 857 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 858 859 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 860 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 861 862 SDNode *AddLo; 863 if (!ConsumeCarry) { 864 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 865 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 866 } else { 867 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 868 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 869 } 870 SDValue AddHiArgs[] = { 871 SDValue(Hi0, 0), 872 SDValue(Hi1, 0), 873 SDValue(AddLo, 1) 874 }; 875 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 876 877 SDValue RegSequenceArgs[] = { 878 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 879 SDValue(AddLo,0), 880 Sub0, 881 SDValue(AddHi,0), 882 Sub1, 883 }; 884 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 885 MVT::i64, RegSequenceArgs); 886 887 if (ProduceCarry) { 888 // Replace the carry-use 889 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 890 } 891 892 // Replace the remaining uses. 893 ReplaceNode(N, RegSequence); 894 } 895 896 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 897 SDLoc DL(N); 898 SDValue LHS = N->getOperand(0); 899 SDValue RHS = N->getOperand(1); 900 SDValue CI = N->getOperand(2); 901 902 if (N->isDivergent()) { 903 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 904 : AMDGPU::V_SUBB_U32_e64; 905 CurDAG->SelectNodeTo( 906 N, Opc, N->getVTList(), 907 {LHS, RHS, CI, 908 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 909 } else { 910 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 911 : AMDGPU::S_SUB_CO_PSEUDO; 912 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 913 } 914 } 915 916 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 917 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 918 // carry out despite the _i32 name. These were renamed in VI to _U32. 919 // FIXME: We should probably rename the opcodes here. 920 bool IsAdd = N->getOpcode() == ISD::UADDO; 921 bool IsVALU = N->isDivergent(); 922 923 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 924 ++UI) 925 if (UI.getUse().getResNo() == 1) { 926 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 927 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 928 IsVALU = true; 929 break; 930 } 931 } 932 933 if (IsVALU) { 934 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 935 936 CurDAG->SelectNodeTo( 937 N, Opc, N->getVTList(), 938 {N->getOperand(0), N->getOperand(1), 939 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 940 } else { 941 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 942 : AMDGPU::S_USUBO_PSEUDO; 943 944 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 945 {N->getOperand(0), N->getOperand(1)}); 946 } 947 } 948 949 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 950 SDLoc SL(N); 951 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 952 SDValue Ops[10]; 953 954 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 955 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 956 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 957 Ops[8] = N->getOperand(0); 958 Ops[9] = N->getOperand(4); 959 960 // If there are no source modifiers, prefer fmac over fma because it can use 961 // the smaller VOP2 encoding. 962 bool UseFMAC = Subtarget->hasDLInsts() && 963 cast<ConstantSDNode>(Ops[0])->isZero() && 964 cast<ConstantSDNode>(Ops[2])->isZero() && 965 cast<ConstantSDNode>(Ops[4])->isZero(); 966 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 967 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 968 } 969 970 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 971 SDLoc SL(N); 972 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 973 SDValue Ops[8]; 974 975 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 976 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 977 Ops[6] = N->getOperand(0); 978 Ops[7] = N->getOperand(3); 979 980 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 981 } 982 983 // We need to handle this here because tablegen doesn't support matching 984 // instructions with multiple outputs. 985 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 986 SDLoc SL(N); 987 EVT VT = N->getValueType(0); 988 989 assert(VT == MVT::f32 || VT == MVT::f64); 990 991 unsigned Opc 992 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 993 994 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 995 // omod 996 SDValue Ops[8]; 997 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 998 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 999 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1000 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1001 } 1002 1003 // We need to handle this here because tablegen doesn't support matching 1004 // instructions with multiple outputs. 1005 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1006 SDLoc SL(N); 1007 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1008 unsigned Opc; 1009 if (Subtarget->getGeneration() == AMDGPUSubtarget::GFX11) 1010 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1011 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1012 else 1013 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1014 1015 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1016 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1017 Clamp }; 1018 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1019 } 1020 1021 // We need to handle this here because tablegen doesn't support matching 1022 // instructions with multiple outputs. 1023 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1024 SDLoc SL(N); 1025 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1026 unsigned Opc; 1027 if (Subtarget->getGeneration() == AMDGPUSubtarget::GFX11) 1028 Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 1029 : AMDGPU::V_MAD_U64_U32_gfx11_e64; 1030 else 1031 Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1032 1033 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1034 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1035 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1036 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1037 if (!SDValue(N, 0).use_empty()) { 1038 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1039 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1040 MVT::i32, SDValue(Mad, 0), Sub0); 1041 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1042 } 1043 if (!SDValue(N, 1).use_empty()) { 1044 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1045 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1046 MVT::i32, SDValue(Mad, 0), Sub1); 1047 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1048 } 1049 CurDAG->RemoveDeadNode(N); 1050 } 1051 1052 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1053 if (!isUInt<16>(Offset)) 1054 return false; 1055 1056 if (!Base || Subtarget->hasUsableDSOffset() || 1057 Subtarget->unsafeDSOffsetFoldingEnabled()) 1058 return true; 1059 1060 // On Southern Islands instruction with a negative base value and an offset 1061 // don't seem to work. 1062 return CurDAG->SignBitIsZero(Base); 1063 } 1064 1065 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1066 SDValue &Offset) const { 1067 SDLoc DL(Addr); 1068 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1069 SDValue N0 = Addr.getOperand(0); 1070 SDValue N1 = Addr.getOperand(1); 1071 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1072 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1073 // (add n0, c0) 1074 Base = N0; 1075 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1076 return true; 1077 } 1078 } else if (Addr.getOpcode() == ISD::SUB) { 1079 // sub C, x -> add (sub 0, x), C 1080 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1081 int64_t ByteOffset = C->getSExtValue(); 1082 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1083 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1084 1085 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1086 // the known bits in isDSOffsetLegal. We need to emit the selected node 1087 // here, so this is thrown away. 1088 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1089 Zero, Addr.getOperand(1)); 1090 1091 if (isDSOffsetLegal(Sub, ByteOffset)) { 1092 SmallVector<SDValue, 3> Opnds; 1093 Opnds.push_back(Zero); 1094 Opnds.push_back(Addr.getOperand(1)); 1095 1096 // FIXME: Select to VOP3 version for with-carry. 1097 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1098 if (Subtarget->hasAddNoCarry()) { 1099 SubOp = AMDGPU::V_SUB_U32_e64; 1100 Opnds.push_back( 1101 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1102 } 1103 1104 MachineSDNode *MachineSub = 1105 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1106 1107 Base = SDValue(MachineSub, 0); 1108 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1109 return true; 1110 } 1111 } 1112 } 1113 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1114 // If we have a constant address, prefer to put the constant into the 1115 // offset. This can save moves to load the constant address since multiple 1116 // operations can share the zero base address register, and enables merging 1117 // into read2 / write2 instructions. 1118 1119 SDLoc DL(Addr); 1120 1121 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1122 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1123 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1124 DL, MVT::i32, Zero); 1125 Base = SDValue(MovZero, 0); 1126 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1127 return true; 1128 } 1129 } 1130 1131 // default case 1132 Base = Addr; 1133 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1134 return true; 1135 } 1136 1137 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1138 unsigned Offset1, 1139 unsigned Size) const { 1140 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1141 return false; 1142 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1143 return false; 1144 1145 if (!Base || Subtarget->hasUsableDSOffset() || 1146 Subtarget->unsafeDSOffsetFoldingEnabled()) 1147 return true; 1148 1149 // On Southern Islands instruction with a negative base value and an offset 1150 // don't seem to work. 1151 return CurDAG->SignBitIsZero(Base); 1152 } 1153 1154 // TODO: If offset is too big, put low 16-bit into offset. 1155 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1156 SDValue &Offset0, 1157 SDValue &Offset1) const { 1158 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1159 } 1160 1161 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1162 SDValue &Offset0, 1163 SDValue &Offset1) const { 1164 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1165 } 1166 1167 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1168 SDValue &Offset0, SDValue &Offset1, 1169 unsigned Size) const { 1170 SDLoc DL(Addr); 1171 1172 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1173 SDValue N0 = Addr.getOperand(0); 1174 SDValue N1 = Addr.getOperand(1); 1175 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1176 unsigned OffsetValue0 = C1->getZExtValue(); 1177 unsigned OffsetValue1 = OffsetValue0 + Size; 1178 1179 // (add n0, c0) 1180 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1181 Base = N0; 1182 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1183 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1184 return true; 1185 } 1186 } else if (Addr.getOpcode() == ISD::SUB) { 1187 // sub C, x -> add (sub 0, x), C 1188 if (const ConstantSDNode *C = 1189 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1190 unsigned OffsetValue0 = C->getZExtValue(); 1191 unsigned OffsetValue1 = OffsetValue0 + Size; 1192 1193 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1194 SDLoc DL(Addr); 1195 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1196 1197 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1198 // the known bits in isDSOffsetLegal. We need to emit the selected node 1199 // here, so this is thrown away. 1200 SDValue Sub = 1201 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1202 1203 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1204 SmallVector<SDValue, 3> Opnds; 1205 Opnds.push_back(Zero); 1206 Opnds.push_back(Addr.getOperand(1)); 1207 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1208 if (Subtarget->hasAddNoCarry()) { 1209 SubOp = AMDGPU::V_SUB_U32_e64; 1210 Opnds.push_back( 1211 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1212 } 1213 1214 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1215 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1216 1217 Base = SDValue(MachineSub, 0); 1218 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1219 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1220 return true; 1221 } 1222 } 1223 } 1224 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1225 unsigned OffsetValue0 = CAddr->getZExtValue(); 1226 unsigned OffsetValue1 = OffsetValue0 + Size; 1227 1228 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1229 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1230 MachineSDNode *MovZero = 1231 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1232 Base = SDValue(MovZero, 0); 1233 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1234 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1235 return true; 1236 } 1237 } 1238 1239 // default case 1240 1241 Base = Addr; 1242 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1243 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1244 return true; 1245 } 1246 1247 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1248 SDValue &SOffset, SDValue &Offset, 1249 SDValue &Offen, SDValue &Idxen, 1250 SDValue &Addr64) const { 1251 // Subtarget prefers to use flat instruction 1252 // FIXME: This should be a pattern predicate and not reach here 1253 if (Subtarget->useFlatForGlobal()) 1254 return false; 1255 1256 SDLoc DL(Addr); 1257 1258 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1259 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1260 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1261 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1262 1263 ConstantSDNode *C1 = nullptr; 1264 SDValue N0 = Addr; 1265 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1266 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1267 if (isUInt<32>(C1->getZExtValue())) 1268 N0 = Addr.getOperand(0); 1269 else 1270 C1 = nullptr; 1271 } 1272 1273 if (N0.getOpcode() == ISD::ADD) { 1274 // (add N2, N3) -> addr64, or 1275 // (add (add N2, N3), C1) -> addr64 1276 SDValue N2 = N0.getOperand(0); 1277 SDValue N3 = N0.getOperand(1); 1278 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1279 1280 if (N2->isDivergent()) { 1281 if (N3->isDivergent()) { 1282 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1283 // addr64, and construct the resource from a 0 address. 1284 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1285 VAddr = N0; 1286 } else { 1287 // N2 is divergent, N3 is not. 1288 Ptr = N3; 1289 VAddr = N2; 1290 } 1291 } else { 1292 // N2 is not divergent. 1293 Ptr = N2; 1294 VAddr = N3; 1295 } 1296 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1297 } else if (N0->isDivergent()) { 1298 // N0 is divergent. Use it as the addr64, and construct the resource from a 1299 // 0 address. 1300 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1301 VAddr = N0; 1302 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1303 } else { 1304 // N0 -> offset, or 1305 // (N0 + C1) -> offset 1306 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1307 Ptr = N0; 1308 } 1309 1310 if (!C1) { 1311 // No offset. 1312 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1313 return true; 1314 } 1315 1316 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1317 // Legal offset for instruction. 1318 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1319 return true; 1320 } 1321 1322 // Illegal offset, store it in soffset. 1323 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1324 SOffset = 1325 SDValue(CurDAG->getMachineNode( 1326 AMDGPU::S_MOV_B32, DL, MVT::i32, 1327 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1328 0); 1329 return true; 1330 } 1331 1332 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1333 SDValue &VAddr, SDValue &SOffset, 1334 SDValue &Offset) const { 1335 SDValue Ptr, Offen, Idxen, Addr64; 1336 1337 // addr64 bit was removed for volcanic islands. 1338 // FIXME: This should be a pattern predicate and not reach here 1339 if (!Subtarget->hasAddr64()) 1340 return false; 1341 1342 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1343 return false; 1344 1345 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1346 if (C->getSExtValue()) { 1347 SDLoc DL(Addr); 1348 1349 const SITargetLowering& Lowering = 1350 *static_cast<const SITargetLowering*>(getTargetLowering()); 1351 1352 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1353 return true; 1354 } 1355 1356 return false; 1357 } 1358 1359 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1360 SDLoc DL(N); 1361 1362 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1363 SDValue TFI = 1364 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1365 1366 // We rebase the base address into an absolute stack address and hence 1367 // use constant 0 for soffset. This value must be retained until 1368 // frame elimination and eliminateFrameIndex will choose the appropriate 1369 // frame register if need be. 1370 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1371 } 1372 1373 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1374 SDValue Addr, SDValue &Rsrc, 1375 SDValue &VAddr, SDValue &SOffset, 1376 SDValue &ImmOffset) const { 1377 1378 SDLoc DL(Addr); 1379 MachineFunction &MF = CurDAG->getMachineFunction(); 1380 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1381 1382 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1383 1384 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1385 int64_t Imm = CAddr->getSExtValue(); 1386 const int64_t NullPtr = 1387 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1388 // Don't fold null pointer. 1389 if (Imm != NullPtr) { 1390 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1391 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1392 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1393 VAddr = SDValue(MovHighBits, 0); 1394 1395 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1396 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1397 return true; 1398 } 1399 } 1400 1401 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1402 // (add n0, c1) 1403 1404 SDValue N0 = Addr.getOperand(0); 1405 SDValue N1 = Addr.getOperand(1); 1406 1407 // Offsets in vaddr must be positive if range checking is enabled. 1408 // 1409 // The total computation of vaddr + soffset + offset must not overflow. If 1410 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1411 // overflowing. 1412 // 1413 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1414 // always perform a range check. If a negative vaddr base index was used, 1415 // this would fail the range check. The overall address computation would 1416 // compute a valid address, but this doesn't happen due to the range 1417 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1418 // 1419 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1420 // MUBUF vaddr, but not on older subtargets which can only do this if the 1421 // sign bit is known 0. 1422 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1423 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1424 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1425 CurDAG->SignBitIsZero(N0))) { 1426 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1427 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1428 return true; 1429 } 1430 } 1431 1432 // (node) 1433 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1434 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1435 return true; 1436 } 1437 1438 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1439 if (Val.getOpcode() != ISD::CopyFromReg) 1440 return false; 1441 auto RC = 1442 TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg()); 1443 return RC && TRI.isSGPRClass(RC); 1444 } 1445 1446 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1447 SDValue Addr, 1448 SDValue &SRsrc, 1449 SDValue &SOffset, 1450 SDValue &Offset) const { 1451 const SIRegisterInfo *TRI = 1452 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1453 MachineFunction &MF = CurDAG->getMachineFunction(); 1454 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1455 SDLoc DL(Addr); 1456 1457 // CopyFromReg <sgpr> 1458 if (IsCopyFromSGPR(*TRI, Addr)) { 1459 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1460 SOffset = Addr; 1461 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1462 return true; 1463 } 1464 1465 ConstantSDNode *CAddr; 1466 if (Addr.getOpcode() == ISD::ADD) { 1467 // Add (CopyFromReg <sgpr>) <constant> 1468 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1469 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1470 return false; 1471 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1472 return false; 1473 1474 SOffset = Addr.getOperand(0); 1475 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1476 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1477 // <constant> 1478 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1479 } else { 1480 return false; 1481 } 1482 1483 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1484 1485 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1486 return true; 1487 } 1488 1489 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1490 SDValue &SOffset, SDValue &Offset 1491 ) const { 1492 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1493 const SIInstrInfo *TII = 1494 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1495 1496 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1497 return false; 1498 1499 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1500 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1501 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1502 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1503 APInt::getAllOnes(32).getZExtValue(); // Size 1504 SDLoc DL(Addr); 1505 1506 const SITargetLowering& Lowering = 1507 *static_cast<const SITargetLowering*>(getTargetLowering()); 1508 1509 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1510 return true; 1511 } 1512 return false; 1513 } 1514 1515 // Find a load or store from corresponding pattern root. 1516 // Roots may be build_vector, bitconvert or their combinations. 1517 static MemSDNode* findMemSDNode(SDNode *N) { 1518 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1519 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1520 return MN; 1521 assert(isa<BuildVectorSDNode>(N)); 1522 for (SDValue V : N->op_values()) 1523 if (MemSDNode *MN = 1524 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1525 return MN; 1526 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1527 } 1528 1529 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1530 SDValue &VAddr, SDValue &Offset, 1531 uint64_t FlatVariant) const { 1532 int64_t OffsetVal = 0; 1533 1534 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1535 1536 bool CanHaveFlatSegmentOffsetBug = 1537 Subtarget->hasFlatSegmentOffsetBug() && 1538 FlatVariant == SIInstrFlags::FLAT && 1539 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1540 1541 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1542 SDValue N0, N1; 1543 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1544 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1545 1546 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1547 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1548 Addr = N0; 1549 OffsetVal = COffsetVal; 1550 } else { 1551 // If the offset doesn't fit, put the low bits into the offset field and 1552 // add the rest. 1553 // 1554 // For a FLAT instruction the hardware decides whether to access 1555 // global/scratch/shared memory based on the high bits of vaddr, 1556 // ignoring the offset field, so we have to ensure that when we add 1557 // remainder to vaddr it still points into the same underlying object. 1558 // The easiest way to do that is to make sure that we split the offset 1559 // into two pieces that are both >= 0 or both <= 0. 1560 1561 SDLoc DL(N); 1562 uint64_t RemainderOffset; 1563 1564 std::tie(OffsetVal, RemainderOffset) = 1565 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1566 1567 SDValue AddOffsetLo = 1568 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1569 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1570 1571 if (Addr.getValueType().getSizeInBits() == 32) { 1572 SmallVector<SDValue, 3> Opnds; 1573 Opnds.push_back(N0); 1574 Opnds.push_back(AddOffsetLo); 1575 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1576 if (Subtarget->hasAddNoCarry()) { 1577 AddOp = AMDGPU::V_ADD_U32_e64; 1578 Opnds.push_back(Clamp); 1579 } 1580 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1581 } else { 1582 // TODO: Should this try to use a scalar add pseudo if the base address 1583 // is uniform and saddr is usable? 1584 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1585 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1586 1587 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1588 DL, MVT::i32, N0, Sub0); 1589 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1590 DL, MVT::i32, N0, Sub1); 1591 1592 SDValue AddOffsetHi = 1593 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1594 1595 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1596 1597 SDNode *Add = 1598 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1599 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1600 1601 SDNode *Addc = CurDAG->getMachineNode( 1602 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1603 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1604 1605 SDValue RegSequenceArgs[] = { 1606 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1607 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1608 1609 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1610 MVT::i64, RegSequenceArgs), 1611 0); 1612 } 1613 } 1614 } 1615 } 1616 1617 VAddr = Addr; 1618 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1619 return true; 1620 } 1621 1622 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1623 SDValue &VAddr, 1624 SDValue &Offset) const { 1625 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1626 } 1627 1628 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1629 SDValue &VAddr, 1630 SDValue &Offset) const { 1631 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1632 } 1633 1634 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1635 SDValue &VAddr, 1636 SDValue &Offset) const { 1637 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1638 SIInstrFlags::FlatScratch); 1639 } 1640 1641 // If this matches zero_extend i32:x, return x 1642 static SDValue matchZExtFromI32(SDValue Op) { 1643 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1644 return SDValue(); 1645 1646 SDValue ExtSrc = Op.getOperand(0); 1647 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1648 } 1649 1650 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1651 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1652 SDValue Addr, 1653 SDValue &SAddr, 1654 SDValue &VOffset, 1655 SDValue &Offset) const { 1656 int64_t ImmOffset = 0; 1657 1658 // Match the immediate offset first, which canonically is moved as low as 1659 // possible. 1660 1661 SDValue LHS, RHS; 1662 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1663 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1664 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1665 1666 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1667 SIInstrFlags::FlatGlobal)) { 1668 Addr = LHS; 1669 ImmOffset = COffsetVal; 1670 } else if (!LHS->isDivergent()) { 1671 if (COffsetVal > 0) { 1672 SDLoc SL(N); 1673 // saddr + large_offset -> saddr + 1674 // (voffset = large_offset & ~MaxOffset) + 1675 // (large_offset & MaxOffset); 1676 int64_t SplitImmOffset, RemainderOffset; 1677 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1678 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1679 1680 if (isUInt<32>(RemainderOffset)) { 1681 SDNode *VMov = CurDAG->getMachineNode( 1682 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1683 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1684 VOffset = SDValue(VMov, 0); 1685 SAddr = LHS; 1686 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1687 return true; 1688 } 1689 } 1690 1691 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1692 // is 1 we would need to perform 1 or 2 extra moves for each half of 1693 // the constant and it is better to do a scalar add and then issue a 1694 // single VALU instruction to materialize zero. Otherwise it is less 1695 // instructions to perform VALU adds with immediates or inline literals. 1696 unsigned NumLiterals = 1697 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1698 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1699 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1700 return false; 1701 } 1702 } 1703 1704 // Match the variable offset. 1705 if (Addr.getOpcode() == ISD::ADD) { 1706 LHS = Addr.getOperand(0); 1707 RHS = Addr.getOperand(1); 1708 1709 if (!LHS->isDivergent()) { 1710 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1711 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1712 SAddr = LHS; 1713 VOffset = ZextRHS; 1714 } 1715 } 1716 1717 if (!SAddr && !RHS->isDivergent()) { 1718 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1719 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1720 SAddr = RHS; 1721 VOffset = ZextLHS; 1722 } 1723 } 1724 1725 if (SAddr) { 1726 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1727 return true; 1728 } 1729 } 1730 1731 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1732 isa<ConstantSDNode>(Addr)) 1733 return false; 1734 1735 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1736 // moves required to copy a 64-bit SGPR to VGPR. 1737 SAddr = Addr; 1738 SDNode *VMov = 1739 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1740 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1741 VOffset = SDValue(VMov, 0); 1742 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1743 return true; 1744 } 1745 1746 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1747 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1748 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1749 } else if (SAddr.getOpcode() == ISD::ADD && 1750 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1751 // Materialize this into a scalar move for scalar address to avoid 1752 // readfirstlane. 1753 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1754 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1755 FI->getValueType(0)); 1756 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1757 MVT::i32, TFI, SAddr.getOperand(1)), 1758 0); 1759 } 1760 1761 return SAddr; 1762 } 1763 1764 // Match (32-bit SGPR base) + sext(imm offset) 1765 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1766 SDValue &SAddr, 1767 SDValue &Offset) const { 1768 if (Addr->isDivergent()) 1769 return false; 1770 1771 SDLoc DL(Addr); 1772 1773 int64_t COffsetVal = 0; 1774 1775 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1776 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1777 SAddr = Addr.getOperand(0); 1778 } else { 1779 SAddr = Addr; 1780 } 1781 1782 SAddr = SelectSAddrFI(CurDAG, SAddr); 1783 1784 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1785 1786 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1787 SIInstrFlags::FlatScratch)) { 1788 int64_t SplitImmOffset, RemainderOffset; 1789 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1790 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1791 1792 COffsetVal = SplitImmOffset; 1793 1794 SDValue AddOffset = 1795 SAddr.getOpcode() == ISD::TargetFrameIndex 1796 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1797 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1798 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1799 SAddr, AddOffset), 1800 0); 1801 } 1802 1803 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1804 1805 return true; 1806 } 1807 1808 // Check whether the flat scratch SVS swizzle bug affects this access. 1809 bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( 1810 SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { 1811 if (!Subtarget->hasFlatScratchSVSSwizzleBug()) 1812 return false; 1813 1814 // The bug affects the swizzling of SVS accesses if there is any carry out 1815 // from the two low order bits (i.e. from bit 1 into bit 2) when adding 1816 // voffset to (soffset + inst_offset). 1817 KnownBits VKnown = CurDAG->computeKnownBits(VAddr); 1818 KnownBits SKnown = KnownBits::computeForAddSub( 1819 true, false, CurDAG->computeKnownBits(SAddr), 1820 KnownBits::makeConstant(APInt(32, ImmOffset))); 1821 uint64_t VMax = VKnown.getMaxValue().getZExtValue(); 1822 uint64_t SMax = SKnown.getMaxValue().getZExtValue(); 1823 return (VMax & 3) + (SMax & 3) >= 4; 1824 } 1825 1826 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1827 SDValue &VAddr, SDValue &SAddr, 1828 SDValue &Offset) const { 1829 int64_t ImmOffset = 0; 1830 1831 SDValue LHS, RHS; 1832 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1833 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1834 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1835 1836 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1837 Addr = LHS; 1838 ImmOffset = COffsetVal; 1839 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1840 SDLoc SL(N); 1841 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1842 // (large_offset & MaxOffset); 1843 int64_t SplitImmOffset, RemainderOffset; 1844 std::tie(SplitImmOffset, RemainderOffset) 1845 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1846 1847 if (isUInt<32>(RemainderOffset)) { 1848 SDNode *VMov = CurDAG->getMachineNode( 1849 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1850 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1851 VAddr = SDValue(VMov, 0); 1852 SAddr = LHS; 1853 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, SplitImmOffset)) 1854 return false; 1855 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1856 return true; 1857 } 1858 } 1859 } 1860 1861 if (Addr.getOpcode() != ISD::ADD) 1862 return false; 1863 1864 LHS = Addr.getOperand(0); 1865 RHS = Addr.getOperand(1); 1866 1867 if (!LHS->isDivergent() && RHS->isDivergent()) { 1868 SAddr = LHS; 1869 VAddr = RHS; 1870 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1871 SAddr = RHS; 1872 VAddr = LHS; 1873 } else { 1874 return false; 1875 } 1876 1877 if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) 1878 return false; 1879 SAddr = SelectSAddrFI(CurDAG, SAddr); 1880 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1881 return true; 1882 } 1883 1884 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1885 SDValue &Offset, bool &Imm) const { 1886 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1887 if (!C) { 1888 if (ByteOffsetNode.getValueType().isScalarInteger() && 1889 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1890 Offset = ByteOffsetNode; 1891 Imm = false; 1892 return true; 1893 } 1894 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1895 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1896 Offset = ByteOffsetNode.getOperand(0); 1897 Imm = false; 1898 return true; 1899 } 1900 } 1901 return false; 1902 } 1903 1904 SDLoc SL(ByteOffsetNode); 1905 // GFX9 and GFX10 have signed byte immediate offsets. 1906 int64_t ByteOffset = C->getSExtValue(); 1907 Optional<int64_t> EncodedOffset = 1908 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1909 if (EncodedOffset) { 1910 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1911 Imm = true; 1912 return true; 1913 } 1914 1915 // SGPR and literal offsets are unsigned. 1916 if (ByteOffset < 0) 1917 return false; 1918 1919 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1920 if (EncodedOffset) { 1921 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1922 return true; 1923 } 1924 1925 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1926 return false; 1927 1928 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1929 Offset = SDValue( 1930 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1931 1932 return true; 1933 } 1934 1935 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1936 if (Addr.getValueType() != MVT::i32) 1937 return Addr; 1938 1939 // Zero-extend a 32-bit address. 1940 SDLoc SL(Addr); 1941 1942 const MachineFunction &MF = CurDAG->getMachineFunction(); 1943 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1944 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1945 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1946 1947 const SDValue Ops[] = { 1948 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1949 Addr, 1950 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1951 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1952 0), 1953 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1954 }; 1955 1956 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1957 Ops), 0); 1958 } 1959 1960 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1961 SDValue &Offset, bool &Imm) const { 1962 SDLoc SL(Addr); 1963 1964 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1965 // wraparound, because s_load instructions perform the addition in 64 bits. 1966 if ((Addr.getValueType() != MVT::i32 || 1967 Addr->getFlags().hasNoUnsignedWrap())) { 1968 SDValue N0, N1; 1969 // Extract the base and offset if possible. 1970 if (CurDAG->isBaseWithConstantOffset(Addr) || 1971 Addr.getOpcode() == ISD::ADD) { 1972 N0 = Addr.getOperand(0); 1973 N1 = Addr.getOperand(1); 1974 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1975 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1976 } 1977 if (N0 && N1) { 1978 if (SelectSMRDOffset(N1, Offset, Imm)) { 1979 SBase = Expand32BitAddress(N0); 1980 return true; 1981 } 1982 } 1983 } 1984 SBase = Expand32BitAddress(Addr); 1985 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1986 Imm = true; 1987 return true; 1988 } 1989 1990 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1991 SDValue &Offset) const { 1992 bool Imm = false; 1993 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1994 } 1995 1996 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1997 SDValue &Offset) const { 1998 1999 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2000 2001 bool Imm = false; 2002 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 2003 return false; 2004 2005 return !Imm && isa<ConstantSDNode>(Offset); 2006 } 2007 2008 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2009 SDValue &Offset) const { 2010 bool Imm = false; 2011 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 2012 !isa<ConstantSDNode>(Offset); 2013 } 2014 2015 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 2016 SDValue &Offset) const { 2017 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2018 // The immediate offset for S_BUFFER instructions is unsigned. 2019 if (auto Imm = 2020 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 2021 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2022 return true; 2023 } 2024 } 2025 2026 return false; 2027 } 2028 2029 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2030 SDValue &Offset) const { 2031 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2032 2033 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2034 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2035 C->getZExtValue())) { 2036 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2037 return true; 2038 } 2039 } 2040 2041 return false; 2042 } 2043 2044 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2045 SDValue &Base, 2046 SDValue &Offset) const { 2047 SDLoc DL(Index); 2048 2049 if (CurDAG->isBaseWithConstantOffset(Index)) { 2050 SDValue N0 = Index.getOperand(0); 2051 SDValue N1 = Index.getOperand(1); 2052 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2053 2054 // (add n0, c0) 2055 // Don't peel off the offset (c0) if doing so could possibly lead 2056 // the base (n0) to be negative. 2057 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2058 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2059 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2060 Base = N0; 2061 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2062 return true; 2063 } 2064 } 2065 2066 if (isa<ConstantSDNode>(Index)) 2067 return false; 2068 2069 Base = Index; 2070 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2071 return true; 2072 } 2073 2074 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2075 SDValue Val, uint32_t Offset, 2076 uint32_t Width) { 2077 if (Val->isDivergent()) { 2078 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2079 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2080 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2081 2082 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2083 } 2084 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2085 // Transformation function, pack the offset and width of a BFE into 2086 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2087 // source, bits [5:0] contain the offset and bits [22:16] the width. 2088 uint32_t PackedVal = Offset | (Width << 16); 2089 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2090 2091 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2092 } 2093 2094 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2095 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2096 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2097 // Predicate: 0 < b <= c < 32 2098 2099 const SDValue &Shl = N->getOperand(0); 2100 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2101 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2102 2103 if (B && C) { 2104 uint32_t BVal = B->getZExtValue(); 2105 uint32_t CVal = C->getZExtValue(); 2106 2107 if (0 < BVal && BVal <= CVal && CVal < 32) { 2108 bool Signed = N->getOpcode() == ISD::SRA; 2109 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2110 32 - CVal)); 2111 return; 2112 } 2113 } 2114 SelectCode(N); 2115 } 2116 2117 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2118 switch (N->getOpcode()) { 2119 case ISD::AND: 2120 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2121 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2122 // Predicate: isMask(mask) 2123 const SDValue &Srl = N->getOperand(0); 2124 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2125 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2126 2127 if (Shift && Mask) { 2128 uint32_t ShiftVal = Shift->getZExtValue(); 2129 uint32_t MaskVal = Mask->getZExtValue(); 2130 2131 if (isMask_32(MaskVal)) { 2132 uint32_t WidthVal = countPopulation(MaskVal); 2133 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2134 WidthVal)); 2135 return; 2136 } 2137 } 2138 } 2139 break; 2140 case ISD::SRL: 2141 if (N->getOperand(0).getOpcode() == ISD::AND) { 2142 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2143 // Predicate: isMask(mask >> b) 2144 const SDValue &And = N->getOperand(0); 2145 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2146 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2147 2148 if (Shift && Mask) { 2149 uint32_t ShiftVal = Shift->getZExtValue(); 2150 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2151 2152 if (isMask_32(MaskVal)) { 2153 uint32_t WidthVal = countPopulation(MaskVal); 2154 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2155 WidthVal)); 2156 return; 2157 } 2158 } 2159 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2160 SelectS_BFEFromShifts(N); 2161 return; 2162 } 2163 break; 2164 case ISD::SRA: 2165 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2166 SelectS_BFEFromShifts(N); 2167 return; 2168 } 2169 break; 2170 2171 case ISD::SIGN_EXTEND_INREG: { 2172 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2173 SDValue Src = N->getOperand(0); 2174 if (Src.getOpcode() != ISD::SRL) 2175 break; 2176 2177 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2178 if (!Amt) 2179 break; 2180 2181 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2182 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2183 Amt->getZExtValue(), Width)); 2184 return; 2185 } 2186 } 2187 2188 SelectCode(N); 2189 } 2190 2191 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2192 assert(N->getOpcode() == ISD::BRCOND); 2193 if (!N->hasOneUse()) 2194 return false; 2195 2196 SDValue Cond = N->getOperand(1); 2197 if (Cond.getOpcode() == ISD::CopyToReg) 2198 Cond = Cond.getOperand(2); 2199 2200 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2201 return false; 2202 2203 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2204 if (VT == MVT::i32) 2205 return true; 2206 2207 if (VT == MVT::i64) { 2208 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2209 2210 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2211 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2212 } 2213 2214 return false; 2215 } 2216 2217 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2218 SDValue Cond = N->getOperand(1); 2219 2220 if (Cond.isUndef()) { 2221 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2222 N->getOperand(2), N->getOperand(0)); 2223 return; 2224 } 2225 2226 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2227 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2228 2229 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2230 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2231 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2232 SDLoc SL(N); 2233 2234 if (!UseSCCBr) { 2235 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2236 // analyzed what generates the vcc value, so we do not know whether vcc 2237 // bits for disabled lanes are 0. Thus we need to mask out bits for 2238 // disabled lanes. 2239 // 2240 // For the case that we select S_CBRANCH_SCC1 and it gets 2241 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2242 // SIInstrInfo::moveToVALU which inserts the S_AND). 2243 // 2244 // We could add an analysis of what generates the vcc value here and omit 2245 // the S_AND when is unnecessary. But it would be better to add a separate 2246 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2247 // catches both cases. 2248 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2249 : AMDGPU::S_AND_B64, 2250 SL, MVT::i1, 2251 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2252 : AMDGPU::EXEC, 2253 MVT::i1), 2254 Cond), 2255 0); 2256 } 2257 2258 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2259 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2260 N->getOperand(2), // Basic Block 2261 VCC.getValue(0)); 2262 } 2263 2264 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2265 MVT VT = N->getSimpleValueType(0); 2266 bool IsFMA = N->getOpcode() == ISD::FMA; 2267 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2268 !Subtarget->hasFmaMixInsts()) || 2269 ((IsFMA && Subtarget->hasMadMixInsts()) || 2270 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2271 SelectCode(N); 2272 return; 2273 } 2274 2275 SDValue Src0 = N->getOperand(0); 2276 SDValue Src1 = N->getOperand(1); 2277 SDValue Src2 = N->getOperand(2); 2278 unsigned Src0Mods, Src1Mods, Src2Mods; 2279 2280 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2281 // using the conversion from f16. 2282 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2283 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2284 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2285 2286 assert((IsFMA || !Mode.allFP32Denormals()) && 2287 "fmad selected with denormals enabled"); 2288 // TODO: We can select this with f32 denormals enabled if all the sources are 2289 // converted from f16 (in which case fmad isn't legal). 2290 2291 if (Sel0 || Sel1 || Sel2) { 2292 // For dummy operands. 2293 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2294 SDValue Ops[] = { 2295 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2296 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2297 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2298 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2299 Zero, Zero 2300 }; 2301 2302 CurDAG->SelectNodeTo(N, 2303 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2304 MVT::f32, Ops); 2305 } else { 2306 SelectCode(N); 2307 } 2308 } 2309 2310 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2311 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2312 // be copied to an SGPR with readfirstlane. 2313 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2314 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2315 2316 SDValue Chain = N->getOperand(0); 2317 SDValue Ptr = N->getOperand(2); 2318 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2319 MachineMemOperand *MMO = M->getMemOperand(); 2320 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2321 2322 SDValue Offset; 2323 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2324 SDValue PtrBase = Ptr.getOperand(0); 2325 SDValue PtrOffset = Ptr.getOperand(1); 2326 2327 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2328 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2329 N = glueCopyToM0(N, PtrBase); 2330 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2331 } 2332 } 2333 2334 if (!Offset) { 2335 N = glueCopyToM0(N, Ptr); 2336 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2337 } 2338 2339 SDValue Ops[] = { 2340 Offset, 2341 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2342 Chain, 2343 N->getOperand(N->getNumOperands() - 1) // New glue 2344 }; 2345 2346 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2347 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2348 } 2349 2350 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2351 switch (IntrID) { 2352 case Intrinsic::amdgcn_ds_gws_init: 2353 return AMDGPU::DS_GWS_INIT; 2354 case Intrinsic::amdgcn_ds_gws_barrier: 2355 return AMDGPU::DS_GWS_BARRIER; 2356 case Intrinsic::amdgcn_ds_gws_sema_v: 2357 return AMDGPU::DS_GWS_SEMA_V; 2358 case Intrinsic::amdgcn_ds_gws_sema_br: 2359 return AMDGPU::DS_GWS_SEMA_BR; 2360 case Intrinsic::amdgcn_ds_gws_sema_p: 2361 return AMDGPU::DS_GWS_SEMA_P; 2362 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2363 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2364 default: 2365 llvm_unreachable("not a gws intrinsic"); 2366 } 2367 } 2368 2369 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2370 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2371 !Subtarget->hasGWSSemaReleaseAll()) { 2372 // Let this error. 2373 SelectCode(N); 2374 return; 2375 } 2376 2377 // Chain, intrinsic ID, vsrc, offset 2378 const bool HasVSrc = N->getNumOperands() == 4; 2379 assert(HasVSrc || N->getNumOperands() == 3); 2380 2381 SDLoc SL(N); 2382 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2383 int ImmOffset = 0; 2384 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2385 MachineMemOperand *MMO = M->getMemOperand(); 2386 2387 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2388 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2389 2390 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2391 // offset field) % 64. Some versions of the programming guide omit the m0 2392 // part, or claim it's from offset 0. 2393 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2394 // If we have a constant offset, try to use the 0 in m0 as the base. 2395 // TODO: Look into changing the default m0 initialization value. If the 2396 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2397 // the immediate offset. 2398 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2399 ImmOffset = ConstOffset->getZExtValue(); 2400 } else { 2401 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2402 ImmOffset = BaseOffset.getConstantOperandVal(1); 2403 BaseOffset = BaseOffset.getOperand(0); 2404 } 2405 2406 // Prefer to do the shift in an SGPR since it should be possible to use m0 2407 // as the result directly. If it's already an SGPR, it will be eliminated 2408 // later. 2409 SDNode *SGPROffset 2410 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2411 BaseOffset); 2412 // Shift to offset in m0 2413 SDNode *M0Base 2414 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2415 SDValue(SGPROffset, 0), 2416 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2417 glueCopyToM0(N, SDValue(M0Base, 0)); 2418 } 2419 2420 SDValue Chain = N->getOperand(0); 2421 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2422 2423 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2424 SmallVector<SDValue, 5> Ops; 2425 if (HasVSrc) 2426 Ops.push_back(N->getOperand(2)); 2427 Ops.push_back(OffsetField); 2428 Ops.push_back(Chain); 2429 2430 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2431 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2432 } 2433 2434 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2435 if (Subtarget->getLDSBankCount() != 16) { 2436 // This is a single instruction with a pattern. 2437 SelectCode(N); 2438 return; 2439 } 2440 2441 SDLoc DL(N); 2442 2443 // This requires 2 instructions. It is possible to write a pattern to support 2444 // this, but the generated isel emitter doesn't correctly deal with multiple 2445 // output instructions using the same physical register input. The copy to m0 2446 // is incorrectly placed before the second instruction. 2447 // 2448 // TODO: Match source modifiers. 2449 // 2450 // def : Pat < 2451 // (int_amdgcn_interp_p1_f16 2452 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2453 // (i32 timm:$attrchan), (i32 timm:$attr), 2454 // (i1 timm:$high), M0), 2455 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2456 // timm:$attrchan, 0, 2457 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2458 // let Predicates = [has16BankLDS]; 2459 // } 2460 2461 // 16 bank LDS 2462 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2463 N->getOperand(5), SDValue()); 2464 2465 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2466 2467 SDNode *InterpMov = 2468 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2469 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2470 N->getOperand(3), // Attr 2471 N->getOperand(2), // Attrchan 2472 ToM0.getValue(1) // In glue 2473 }); 2474 2475 SDNode *InterpP1LV = 2476 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2477 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2478 N->getOperand(1), // Src0 2479 N->getOperand(3), // Attr 2480 N->getOperand(2), // Attrchan 2481 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2482 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2483 N->getOperand(4), // high 2484 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2485 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2486 SDValue(InterpMov, 1) 2487 }); 2488 2489 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2490 } 2491 2492 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2493 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2494 switch (IntrID) { 2495 case Intrinsic::amdgcn_ds_append: 2496 case Intrinsic::amdgcn_ds_consume: { 2497 if (N->getValueType(0) != MVT::i32) 2498 break; 2499 SelectDSAppendConsume(N, IntrID); 2500 return; 2501 } 2502 } 2503 2504 SelectCode(N); 2505 } 2506 2507 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2508 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2509 unsigned Opcode; 2510 switch (IntrID) { 2511 case Intrinsic::amdgcn_wqm: 2512 Opcode = AMDGPU::WQM; 2513 break; 2514 case Intrinsic::amdgcn_softwqm: 2515 Opcode = AMDGPU::SOFT_WQM; 2516 break; 2517 case Intrinsic::amdgcn_wwm: 2518 case Intrinsic::amdgcn_strict_wwm: 2519 Opcode = AMDGPU::STRICT_WWM; 2520 break; 2521 case Intrinsic::amdgcn_strict_wqm: 2522 Opcode = AMDGPU::STRICT_WQM; 2523 break; 2524 case Intrinsic::amdgcn_interp_p1_f16: 2525 SelectInterpP1F16(N); 2526 return; 2527 default: 2528 SelectCode(N); 2529 return; 2530 } 2531 2532 SDValue Src = N->getOperand(1); 2533 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2534 } 2535 2536 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2537 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2538 switch (IntrID) { 2539 case Intrinsic::amdgcn_ds_gws_init: 2540 case Intrinsic::amdgcn_ds_gws_barrier: 2541 case Intrinsic::amdgcn_ds_gws_sema_v: 2542 case Intrinsic::amdgcn_ds_gws_sema_br: 2543 case Intrinsic::amdgcn_ds_gws_sema_p: 2544 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2545 SelectDS_GWS(N, IntrID); 2546 return; 2547 default: 2548 break; 2549 } 2550 2551 SelectCode(N); 2552 } 2553 2554 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2555 unsigned &Mods, 2556 bool AllowAbs) const { 2557 Mods = 0; 2558 Src = In; 2559 2560 if (Src.getOpcode() == ISD::FNEG) { 2561 Mods |= SISrcMods::NEG; 2562 Src = Src.getOperand(0); 2563 } 2564 2565 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2566 Mods |= SISrcMods::ABS; 2567 Src = Src.getOperand(0); 2568 } 2569 2570 return true; 2571 } 2572 2573 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2574 SDValue &SrcMods) const { 2575 unsigned Mods; 2576 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2577 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2578 return true; 2579 } 2580 2581 return false; 2582 } 2583 2584 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2585 SDValue &SrcMods) const { 2586 unsigned Mods; 2587 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2588 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2589 return true; 2590 } 2591 2592 return false; 2593 } 2594 2595 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2596 SDValue &SrcMods) const { 2597 SelectVOP3Mods(In, Src, SrcMods); 2598 return isNoNanSrc(Src); 2599 } 2600 2601 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2602 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2603 return false; 2604 2605 Src = In; 2606 return true; 2607 } 2608 2609 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2610 SDValue &SrcMods, SDValue &Clamp, 2611 SDValue &Omod) const { 2612 SDLoc DL(In); 2613 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2614 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2615 2616 return SelectVOP3Mods(In, Src, SrcMods); 2617 } 2618 2619 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2620 SDValue &SrcMods, SDValue &Clamp, 2621 SDValue &Omod) const { 2622 SDLoc DL(In); 2623 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2624 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2625 2626 return SelectVOP3BMods(In, Src, SrcMods); 2627 } 2628 2629 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2630 SDValue &Clamp, SDValue &Omod) const { 2631 Src = In; 2632 2633 SDLoc DL(In); 2634 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2635 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2636 2637 return true; 2638 } 2639 2640 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2641 SDValue &SrcMods, bool IsDOT) const { 2642 unsigned Mods = 0; 2643 Src = In; 2644 2645 if (Src.getOpcode() == ISD::FNEG) { 2646 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2647 Src = Src.getOperand(0); 2648 } 2649 2650 if (Src.getOpcode() == ISD::BUILD_VECTOR && 2651 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2652 unsigned VecMods = Mods; 2653 2654 SDValue Lo = stripBitcast(Src.getOperand(0)); 2655 SDValue Hi = stripBitcast(Src.getOperand(1)); 2656 2657 if (Lo.getOpcode() == ISD::FNEG) { 2658 Lo = stripBitcast(Lo.getOperand(0)); 2659 Mods ^= SISrcMods::NEG; 2660 } 2661 2662 if (Hi.getOpcode() == ISD::FNEG) { 2663 Hi = stripBitcast(Hi.getOperand(0)); 2664 Mods ^= SISrcMods::NEG_HI; 2665 } 2666 2667 if (isExtractHiElt(Lo, Lo)) 2668 Mods |= SISrcMods::OP_SEL_0; 2669 2670 if (isExtractHiElt(Hi, Hi)) 2671 Mods |= SISrcMods::OP_SEL_1; 2672 2673 unsigned VecSize = Src.getValueSizeInBits(); 2674 Lo = stripExtractLoElt(Lo); 2675 Hi = stripExtractLoElt(Hi); 2676 2677 if (Lo.getValueSizeInBits() > VecSize) { 2678 Lo = CurDAG->getTargetExtractSubreg( 2679 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2680 MVT::getIntegerVT(VecSize), Lo); 2681 } 2682 2683 if (Hi.getValueSizeInBits() > VecSize) { 2684 Hi = CurDAG->getTargetExtractSubreg( 2685 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2686 MVT::getIntegerVT(VecSize), Hi); 2687 } 2688 2689 assert(Lo.getValueSizeInBits() <= VecSize && 2690 Hi.getValueSizeInBits() <= VecSize); 2691 2692 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2693 // Really a scalar input. Just select from the low half of the register to 2694 // avoid packing. 2695 2696 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2697 Src = Lo; 2698 } else { 2699 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2700 2701 SDLoc SL(In); 2702 SDValue Undef = SDValue( 2703 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2704 Lo.getValueType()), 0); 2705 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2706 : AMDGPU::SReg_64RegClassID; 2707 const SDValue Ops[] = { 2708 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2709 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2710 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2711 2712 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2713 Src.getValueType(), Ops), 0); 2714 } 2715 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2716 return true; 2717 } 2718 2719 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2720 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2721 .bitcastToAPInt().getZExtValue(); 2722 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2723 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2724 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2725 return true; 2726 } 2727 } 2728 2729 Mods = VecMods; 2730 } 2731 2732 // Packed instructions do not have abs modifiers. 2733 Mods |= SISrcMods::OP_SEL_1; 2734 2735 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2736 return true; 2737 } 2738 2739 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 2740 SDValue &SrcMods) const { 2741 return SelectVOP3PMods(In, Src, SrcMods, true); 2742 } 2743 2744 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2745 SDValue &SrcMods) const { 2746 Src = In; 2747 // FIXME: Handle op_sel 2748 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2749 return true; 2750 } 2751 2752 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2753 SDValue &SrcMods) const { 2754 // FIXME: Handle op_sel 2755 return SelectVOP3Mods(In, Src, SrcMods); 2756 } 2757 2758 // The return value is not whether the match is possible (which it always is), 2759 // but whether or not it a conversion is really used. 2760 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2761 unsigned &Mods) const { 2762 Mods = 0; 2763 SelectVOP3ModsImpl(In, Src, Mods); 2764 2765 if (Src.getOpcode() == ISD::FP_EXTEND) { 2766 Src = Src.getOperand(0); 2767 assert(Src.getValueType() == MVT::f16); 2768 Src = stripBitcast(Src); 2769 2770 // Be careful about folding modifiers if we already have an abs. fneg is 2771 // applied last, so we don't want to apply an earlier fneg. 2772 if ((Mods & SISrcMods::ABS) == 0) { 2773 unsigned ModsTmp; 2774 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2775 2776 if ((ModsTmp & SISrcMods::NEG) != 0) 2777 Mods ^= SISrcMods::NEG; 2778 2779 if ((ModsTmp & SISrcMods::ABS) != 0) 2780 Mods |= SISrcMods::ABS; 2781 } 2782 2783 // op_sel/op_sel_hi decide the source type and source. 2784 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2785 // If the sources's op_sel is set, it picks the high half of the source 2786 // register. 2787 2788 Mods |= SISrcMods::OP_SEL_1; 2789 if (isExtractHiElt(Src, Src)) { 2790 Mods |= SISrcMods::OP_SEL_0; 2791 2792 // TODO: Should we try to look for neg/abs here? 2793 } 2794 2795 return true; 2796 } 2797 2798 return false; 2799 } 2800 2801 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2802 SDValue &SrcMods) const { 2803 unsigned Mods = 0; 2804 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2805 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2806 return true; 2807 } 2808 2809 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2810 if (In.isUndef()) 2811 return CurDAG->getUNDEF(MVT::i32); 2812 2813 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2814 SDLoc SL(In); 2815 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2816 } 2817 2818 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2819 SDLoc SL(In); 2820 return CurDAG->getConstant( 2821 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2822 } 2823 2824 SDValue Src; 2825 if (isExtractHiElt(In, Src)) 2826 return Src; 2827 2828 return SDValue(); 2829 } 2830 2831 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2832 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2833 2834 const SIRegisterInfo *SIRI = 2835 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2836 const SIInstrInfo * SII = 2837 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2838 2839 unsigned Limit = 0; 2840 bool AllUsesAcceptSReg = true; 2841 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2842 Limit < 10 && U != E; ++U, ++Limit) { 2843 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2844 2845 // If the register class is unknown, it could be an unknown 2846 // register class that needs to be an SGPR, e.g. an inline asm 2847 // constraint 2848 if (!RC || SIRI->isSGPRClass(RC)) 2849 return false; 2850 2851 if (RC != &AMDGPU::VS_32RegClass) { 2852 AllUsesAcceptSReg = false; 2853 SDNode * User = *U; 2854 if (User->isMachineOpcode()) { 2855 unsigned Opc = User->getMachineOpcode(); 2856 MCInstrDesc Desc = SII->get(Opc); 2857 if (Desc.isCommutable()) { 2858 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2859 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2860 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2861 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2862 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2863 if (CommutedRC == &AMDGPU::VS_32RegClass) 2864 AllUsesAcceptSReg = true; 2865 } 2866 } 2867 } 2868 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 2869 // commuting current user. This means have at least one use 2870 // that strictly require VGPR. Thus, we will not attempt to commute 2871 // other user instructions. 2872 if (!AllUsesAcceptSReg) 2873 break; 2874 } 2875 } 2876 return !AllUsesAcceptSReg && (Limit < 10); 2877 } 2878 2879 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2880 auto Ld = cast<LoadSDNode>(N); 2881 2882 return Ld->getAlign() >= Align(4) && 2883 (((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2884 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) && 2885 !N->isDivergent()) || 2886 (Subtarget->getScalarizeGlobalBehavior() && 2887 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2888 Ld->isSimple() && !N->isDivergent() && 2889 static_cast<const SITargetLowering *>(getTargetLowering()) 2890 ->isMemOpHasNoClobberedMemOperand(N))); 2891 } 2892 2893 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2894 const AMDGPUTargetLowering& Lowering = 2895 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2896 bool IsModified = false; 2897 do { 2898 IsModified = false; 2899 2900 // Go over all selected nodes and try to fold them a bit more 2901 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2902 while (Position != CurDAG->allnodes_end()) { 2903 SDNode *Node = &*Position++; 2904 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2905 if (!MachineNode) 2906 continue; 2907 2908 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2909 if (ResNode != Node) { 2910 if (ResNode) 2911 ReplaceUses(Node, ResNode); 2912 IsModified = true; 2913 } 2914 } 2915 CurDAG->RemoveDeadNodes(); 2916 } while (IsModified); 2917 } 2918