1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGISel.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/InitializePasses.h"
42 #ifdef EXPENSIVE_CHECKS
43 #include "llvm/IR/Dominators.h"
44 #endif
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <new>
55 #include <vector>
56 
57 #define DEBUG_TYPE "isel"
58 
59 using namespace llvm;
60 
61 namespace llvm {
62 
63 class R600InstrInfo;
64 
65 } // end namespace llvm
66 
67 //===----------------------------------------------------------------------===//
68 // Instruction Selector Implementation
69 //===----------------------------------------------------------------------===//
70 
71 namespace {
72 
73 static bool isNullConstantOrUndef(SDValue V) {
74   if (V.isUndef())
75     return true;
76 
77   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
78   return Const != nullptr && Const->isNullValue();
79 }
80 
81 static bool getConstantValue(SDValue N, uint32_t &Out) {
82   // This is only used for packed vectors, where ussing 0 for undef should
83   // always be good.
84   if (N.isUndef()) {
85     Out = 0;
86     return true;
87   }
88 
89   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
90     Out = C->getAPIntValue().getSExtValue();
91     return true;
92   }
93 
94   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
95     Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
96     return true;
97   }
98 
99   return false;
100 }
101 
102 // TODO: Handle undef as zero
103 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
104                                  bool Negate = false) {
105   assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
106   uint32_t LHSVal, RHSVal;
107   if (getConstantValue(N->getOperand(0), LHSVal) &&
108       getConstantValue(N->getOperand(1), RHSVal)) {
109     SDLoc SL(N);
110     uint32_t K = Negate ?
111       (-LHSVal & 0xffff) | (-RHSVal << 16) :
112       (LHSVal & 0xffff) | (RHSVal << 16);
113     return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
114                               DAG.getTargetConstant(K, SL, MVT::i32));
115   }
116 
117   return nullptr;
118 }
119 
120 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
121   return packConstantV2I16(N, DAG, true);
122 }
123 
124 /// AMDGPU specific code to select AMDGPU machine instructions for
125 /// SelectionDAG operations.
126 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
127   // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
128   // make the right decision when generating code for different targets.
129   const GCNSubtarget *Subtarget;
130 
131   // Default FP mode for the current function.
132   AMDGPU::SIModeRegisterDefaults Mode;
133 
134   bool EnableLateStructurizeCFG;
135 
136 public:
137   explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
138                               CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
139     : SelectionDAGISel(*TM, OptLevel) {
140     EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
141   }
142   ~AMDGPUDAGToDAGISel() override = default;
143 
144   void getAnalysisUsage(AnalysisUsage &AU) const override {
145     AU.addRequired<AMDGPUArgumentUsageInfo>();
146     AU.addRequired<LegacyDivergenceAnalysis>();
147 #ifdef EXPENSIVE_CHECKS
148     AU.addRequired<DominatorTreeWrapperPass>();
149     AU.addRequired<LoopInfoWrapperPass>();
150 #endif
151     SelectionDAGISel::getAnalysisUsage(AU);
152   }
153 
154   bool matchLoadD16FromBuildVector(SDNode *N) const;
155 
156   bool runOnMachineFunction(MachineFunction &MF) override;
157   void PreprocessISelDAG() override;
158   void Select(SDNode *N) override;
159   StringRef getPassName() const override;
160   void PostprocessISelDAG() override;
161 
162 protected:
163   void SelectBuildVector(SDNode *N, unsigned RegClassID);
164 
165 private:
166   std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
167   bool isNoNanSrc(SDValue N) const;
168   bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
169   bool isNegInlineImmediate(const SDNode *N) const {
170     return isInlineImmediate(N, true);
171   }
172 
173   bool isInlineImmediate16(int64_t Imm) const {
174     return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
175   }
176 
177   bool isInlineImmediate32(int64_t Imm) const {
178     return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
179   }
180 
181   bool isInlineImmediate64(int64_t Imm) const {
182     return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
183   }
184 
185   bool isInlineImmediate(const APFloat &Imm) const {
186     return Subtarget->getInstrInfo()->isInlineConstant(Imm);
187   }
188 
189   bool isVGPRImm(const SDNode *N) const;
190   bool isUniformLoad(const SDNode *N) const;
191   bool isUniformBr(const SDNode *N) const;
192 
193   MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
194 
195   SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
196   SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
197   SDNode *glueCopyToM0LDSInit(SDNode *N) const;
198 
199   const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
200   virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
201   virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
202   bool isDSOffsetLegal(SDValue Base, unsigned Offset,
203                        unsigned OffsetBits) const;
204   bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
205   bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
206                                  SDValue &Offset1) const;
207   bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
208                    SDValue &SOffset, SDValue &Offset, SDValue &Offen,
209                    SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
210                    SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
211   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
212                          SDValue &SOffset, SDValue &Offset, SDValue &GLC,
213                          SDValue &SLC, SDValue &TFE, SDValue &DLC,
214                          SDValue &SWZ) const;
215   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
216                          SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
217                          SDValue &SLC) const;
218   bool SelectMUBUFScratchOffen(SDNode *Parent,
219                                SDValue Addr, SDValue &RSrc, SDValue &VAddr,
220                                SDValue &SOffset, SDValue &ImmOffset) const;
221   bool SelectMUBUFScratchOffset(SDNode *Parent,
222                                 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
223                                 SDValue &Offset) const;
224 
225   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
226                          SDValue &Offset, SDValue &GLC, SDValue &SLC,
227                          SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
228   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
229                          SDValue &Offset, SDValue &SLC) const;
230   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
231                          SDValue &Offset) const;
232 
233   template <bool IsSigned>
234   bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
235                         SDValue &Offset, SDValue &SLC) const;
236   bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
237                         SDValue &Offset, SDValue &SLC) const;
238   bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
239                               SDValue &Offset, SDValue &SLC) const;
240 
241   bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
242                         bool &Imm) const;
243   SDValue Expand32BitAddress(SDValue Addr) const;
244   bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
245                   bool &Imm) const;
246   bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
247   bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
248   bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
249   bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
250   bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
251   bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
252 
253   bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
254   bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
255   bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
256   bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
257   bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
258                        SDValue &Clamp, SDValue &Omod) const;
259   bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
260                          SDValue &Clamp, SDValue &Omod) const;
261 
262   bool SelectVOP3OMods(SDValue In, SDValue &Src,
263                        SDValue &Clamp, SDValue &Omod) const;
264 
265   bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
266 
267   bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
268 
269   bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
270   bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
271   bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
272 
273   SDValue getHi16Elt(SDValue In) const;
274 
275   SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
276 
277   void SelectADD_SUB_I64(SDNode *N);
278   void SelectAddcSubb(SDNode *N);
279   void SelectUADDO_USUBO(SDNode *N);
280   void SelectDIV_SCALE(SDNode *N);
281   void SelectDIV_FMAS(SDNode *N);
282   void SelectMAD_64_32(SDNode *N);
283   void SelectFMA_W_CHAIN(SDNode *N);
284   void SelectFMUL_W_CHAIN(SDNode *N);
285 
286   SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
287                    uint32_t Offset, uint32_t Width);
288   void SelectS_BFEFromShifts(SDNode *N);
289   void SelectS_BFE(SDNode *N);
290   bool isCBranchSCC(const SDNode *N) const;
291   void SelectBRCOND(SDNode *N);
292   void SelectFMAD_FMA(SDNode *N);
293   void SelectATOMIC_CMP_SWAP(SDNode *N);
294   void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
295   void SelectDS_GWS(SDNode *N, unsigned IntrID);
296   void SelectInterpP1F16(SDNode *N);
297   void SelectINTRINSIC_W_CHAIN(SDNode *N);
298   void SelectINTRINSIC_WO_CHAIN(SDNode *N);
299   void SelectINTRINSIC_VOID(SDNode *N);
300 
301 protected:
302   // Include the pieces autogenerated from the target description.
303 #include "AMDGPUGenDAGISel.inc"
304 };
305 
306 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
307   const R600Subtarget *Subtarget;
308 
309   bool isConstantLoad(const MemSDNode *N, int cbID) const;
310   bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
311   bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
312                                        SDValue& Offset);
313 public:
314   explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
315       AMDGPUDAGToDAGISel(TM, OptLevel) {}
316 
317   void Select(SDNode *N) override;
318 
319   bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
320                           SDValue &Offset) override;
321   bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
322                           SDValue &Offset) override;
323 
324   bool runOnMachineFunction(MachineFunction &MF) override;
325 
326   void PreprocessISelDAG() override {}
327 
328 protected:
329   // Include the pieces autogenerated from the target description.
330 #include "R600GenDAGISel.inc"
331 };
332 
333 static SDValue stripBitcast(SDValue Val) {
334   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
335 }
336 
337 // Figure out if this is really an extract of the high 16-bits of a dword.
338 static bool isExtractHiElt(SDValue In, SDValue &Out) {
339   In = stripBitcast(In);
340   if (In.getOpcode() != ISD::TRUNCATE)
341     return false;
342 
343   SDValue Srl = In.getOperand(0);
344   if (Srl.getOpcode() == ISD::SRL) {
345     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
346       if (ShiftAmt->getZExtValue() == 16) {
347         Out = stripBitcast(Srl.getOperand(0));
348         return true;
349       }
350     }
351   }
352 
353   return false;
354 }
355 
356 // Look through operations that obscure just looking at the low 16-bits of the
357 // same register.
358 static SDValue stripExtractLoElt(SDValue In) {
359   if (In.getOpcode() == ISD::TRUNCATE) {
360     SDValue Src = In.getOperand(0);
361     if (Src.getValueType().getSizeInBits() == 32)
362       return stripBitcast(Src);
363   }
364 
365   return In;
366 }
367 
368 }  // end anonymous namespace
369 
370 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
371                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
372 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
373 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
374 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
375 #ifdef EXPENSIVE_CHECKS
376 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
377 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
378 #endif
379 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
380                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
381 
382 /// This pass converts a legalized DAG into a AMDGPU-specific
383 // DAG, ready for instruction scheduling.
384 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
385                                         CodeGenOpt::Level OptLevel) {
386   return new AMDGPUDAGToDAGISel(TM, OptLevel);
387 }
388 
389 /// This pass converts a legalized DAG into a R600-specific
390 // DAG, ready for instruction scheduling.
391 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
392                                       CodeGenOpt::Level OptLevel) {
393   return new R600DAGToDAGISel(TM, OptLevel);
394 }
395 
396 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
397 #ifdef EXPENSIVE_CHECKS
398   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
399   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
400   for (auto &L : LI->getLoopsInPreorder()) {
401     assert(L->isLCSSAForm(DT));
402   }
403 #endif
404   Subtarget = &MF.getSubtarget<GCNSubtarget>();
405   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction(), *Subtarget);
406   return SelectionDAGISel::runOnMachineFunction(MF);
407 }
408 
409 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
410   assert(Subtarget->d16PreservesUnusedBits());
411   MVT VT = N->getValueType(0).getSimpleVT();
412   if (VT != MVT::v2i16 && VT != MVT::v2f16)
413     return false;
414 
415   SDValue Lo = N->getOperand(0);
416   SDValue Hi = N->getOperand(1);
417 
418   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
419 
420   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
421   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
422   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
423 
424   // Need to check for possible indirect dependencies on the other half of the
425   // vector to avoid introducing a cycle.
426   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
427     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
428 
429     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
430     SDValue Ops[] = {
431       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
432     };
433 
434     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
435     if (LdHi->getMemoryVT() == MVT::i8) {
436       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
437         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
438     } else {
439       assert(LdHi->getMemoryVT() == MVT::i16);
440     }
441 
442     SDValue NewLoadHi =
443       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
444                                   Ops, LdHi->getMemoryVT(),
445                                   LdHi->getMemOperand());
446 
447     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
448     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
449     return true;
450   }
451 
452   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
453   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
454   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
455   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
456   if (LdLo && Lo.hasOneUse()) {
457     SDValue TiedIn = getHi16Elt(Hi);
458     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
459       return false;
460 
461     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
462     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
463     if (LdLo->getMemoryVT() == MVT::i8) {
464       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
465         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
466     } else {
467       assert(LdLo->getMemoryVT() == MVT::i16);
468     }
469 
470     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
471 
472     SDValue Ops[] = {
473       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
474     };
475 
476     SDValue NewLoadLo =
477       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
478                                   Ops, LdLo->getMemoryVT(),
479                                   LdLo->getMemOperand());
480 
481     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
482     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
483     return true;
484   }
485 
486   return false;
487 }
488 
489 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
490   if (!Subtarget->d16PreservesUnusedBits())
491     return;
492 
493   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
494 
495   bool MadeChange = false;
496   while (Position != CurDAG->allnodes_begin()) {
497     SDNode *N = &*--Position;
498     if (N->use_empty())
499       continue;
500 
501     switch (N->getOpcode()) {
502     case ISD::BUILD_VECTOR:
503       MadeChange |= matchLoadD16FromBuildVector(N);
504       break;
505     default:
506       break;
507     }
508   }
509 
510   if (MadeChange) {
511     CurDAG->RemoveDeadNodes();
512     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
513                CurDAG->dump(););
514   }
515 }
516 
517 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
518   if (TM.Options.NoNaNsFPMath)
519     return true;
520 
521   // TODO: Move into isKnownNeverNaN
522   if (N->getFlags().isDefined())
523     return N->getFlags().hasNoNaNs();
524 
525   return CurDAG->isKnownNeverNaN(N);
526 }
527 
528 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
529                                            bool Negated) const {
530   if (N->isUndef())
531     return true;
532 
533   const SIInstrInfo *TII = Subtarget->getInstrInfo();
534   if (Negated) {
535     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
536       return TII->isInlineConstant(-C->getAPIntValue());
537 
538     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
539       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
540 
541   } else {
542     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
543       return TII->isInlineConstant(C->getAPIntValue());
544 
545     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
546       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
547   }
548 
549   return false;
550 }
551 
552 /// Determine the register class for \p OpNo
553 /// \returns The register class of the virtual register that will be used for
554 /// the given operand number \OpNo or NULL if the register class cannot be
555 /// determined.
556 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
557                                                           unsigned OpNo) const {
558   if (!N->isMachineOpcode()) {
559     if (N->getOpcode() == ISD::CopyToReg) {
560       unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
561       if (Register::isVirtualRegister(Reg)) {
562         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
563         return MRI.getRegClass(Reg);
564       }
565 
566       const SIRegisterInfo *TRI
567         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
568       return TRI->getPhysRegClass(Reg);
569     }
570 
571     return nullptr;
572   }
573 
574   switch (N->getMachineOpcode()) {
575   default: {
576     const MCInstrDesc &Desc =
577         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
578     unsigned OpIdx = Desc.getNumDefs() + OpNo;
579     if (OpIdx >= Desc.getNumOperands())
580       return nullptr;
581     int RegClass = Desc.OpInfo[OpIdx].RegClass;
582     if (RegClass == -1)
583       return nullptr;
584 
585     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
586   }
587   case AMDGPU::REG_SEQUENCE: {
588     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
589     const TargetRegisterClass *SuperRC =
590         Subtarget->getRegisterInfo()->getRegClass(RCID);
591 
592     SDValue SubRegOp = N->getOperand(OpNo + 1);
593     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
594     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
595                                                               SubRegIdx);
596   }
597   }
598 }
599 
600 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
601                                          SDValue Glue) const {
602   SmallVector <SDValue, 8> Ops;
603   Ops.push_back(NewChain); // Replace the chain.
604   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
605     Ops.push_back(N->getOperand(i));
606 
607   Ops.push_back(Glue);
608   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
609 }
610 
611 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
612   const SITargetLowering& Lowering =
613     *static_cast<const SITargetLowering*>(getTargetLowering());
614 
615   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
616 
617   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
618   return glueCopyToOp(N, M0, M0.getValue(1));
619 }
620 
621 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
622   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
623   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
624     if (Subtarget->ldsRequiresM0Init())
625       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
626   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
627     MachineFunction &MF = CurDAG->getMachineFunction();
628     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
629     return
630         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
631   }
632   return N;
633 }
634 
635 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
636                                                   EVT VT) const {
637   SDNode *Lo = CurDAG->getMachineNode(
638       AMDGPU::S_MOV_B32, DL, MVT::i32,
639       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
640   SDNode *Hi =
641       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
642                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
643   const SDValue Ops[] = {
644       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
645       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
646       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
647 
648   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
649 }
650 
651 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
652   switch (NumVectorElts) {
653   case 1:
654     return AMDGPU::SReg_32RegClassID;
655   case 2:
656     return AMDGPU::SReg_64RegClassID;
657   case 3:
658     return AMDGPU::SGPR_96RegClassID;
659   case 4:
660     return AMDGPU::SGPR_128RegClassID;
661   case 5:
662     return AMDGPU::SGPR_160RegClassID;
663   case 8:
664     return AMDGPU::SReg_256RegClassID;
665   case 16:
666     return AMDGPU::SReg_512RegClassID;
667   case 32:
668     return AMDGPU::SReg_1024RegClassID;
669   }
670 
671   llvm_unreachable("invalid vector size");
672 }
673 
674 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
675   EVT VT = N->getValueType(0);
676   unsigned NumVectorElts = VT.getVectorNumElements();
677   EVT EltVT = VT.getVectorElementType();
678   SDLoc DL(N);
679   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
680 
681   if (NumVectorElts == 1) {
682     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
683                          RegClass);
684     return;
685   }
686 
687   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
688                                   "supported yet");
689   // 32 = Max Num Vector Elements
690   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
691   // 1 = Vector Register Class
692   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
693 
694   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
695                Triple::amdgcn;
696   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
697   bool IsRegSeq = true;
698   unsigned NOps = N->getNumOperands();
699   for (unsigned i = 0; i < NOps; i++) {
700     // XXX: Why is this here?
701     if (isa<RegisterSDNode>(N->getOperand(i))) {
702       IsRegSeq = false;
703       break;
704     }
705     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
706                          : R600RegisterInfo::getSubRegFromChannel(i);
707     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
708     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
709   }
710   if (NOps != NumVectorElts) {
711     // Fill in the missing undef elements if this was a scalar_to_vector.
712     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
713     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
714                                                    DL, EltVT);
715     for (unsigned i = NOps; i < NumVectorElts; ++i) {
716       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
717                            : R600RegisterInfo::getSubRegFromChannel(i);
718       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
719       RegSeqArgs[1 + (2 * i) + 1] =
720           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
721     }
722   }
723 
724   if (!IsRegSeq)
725     SelectCode(N);
726   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
727 }
728 
729 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
730   unsigned int Opc = N->getOpcode();
731   if (N->isMachineOpcode()) {
732     N->setNodeId(-1);
733     return;   // Already selected.
734   }
735 
736   // isa<MemSDNode> almost works but is slightly too permissive for some DS
737   // intrinsics.
738   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
739       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
740        Opc == ISD::ATOMIC_LOAD_FADD ||
741        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
742        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
743     N = glueCopyToM0LDSInit(N);
744     SelectCode(N);
745     return;
746   }
747 
748   switch (Opc) {
749   default:
750     break;
751   // We are selecting i64 ADD here instead of custom lower it during
752   // DAG legalization, so we can fold some i64 ADDs used for address
753   // calculation into the LOAD and STORE instructions.
754   case ISD::ADDC:
755   case ISD::ADDE:
756   case ISD::SUBC:
757   case ISD::SUBE: {
758     if (N->getValueType(0) != MVT::i64)
759       break;
760 
761     SelectADD_SUB_I64(N);
762     return;
763   }
764   case ISD::ADDCARRY:
765   case ISD::SUBCARRY:
766     if (N->getValueType(0) != MVT::i32)
767       break;
768 
769     SelectAddcSubb(N);
770     return;
771   case ISD::UADDO:
772   case ISD::USUBO: {
773     SelectUADDO_USUBO(N);
774     return;
775   }
776   case AMDGPUISD::FMUL_W_CHAIN: {
777     SelectFMUL_W_CHAIN(N);
778     return;
779   }
780   case AMDGPUISD::FMA_W_CHAIN: {
781     SelectFMA_W_CHAIN(N);
782     return;
783   }
784 
785   case ISD::SCALAR_TO_VECTOR:
786   case ISD::BUILD_VECTOR: {
787     EVT VT = N->getValueType(0);
788     unsigned NumVectorElts = VT.getVectorNumElements();
789     if (VT.getScalarSizeInBits() == 16) {
790       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
791         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
792           ReplaceNode(N, Packed);
793           return;
794         }
795       }
796 
797       break;
798     }
799 
800     assert(VT.getVectorElementType().bitsEq(MVT::i32));
801     unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
802     SelectBuildVector(N, RegClassID);
803     return;
804   }
805   case ISD::BUILD_PAIR: {
806     SDValue RC, SubReg0, SubReg1;
807     SDLoc DL(N);
808     if (N->getValueType(0) == MVT::i128) {
809       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
810       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
811       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
812     } else if (N->getValueType(0) == MVT::i64) {
813       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
814       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
815       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
816     } else {
817       llvm_unreachable("Unhandled value type for BUILD_PAIR");
818     }
819     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
820                             N->getOperand(1), SubReg1 };
821     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
822                                           N->getValueType(0), Ops));
823     return;
824   }
825 
826   case ISD::Constant:
827   case ISD::ConstantFP: {
828     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
829       break;
830 
831     uint64_t Imm;
832     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
833       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
834     else {
835       ConstantSDNode *C = cast<ConstantSDNode>(N);
836       Imm = C->getZExtValue();
837     }
838 
839     SDLoc DL(N);
840     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
841     return;
842   }
843   case AMDGPUISD::BFE_I32:
844   case AMDGPUISD::BFE_U32: {
845     // There is a scalar version available, but unlike the vector version which
846     // has a separate operand for the offset and width, the scalar version packs
847     // the width and offset into a single operand. Try to move to the scalar
848     // version if the offsets are constant, so that we can try to keep extended
849     // loads of kernel arguments in SGPRs.
850 
851     // TODO: Technically we could try to pattern match scalar bitshifts of
852     // dynamic values, but it's probably not useful.
853     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
854     if (!Offset)
855       break;
856 
857     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
858     if (!Width)
859       break;
860 
861     bool Signed = Opc == AMDGPUISD::BFE_I32;
862 
863     uint32_t OffsetVal = Offset->getZExtValue();
864     uint32_t WidthVal = Width->getZExtValue();
865 
866     ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
867                             SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
868     return;
869   }
870   case AMDGPUISD::DIV_SCALE: {
871     SelectDIV_SCALE(N);
872     return;
873   }
874   case AMDGPUISD::DIV_FMAS: {
875     SelectDIV_FMAS(N);
876     return;
877   }
878   case AMDGPUISD::MAD_I64_I32:
879   case AMDGPUISD::MAD_U64_U32: {
880     SelectMAD_64_32(N);
881     return;
882   }
883   case ISD::CopyToReg: {
884     const SITargetLowering& Lowering =
885       *static_cast<const SITargetLowering*>(getTargetLowering());
886     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
887     break;
888   }
889   case ISD::AND:
890   case ISD::SRL:
891   case ISD::SRA:
892   case ISD::SIGN_EXTEND_INREG:
893     if (N->getValueType(0) != MVT::i32)
894       break;
895 
896     SelectS_BFE(N);
897     return;
898   case ISD::BRCOND:
899     SelectBRCOND(N);
900     return;
901   case ISD::FMAD:
902   case ISD::FMA:
903     SelectFMAD_FMA(N);
904     return;
905   case AMDGPUISD::ATOMIC_CMP_SWAP:
906     SelectATOMIC_CMP_SWAP(N);
907     return;
908   case AMDGPUISD::CVT_PKRTZ_F16_F32:
909   case AMDGPUISD::CVT_PKNORM_I16_F32:
910   case AMDGPUISD::CVT_PKNORM_U16_F32:
911   case AMDGPUISD::CVT_PK_U16_U32:
912   case AMDGPUISD::CVT_PK_I16_I32: {
913     // Hack around using a legal type if f16 is illegal.
914     if (N->getValueType(0) == MVT::i32) {
915       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
916       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
917                               { N->getOperand(0), N->getOperand(1) });
918       SelectCode(N);
919       return;
920     }
921 
922     break;
923   }
924   case ISD::INTRINSIC_W_CHAIN: {
925     SelectINTRINSIC_W_CHAIN(N);
926     return;
927   }
928   case ISD::INTRINSIC_WO_CHAIN: {
929     SelectINTRINSIC_WO_CHAIN(N);
930     return;
931   }
932   case ISD::INTRINSIC_VOID: {
933     SelectINTRINSIC_VOID(N);
934     return;
935   }
936   }
937 
938   SelectCode(N);
939 }
940 
941 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
942   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
943   const Instruction *Term = BB->getTerminator();
944   return Term->getMetadata("amdgpu.uniform") ||
945          Term->getMetadata("structurizecfg.uniform");
946 }
947 
948 StringRef AMDGPUDAGToDAGISel::getPassName() const {
949   return "AMDGPU DAG->DAG Pattern Instruction Selection";
950 }
951 
952 //===----------------------------------------------------------------------===//
953 // Complex Patterns
954 //===----------------------------------------------------------------------===//
955 
956 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
957                                             SDValue &Offset) {
958   return false;
959 }
960 
961 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
962                                             SDValue &Offset) {
963   ConstantSDNode *C;
964   SDLoc DL(Addr);
965 
966   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
967     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
968     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
969   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
970              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
971     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
972     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
973   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
974             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
975     Base = Addr.getOperand(0);
976     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
977   } else {
978     Base = Addr;
979     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
980   }
981 
982   return true;
983 }
984 
985 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
986                                                        const SDLoc &DL) const {
987   SDNode *Mov = CurDAG->getMachineNode(
988     AMDGPU::S_MOV_B32, DL, MVT::i32,
989     CurDAG->getTargetConstant(Val, DL, MVT::i32));
990   return SDValue(Mov, 0);
991 }
992 
993 // FIXME: Should only handle addcarry/subcarry
994 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
995   SDLoc DL(N);
996   SDValue LHS = N->getOperand(0);
997   SDValue RHS = N->getOperand(1);
998 
999   unsigned Opcode = N->getOpcode();
1000   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
1001   bool ProduceCarry =
1002       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
1003   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
1004 
1005   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1006   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1007 
1008   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1009                                        DL, MVT::i32, LHS, Sub0);
1010   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1011                                        DL, MVT::i32, LHS, Sub1);
1012 
1013   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1014                                        DL, MVT::i32, RHS, Sub0);
1015   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1016                                        DL, MVT::i32, RHS, Sub1);
1017 
1018   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
1019 
1020   static const unsigned OpcMap[2][2][2] = {
1021       {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
1022        {AMDGPU::V_SUB_I32_e32, AMDGPU::V_ADD_I32_e32}},
1023       {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
1024        {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
1025 
1026   unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
1027   unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
1028 
1029   SDNode *AddLo;
1030   if (!ConsumeCarry) {
1031     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1032     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1033   } else {
1034     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1035     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1036   }
1037   SDValue AddHiArgs[] = {
1038     SDValue(Hi0, 0),
1039     SDValue(Hi1, 0),
1040     SDValue(AddLo, 1)
1041   };
1042   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1043 
1044   SDValue RegSequenceArgs[] = {
1045     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1046     SDValue(AddLo,0),
1047     Sub0,
1048     SDValue(AddHi,0),
1049     Sub1,
1050   };
1051   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1052                                                MVT::i64, RegSequenceArgs);
1053 
1054   if (ProduceCarry) {
1055     // Replace the carry-use
1056     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1057   }
1058 
1059   // Replace the remaining uses.
1060   ReplaceNode(N, RegSequence);
1061 }
1062 
1063 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1064   SDLoc DL(N);
1065   SDValue LHS = N->getOperand(0);
1066   SDValue RHS = N->getOperand(1);
1067   SDValue CI = N->getOperand(2);
1068 
1069   unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1070                                                  : AMDGPU::V_SUBB_U32_e64;
1071   CurDAG->SelectNodeTo(
1072       N, Opc, N->getVTList(),
1073       {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1074 }
1075 
1076 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1077   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1078   // carry out despite the _i32 name. These were renamed in VI to _U32.
1079   // FIXME: We should probably rename the opcodes here.
1080   unsigned Opc = N->getOpcode() == ISD::UADDO ?
1081     AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1082 
1083   CurDAG->SelectNodeTo(
1084       N, Opc, N->getVTList(),
1085       {N->getOperand(0), N->getOperand(1),
1086        CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1087 }
1088 
1089 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1090   SDLoc SL(N);
1091   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1092   SDValue Ops[10];
1093 
1094   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1095   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1096   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1097   Ops[8] = N->getOperand(0);
1098   Ops[9] = N->getOperand(4);
1099 
1100   CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1101 }
1102 
1103 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1104   SDLoc SL(N);
1105   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
1106   SDValue Ops[8];
1107 
1108   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1109   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1110   Ops[6] = N->getOperand(0);
1111   Ops[7] = N->getOperand(3);
1112 
1113   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1114 }
1115 
1116 // We need to handle this here because tablegen doesn't support matching
1117 // instructions with multiple outputs.
1118 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1119   SDLoc SL(N);
1120   EVT VT = N->getValueType(0);
1121 
1122   assert(VT == MVT::f32 || VT == MVT::f64);
1123 
1124   unsigned Opc
1125     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1126 
1127   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1128   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1129 }
1130 
1131 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) {
1132   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1133   const SIRegisterInfo *TRI = ST->getRegisterInfo();
1134 
1135   SDLoc SL(N);
1136   EVT VT = N->getValueType(0);
1137 
1138   assert(VT == MVT::f32 || VT == MVT::f64);
1139 
1140   unsigned Opc
1141     = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32;
1142 
1143   SDValue CarryIn = N->getOperand(3);
1144   // V_DIV_FMAS implicitly reads VCC.
1145   SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL,
1146                                      TRI->getVCC(), CarryIn, SDValue());
1147 
1148   SDValue Ops[10];
1149 
1150   SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1151   SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]);
1152   SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]);
1153 
1154   Ops[8] = VCC;
1155   Ops[9] = VCC.getValue(1);
1156 
1157   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1158 }
1159 
1160 // We need to handle this here because tablegen doesn't support matching
1161 // instructions with multiple outputs.
1162 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1163   SDLoc SL(N);
1164   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1165   unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1166 
1167   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1168   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1169                     Clamp };
1170   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1171 }
1172 
1173 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1174                                          unsigned OffsetBits) const {
1175   if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1176       (OffsetBits == 8 && !isUInt<8>(Offset)))
1177     return false;
1178 
1179   if (Subtarget->hasUsableDSOffset() ||
1180       Subtarget->unsafeDSOffsetFoldingEnabled())
1181     return true;
1182 
1183   // On Southern Islands instruction with a negative base value and an offset
1184   // don't seem to work.
1185   return CurDAG->SignBitIsZero(Base);
1186 }
1187 
1188 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1189                                               SDValue &Offset) const {
1190   SDLoc DL(Addr);
1191   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1192     SDValue N0 = Addr.getOperand(0);
1193     SDValue N1 = Addr.getOperand(1);
1194     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1195     if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1196       // (add n0, c0)
1197       Base = N0;
1198       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1199       return true;
1200     }
1201   } else if (Addr.getOpcode() == ISD::SUB) {
1202     // sub C, x -> add (sub 0, x), C
1203     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1204       int64_t ByteOffset = C->getSExtValue();
1205       if (isUInt<16>(ByteOffset)) {
1206         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1207 
1208         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1209         // the known bits in isDSOffsetLegal. We need to emit the selected node
1210         // here, so this is thrown away.
1211         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1212                                       Zero, Addr.getOperand(1));
1213 
1214         if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1215           SmallVector<SDValue, 3> Opnds;
1216           Opnds.push_back(Zero);
1217           Opnds.push_back(Addr.getOperand(1));
1218 
1219           // FIXME: Select to VOP3 version for with-carry.
1220           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1221           if (Subtarget->hasAddNoCarry()) {
1222             SubOp = AMDGPU::V_SUB_U32_e64;
1223             Opnds.push_back(
1224                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1225           }
1226 
1227           MachineSDNode *MachineSub =
1228               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1229 
1230           Base = SDValue(MachineSub, 0);
1231           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1232           return true;
1233         }
1234       }
1235     }
1236   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1237     // If we have a constant address, prefer to put the constant into the
1238     // offset. This can save moves to load the constant address since multiple
1239     // operations can share the zero base address register, and enables merging
1240     // into read2 / write2 instructions.
1241 
1242     SDLoc DL(Addr);
1243 
1244     if (isUInt<16>(CAddr->getZExtValue())) {
1245       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1246       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1247                                  DL, MVT::i32, Zero);
1248       Base = SDValue(MovZero, 0);
1249       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1250       return true;
1251     }
1252   }
1253 
1254   // default case
1255   Base = Addr;
1256   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1257   return true;
1258 }
1259 
1260 // TODO: If offset is too big, put low 16-bit into offset.
1261 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1262                                                    SDValue &Offset0,
1263                                                    SDValue &Offset1) const {
1264   SDLoc DL(Addr);
1265 
1266   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1267     SDValue N0 = Addr.getOperand(0);
1268     SDValue N1 = Addr.getOperand(1);
1269     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1270     unsigned DWordOffset0 = C1->getZExtValue() / 4;
1271     unsigned DWordOffset1 = DWordOffset0 + 1;
1272     // (add n0, c0)
1273     if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1274       Base = N0;
1275       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1276       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1277       return true;
1278     }
1279   } else if (Addr.getOpcode() == ISD::SUB) {
1280     // sub C, x -> add (sub 0, x), C
1281     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1282       unsigned DWordOffset0 = C->getZExtValue() / 4;
1283       unsigned DWordOffset1 = DWordOffset0 + 1;
1284 
1285       if (isUInt<8>(DWordOffset0)) {
1286         SDLoc DL(Addr);
1287         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1288 
1289         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1290         // the known bits in isDSOffsetLegal. We need to emit the selected node
1291         // here, so this is thrown away.
1292         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1293                                       Zero, Addr.getOperand(1));
1294 
1295         if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1296           SmallVector<SDValue, 3> Opnds;
1297           Opnds.push_back(Zero);
1298           Opnds.push_back(Addr.getOperand(1));
1299           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1300           if (Subtarget->hasAddNoCarry()) {
1301             SubOp = AMDGPU::V_SUB_U32_e64;
1302             Opnds.push_back(
1303                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1304           }
1305 
1306           MachineSDNode *MachineSub
1307             = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1308 
1309           Base = SDValue(MachineSub, 0);
1310           Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1311           Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1312           return true;
1313         }
1314       }
1315     }
1316   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1317     unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1318     unsigned DWordOffset1 = DWordOffset0 + 1;
1319     assert(4 * DWordOffset0 == CAddr->getZExtValue());
1320 
1321     if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1322       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1323       MachineSDNode *MovZero
1324         = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1325                                  DL, MVT::i32, Zero);
1326       Base = SDValue(MovZero, 0);
1327       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1328       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1329       return true;
1330     }
1331   }
1332 
1333   // default case
1334 
1335   Base = Addr;
1336   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1337   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1338   return true;
1339 }
1340 
1341 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1342                                      SDValue &VAddr, SDValue &SOffset,
1343                                      SDValue &Offset, SDValue &Offen,
1344                                      SDValue &Idxen, SDValue &Addr64,
1345                                      SDValue &GLC, SDValue &SLC,
1346                                      SDValue &TFE, SDValue &DLC,
1347                                      SDValue &SWZ) const {
1348   // Subtarget prefers to use flat instruction
1349   // FIXME: This should be a pattern predicate and not reach here
1350   if (Subtarget->useFlatForGlobal())
1351     return false;
1352 
1353   SDLoc DL(Addr);
1354 
1355   if (!GLC.getNode())
1356     GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1357   if (!SLC.getNode())
1358     SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1359   TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1360   DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1361   SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1362 
1363   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1364   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1365   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1366   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1367 
1368   ConstantSDNode *C1 = nullptr;
1369   SDValue N0 = Addr;
1370   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1371     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1372     if (isUInt<32>(C1->getZExtValue()))
1373       N0 = Addr.getOperand(0);
1374     else
1375       C1 = nullptr;
1376   }
1377 
1378   if (N0.getOpcode() == ISD::ADD) {
1379     // (add N2, N3) -> addr64, or
1380     // (add (add N2, N3), C1) -> addr64
1381     SDValue N2 = N0.getOperand(0);
1382     SDValue N3 = N0.getOperand(1);
1383     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1384 
1385     if (N2->isDivergent()) {
1386       if (N3->isDivergent()) {
1387         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1388         // addr64, and construct the resource from a 0 address.
1389         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1390         VAddr = N0;
1391       } else {
1392         // N2 is divergent, N3 is not.
1393         Ptr = N3;
1394         VAddr = N2;
1395       }
1396     } else {
1397       // N2 is not divergent.
1398       Ptr = N2;
1399       VAddr = N3;
1400     }
1401     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1402   } else if (N0->isDivergent()) {
1403     // N0 is divergent. Use it as the addr64, and construct the resource from a
1404     // 0 address.
1405     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1406     VAddr = N0;
1407     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1408   } else {
1409     // N0 -> offset, or
1410     // (N0 + C1) -> offset
1411     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1412     Ptr = N0;
1413   }
1414 
1415   if (!C1) {
1416     // No offset.
1417     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1418     return true;
1419   }
1420 
1421   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1422     // Legal offset for instruction.
1423     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1424     return true;
1425   }
1426 
1427   // Illegal offset, store it in soffset.
1428   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1429   SOffset =
1430       SDValue(CurDAG->getMachineNode(
1431                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1432                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1433               0);
1434   return true;
1435 }
1436 
1437 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1438                                            SDValue &VAddr, SDValue &SOffset,
1439                                            SDValue &Offset, SDValue &GLC,
1440                                            SDValue &SLC, SDValue &TFE,
1441                                            SDValue &DLC, SDValue &SWZ) const {
1442   SDValue Ptr, Offen, Idxen, Addr64;
1443 
1444   // addr64 bit was removed for volcanic islands.
1445   // FIXME: This should be a pattern predicate and not reach here
1446   if (!Subtarget->hasAddr64())
1447     return false;
1448 
1449   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1450               GLC, SLC, TFE, DLC, SWZ))
1451     return false;
1452 
1453   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1454   if (C->getSExtValue()) {
1455     SDLoc DL(Addr);
1456 
1457     const SITargetLowering& Lowering =
1458       *static_cast<const SITargetLowering*>(getTargetLowering());
1459 
1460     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1461     return true;
1462   }
1463 
1464   return false;
1465 }
1466 
1467 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1468                                            SDValue &VAddr, SDValue &SOffset,
1469                                            SDValue &Offset,
1470                                            SDValue &SLC) const {
1471   SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1472   SDValue GLC, TFE, DLC, SWZ;
1473 
1474   return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1475 }
1476 
1477 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1478   auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1479   return PSV && PSV->isStack();
1480 }
1481 
1482 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1483   SDLoc DL(N);
1484   const MachineFunction &MF = CurDAG->getMachineFunction();
1485   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1486 
1487   if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1488     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1489                                               FI->getValueType(0));
1490 
1491     // If we can resolve this to a frame index access, this will be relative to
1492     // either the stack or frame pointer SGPR.
1493     return std::make_pair(
1494         TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1495   }
1496 
1497   // If we don't know this private access is a local stack object, it needs to
1498   // be relative to the entry point's scratch wave offset.
1499   return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32));
1500 }
1501 
1502 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1503                                                  SDValue Addr, SDValue &Rsrc,
1504                                                  SDValue &VAddr, SDValue &SOffset,
1505                                                  SDValue &ImmOffset) const {
1506 
1507   SDLoc DL(Addr);
1508   MachineFunction &MF = CurDAG->getMachineFunction();
1509   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1510 
1511   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1512 
1513   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1514     unsigned Imm = CAddr->getZExtValue();
1515 
1516     SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1517     MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1518                                                         DL, MVT::i32, HighBits);
1519     VAddr = SDValue(MovHighBits, 0);
1520 
1521     // In a call sequence, stores to the argument stack area are relative to the
1522     // stack pointer.
1523     const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1524 
1525     SOffset = isStackPtrRelative(PtrInfo)
1526                   ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1527                   : CurDAG->getTargetConstant(0, DL, MVT::i32);
1528     ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1529     return true;
1530   }
1531 
1532   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1533     // (add n0, c1)
1534 
1535     SDValue N0 = Addr.getOperand(0);
1536     SDValue N1 = Addr.getOperand(1);
1537 
1538     // Offsets in vaddr must be positive if range checking is enabled.
1539     //
1540     // The total computation of vaddr + soffset + offset must not overflow.  If
1541     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1542     // overflowing.
1543     //
1544     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1545     // always perform a range check. If a negative vaddr base index was used,
1546     // this would fail the range check. The overall address computation would
1547     // compute a valid address, but this doesn't happen due to the range
1548     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1549     //
1550     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1551     // MUBUF vaddr, but not on older subtargets which can only do this if the
1552     // sign bit is known 0.
1553     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1554     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1555         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1556          CurDAG->SignBitIsZero(N0))) {
1557       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1558       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1559       return true;
1560     }
1561   }
1562 
1563   // (node)
1564   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1565   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1566   return true;
1567 }
1568 
1569 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1570                                                   SDValue Addr,
1571                                                   SDValue &SRsrc,
1572                                                   SDValue &SOffset,
1573                                                   SDValue &Offset) const {
1574   ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1575   if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1576     return false;
1577 
1578   SDLoc DL(Addr);
1579   MachineFunction &MF = CurDAG->getMachineFunction();
1580   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1581 
1582   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1583 
1584   const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1585 
1586   // FIXME: Get from MachinePointerInfo? We should only be using the frame
1587   // offset if we know this is in a call sequence.
1588   SOffset = isStackPtrRelative(PtrInfo)
1589                 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1590                 : CurDAG->getTargetConstant(0, DL, MVT::i32);
1591 
1592   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1593   return true;
1594 }
1595 
1596 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1597                                            SDValue &SOffset, SDValue &Offset,
1598                                            SDValue &GLC, SDValue &SLC,
1599                                            SDValue &TFE, SDValue &DLC,
1600                                            SDValue &SWZ) const {
1601   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1602   const SIInstrInfo *TII =
1603     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1604 
1605   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1606               GLC, SLC, TFE, DLC, SWZ))
1607     return false;
1608 
1609   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1610       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1611       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1612     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1613                     APInt::getAllOnesValue(32).getZExtValue(); // Size
1614     SDLoc DL(Addr);
1615 
1616     const SITargetLowering& Lowering =
1617       *static_cast<const SITargetLowering*>(getTargetLowering());
1618 
1619     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1620     return true;
1621   }
1622   return false;
1623 }
1624 
1625 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1626                                            SDValue &Soffset, SDValue &Offset
1627                                            ) const {
1628   SDValue GLC, SLC, TFE, DLC, SWZ;
1629 
1630   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1631 }
1632 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1633                                            SDValue &Soffset, SDValue &Offset,
1634                                            SDValue &SLC) const {
1635   SDValue GLC, TFE, DLC, SWZ;
1636 
1637   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1638 }
1639 
1640 // Find a load or store from corresponding pattern root.
1641 // Roots may be build_vector, bitconvert or their combinations.
1642 static MemSDNode* findMemSDNode(SDNode *N) {
1643   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1644   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1645     return MN;
1646   assert(isa<BuildVectorSDNode>(N));
1647   for (SDValue V : N->op_values())
1648     if (MemSDNode *MN =
1649           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1650       return MN;
1651   llvm_unreachable("cannot find MemSDNode in the pattern!");
1652 }
1653 
1654 template <bool IsSigned>
1655 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1656                                           SDValue Addr,
1657                                           SDValue &VAddr,
1658                                           SDValue &Offset,
1659                                           SDValue &SLC) const {
1660   int64_t OffsetVal = 0;
1661 
1662   if (Subtarget->hasFlatInstOffsets() &&
1663       (!Subtarget->hasFlatSegmentOffsetBug() ||
1664        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
1665       CurDAG->isBaseWithConstantOffset(Addr)) {
1666     SDValue N0 = Addr.getOperand(0);
1667     SDValue N1 = Addr.getOperand(1);
1668     uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1669 
1670     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1671     unsigned AS = findMemSDNode(N)->getAddressSpace();
1672     if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
1673       Addr = N0;
1674       OffsetVal = COffsetVal;
1675     } else {
1676       // If the offset doesn't fit, put the low bits into the offset field and
1677       // add the rest.
1678 
1679       SDLoc DL(N);
1680       uint64_t ImmField;
1681       const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
1682       if (IsSigned) {
1683         ImmField = SignExtend64(COffsetVal, NumBits);
1684 
1685         // Don't use a negative offset field if the base offset is positive.
1686         // Since the scheduler currently relies on the offset field, doing so
1687         // could result in strange scheduling decisions.
1688 
1689         // TODO: Should we not do this in the opposite direction as well?
1690         if (static_cast<int64_t>(COffsetVal) > 0) {
1691           if (static_cast<int64_t>(ImmField) < 0) {
1692             const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits - 1);
1693             ImmField = COffsetVal & OffsetMask;
1694           }
1695         }
1696       } else {
1697         // TODO: Should we do this for a negative offset?
1698         const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
1699         ImmField = COffsetVal & OffsetMask;
1700       }
1701 
1702       uint64_t RemainderOffset = COffsetVal - ImmField;
1703 
1704       assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
1705       assert(RemainderOffset + ImmField == COffsetVal);
1706 
1707       OffsetVal = ImmField;
1708 
1709       // TODO: Should this try to use a scalar add pseudo if the base address is
1710       // uniform and saddr is usable?
1711       SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1712       SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1713 
1714       SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1715                                             DL, MVT::i32, N0, Sub0);
1716       SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1717                                             DL, MVT::i32, N0, Sub1);
1718 
1719       SDValue AddOffsetLo
1720         = getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1721       SDValue AddOffsetHi
1722         = getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1723 
1724       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1725       SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1726 
1727       SDNode *Add = CurDAG->getMachineNode(
1728         AMDGPU::V_ADD_I32_e64, DL, VTs,
1729         {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1730 
1731       SDNode *Addc = CurDAG->getMachineNode(
1732         AMDGPU::V_ADDC_U32_e64, DL, VTs,
1733         {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1734 
1735       SDValue RegSequenceArgs[] = {
1736         CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1737         SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1
1738       };
1739 
1740       Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1741                                             MVT::i64, RegSequenceArgs), 0);
1742     }
1743   }
1744 
1745   VAddr = Addr;
1746   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1747   SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1748   return true;
1749 }
1750 
1751 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1752                                           SDValue Addr,
1753                                           SDValue &VAddr,
1754                                           SDValue &Offset,
1755                                           SDValue &SLC) const {
1756   return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1757 }
1758 
1759 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1760                                                 SDValue Addr,
1761                                                 SDValue &VAddr,
1762                                                 SDValue &Offset,
1763                                                 SDValue &SLC) const {
1764   return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1765 }
1766 
1767 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1768                                           SDValue &Offset, bool &Imm) const {
1769 
1770   // FIXME: Handle non-constant offsets.
1771   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1772   if (!C)
1773     return false;
1774 
1775   SDLoc SL(ByteOffsetNode);
1776   GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1777   uint64_t ByteOffset = C->getZExtValue();
1778   Optional<int64_t> EncodedOffset =
1779       AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1780   if (EncodedOffset) {
1781     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1782     Imm = true;
1783     return true;
1784   }
1785 
1786   if (Gen == AMDGPUSubtarget::SEA_ISLANDS) {
1787     EncodedOffset =
1788         AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1789     if (EncodedOffset) {
1790       Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1791       return true;
1792     }
1793   }
1794 
1795   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1796     return false;
1797 
1798   SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1799   Offset = SDValue(
1800       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1801 
1802   return true;
1803 }
1804 
1805 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1806   if (Addr.getValueType() != MVT::i32)
1807     return Addr;
1808 
1809   // Zero-extend a 32-bit address.
1810   SDLoc SL(Addr);
1811 
1812   const MachineFunction &MF = CurDAG->getMachineFunction();
1813   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1814   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1815   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1816 
1817   const SDValue Ops[] = {
1818     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1819     Addr,
1820     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1821     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1822             0),
1823     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1824   };
1825 
1826   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1827                                         Ops), 0);
1828 }
1829 
1830 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1831                                      SDValue &Offset, bool &Imm) const {
1832   SDLoc SL(Addr);
1833 
1834   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1835   // wraparound, because s_load instructions perform the addition in 64 bits.
1836   if ((Addr.getValueType() != MVT::i32 ||
1837        Addr->getFlags().hasNoUnsignedWrap()) &&
1838       CurDAG->isBaseWithConstantOffset(Addr)) {
1839     SDValue N0 = Addr.getOperand(0);
1840     SDValue N1 = Addr.getOperand(1);
1841 
1842     if (SelectSMRDOffset(N1, Offset, Imm)) {
1843       SBase = Expand32BitAddress(N0);
1844       return true;
1845     }
1846   }
1847   SBase = Expand32BitAddress(Addr);
1848   Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1849   Imm = true;
1850   return true;
1851 }
1852 
1853 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1854                                        SDValue &Offset) const {
1855   bool Imm = false;
1856   return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1857 }
1858 
1859 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1860                                          SDValue &Offset) const {
1861 
1862   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1863 
1864   bool Imm = false;
1865   if (!SelectSMRD(Addr, SBase, Offset, Imm))
1866     return false;
1867 
1868   return !Imm && isa<ConstantSDNode>(Offset);
1869 }
1870 
1871 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1872                                         SDValue &Offset) const {
1873   bool Imm = false;
1874   return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1875          !isa<ConstantSDNode>(Offset);
1876 }
1877 
1878 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1879                                              SDValue &Offset) const {
1880   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1881     if (auto Imm = AMDGPU::getSMRDEncodedOffset(*Subtarget,
1882                                                 C->getZExtValue())) {
1883       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1884       return true;
1885     }
1886   }
1887 
1888   return false;
1889 }
1890 
1891 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1892                                                SDValue &Offset) const {
1893   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1894 
1895   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1896     if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
1897                                                          C->getZExtValue())) {
1898       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1899       return true;
1900     }
1901   }
1902 
1903   return false;
1904 }
1905 
1906 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1907                                             SDValue &Base,
1908                                             SDValue &Offset) const {
1909   SDLoc DL(Index);
1910 
1911   if (CurDAG->isBaseWithConstantOffset(Index)) {
1912     SDValue N0 = Index.getOperand(0);
1913     SDValue N1 = Index.getOperand(1);
1914     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1915 
1916     // (add n0, c0)
1917     // Don't peel off the offset (c0) if doing so could possibly lead
1918     // the base (n0) to be negative.
1919     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1920       Base = N0;
1921       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1922       return true;
1923     }
1924   }
1925 
1926   if (isa<ConstantSDNode>(Index))
1927     return false;
1928 
1929   Base = Index;
1930   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1931   return true;
1932 }
1933 
1934 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1935                                      SDValue Val, uint32_t Offset,
1936                                      uint32_t Width) {
1937   // Transformation function, pack the offset and width of a BFE into
1938   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1939   // source, bits [5:0] contain the offset and bits [22:16] the width.
1940   uint32_t PackedVal = Offset | (Width << 16);
1941   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1942 
1943   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1944 }
1945 
1946 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1947   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1948   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1949   // Predicate: 0 < b <= c < 32
1950 
1951   const SDValue &Shl = N->getOperand(0);
1952   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1953   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1954 
1955   if (B && C) {
1956     uint32_t BVal = B->getZExtValue();
1957     uint32_t CVal = C->getZExtValue();
1958 
1959     if (0 < BVal && BVal <= CVal && CVal < 32) {
1960       bool Signed = N->getOpcode() == ISD::SRA;
1961       unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1962 
1963       ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1964                               32 - CVal));
1965       return;
1966     }
1967   }
1968   SelectCode(N);
1969 }
1970 
1971 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1972   switch (N->getOpcode()) {
1973   case ISD::AND:
1974     if (N->getOperand(0).getOpcode() == ISD::SRL) {
1975       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1976       // Predicate: isMask(mask)
1977       const SDValue &Srl = N->getOperand(0);
1978       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1979       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1980 
1981       if (Shift && Mask) {
1982         uint32_t ShiftVal = Shift->getZExtValue();
1983         uint32_t MaskVal = Mask->getZExtValue();
1984 
1985         if (isMask_32(MaskVal)) {
1986           uint32_t WidthVal = countPopulation(MaskVal);
1987 
1988           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1989                                   Srl.getOperand(0), ShiftVal, WidthVal));
1990           return;
1991         }
1992       }
1993     }
1994     break;
1995   case ISD::SRL:
1996     if (N->getOperand(0).getOpcode() == ISD::AND) {
1997       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1998       // Predicate: isMask(mask >> b)
1999       const SDValue &And = N->getOperand(0);
2000       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2001       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2002 
2003       if (Shift && Mask) {
2004         uint32_t ShiftVal = Shift->getZExtValue();
2005         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2006 
2007         if (isMask_32(MaskVal)) {
2008           uint32_t WidthVal = countPopulation(MaskVal);
2009 
2010           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2011                                   And.getOperand(0), ShiftVal, WidthVal));
2012           return;
2013         }
2014       }
2015     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2016       SelectS_BFEFromShifts(N);
2017       return;
2018     }
2019     break;
2020   case ISD::SRA:
2021     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2022       SelectS_BFEFromShifts(N);
2023       return;
2024     }
2025     break;
2026 
2027   case ISD::SIGN_EXTEND_INREG: {
2028     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2029     SDValue Src = N->getOperand(0);
2030     if (Src.getOpcode() != ISD::SRL)
2031       break;
2032 
2033     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2034     if (!Amt)
2035       break;
2036 
2037     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2038     ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2039                             Amt->getZExtValue(), Width));
2040     return;
2041   }
2042   }
2043 
2044   SelectCode(N);
2045 }
2046 
2047 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2048   assert(N->getOpcode() == ISD::BRCOND);
2049   if (!N->hasOneUse())
2050     return false;
2051 
2052   SDValue Cond = N->getOperand(1);
2053   if (Cond.getOpcode() == ISD::CopyToReg)
2054     Cond = Cond.getOperand(2);
2055 
2056   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2057     return false;
2058 
2059   MVT VT = Cond.getOperand(0).getSimpleValueType();
2060   if (VT == MVT::i32)
2061     return true;
2062 
2063   if (VT == MVT::i64) {
2064     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2065 
2066     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2067     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2068   }
2069 
2070   return false;
2071 }
2072 
2073 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2074   SDValue Cond = N->getOperand(1);
2075 
2076   if (Cond.isUndef()) {
2077     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2078                          N->getOperand(2), N->getOperand(0));
2079     return;
2080   }
2081 
2082   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2083   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2084 
2085   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2086   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2087   unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC();
2088   SDLoc SL(N);
2089 
2090   if (!UseSCCBr) {
2091     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2092     // analyzed what generates the vcc value, so we do not know whether vcc
2093     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2094     // disabled lanes.
2095     //
2096     // For the case that we select S_CBRANCH_SCC1 and it gets
2097     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2098     // SIInstrInfo::moveToVALU which inserts the S_AND).
2099     //
2100     // We could add an analysis of what generates the vcc value here and omit
2101     // the S_AND when is unnecessary. But it would be better to add a separate
2102     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2103     // catches both cases.
2104     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2105                                                          : AMDGPU::S_AND_B64,
2106                      SL, MVT::i1,
2107                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2108                                                         : AMDGPU::EXEC,
2109                                          MVT::i1),
2110                     Cond),
2111                    0);
2112   }
2113 
2114   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2115   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2116                        N->getOperand(2), // Basic Block
2117                        VCC.getValue(0));
2118 }
2119 
2120 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2121   MVT VT = N->getSimpleValueType(0);
2122   bool IsFMA = N->getOpcode() == ISD::FMA;
2123   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2124                          !Subtarget->hasFmaMixInsts()) ||
2125       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2126        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2127     SelectCode(N);
2128     return;
2129   }
2130 
2131   SDValue Src0 = N->getOperand(0);
2132   SDValue Src1 = N->getOperand(1);
2133   SDValue Src2 = N->getOperand(2);
2134   unsigned Src0Mods, Src1Mods, Src2Mods;
2135 
2136   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2137   // using the conversion from f16.
2138   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2139   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2140   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2141 
2142   assert((IsFMA || !Mode.allFP32Denormals()) &&
2143          "fmad selected with denormals enabled");
2144   // TODO: We can select this with f32 denormals enabled if all the sources are
2145   // converted from f16 (in which case fmad isn't legal).
2146 
2147   if (Sel0 || Sel1 || Sel2) {
2148     // For dummy operands.
2149     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2150     SDValue Ops[] = {
2151       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2152       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2153       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2154       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2155       Zero, Zero
2156     };
2157 
2158     CurDAG->SelectNodeTo(N,
2159                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2160                          MVT::f32, Ops);
2161   } else {
2162     SelectCode(N);
2163   }
2164 }
2165 
2166 // This is here because there isn't a way to use the generated sub0_sub1 as the
2167 // subreg index to EXTRACT_SUBREG in tablegen.
2168 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2169   MemSDNode *Mem = cast<MemSDNode>(N);
2170   unsigned AS = Mem->getAddressSpace();
2171   if (AS == AMDGPUAS::FLAT_ADDRESS) {
2172     SelectCode(N);
2173     return;
2174   }
2175 
2176   MVT VT = N->getSimpleValueType(0);
2177   bool Is32 = (VT == MVT::i32);
2178   SDLoc SL(N);
2179 
2180   MachineSDNode *CmpSwap = nullptr;
2181   if (Subtarget->hasAddr64()) {
2182     SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2183 
2184     if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2185       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2186         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2187       SDValue CmpVal = Mem->getOperand(2);
2188 
2189       // XXX - Do we care about glue operands?
2190 
2191       SDValue Ops[] = {
2192         CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2193       };
2194 
2195       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2196     }
2197   }
2198 
2199   if (!CmpSwap) {
2200     SDValue SRsrc, SOffset, Offset, SLC;
2201     if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2202       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2203         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2204 
2205       SDValue CmpVal = Mem->getOperand(2);
2206       SDValue Ops[] = {
2207         CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2208       };
2209 
2210       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2211     }
2212   }
2213 
2214   if (!CmpSwap) {
2215     SelectCode(N);
2216     return;
2217   }
2218 
2219   MachineMemOperand *MMO = Mem->getMemOperand();
2220   CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2221 
2222   unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2223   SDValue Extract
2224     = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2225 
2226   ReplaceUses(SDValue(N, 0), Extract);
2227   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2228   CurDAG->RemoveDeadNode(N);
2229 }
2230 
2231 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2232   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2233   // be copied to an SGPR with readfirstlane.
2234   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2235     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2236 
2237   SDValue Chain = N->getOperand(0);
2238   SDValue Ptr = N->getOperand(2);
2239   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2240   MachineMemOperand *MMO = M->getMemOperand();
2241   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2242 
2243   SDValue Offset;
2244   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2245     SDValue PtrBase = Ptr.getOperand(0);
2246     SDValue PtrOffset = Ptr.getOperand(1);
2247 
2248     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2249     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2250       N = glueCopyToM0(N, PtrBase);
2251       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2252     }
2253   }
2254 
2255   if (!Offset) {
2256     N = glueCopyToM0(N, Ptr);
2257     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2258   }
2259 
2260   SDValue Ops[] = {
2261     Offset,
2262     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2263     Chain,
2264     N->getOperand(N->getNumOperands() - 1) // New glue
2265   };
2266 
2267   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2268   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2269 }
2270 
2271 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2272   switch (IntrID) {
2273   case Intrinsic::amdgcn_ds_gws_init:
2274     return AMDGPU::DS_GWS_INIT;
2275   case Intrinsic::amdgcn_ds_gws_barrier:
2276     return AMDGPU::DS_GWS_BARRIER;
2277   case Intrinsic::amdgcn_ds_gws_sema_v:
2278     return AMDGPU::DS_GWS_SEMA_V;
2279   case Intrinsic::amdgcn_ds_gws_sema_br:
2280     return AMDGPU::DS_GWS_SEMA_BR;
2281   case Intrinsic::amdgcn_ds_gws_sema_p:
2282     return AMDGPU::DS_GWS_SEMA_P;
2283   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2284     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2285   default:
2286     llvm_unreachable("not a gws intrinsic");
2287   }
2288 }
2289 
2290 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2291   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2292       !Subtarget->hasGWSSemaReleaseAll()) {
2293     // Let this error.
2294     SelectCode(N);
2295     return;
2296   }
2297 
2298   // Chain, intrinsic ID, vsrc, offset
2299   const bool HasVSrc = N->getNumOperands() == 4;
2300   assert(HasVSrc || N->getNumOperands() == 3);
2301 
2302   SDLoc SL(N);
2303   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2304   int ImmOffset = 0;
2305   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2306   MachineMemOperand *MMO = M->getMemOperand();
2307 
2308   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2309   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2310 
2311   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2312   // offset field) % 64. Some versions of the programming guide omit the m0
2313   // part, or claim it's from offset 0.
2314   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2315     // If we have a constant offset, try to use the 0 in m0 as the base.
2316     // TODO: Look into changing the default m0 initialization value. If the
2317     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2318     // the immediate offset.
2319     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2320     ImmOffset = ConstOffset->getZExtValue();
2321   } else {
2322     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2323       ImmOffset = BaseOffset.getConstantOperandVal(1);
2324       BaseOffset = BaseOffset.getOperand(0);
2325     }
2326 
2327     // Prefer to do the shift in an SGPR since it should be possible to use m0
2328     // as the result directly. If it's already an SGPR, it will be eliminated
2329     // later.
2330     SDNode *SGPROffset
2331       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2332                                BaseOffset);
2333     // Shift to offset in m0
2334     SDNode *M0Base
2335       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2336                                SDValue(SGPROffset, 0),
2337                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2338     glueCopyToM0(N, SDValue(M0Base, 0));
2339   }
2340 
2341   SDValue Chain = N->getOperand(0);
2342   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2343 
2344   // TODO: Can this just be removed from the instruction?
2345   SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2346 
2347   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2348   SmallVector<SDValue, 5> Ops;
2349   if (HasVSrc)
2350     Ops.push_back(N->getOperand(2));
2351   Ops.push_back(OffsetField);
2352   Ops.push_back(GDS);
2353   Ops.push_back(Chain);
2354 
2355   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2356   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2357 }
2358 
2359 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2360   if (Subtarget->getLDSBankCount() != 16) {
2361     // This is a single instruction with a pattern.
2362     SelectCode(N);
2363     return;
2364   }
2365 
2366   SDLoc DL(N);
2367 
2368   // This requires 2 instructions. It is possible to write a pattern to support
2369   // this, but the generated isel emitter doesn't correctly deal with multiple
2370   // output instructions using the same physical register input. The copy to m0
2371   // is incorrectly placed before the second instruction.
2372   //
2373   // TODO: Match source modifiers.
2374   //
2375   // def : Pat <
2376   //   (int_amdgcn_interp_p1_f16
2377   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2378   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2379   //                             (i1 timm:$high), M0),
2380   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2381   //       timm:$attrchan, 0,
2382   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2383   //   let Predicates = [has16BankLDS];
2384   // }
2385 
2386   // 16 bank LDS
2387   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2388                                       N->getOperand(5), SDValue());
2389 
2390   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2391 
2392   SDNode *InterpMov =
2393     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2394         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2395         N->getOperand(3),  // Attr
2396         N->getOperand(2),  // Attrchan
2397         ToM0.getValue(1) // In glue
2398   });
2399 
2400   SDNode *InterpP1LV =
2401     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2402         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2403         N->getOperand(1), // Src0
2404         N->getOperand(3), // Attr
2405         N->getOperand(2), // Attrchan
2406         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2407         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2408         N->getOperand(4), // high
2409         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2410         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2411         SDValue(InterpMov, 1)
2412   });
2413 
2414   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2415 }
2416 
2417 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2418   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2419   switch (IntrID) {
2420   case Intrinsic::amdgcn_ds_append:
2421   case Intrinsic::amdgcn_ds_consume: {
2422     if (N->getValueType(0) != MVT::i32)
2423       break;
2424     SelectDSAppendConsume(N, IntrID);
2425     return;
2426   }
2427   }
2428 
2429   SelectCode(N);
2430 }
2431 
2432 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2433   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2434   unsigned Opcode;
2435   switch (IntrID) {
2436   case Intrinsic::amdgcn_wqm:
2437     Opcode = AMDGPU::WQM;
2438     break;
2439   case Intrinsic::amdgcn_softwqm:
2440     Opcode = AMDGPU::SOFT_WQM;
2441     break;
2442   case Intrinsic::amdgcn_wwm:
2443     Opcode = AMDGPU::WWM;
2444     break;
2445   case Intrinsic::amdgcn_interp_p1_f16:
2446     SelectInterpP1F16(N);
2447     return;
2448   default:
2449     SelectCode(N);
2450     return;
2451   }
2452 
2453   SDValue Src = N->getOperand(1);
2454   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2455 }
2456 
2457 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2458   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2459   switch (IntrID) {
2460   case Intrinsic::amdgcn_ds_gws_init:
2461   case Intrinsic::amdgcn_ds_gws_barrier:
2462   case Intrinsic::amdgcn_ds_gws_sema_v:
2463   case Intrinsic::amdgcn_ds_gws_sema_br:
2464   case Intrinsic::amdgcn_ds_gws_sema_p:
2465   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2466     SelectDS_GWS(N, IntrID);
2467     return;
2468   default:
2469     break;
2470   }
2471 
2472   SelectCode(N);
2473 }
2474 
2475 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2476                                             unsigned &Mods) const {
2477   Mods = 0;
2478   Src = In;
2479 
2480   if (Src.getOpcode() == ISD::FNEG) {
2481     Mods |= SISrcMods::NEG;
2482     Src = Src.getOperand(0);
2483   }
2484 
2485   if (Src.getOpcode() == ISD::FABS) {
2486     Mods |= SISrcMods::ABS;
2487     Src = Src.getOperand(0);
2488   }
2489 
2490   return true;
2491 }
2492 
2493 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2494                                         SDValue &SrcMods) const {
2495   unsigned Mods;
2496   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2497     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2498     return true;
2499   }
2500 
2501   return false;
2502 }
2503 
2504 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2505                                              SDValue &SrcMods) const {
2506   SelectVOP3Mods(In, Src, SrcMods);
2507   return isNoNanSrc(Src);
2508 }
2509 
2510 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2511   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2512     return false;
2513 
2514   Src = In;
2515   return true;
2516 }
2517 
2518 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2519                                          SDValue &SrcMods, SDValue &Clamp,
2520                                          SDValue &Omod) const {
2521   SDLoc DL(In);
2522   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2523   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2524 
2525   return SelectVOP3Mods(In, Src, SrcMods);
2526 }
2527 
2528 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2529                                          SDValue &Clamp, SDValue &Omod) const {
2530   Src = In;
2531 
2532   SDLoc DL(In);
2533   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2534   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2535 
2536   return true;
2537 }
2538 
2539 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2540                                          SDValue &SrcMods) const {
2541   unsigned Mods = 0;
2542   Src = In;
2543 
2544   if (Src.getOpcode() == ISD::FNEG) {
2545     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2546     Src = Src.getOperand(0);
2547   }
2548 
2549   if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2550     unsigned VecMods = Mods;
2551 
2552     SDValue Lo = stripBitcast(Src.getOperand(0));
2553     SDValue Hi = stripBitcast(Src.getOperand(1));
2554 
2555     if (Lo.getOpcode() == ISD::FNEG) {
2556       Lo = stripBitcast(Lo.getOperand(0));
2557       Mods ^= SISrcMods::NEG;
2558     }
2559 
2560     if (Hi.getOpcode() == ISD::FNEG) {
2561       Hi = stripBitcast(Hi.getOperand(0));
2562       Mods ^= SISrcMods::NEG_HI;
2563     }
2564 
2565     if (isExtractHiElt(Lo, Lo))
2566       Mods |= SISrcMods::OP_SEL_0;
2567 
2568     if (isExtractHiElt(Hi, Hi))
2569       Mods |= SISrcMods::OP_SEL_1;
2570 
2571     Lo = stripExtractLoElt(Lo);
2572     Hi = stripExtractLoElt(Hi);
2573 
2574     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2575       // Really a scalar input. Just select from the low half of the register to
2576       // avoid packing.
2577 
2578       Src = Lo;
2579       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2580       return true;
2581     }
2582 
2583     Mods = VecMods;
2584   }
2585 
2586   // Packed instructions do not have abs modifiers.
2587   Mods |= SISrcMods::OP_SEL_1;
2588 
2589   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2590   return true;
2591 }
2592 
2593 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2594                                          SDValue &SrcMods) const {
2595   Src = In;
2596   // FIXME: Handle op_sel
2597   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2598   return true;
2599 }
2600 
2601 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2602                                              SDValue &SrcMods) const {
2603   // FIXME: Handle op_sel
2604   return SelectVOP3Mods(In, Src, SrcMods);
2605 }
2606 
2607 // The return value is not whether the match is possible (which it always is),
2608 // but whether or not it a conversion is really used.
2609 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2610                                                    unsigned &Mods) const {
2611   Mods = 0;
2612   SelectVOP3ModsImpl(In, Src, Mods);
2613 
2614   if (Src.getOpcode() == ISD::FP_EXTEND) {
2615     Src = Src.getOperand(0);
2616     assert(Src.getValueType() == MVT::f16);
2617     Src = stripBitcast(Src);
2618 
2619     // Be careful about folding modifiers if we already have an abs. fneg is
2620     // applied last, so we don't want to apply an earlier fneg.
2621     if ((Mods & SISrcMods::ABS) == 0) {
2622       unsigned ModsTmp;
2623       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2624 
2625       if ((ModsTmp & SISrcMods::NEG) != 0)
2626         Mods ^= SISrcMods::NEG;
2627 
2628       if ((ModsTmp & SISrcMods::ABS) != 0)
2629         Mods |= SISrcMods::ABS;
2630     }
2631 
2632     // op_sel/op_sel_hi decide the source type and source.
2633     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2634     // If the sources's op_sel is set, it picks the high half of the source
2635     // register.
2636 
2637     Mods |= SISrcMods::OP_SEL_1;
2638     if (isExtractHiElt(Src, Src)) {
2639       Mods |= SISrcMods::OP_SEL_0;
2640 
2641       // TODO: Should we try to look for neg/abs here?
2642     }
2643 
2644     return true;
2645   }
2646 
2647   return false;
2648 }
2649 
2650 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2651                                                SDValue &SrcMods) const {
2652   unsigned Mods = 0;
2653   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2654   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2655   return true;
2656 }
2657 
2658 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2659   if (In.isUndef())
2660     return CurDAG->getUNDEF(MVT::i32);
2661 
2662   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2663     SDLoc SL(In);
2664     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2665   }
2666 
2667   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2668     SDLoc SL(In);
2669     return CurDAG->getConstant(
2670       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2671   }
2672 
2673   SDValue Src;
2674   if (isExtractHiElt(In, Src))
2675     return Src;
2676 
2677   return SDValue();
2678 }
2679 
2680 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2681   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2682 
2683   const SIRegisterInfo *SIRI =
2684     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2685   const SIInstrInfo * SII =
2686     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2687 
2688   unsigned Limit = 0;
2689   bool AllUsesAcceptSReg = true;
2690   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2691     Limit < 10 && U != E; ++U, ++Limit) {
2692     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2693 
2694     // If the register class is unknown, it could be an unknown
2695     // register class that needs to be an SGPR, e.g. an inline asm
2696     // constraint
2697     if (!RC || SIRI->isSGPRClass(RC))
2698       return false;
2699 
2700     if (RC != &AMDGPU::VS_32RegClass) {
2701       AllUsesAcceptSReg = false;
2702       SDNode * User = *U;
2703       if (User->isMachineOpcode()) {
2704         unsigned Opc = User->getMachineOpcode();
2705         MCInstrDesc Desc = SII->get(Opc);
2706         if (Desc.isCommutable()) {
2707           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2708           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2709           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2710             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2711             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2712             if (CommutedRC == &AMDGPU::VS_32RegClass)
2713               AllUsesAcceptSReg = true;
2714           }
2715         }
2716       }
2717       // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2718       // commuting current user. This means have at least one use
2719       // that strictly require VGPR. Thus, we will not attempt to commute
2720       // other user instructions.
2721       if (!AllUsesAcceptSReg)
2722         break;
2723     }
2724   }
2725   return !AllUsesAcceptSReg && (Limit < 10);
2726 }
2727 
2728 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2729   auto Ld = cast<LoadSDNode>(N);
2730 
2731   return Ld->getAlignment() >= 4 &&
2732         (
2733           (
2734             (
2735               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
2736               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2737             )
2738             &&
2739             !N->isDivergent()
2740           )
2741           ||
2742           (
2743             Subtarget->getScalarizeGlobalBehavior() &&
2744             Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2745             !Ld->isVolatile() &&
2746             !N->isDivergent() &&
2747             static_cast<const SITargetLowering *>(
2748               getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2749           )
2750         );
2751 }
2752 
2753 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2754   const AMDGPUTargetLowering& Lowering =
2755     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2756   bool IsModified = false;
2757   do {
2758     IsModified = false;
2759 
2760     // Go over all selected nodes and try to fold them a bit more
2761     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2762     while (Position != CurDAG->allnodes_end()) {
2763       SDNode *Node = &*Position++;
2764       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2765       if (!MachineNode)
2766         continue;
2767 
2768       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2769       if (ResNode != Node) {
2770         if (ResNode)
2771           ReplaceUses(Node, ResNode);
2772         IsModified = true;
2773       }
2774     }
2775     CurDAG->RemoveDeadNodes();
2776   } while (IsModified);
2777 }
2778 
2779 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2780   Subtarget = &MF.getSubtarget<R600Subtarget>();
2781   return SelectionDAGISel::runOnMachineFunction(MF);
2782 }
2783 
2784 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2785   if (!N->readMem())
2786     return false;
2787   if (CbId == -1)
2788     return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2789            N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2790 
2791   return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2792 }
2793 
2794 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2795                                                          SDValue& IntPtr) {
2796   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2797     IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2798                                        true);
2799     return true;
2800   }
2801   return false;
2802 }
2803 
2804 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2805     SDValue& BaseReg, SDValue &Offset) {
2806   if (!isa<ConstantSDNode>(Addr)) {
2807     BaseReg = Addr;
2808     Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2809     return true;
2810   }
2811   return false;
2812 }
2813 
2814 void R600DAGToDAGISel::Select(SDNode *N) {
2815   unsigned int Opc = N->getOpcode();
2816   if (N->isMachineOpcode()) {
2817     N->setNodeId(-1);
2818     return;   // Already selected.
2819   }
2820 
2821   switch (Opc) {
2822   default: break;
2823   case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2824   case ISD::SCALAR_TO_VECTOR:
2825   case ISD::BUILD_VECTOR: {
2826     EVT VT = N->getValueType(0);
2827     unsigned NumVectorElts = VT.getVectorNumElements();
2828     unsigned RegClassID;
2829     // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2830     // that adds a 128 bits reg copy when going through TwoAddressInstructions
2831     // pass. We want to avoid 128 bits copies as much as possible because they
2832     // can't be bundled by our scheduler.
2833     switch(NumVectorElts) {
2834     case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2835     case 4:
2836       if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2837         RegClassID = R600::R600_Reg128VerticalRegClassID;
2838       else
2839         RegClassID = R600::R600_Reg128RegClassID;
2840       break;
2841     default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2842     }
2843     SelectBuildVector(N, RegClassID);
2844     return;
2845   }
2846   }
2847 
2848   SelectCode(N);
2849 }
2850 
2851 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2852                                           SDValue &Offset) {
2853   ConstantSDNode *C;
2854   SDLoc DL(Addr);
2855 
2856   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2857     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2858     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2859   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2860              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2861     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2862     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2863   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2864             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2865     Base = Addr.getOperand(0);
2866     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2867   } else {
2868     Base = Addr;
2869     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2870   }
2871 
2872   return true;
2873 }
2874 
2875 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2876                                           SDValue &Offset) {
2877   ConstantSDNode *IMMOffset;
2878 
2879   if (Addr.getOpcode() == ISD::ADD
2880       && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2881       && isInt<16>(IMMOffset->getZExtValue())) {
2882 
2883       Base = Addr.getOperand(0);
2884       Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2885                                          MVT::i32);
2886       return true;
2887   // If the pointer address is constant, we can move it to the offset field.
2888   } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2889              && isInt<16>(IMMOffset->getZExtValue())) {
2890     Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2891                                   SDLoc(CurDAG->getEntryNode()),
2892                                   R600::ZERO, MVT::i32);
2893     Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2894                                        MVT::i32);
2895     return true;
2896   }
2897 
2898   // Default case, no offset
2899   Base = Addr;
2900   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2901   return true;
2902 }
2903