1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUArgumentUsageInfo.h" 16 #include "AMDGPUISelLowering.h" // For AMDGPUISD 17 #include "AMDGPUInstrInfo.h" 18 #include "AMDGPUPerfHintAnalysis.h" 19 #include "AMDGPUSubtarget.h" 20 #include "AMDGPUTargetMachine.h" 21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 22 #include "SIDefines.h" 23 #include "SIISelLowering.h" 24 #include "SIInstrInfo.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIRegisterInfo.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGISel.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/ValueTypes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/InitializePasses.h" 43 #ifdef EXPENSIVE_CHECKS 44 #include "llvm/IR/Dominators.h" 45 #endif 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MachineValueType.h" 52 #include "llvm/Support/MathExtras.h" 53 #include <cassert> 54 #include <cstdint> 55 #include <new> 56 #include <vector> 57 58 #define DEBUG_TYPE "isel" 59 60 using namespace llvm; 61 62 namespace llvm { 63 64 class R600InstrInfo; 65 66 } // end namespace llvm 67 68 //===----------------------------------------------------------------------===// 69 // Instruction Selector Implementation 70 //===----------------------------------------------------------------------===// 71 72 namespace { 73 74 static bool isNullConstantOrUndef(SDValue V) { 75 if (V.isUndef()) 76 return true; 77 78 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 79 return Const != nullptr && Const->isNullValue(); 80 } 81 82 static bool getConstantValue(SDValue N, uint32_t &Out) { 83 // This is only used for packed vectors, where ussing 0 for undef should 84 // always be good. 85 if (N.isUndef()) { 86 Out = 0; 87 return true; 88 } 89 90 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 91 Out = C->getAPIntValue().getSExtValue(); 92 return true; 93 } 94 95 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 96 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 97 return true; 98 } 99 100 return false; 101 } 102 103 // TODO: Handle undef as zero 104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 105 bool Negate = false) { 106 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 107 uint32_t LHSVal, RHSVal; 108 if (getConstantValue(N->getOperand(0), LHSVal) && 109 getConstantValue(N->getOperand(1), RHSVal)) { 110 SDLoc SL(N); 111 uint32_t K = Negate ? 112 (-LHSVal & 0xffff) | (-RHSVal << 16) : 113 (LHSVal & 0xffff) | (RHSVal << 16); 114 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 115 DAG.getTargetConstant(K, SL, MVT::i32)); 116 } 117 118 return nullptr; 119 } 120 121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 122 return packConstantV2I16(N, DAG, true); 123 } 124 125 /// AMDGPU specific code to select AMDGPU machine instructions for 126 /// SelectionDAG operations. 127 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 128 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 129 // make the right decision when generating code for different targets. 130 const GCNSubtarget *Subtarget; 131 132 // Default FP mode for the current function. 133 AMDGPU::SIModeRegisterDefaults Mode; 134 135 bool EnableLateStructurizeCFG; 136 137 public: 138 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 139 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 140 : SelectionDAGISel(*TM, OptLevel) { 141 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 142 } 143 ~AMDGPUDAGToDAGISel() override = default; 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.addRequired<AMDGPUArgumentUsageInfo>(); 147 AU.addRequired<LegacyDivergenceAnalysis>(); 148 #ifdef EXPENSIVE_CHECKS 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addRequired<LoopInfoWrapperPass>(); 151 #endif 152 SelectionDAGISel::getAnalysisUsage(AU); 153 } 154 155 bool matchLoadD16FromBuildVector(SDNode *N) const; 156 157 bool runOnMachineFunction(MachineFunction &MF) override; 158 void PreprocessISelDAG() override; 159 void Select(SDNode *N) override; 160 StringRef getPassName() const override; 161 void PostprocessISelDAG() override; 162 163 protected: 164 void SelectBuildVector(SDNode *N, unsigned RegClassID); 165 166 private: 167 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 168 bool isNoNanSrc(SDValue N) const; 169 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 170 bool isNegInlineImmediate(const SDNode *N) const { 171 return isInlineImmediate(N, true); 172 } 173 174 bool isInlineImmediate16(int64_t Imm) const { 175 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 176 } 177 178 bool isInlineImmediate32(int64_t Imm) const { 179 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 180 } 181 182 bool isInlineImmediate64(int64_t Imm) const { 183 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 184 } 185 186 bool isInlineImmediate(const APFloat &Imm) const { 187 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 188 } 189 190 bool isVGPRImm(const SDNode *N) const; 191 bool isUniformLoad(const SDNode *N) const; 192 bool isUniformBr(const SDNode *N) const; 193 194 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 195 196 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 197 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 198 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 199 200 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 201 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 202 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 203 bool isDSOffsetLegal(SDValue Base, unsigned Offset) const; 204 bool isDSOffset2Legal(SDValue Base, unsigned Offset0, unsigned Offset1, 205 unsigned Size) const; 206 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 207 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 208 SDValue &Offset1) const; 209 bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 210 SDValue &Offset1) const; 211 bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0, 212 SDValue &Offset1, unsigned Size) const; 213 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 214 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 215 SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC, 216 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 217 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 218 SDValue &SOffset, SDValue &Offset, SDValue &GLC, 219 SDValue &SLC, SDValue &TFE, SDValue &DLC, 220 SDValue &SWZ) const; 221 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 222 SDValue &VAddr, SDValue &SOffset, SDValue &Offset, 223 SDValue &SLC) const; 224 bool SelectMUBUFScratchOffen(SDNode *Parent, 225 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 226 SDValue &SOffset, SDValue &ImmOffset) const; 227 bool SelectMUBUFScratchOffset(SDNode *Parent, 228 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 229 SDValue &Offset) const; 230 231 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset, 232 SDValue &Offset, SDValue &GLC, SDValue &SLC, 233 SDValue &TFE, SDValue &DLC, SDValue &SWZ) const; 234 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 235 SDValue &Offset, SDValue &SLC) const; 236 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 237 SDValue &Offset) const; 238 239 template <bool IsSigned> 240 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 241 SDValue &Offset) const; 242 bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 243 SDValue &VOffset, SDValue &Offset) const; 244 bool SelectScratchSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 245 SDValue &Offset) const; 246 247 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 248 bool &Imm) const; 249 SDValue Expand32BitAddress(SDValue Addr) const; 250 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 251 bool &Imm) const; 252 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 253 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 254 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 255 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 256 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 257 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 258 259 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 260 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods, 261 bool AllowAbs = true) const; 262 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 263 bool SelectVOP3BMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 264 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 265 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 266 SDValue &Clamp, SDValue &Omod) const; 267 bool SelectVOP3BMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 268 SDValue &Clamp, SDValue &Omod) const; 269 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 270 SDValue &Clamp, SDValue &Omod) const; 271 272 bool SelectVOP3OMods(SDValue In, SDValue &Src, 273 SDValue &Clamp, SDValue &Omod) const; 274 275 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 276 277 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 278 279 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 280 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 281 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 282 283 SDValue getHi16Elt(SDValue In) const; 284 285 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 286 287 void SelectADD_SUB_I64(SDNode *N); 288 void SelectAddcSubb(SDNode *N); 289 void SelectUADDO_USUBO(SDNode *N); 290 void SelectDIV_SCALE(SDNode *N); 291 void SelectMAD_64_32(SDNode *N); 292 void SelectFMA_W_CHAIN(SDNode *N); 293 void SelectFMUL_W_CHAIN(SDNode *N); 294 295 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 296 uint32_t Offset, uint32_t Width); 297 void SelectS_BFEFromShifts(SDNode *N); 298 void SelectS_BFE(SDNode *N); 299 bool isCBranchSCC(const SDNode *N) const; 300 void SelectBRCOND(SDNode *N); 301 void SelectFMAD_FMA(SDNode *N); 302 void SelectATOMIC_CMP_SWAP(SDNode *N); 303 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 304 void SelectDS_GWS(SDNode *N, unsigned IntrID); 305 void SelectInterpP1F16(SDNode *N); 306 void SelectINTRINSIC_W_CHAIN(SDNode *N); 307 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 308 void SelectINTRINSIC_VOID(SDNode *N); 309 310 protected: 311 // Include the pieces autogenerated from the target description. 312 #include "AMDGPUGenDAGISel.inc" 313 }; 314 315 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 316 const R600Subtarget *Subtarget; 317 318 bool isConstantLoad(const MemSDNode *N, int cbID) const; 319 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 320 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 321 SDValue& Offset); 322 public: 323 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 324 AMDGPUDAGToDAGISel(TM, OptLevel) {} 325 326 void Select(SDNode *N) override; 327 328 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 329 SDValue &Offset) override; 330 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 331 SDValue &Offset) override; 332 333 bool runOnMachineFunction(MachineFunction &MF) override; 334 335 void PreprocessISelDAG() override {} 336 337 protected: 338 // Include the pieces autogenerated from the target description. 339 #include "R600GenDAGISel.inc" 340 }; 341 342 static SDValue stripBitcast(SDValue Val) { 343 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 344 } 345 346 // Figure out if this is really an extract of the high 16-bits of a dword. 347 static bool isExtractHiElt(SDValue In, SDValue &Out) { 348 In = stripBitcast(In); 349 if (In.getOpcode() != ISD::TRUNCATE) 350 return false; 351 352 SDValue Srl = In.getOperand(0); 353 if (Srl.getOpcode() == ISD::SRL) { 354 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 355 if (ShiftAmt->getZExtValue() == 16) { 356 Out = stripBitcast(Srl.getOperand(0)); 357 return true; 358 } 359 } 360 } 361 362 return false; 363 } 364 365 // Look through operations that obscure just looking at the low 16-bits of the 366 // same register. 367 static SDValue stripExtractLoElt(SDValue In) { 368 if (In.getOpcode() == ISD::TRUNCATE) { 369 SDValue Src = In.getOperand(0); 370 if (Src.getValueType().getSizeInBits() == 32) 371 return stripBitcast(Src); 372 } 373 374 return In; 375 } 376 377 } // end anonymous namespace 378 379 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 380 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 381 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 382 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 383 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 384 #ifdef EXPENSIVE_CHECKS 385 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 386 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 387 #endif 388 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 389 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 390 391 /// This pass converts a legalized DAG into a AMDGPU-specific 392 // DAG, ready for instruction scheduling. 393 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 394 CodeGenOpt::Level OptLevel) { 395 return new AMDGPUDAGToDAGISel(TM, OptLevel); 396 } 397 398 /// This pass converts a legalized DAG into a R600-specific 399 // DAG, ready for instruction scheduling. 400 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 401 CodeGenOpt::Level OptLevel) { 402 return new R600DAGToDAGISel(TM, OptLevel); 403 } 404 405 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 406 #ifdef EXPENSIVE_CHECKS 407 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 408 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 409 for (auto &L : LI->getLoopsInPreorder()) { 410 assert(L->isLCSSAForm(DT)); 411 } 412 #endif 413 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 414 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 415 return SelectionDAGISel::runOnMachineFunction(MF); 416 } 417 418 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 419 assert(Subtarget->d16PreservesUnusedBits()); 420 MVT VT = N->getValueType(0).getSimpleVT(); 421 if (VT != MVT::v2i16 && VT != MVT::v2f16) 422 return false; 423 424 SDValue Lo = N->getOperand(0); 425 SDValue Hi = N->getOperand(1); 426 427 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 428 429 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 430 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 431 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 432 433 // Need to check for possible indirect dependencies on the other half of the 434 // vector to avoid introducing a cycle. 435 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 436 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 437 438 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 439 SDValue Ops[] = { 440 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 441 }; 442 443 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 444 if (LdHi->getMemoryVT() == MVT::i8) { 445 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 446 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 447 } else { 448 assert(LdHi->getMemoryVT() == MVT::i16); 449 } 450 451 SDValue NewLoadHi = 452 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 453 Ops, LdHi->getMemoryVT(), 454 LdHi->getMemOperand()); 455 456 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 457 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 458 return true; 459 } 460 461 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 462 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 463 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 464 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 465 if (LdLo && Lo.hasOneUse()) { 466 SDValue TiedIn = getHi16Elt(Hi); 467 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 468 return false; 469 470 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 471 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 472 if (LdLo->getMemoryVT() == MVT::i8) { 473 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 474 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 475 } else { 476 assert(LdLo->getMemoryVT() == MVT::i16); 477 } 478 479 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 480 481 SDValue Ops[] = { 482 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 483 }; 484 485 SDValue NewLoadLo = 486 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 487 Ops, LdLo->getMemoryVT(), 488 LdLo->getMemOperand()); 489 490 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 491 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 492 return true; 493 } 494 495 return false; 496 } 497 498 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 499 if (!Subtarget->d16PreservesUnusedBits()) 500 return; 501 502 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 503 504 bool MadeChange = false; 505 while (Position != CurDAG->allnodes_begin()) { 506 SDNode *N = &*--Position; 507 if (N->use_empty()) 508 continue; 509 510 switch (N->getOpcode()) { 511 case ISD::BUILD_VECTOR: 512 MadeChange |= matchLoadD16FromBuildVector(N); 513 break; 514 default: 515 break; 516 } 517 } 518 519 if (MadeChange) { 520 CurDAG->RemoveDeadNodes(); 521 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 522 CurDAG->dump();); 523 } 524 } 525 526 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 527 if (TM.Options.NoNaNsFPMath) 528 return true; 529 530 // TODO: Move into isKnownNeverNaN 531 if (N->getFlags().hasNoNaNs()) 532 return true; 533 534 return CurDAG->isKnownNeverNaN(N); 535 } 536 537 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 538 bool Negated) const { 539 if (N->isUndef()) 540 return true; 541 542 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 543 if (Negated) { 544 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 545 return TII->isInlineConstant(-C->getAPIntValue()); 546 547 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 548 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 549 550 } else { 551 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 552 return TII->isInlineConstant(C->getAPIntValue()); 553 554 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 555 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 556 } 557 558 return false; 559 } 560 561 /// Determine the register class for \p OpNo 562 /// \returns The register class of the virtual register that will be used for 563 /// the given operand number \OpNo or NULL if the register class cannot be 564 /// determined. 565 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 566 unsigned OpNo) const { 567 if (!N->isMachineOpcode()) { 568 if (N->getOpcode() == ISD::CopyToReg) { 569 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 570 if (Reg.isVirtual()) { 571 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 572 return MRI.getRegClass(Reg); 573 } 574 575 const SIRegisterInfo *TRI 576 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 577 return TRI->getPhysRegClass(Reg); 578 } 579 580 return nullptr; 581 } 582 583 switch (N->getMachineOpcode()) { 584 default: { 585 const MCInstrDesc &Desc = 586 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 587 unsigned OpIdx = Desc.getNumDefs() + OpNo; 588 if (OpIdx >= Desc.getNumOperands()) 589 return nullptr; 590 int RegClass = Desc.OpInfo[OpIdx].RegClass; 591 if (RegClass == -1) 592 return nullptr; 593 594 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 595 } 596 case AMDGPU::REG_SEQUENCE: { 597 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 598 const TargetRegisterClass *SuperRC = 599 Subtarget->getRegisterInfo()->getRegClass(RCID); 600 601 SDValue SubRegOp = N->getOperand(OpNo + 1); 602 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 603 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 604 SubRegIdx); 605 } 606 } 607 } 608 609 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 610 SDValue Glue) const { 611 SmallVector <SDValue, 8> Ops; 612 Ops.push_back(NewChain); // Replace the chain. 613 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 614 Ops.push_back(N->getOperand(i)); 615 616 Ops.push_back(Glue); 617 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 618 } 619 620 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 621 const SITargetLowering& Lowering = 622 *static_cast<const SITargetLowering*>(getTargetLowering()); 623 624 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 625 626 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 627 return glueCopyToOp(N, M0, M0.getValue(1)); 628 } 629 630 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 631 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 632 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 633 if (Subtarget->ldsRequiresM0Init()) 634 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 635 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 636 MachineFunction &MF = CurDAG->getMachineFunction(); 637 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 638 return 639 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 640 } 641 return N; 642 } 643 644 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 645 EVT VT) const { 646 SDNode *Lo = CurDAG->getMachineNode( 647 AMDGPU::S_MOV_B32, DL, MVT::i32, 648 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 649 SDNode *Hi = 650 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 651 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 652 const SDValue Ops[] = { 653 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 654 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 655 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 656 657 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 658 } 659 660 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 661 EVT VT = N->getValueType(0); 662 unsigned NumVectorElts = VT.getVectorNumElements(); 663 EVT EltVT = VT.getVectorElementType(); 664 SDLoc DL(N); 665 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 666 667 if (NumVectorElts == 1) { 668 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 669 RegClass); 670 return; 671 } 672 673 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 674 "supported yet"); 675 // 32 = Max Num Vector Elements 676 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 677 // 1 = Vector Register Class 678 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 679 680 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 681 Triple::amdgcn; 682 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 683 bool IsRegSeq = true; 684 unsigned NOps = N->getNumOperands(); 685 for (unsigned i = 0; i < NOps; i++) { 686 // XXX: Why is this here? 687 if (isa<RegisterSDNode>(N->getOperand(i))) { 688 IsRegSeq = false; 689 break; 690 } 691 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 692 : R600RegisterInfo::getSubRegFromChannel(i); 693 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 694 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 695 } 696 if (NOps != NumVectorElts) { 697 // Fill in the missing undef elements if this was a scalar_to_vector. 698 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 699 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 700 DL, EltVT); 701 for (unsigned i = NOps; i < NumVectorElts; ++i) { 702 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 703 : R600RegisterInfo::getSubRegFromChannel(i); 704 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 705 RegSeqArgs[1 + (2 * i) + 1] = 706 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 707 } 708 } 709 710 if (!IsRegSeq) 711 SelectCode(N); 712 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 713 } 714 715 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 716 unsigned int Opc = N->getOpcode(); 717 if (N->isMachineOpcode()) { 718 N->setNodeId(-1); 719 return; // Already selected. 720 } 721 722 // isa<MemSDNode> almost works but is slightly too permissive for some DS 723 // intrinsics. 724 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 725 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 726 Opc == ISD::ATOMIC_LOAD_FADD || 727 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 728 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 729 N = glueCopyToM0LDSInit(N); 730 SelectCode(N); 731 return; 732 } 733 734 switch (Opc) { 735 default: 736 break; 737 // We are selecting i64 ADD here instead of custom lower it during 738 // DAG legalization, so we can fold some i64 ADDs used for address 739 // calculation into the LOAD and STORE instructions. 740 case ISD::ADDC: 741 case ISD::ADDE: 742 case ISD::SUBC: 743 case ISD::SUBE: { 744 if (N->getValueType(0) != MVT::i64) 745 break; 746 747 SelectADD_SUB_I64(N); 748 return; 749 } 750 case ISD::ADDCARRY: 751 case ISD::SUBCARRY: 752 if (N->getValueType(0) != MVT::i32) 753 break; 754 755 SelectAddcSubb(N); 756 return; 757 case ISD::UADDO: 758 case ISD::USUBO: { 759 SelectUADDO_USUBO(N); 760 return; 761 } 762 case AMDGPUISD::FMUL_W_CHAIN: { 763 SelectFMUL_W_CHAIN(N); 764 return; 765 } 766 case AMDGPUISD::FMA_W_CHAIN: { 767 SelectFMA_W_CHAIN(N); 768 return; 769 } 770 771 case ISD::SCALAR_TO_VECTOR: 772 case ISD::BUILD_VECTOR: { 773 EVT VT = N->getValueType(0); 774 unsigned NumVectorElts = VT.getVectorNumElements(); 775 if (VT.getScalarSizeInBits() == 16) { 776 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 777 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 778 ReplaceNode(N, Packed); 779 return; 780 } 781 } 782 783 break; 784 } 785 786 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 787 unsigned RegClassID = 788 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 789 SelectBuildVector(N, RegClassID); 790 return; 791 } 792 case ISD::BUILD_PAIR: { 793 SDValue RC, SubReg0, SubReg1; 794 SDLoc DL(N); 795 if (N->getValueType(0) == MVT::i128) { 796 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 797 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 798 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 799 } else if (N->getValueType(0) == MVT::i64) { 800 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 801 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 802 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 803 } else { 804 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 805 } 806 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 807 N->getOperand(1), SubReg1 }; 808 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 809 N->getValueType(0), Ops)); 810 return; 811 } 812 813 case ISD::Constant: 814 case ISD::ConstantFP: { 815 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 816 break; 817 818 uint64_t Imm; 819 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 820 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 821 else { 822 ConstantSDNode *C = cast<ConstantSDNode>(N); 823 Imm = C->getZExtValue(); 824 } 825 826 SDLoc DL(N); 827 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 828 return; 829 } 830 case AMDGPUISD::BFE_I32: 831 case AMDGPUISD::BFE_U32: { 832 // There is a scalar version available, but unlike the vector version which 833 // has a separate operand for the offset and width, the scalar version packs 834 // the width and offset into a single operand. Try to move to the scalar 835 // version if the offsets are constant, so that we can try to keep extended 836 // loads of kernel arguments in SGPRs. 837 838 // TODO: Technically we could try to pattern match scalar bitshifts of 839 // dynamic values, but it's probably not useful. 840 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 841 if (!Offset) 842 break; 843 844 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 845 if (!Width) 846 break; 847 848 bool Signed = Opc == AMDGPUISD::BFE_I32; 849 850 uint32_t OffsetVal = Offset->getZExtValue(); 851 uint32_t WidthVal = Width->getZExtValue(); 852 853 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 854 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 855 return; 856 } 857 case AMDGPUISD::DIV_SCALE: { 858 SelectDIV_SCALE(N); 859 return; 860 } 861 case AMDGPUISD::MAD_I64_I32: 862 case AMDGPUISD::MAD_U64_U32: { 863 SelectMAD_64_32(N); 864 return; 865 } 866 case ISD::CopyToReg: { 867 const SITargetLowering& Lowering = 868 *static_cast<const SITargetLowering*>(getTargetLowering()); 869 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 870 break; 871 } 872 case ISD::AND: 873 case ISD::SRL: 874 case ISD::SRA: 875 case ISD::SIGN_EXTEND_INREG: 876 if (N->getValueType(0) != MVT::i32) 877 break; 878 879 SelectS_BFE(N); 880 return; 881 case ISD::BRCOND: 882 SelectBRCOND(N); 883 return; 884 case ISD::FMAD: 885 case ISD::FMA: 886 SelectFMAD_FMA(N); 887 return; 888 case AMDGPUISD::ATOMIC_CMP_SWAP: 889 SelectATOMIC_CMP_SWAP(N); 890 return; 891 case AMDGPUISD::CVT_PKRTZ_F16_F32: 892 case AMDGPUISD::CVT_PKNORM_I16_F32: 893 case AMDGPUISD::CVT_PKNORM_U16_F32: 894 case AMDGPUISD::CVT_PK_U16_U32: 895 case AMDGPUISD::CVT_PK_I16_I32: { 896 // Hack around using a legal type if f16 is illegal. 897 if (N->getValueType(0) == MVT::i32) { 898 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 899 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 900 { N->getOperand(0), N->getOperand(1) }); 901 SelectCode(N); 902 return; 903 } 904 905 break; 906 } 907 case ISD::INTRINSIC_W_CHAIN: { 908 SelectINTRINSIC_W_CHAIN(N); 909 return; 910 } 911 case ISD::INTRINSIC_WO_CHAIN: { 912 SelectINTRINSIC_WO_CHAIN(N); 913 return; 914 } 915 case ISD::INTRINSIC_VOID: { 916 SelectINTRINSIC_VOID(N); 917 return; 918 } 919 } 920 921 SelectCode(N); 922 } 923 924 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 925 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 926 const Instruction *Term = BB->getTerminator(); 927 return Term->getMetadata("amdgpu.uniform") || 928 Term->getMetadata("structurizecfg.uniform"); 929 } 930 931 StringRef AMDGPUDAGToDAGISel::getPassName() const { 932 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 933 } 934 935 //===----------------------------------------------------------------------===// 936 // Complex Patterns 937 //===----------------------------------------------------------------------===// 938 939 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 940 SDValue &Offset) { 941 return false; 942 } 943 944 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 945 SDValue &Offset) { 946 ConstantSDNode *C; 947 SDLoc DL(Addr); 948 949 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 950 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 951 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 952 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 953 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 954 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 955 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 956 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 957 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 958 Base = Addr.getOperand(0); 959 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 960 } else { 961 Base = Addr; 962 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 963 } 964 965 return true; 966 } 967 968 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 969 const SDLoc &DL) const { 970 SDNode *Mov = CurDAG->getMachineNode( 971 AMDGPU::S_MOV_B32, DL, MVT::i32, 972 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 973 return SDValue(Mov, 0); 974 } 975 976 // FIXME: Should only handle addcarry/subcarry 977 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 978 SDLoc DL(N); 979 SDValue LHS = N->getOperand(0); 980 SDValue RHS = N->getOperand(1); 981 982 unsigned Opcode = N->getOpcode(); 983 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 984 bool ProduceCarry = 985 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 986 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 987 988 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 989 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 990 991 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 992 DL, MVT::i32, LHS, Sub0); 993 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 994 DL, MVT::i32, LHS, Sub1); 995 996 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 997 DL, MVT::i32, RHS, Sub0); 998 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 999 DL, MVT::i32, RHS, Sub1); 1000 1001 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 1002 1003 static const unsigned OpcMap[2][2][2] = { 1004 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 1005 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 1006 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 1007 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1008 1009 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1010 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1011 1012 SDNode *AddLo; 1013 if (!ConsumeCarry) { 1014 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1015 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1016 } else { 1017 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1018 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1019 } 1020 SDValue AddHiArgs[] = { 1021 SDValue(Hi0, 0), 1022 SDValue(Hi1, 0), 1023 SDValue(AddLo, 1) 1024 }; 1025 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1026 1027 SDValue RegSequenceArgs[] = { 1028 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1029 SDValue(AddLo,0), 1030 Sub0, 1031 SDValue(AddHi,0), 1032 Sub1, 1033 }; 1034 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1035 MVT::i64, RegSequenceArgs); 1036 1037 if (ProduceCarry) { 1038 // Replace the carry-use 1039 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1040 } 1041 1042 // Replace the remaining uses. 1043 ReplaceNode(N, RegSequence); 1044 } 1045 1046 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1047 SDLoc DL(N); 1048 SDValue LHS = N->getOperand(0); 1049 SDValue RHS = N->getOperand(1); 1050 SDValue CI = N->getOperand(2); 1051 1052 if (N->isDivergent()) { 1053 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1054 : AMDGPU::V_SUBB_U32_e64; 1055 CurDAG->SelectNodeTo( 1056 N, Opc, N->getVTList(), 1057 {LHS, RHS, CI, 1058 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1059 } else { 1060 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1061 : AMDGPU::S_SUB_CO_PSEUDO; 1062 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1063 } 1064 } 1065 1066 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1067 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1068 // carry out despite the _i32 name. These were renamed in VI to _U32. 1069 // FIXME: We should probably rename the opcodes here. 1070 bool IsAdd = N->getOpcode() == ISD::UADDO; 1071 bool IsVALU = N->isDivergent(); 1072 1073 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1074 ++UI) 1075 if (UI.getUse().getResNo() == 1) { 1076 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1077 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1078 IsVALU = true; 1079 break; 1080 } 1081 } 1082 1083 if (IsVALU) { 1084 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 1085 1086 CurDAG->SelectNodeTo( 1087 N, Opc, N->getVTList(), 1088 {N->getOperand(0), N->getOperand(1), 1089 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1090 } else { 1091 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1092 : AMDGPU::S_USUBO_PSEUDO; 1093 1094 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1095 {N->getOperand(0), N->getOperand(1)}); 1096 } 1097 } 1098 1099 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1100 SDLoc SL(N); 1101 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1102 SDValue Ops[10]; 1103 1104 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1105 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1106 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1107 Ops[8] = N->getOperand(0); 1108 Ops[9] = N->getOperand(4); 1109 1110 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops); 1111 } 1112 1113 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1114 SDLoc SL(N); 1115 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1116 SDValue Ops[8]; 1117 1118 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1119 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1120 Ops[6] = N->getOperand(0); 1121 Ops[7] = N->getOperand(3); 1122 1123 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1124 } 1125 1126 // We need to handle this here because tablegen doesn't support matching 1127 // instructions with multiple outputs. 1128 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1129 SDLoc SL(N); 1130 EVT VT = N->getValueType(0); 1131 1132 assert(VT == MVT::f32 || VT == MVT::f64); 1133 1134 unsigned Opc 1135 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32; 1136 1137 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 1138 // omod 1139 SDValue Ops[8]; 1140 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1141 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1142 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1143 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1144 } 1145 1146 // We need to handle this here because tablegen doesn't support matching 1147 // instructions with multiple outputs. 1148 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1149 SDLoc SL(N); 1150 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1151 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32; 1152 1153 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1154 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1155 Clamp }; 1156 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1157 } 1158 1159 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1160 if (!isUInt<16>(Offset)) 1161 return false; 1162 1163 if (!Base || Subtarget->hasUsableDSOffset() || 1164 Subtarget->unsafeDSOffsetFoldingEnabled()) 1165 return true; 1166 1167 // On Southern Islands instruction with a negative base value and an offset 1168 // don't seem to work. 1169 return CurDAG->SignBitIsZero(Base); 1170 } 1171 1172 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1173 SDValue &Offset) const { 1174 SDLoc DL(Addr); 1175 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1176 SDValue N0 = Addr.getOperand(0); 1177 SDValue N1 = Addr.getOperand(1); 1178 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1179 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1180 // (add n0, c0) 1181 Base = N0; 1182 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1183 return true; 1184 } 1185 } else if (Addr.getOpcode() == ISD::SUB) { 1186 // sub C, x -> add (sub 0, x), C 1187 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1188 int64_t ByteOffset = C->getSExtValue(); 1189 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1190 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1191 1192 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1193 // the known bits in isDSOffsetLegal. We need to emit the selected node 1194 // here, so this is thrown away. 1195 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1196 Zero, Addr.getOperand(1)); 1197 1198 if (isDSOffsetLegal(Sub, ByteOffset)) { 1199 SmallVector<SDValue, 3> Opnds; 1200 Opnds.push_back(Zero); 1201 Opnds.push_back(Addr.getOperand(1)); 1202 1203 // FIXME: Select to VOP3 version for with-carry. 1204 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1205 if (Subtarget->hasAddNoCarry()) { 1206 SubOp = AMDGPU::V_SUB_U32_e64; 1207 Opnds.push_back( 1208 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1209 } 1210 1211 MachineSDNode *MachineSub = 1212 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1213 1214 Base = SDValue(MachineSub, 0); 1215 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1216 return true; 1217 } 1218 } 1219 } 1220 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1221 // If we have a constant address, prefer to put the constant into the 1222 // offset. This can save moves to load the constant address since multiple 1223 // operations can share the zero base address register, and enables merging 1224 // into read2 / write2 instructions. 1225 1226 SDLoc DL(Addr); 1227 1228 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1229 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1230 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1231 DL, MVT::i32, Zero); 1232 Base = SDValue(MovZero, 0); 1233 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1234 return true; 1235 } 1236 } 1237 1238 // default case 1239 Base = Addr; 1240 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1241 return true; 1242 } 1243 1244 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1245 unsigned Offset1, 1246 unsigned Size) const { 1247 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1248 return false; 1249 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1250 return false; 1251 1252 if (!Base || Subtarget->hasUsableDSOffset() || 1253 Subtarget->unsafeDSOffsetFoldingEnabled()) 1254 return true; 1255 1256 // On Southern Islands instruction with a negative base value and an offset 1257 // don't seem to work. 1258 return CurDAG->SignBitIsZero(Base); 1259 } 1260 1261 // TODO: If offset is too big, put low 16-bit into offset. 1262 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1263 SDValue &Offset0, 1264 SDValue &Offset1) const { 1265 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1266 } 1267 1268 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1269 SDValue &Offset0, 1270 SDValue &Offset1) const { 1271 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1272 } 1273 1274 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1275 SDValue &Offset0, SDValue &Offset1, 1276 unsigned Size) const { 1277 SDLoc DL(Addr); 1278 1279 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1280 SDValue N0 = Addr.getOperand(0); 1281 SDValue N1 = Addr.getOperand(1); 1282 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1283 unsigned OffsetValue0 = C1->getZExtValue(); 1284 unsigned OffsetValue1 = OffsetValue0 + Size; 1285 1286 // (add n0, c0) 1287 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1288 Base = N0; 1289 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1290 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1291 return true; 1292 } 1293 } else if (Addr.getOpcode() == ISD::SUB) { 1294 // sub C, x -> add (sub 0, x), C 1295 if (const ConstantSDNode *C = 1296 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1297 unsigned OffsetValue0 = C->getZExtValue(); 1298 unsigned OffsetValue1 = OffsetValue0 + Size; 1299 1300 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1301 SDLoc DL(Addr); 1302 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1303 1304 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1305 // the known bits in isDSOffsetLegal. We need to emit the selected node 1306 // here, so this is thrown away. 1307 SDValue Sub = 1308 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1309 1310 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1311 SmallVector<SDValue, 3> Opnds; 1312 Opnds.push_back(Zero); 1313 Opnds.push_back(Addr.getOperand(1)); 1314 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1315 if (Subtarget->hasAddNoCarry()) { 1316 SubOp = AMDGPU::V_SUB_U32_e64; 1317 Opnds.push_back( 1318 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1319 } 1320 1321 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1322 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1323 1324 Base = SDValue(MachineSub, 0); 1325 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1326 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1327 return true; 1328 } 1329 } 1330 } 1331 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1332 unsigned OffsetValue0 = CAddr->getZExtValue(); 1333 unsigned OffsetValue1 = OffsetValue0 + Size; 1334 1335 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1336 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1337 MachineSDNode *MovZero = 1338 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1339 Base = SDValue(MovZero, 0); 1340 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1341 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1342 return true; 1343 } 1344 } 1345 1346 // default case 1347 1348 Base = Addr; 1349 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1350 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1351 return true; 1352 } 1353 1354 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, 1355 SDValue &VAddr, SDValue &SOffset, 1356 SDValue &Offset, SDValue &Offen, 1357 SDValue &Idxen, SDValue &Addr64, 1358 SDValue &GLC, SDValue &SLC, 1359 SDValue &TFE, SDValue &DLC, 1360 SDValue &SWZ) const { 1361 // Subtarget prefers to use flat instruction 1362 // FIXME: This should be a pattern predicate and not reach here 1363 if (Subtarget->useFlatForGlobal()) 1364 return false; 1365 1366 SDLoc DL(Addr); 1367 1368 if (!GLC.getNode()) 1369 GLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1370 if (!SLC.getNode()) 1371 SLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1372 TFE = CurDAG->getTargetConstant(0, DL, MVT::i1); 1373 DLC = CurDAG->getTargetConstant(0, DL, MVT::i1); 1374 SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1); 1375 1376 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1377 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1378 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1379 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1380 1381 ConstantSDNode *C1 = nullptr; 1382 SDValue N0 = Addr; 1383 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1384 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1385 if (isUInt<32>(C1->getZExtValue())) 1386 N0 = Addr.getOperand(0); 1387 else 1388 C1 = nullptr; 1389 } 1390 1391 if (N0.getOpcode() == ISD::ADD) { 1392 // (add N2, N3) -> addr64, or 1393 // (add (add N2, N3), C1) -> addr64 1394 SDValue N2 = N0.getOperand(0); 1395 SDValue N3 = N0.getOperand(1); 1396 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1397 1398 if (N2->isDivergent()) { 1399 if (N3->isDivergent()) { 1400 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1401 // addr64, and construct the resource from a 0 address. 1402 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1403 VAddr = N0; 1404 } else { 1405 // N2 is divergent, N3 is not. 1406 Ptr = N3; 1407 VAddr = N2; 1408 } 1409 } else { 1410 // N2 is not divergent. 1411 Ptr = N2; 1412 VAddr = N3; 1413 } 1414 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1415 } else if (N0->isDivergent()) { 1416 // N0 is divergent. Use it as the addr64, and construct the resource from a 1417 // 0 address. 1418 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1419 VAddr = N0; 1420 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1421 } else { 1422 // N0 -> offset, or 1423 // (N0 + C1) -> offset 1424 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1425 Ptr = N0; 1426 } 1427 1428 if (!C1) { 1429 // No offset. 1430 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1431 return true; 1432 } 1433 1434 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1435 // Legal offset for instruction. 1436 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1437 return true; 1438 } 1439 1440 // Illegal offset, store it in soffset. 1441 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1442 SOffset = 1443 SDValue(CurDAG->getMachineNode( 1444 AMDGPU::S_MOV_B32, DL, MVT::i32, 1445 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1446 0); 1447 return true; 1448 } 1449 1450 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1451 SDValue &VAddr, SDValue &SOffset, 1452 SDValue &Offset, SDValue &GLC, 1453 SDValue &SLC, SDValue &TFE, 1454 SDValue &DLC, SDValue &SWZ) const { 1455 SDValue Ptr, Offen, Idxen, Addr64; 1456 1457 // addr64 bit was removed for volcanic islands. 1458 // FIXME: This should be a pattern predicate and not reach here 1459 if (!Subtarget->hasAddr64()) 1460 return false; 1461 1462 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1463 GLC, SLC, TFE, DLC, SWZ)) 1464 return false; 1465 1466 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1467 if (C->getSExtValue()) { 1468 SDLoc DL(Addr); 1469 1470 const SITargetLowering& Lowering = 1471 *static_cast<const SITargetLowering*>(getTargetLowering()); 1472 1473 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1474 return true; 1475 } 1476 1477 return false; 1478 } 1479 1480 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1481 SDValue &VAddr, SDValue &SOffset, 1482 SDValue &Offset, 1483 SDValue &SLC) const { 1484 SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1); 1485 SDValue GLC, TFE, DLC, SWZ; 1486 1487 return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1488 } 1489 1490 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) { 1491 auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>(); 1492 return PSV && PSV->isStack(); 1493 } 1494 1495 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1496 SDLoc DL(N); 1497 1498 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1499 SDValue TFI = 1500 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1501 1502 // We rebase the base address into an absolute stack address and hence 1503 // use constant 0 for soffset. 1504 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1505 } 1506 1507 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1508 SDValue Addr, SDValue &Rsrc, 1509 SDValue &VAddr, SDValue &SOffset, 1510 SDValue &ImmOffset) const { 1511 1512 SDLoc DL(Addr); 1513 MachineFunction &MF = CurDAG->getMachineFunction(); 1514 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1515 1516 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1517 1518 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1519 int64_t Imm = CAddr->getSExtValue(); 1520 const int64_t NullPtr = 1521 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1522 // Don't fold null pointer. 1523 if (Imm != NullPtr) { 1524 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1525 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1526 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1527 VAddr = SDValue(MovHighBits, 0); 1528 1529 // In a call sequence, stores to the argument stack area are relative to the 1530 // stack pointer. 1531 const MachinePointerInfo &PtrInfo 1532 = cast<MemSDNode>(Parent)->getPointerInfo(); 1533 SOffset = isStackPtrRelative(PtrInfo) 1534 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1535 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1536 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1537 return true; 1538 } 1539 } 1540 1541 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1542 // (add n0, c1) 1543 1544 SDValue N0 = Addr.getOperand(0); 1545 SDValue N1 = Addr.getOperand(1); 1546 1547 // Offsets in vaddr must be positive if range checking is enabled. 1548 // 1549 // The total computation of vaddr + soffset + offset must not overflow. If 1550 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1551 // overflowing. 1552 // 1553 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1554 // always perform a range check. If a negative vaddr base index was used, 1555 // this would fail the range check. The overall address computation would 1556 // compute a valid address, but this doesn't happen due to the range 1557 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1558 // 1559 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1560 // MUBUF vaddr, but not on older subtargets which can only do this if the 1561 // sign bit is known 0. 1562 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1563 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1564 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1565 CurDAG->SignBitIsZero(N0))) { 1566 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1567 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1568 return true; 1569 } 1570 } 1571 1572 // (node) 1573 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1574 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1575 return true; 1576 } 1577 1578 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1579 SDValue Addr, 1580 SDValue &SRsrc, 1581 SDValue &SOffset, 1582 SDValue &Offset) const { 1583 ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr); 1584 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1585 return false; 1586 1587 SDLoc DL(Addr); 1588 MachineFunction &MF = CurDAG->getMachineFunction(); 1589 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1590 1591 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1592 1593 const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo(); 1594 1595 // FIXME: Get from MachinePointerInfo? We should only be using the frame 1596 // offset if we know this is in a call sequence. 1597 SOffset = isStackPtrRelative(PtrInfo) 1598 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32) 1599 : CurDAG->getTargetConstant(0, DL, MVT::i32); 1600 1601 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1602 return true; 1603 } 1604 1605 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1606 SDValue &SOffset, SDValue &Offset, 1607 SDValue &GLC, SDValue &SLC, 1608 SDValue &TFE, SDValue &DLC, 1609 SDValue &SWZ) const { 1610 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1611 const SIInstrInfo *TII = 1612 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1613 1614 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64, 1615 GLC, SLC, TFE, DLC, SWZ)) 1616 return false; 1617 1618 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1619 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1620 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1621 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1622 APInt::getAllOnesValue(32).getZExtValue(); // Size 1623 SDLoc DL(Addr); 1624 1625 const SITargetLowering& Lowering = 1626 *static_cast<const SITargetLowering*>(getTargetLowering()); 1627 1628 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1629 return true; 1630 } 1631 return false; 1632 } 1633 1634 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1635 SDValue &Soffset, SDValue &Offset 1636 ) const { 1637 SDValue GLC, SLC, TFE, DLC, SWZ; 1638 1639 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1640 } 1641 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1642 SDValue &Soffset, SDValue &Offset, 1643 SDValue &SLC) const { 1644 SDValue GLC, TFE, DLC, SWZ; 1645 1646 return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ); 1647 } 1648 1649 // Find a load or store from corresponding pattern root. 1650 // Roots may be build_vector, bitconvert or their combinations. 1651 static MemSDNode* findMemSDNode(SDNode *N) { 1652 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1653 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1654 return MN; 1655 assert(isa<BuildVectorSDNode>(N)); 1656 for (SDValue V : N->op_values()) 1657 if (MemSDNode *MN = 1658 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1659 return MN; 1660 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1661 } 1662 1663 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 1664 SDValue &N0, SDValue &N1) { 1665 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 1666 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 1667 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 1668 // (i64 (bitcast (v2i32 (build_vector 1669 // (or (extract_vector_elt V, 0), OFFSET), 1670 // (extract_vector_elt V, 1))))) 1671 SDValue Lo = Addr.getOperand(0).getOperand(0); 1672 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 1673 SDValue BaseLo = Lo.getOperand(0); 1674 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 1675 // Check that split base (Lo and Hi) are extracted from the same one. 1676 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 1677 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 1678 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 1679 // Lo is statically extracted from index 0. 1680 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 1681 BaseLo.getConstantOperandVal(1) == 0 && 1682 // Hi is statically extracted from index 0. 1683 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 1684 BaseHi.getConstantOperandVal(1) == 1) { 1685 N0 = BaseLo.getOperand(0).getOperand(0); 1686 N1 = Lo.getOperand(1); 1687 return true; 1688 } 1689 } 1690 } 1691 return false; 1692 } 1693 1694 template <bool IsSigned> 1695 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, 1696 SDValue Addr, 1697 SDValue &VAddr, 1698 SDValue &Offset) const { 1699 int64_t OffsetVal = 0; 1700 1701 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1702 1703 if (Subtarget->hasFlatInstOffsets() && 1704 (!Subtarget->hasFlatSegmentOffsetBug() || 1705 AS != AMDGPUAS::FLAT_ADDRESS)) { 1706 SDValue N0, N1; 1707 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1708 N0 = Addr.getOperand(0); 1709 N1 = Addr.getOperand(1); 1710 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1711 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1712 } 1713 if (N0 && N1) { 1714 uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1715 1716 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1717 if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) { 1718 Addr = N0; 1719 OffsetVal = COffsetVal; 1720 } else { 1721 // If the offset doesn't fit, put the low bits into the offset field and 1722 // add the rest. 1723 // 1724 // For a FLAT instruction the hardware decides whether to access 1725 // global/scratch/shared memory based on the high bits of vaddr, 1726 // ignoring the offset field, so we have to ensure that when we add 1727 // remainder to vaddr it still points into the same underlying object. 1728 // The easiest way to do that is to make sure that we split the offset 1729 // into two pieces that are both >= 0 or both <= 0. 1730 1731 SDLoc DL(N); 1732 uint64_t RemainderOffset = COffsetVal; 1733 uint64_t ImmField = 0; 1734 const unsigned NumBits = TII->getNumFlatOffsetBits(IsSigned); 1735 if (IsSigned) { 1736 // Use signed division by a power of two to truncate towards 0. 1737 int64_t D = 1LL << (NumBits - 1); 1738 RemainderOffset = (static_cast<int64_t>(COffsetVal) / D) * D; 1739 ImmField = COffsetVal - RemainderOffset; 1740 } else if (static_cast<int64_t>(COffsetVal) >= 0) { 1741 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits); 1742 RemainderOffset = COffsetVal - ImmField; 1743 } 1744 assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned)); 1745 assert(RemainderOffset + ImmField == COffsetVal); 1746 1747 OffsetVal = ImmField; 1748 1749 SDValue AddOffsetLo = 1750 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1751 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1752 1753 if (Addr.getValueType().getSizeInBits() == 32) { 1754 SmallVector<SDValue, 3> Opnds; 1755 Opnds.push_back(N0); 1756 Opnds.push_back(AddOffsetLo); 1757 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1758 if (Subtarget->hasAddNoCarry()) { 1759 AddOp = AMDGPU::V_ADD_U32_e64; 1760 Opnds.push_back(Clamp); 1761 } 1762 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1763 } else { 1764 // TODO: Should this try to use a scalar add pseudo if the base address 1765 // is uniform and saddr is usable? 1766 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1767 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1768 1769 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1770 DL, MVT::i32, N0, Sub0); 1771 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1772 DL, MVT::i32, N0, Sub1); 1773 1774 SDValue AddOffsetHi = 1775 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1776 1777 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1778 1779 SDNode *Add = 1780 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1781 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1782 1783 SDNode *Addc = CurDAG->getMachineNode( 1784 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1785 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1786 1787 SDValue RegSequenceArgs[] = { 1788 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1789 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1790 1791 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1792 MVT::i64, RegSequenceArgs), 1793 0); 1794 } 1795 } 1796 } 1797 } 1798 1799 VAddr = Addr; 1800 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1801 return true; 1802 } 1803 1804 // If this matches zero_extend i32:x, return x 1805 static SDValue matchZExtFromI32(SDValue Op) { 1806 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1807 return SDValue(); 1808 1809 SDValue ExtSrc = Op.getOperand(0); 1810 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1811 } 1812 1813 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1814 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1815 SDValue Addr, 1816 SDValue &SAddr, 1817 SDValue &VOffset, 1818 SDValue &Offset) const { 1819 int64_t ImmOffset = 0; 1820 1821 // Match the immediate offset first, which canonically is moved as low as 1822 // possible. 1823 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1824 SDValue LHS = Addr.getOperand(0); 1825 SDValue RHS = Addr.getOperand(1); 1826 1827 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1828 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1829 1830 // TODO: Could split larger constant into VGPR offset. 1831 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true)) { 1832 Addr = LHS; 1833 ImmOffset = COffsetVal; 1834 } 1835 } 1836 1837 // Match the variable offset. 1838 if (Addr.getOpcode() != ISD::ADD) 1839 return false; 1840 1841 SDValue LHS = Addr.getOperand(0); 1842 SDValue RHS = Addr.getOperand(1); 1843 1844 if (!LHS->isDivergent()) { 1845 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1846 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1847 SAddr = LHS; 1848 VOffset = ZextRHS; 1849 } 1850 } 1851 1852 if (!SAddr && !RHS->isDivergent()) { 1853 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1854 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1855 SAddr = RHS; 1856 VOffset = ZextLHS; 1857 } 1858 } 1859 1860 if (!SAddr) 1861 return false; 1862 1863 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1864 return true; 1865 } 1866 1867 // Match (32-bit SGPR base) + sext(imm offset) 1868 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *N, 1869 SDValue Addr, 1870 SDValue &SAddr, 1871 SDValue &Offset) const { 1872 if (Addr->isDivergent()) 1873 return false; 1874 1875 SAddr = Addr; 1876 int64_t COffsetVal = 0; 1877 1878 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1879 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1880 SAddr = Addr.getOperand(0); 1881 } 1882 1883 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1884 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1885 } else if (SAddr.getOpcode() == ISD::ADD && 1886 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1887 // Materialize this into a scalar move for scalar address to avoid 1888 // readfirstlane. 1889 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1890 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1891 FI->getValueType(0)); 1892 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, SDLoc(SAddr), 1893 MVT::i32, TFI, SAddr.getOperand(1)), 1894 0); 1895 } 1896 1897 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1898 1899 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1900 int64_t RemainderOffset = COffsetVal; 1901 int64_t ImmField = 0; 1902 const unsigned NumBits = TII->getNumFlatOffsetBits(true); 1903 // Use signed division by a power of two to truncate towards 0. 1904 int64_t D = 1LL << (NumBits - 1); 1905 RemainderOffset = (COffsetVal / D) * D; 1906 ImmField = COffsetVal - RemainderOffset; 1907 1908 assert(TII->isLegalFLATOffset(ImmField, AMDGPUAS::PRIVATE_ADDRESS, true)); 1909 assert(RemainderOffset + ImmField == COffsetVal); 1910 1911 COffsetVal = ImmField; 1912 1913 SDLoc DL(N); 1914 SDValue AddOffset = 1915 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1916 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, DL, MVT::i32, 1917 SAddr, AddOffset), 0); 1918 } 1919 1920 Offset = CurDAG->getTargetConstant(COffsetVal, SDLoc(), MVT::i16); 1921 1922 return true; 1923 } 1924 1925 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1926 SDValue &Offset, bool &Imm) const { 1927 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1928 if (!C) { 1929 if (ByteOffsetNode.getValueType().isScalarInteger() && 1930 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1931 Offset = ByteOffsetNode; 1932 Imm = false; 1933 return true; 1934 } 1935 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1936 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1937 Offset = ByteOffsetNode.getOperand(0); 1938 Imm = false; 1939 return true; 1940 } 1941 } 1942 return false; 1943 } 1944 1945 SDLoc SL(ByteOffsetNode); 1946 // GFX9 and GFX10 have signed byte immediate offsets. 1947 int64_t ByteOffset = C->getSExtValue(); 1948 Optional<int64_t> EncodedOffset = 1949 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1950 if (EncodedOffset) { 1951 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1952 Imm = true; 1953 return true; 1954 } 1955 1956 // SGPR and literal offsets are unsigned. 1957 if (ByteOffset < 0) 1958 return false; 1959 1960 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1961 if (EncodedOffset) { 1962 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1963 return true; 1964 } 1965 1966 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1967 return false; 1968 1969 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1970 Offset = SDValue( 1971 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1972 1973 return true; 1974 } 1975 1976 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1977 if (Addr.getValueType() != MVT::i32) 1978 return Addr; 1979 1980 // Zero-extend a 32-bit address. 1981 SDLoc SL(Addr); 1982 1983 const MachineFunction &MF = CurDAG->getMachineFunction(); 1984 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1985 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1986 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1987 1988 const SDValue Ops[] = { 1989 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1990 Addr, 1991 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1992 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1993 0), 1994 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1995 }; 1996 1997 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1998 Ops), 0); 1999 } 2000 2001 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2002 SDValue &Offset, bool &Imm) const { 2003 SDLoc SL(Addr); 2004 2005 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2006 // wraparound, because s_load instructions perform the addition in 64 bits. 2007 if ((Addr.getValueType() != MVT::i32 || 2008 Addr->getFlags().hasNoUnsignedWrap())) { 2009 SDValue N0, N1; 2010 // Extract the base and offset if possible. 2011 if (CurDAG->isBaseWithConstantOffset(Addr) || 2012 Addr.getOpcode() == ISD::ADD) { 2013 N0 = Addr.getOperand(0); 2014 N1 = Addr.getOperand(1); 2015 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2016 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2017 } 2018 if (N0 && N1) { 2019 if (SelectSMRDOffset(N1, Offset, Imm)) { 2020 SBase = Expand32BitAddress(N0); 2021 return true; 2022 } 2023 } 2024 } 2025 SBase = Expand32BitAddress(Addr); 2026 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 2027 Imm = true; 2028 return true; 2029 } 2030 2031 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2032 SDValue &Offset) const { 2033 bool Imm = false; 2034 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 2035 } 2036 2037 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2038 SDValue &Offset) const { 2039 2040 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2041 2042 bool Imm = false; 2043 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 2044 return false; 2045 2046 return !Imm && isa<ConstantSDNode>(Offset); 2047 } 2048 2049 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2050 SDValue &Offset) const { 2051 bool Imm = false; 2052 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 2053 !isa<ConstantSDNode>(Offset); 2054 } 2055 2056 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 2057 SDValue &Offset) const { 2058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2059 // The immediate offset for S_BUFFER instructions is unsigned. 2060 if (auto Imm = 2061 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 2062 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2063 return true; 2064 } 2065 } 2066 2067 return false; 2068 } 2069 2070 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2071 SDValue &Offset) const { 2072 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2073 2074 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2075 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2076 C->getZExtValue())) { 2077 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2078 return true; 2079 } 2080 } 2081 2082 return false; 2083 } 2084 2085 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2086 SDValue &Base, 2087 SDValue &Offset) const { 2088 SDLoc DL(Index); 2089 2090 if (CurDAG->isBaseWithConstantOffset(Index)) { 2091 SDValue N0 = Index.getOperand(0); 2092 SDValue N1 = Index.getOperand(1); 2093 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2094 2095 // (add n0, c0) 2096 // Don't peel off the offset (c0) if doing so could possibly lead 2097 // the base (n0) to be negative. 2098 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2099 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2100 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2101 Base = N0; 2102 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2103 return true; 2104 } 2105 } 2106 2107 if (isa<ConstantSDNode>(Index)) 2108 return false; 2109 2110 Base = Index; 2111 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2112 return true; 2113 } 2114 2115 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 2116 SDValue Val, uint32_t Offset, 2117 uint32_t Width) { 2118 // Transformation function, pack the offset and width of a BFE into 2119 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2120 // source, bits [5:0] contain the offset and bits [22:16] the width. 2121 uint32_t PackedVal = Offset | (Width << 16); 2122 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2123 2124 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2125 } 2126 2127 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2128 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2129 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2130 // Predicate: 0 < b <= c < 32 2131 2132 const SDValue &Shl = N->getOperand(0); 2133 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2134 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2135 2136 if (B && C) { 2137 uint32_t BVal = B->getZExtValue(); 2138 uint32_t CVal = C->getZExtValue(); 2139 2140 if (0 < BVal && BVal <= CVal && CVal < 32) { 2141 bool Signed = N->getOpcode() == ISD::SRA; 2142 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2143 2144 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2145 32 - CVal)); 2146 return; 2147 } 2148 } 2149 SelectCode(N); 2150 } 2151 2152 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2153 switch (N->getOpcode()) { 2154 case ISD::AND: 2155 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2156 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2157 // Predicate: isMask(mask) 2158 const SDValue &Srl = N->getOperand(0); 2159 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2160 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2161 2162 if (Shift && Mask) { 2163 uint32_t ShiftVal = Shift->getZExtValue(); 2164 uint32_t MaskVal = Mask->getZExtValue(); 2165 2166 if (isMask_32(MaskVal)) { 2167 uint32_t WidthVal = countPopulation(MaskVal); 2168 2169 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2170 Srl.getOperand(0), ShiftVal, WidthVal)); 2171 return; 2172 } 2173 } 2174 } 2175 break; 2176 case ISD::SRL: 2177 if (N->getOperand(0).getOpcode() == ISD::AND) { 2178 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2179 // Predicate: isMask(mask >> b) 2180 const SDValue &And = N->getOperand(0); 2181 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2182 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2183 2184 if (Shift && Mask) { 2185 uint32_t ShiftVal = Shift->getZExtValue(); 2186 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2187 2188 if (isMask_32(MaskVal)) { 2189 uint32_t WidthVal = countPopulation(MaskVal); 2190 2191 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2192 And.getOperand(0), ShiftVal, WidthVal)); 2193 return; 2194 } 2195 } 2196 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2197 SelectS_BFEFromShifts(N); 2198 return; 2199 } 2200 break; 2201 case ISD::SRA: 2202 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2203 SelectS_BFEFromShifts(N); 2204 return; 2205 } 2206 break; 2207 2208 case ISD::SIGN_EXTEND_INREG: { 2209 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2210 SDValue Src = N->getOperand(0); 2211 if (Src.getOpcode() != ISD::SRL) 2212 break; 2213 2214 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2215 if (!Amt) 2216 break; 2217 2218 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2219 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2220 Amt->getZExtValue(), Width)); 2221 return; 2222 } 2223 } 2224 2225 SelectCode(N); 2226 } 2227 2228 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2229 assert(N->getOpcode() == ISD::BRCOND); 2230 if (!N->hasOneUse()) 2231 return false; 2232 2233 SDValue Cond = N->getOperand(1); 2234 if (Cond.getOpcode() == ISD::CopyToReg) 2235 Cond = Cond.getOperand(2); 2236 2237 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2238 return false; 2239 2240 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2241 if (VT == MVT::i32) 2242 return true; 2243 2244 if (VT == MVT::i64) { 2245 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2246 2247 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2248 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2249 } 2250 2251 return false; 2252 } 2253 2254 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2255 SDValue Cond = N->getOperand(1); 2256 2257 if (Cond.isUndef()) { 2258 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2259 N->getOperand(2), N->getOperand(0)); 2260 return; 2261 } 2262 2263 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2264 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2265 2266 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2267 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2268 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2269 SDLoc SL(N); 2270 2271 if (!UseSCCBr) { 2272 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2273 // analyzed what generates the vcc value, so we do not know whether vcc 2274 // bits for disabled lanes are 0. Thus we need to mask out bits for 2275 // disabled lanes. 2276 // 2277 // For the case that we select S_CBRANCH_SCC1 and it gets 2278 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2279 // SIInstrInfo::moveToVALU which inserts the S_AND). 2280 // 2281 // We could add an analysis of what generates the vcc value here and omit 2282 // the S_AND when is unnecessary. But it would be better to add a separate 2283 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2284 // catches both cases. 2285 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2286 : AMDGPU::S_AND_B64, 2287 SL, MVT::i1, 2288 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2289 : AMDGPU::EXEC, 2290 MVT::i1), 2291 Cond), 2292 0); 2293 } 2294 2295 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2296 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2297 N->getOperand(2), // Basic Block 2298 VCC.getValue(0)); 2299 } 2300 2301 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2302 MVT VT = N->getSimpleValueType(0); 2303 bool IsFMA = N->getOpcode() == ISD::FMA; 2304 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2305 !Subtarget->hasFmaMixInsts()) || 2306 ((IsFMA && Subtarget->hasMadMixInsts()) || 2307 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2308 SelectCode(N); 2309 return; 2310 } 2311 2312 SDValue Src0 = N->getOperand(0); 2313 SDValue Src1 = N->getOperand(1); 2314 SDValue Src2 = N->getOperand(2); 2315 unsigned Src0Mods, Src1Mods, Src2Mods; 2316 2317 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2318 // using the conversion from f16. 2319 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2320 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2321 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2322 2323 assert((IsFMA || !Mode.allFP32Denormals()) && 2324 "fmad selected with denormals enabled"); 2325 // TODO: We can select this with f32 denormals enabled if all the sources are 2326 // converted from f16 (in which case fmad isn't legal). 2327 2328 if (Sel0 || Sel1 || Sel2) { 2329 // For dummy operands. 2330 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2331 SDValue Ops[] = { 2332 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2333 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2334 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2335 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2336 Zero, Zero 2337 }; 2338 2339 CurDAG->SelectNodeTo(N, 2340 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2341 MVT::f32, Ops); 2342 } else { 2343 SelectCode(N); 2344 } 2345 } 2346 2347 // This is here because there isn't a way to use the generated sub0_sub1 as the 2348 // subreg index to EXTRACT_SUBREG in tablegen. 2349 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2350 MemSDNode *Mem = cast<MemSDNode>(N); 2351 unsigned AS = Mem->getAddressSpace(); 2352 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2353 SelectCode(N); 2354 return; 2355 } 2356 2357 MVT VT = N->getSimpleValueType(0); 2358 bool Is32 = (VT == MVT::i32); 2359 SDLoc SL(N); 2360 2361 MachineSDNode *CmpSwap = nullptr; 2362 if (Subtarget->hasAddr64()) { 2363 SDValue SRsrc, VAddr, SOffset, Offset, SLC; 2364 2365 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) { 2366 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2367 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2368 SDValue CmpVal = Mem->getOperand(2); 2369 SDValue GLC = CurDAG->getTargetConstant(1, SL, MVT::i1); 2370 2371 // XXX - Do we care about glue operands? 2372 2373 SDValue Ops[] = { 2374 CmpVal, VAddr, SRsrc, SOffset, Offset, GLC, SLC, Mem->getChain() 2375 }; 2376 2377 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2378 } 2379 } 2380 2381 if (!CmpSwap) { 2382 SDValue SRsrc, SOffset, Offset, SLC; 2383 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) { 2384 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2385 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2386 2387 SDValue CmpVal = Mem->getOperand(2); 2388 SDValue GLC = CurDAG->getTargetConstant(1, SL, MVT::i1); 2389 SDValue Ops[] = { 2390 CmpVal, SRsrc, SOffset, Offset, GLC, SLC, Mem->getChain() 2391 }; 2392 2393 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2394 } 2395 } 2396 2397 if (!CmpSwap) { 2398 SelectCode(N); 2399 return; 2400 } 2401 2402 MachineMemOperand *MMO = Mem->getMemOperand(); 2403 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2404 2405 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2406 SDValue Extract 2407 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2408 2409 ReplaceUses(SDValue(N, 0), Extract); 2410 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2411 CurDAG->RemoveDeadNode(N); 2412 } 2413 2414 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2415 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2416 // be copied to an SGPR with readfirstlane. 2417 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2418 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2419 2420 SDValue Chain = N->getOperand(0); 2421 SDValue Ptr = N->getOperand(2); 2422 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2423 MachineMemOperand *MMO = M->getMemOperand(); 2424 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2425 2426 SDValue Offset; 2427 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2428 SDValue PtrBase = Ptr.getOperand(0); 2429 SDValue PtrOffset = Ptr.getOperand(1); 2430 2431 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2432 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2433 N = glueCopyToM0(N, PtrBase); 2434 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2435 } 2436 } 2437 2438 if (!Offset) { 2439 N = glueCopyToM0(N, Ptr); 2440 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2441 } 2442 2443 SDValue Ops[] = { 2444 Offset, 2445 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2446 Chain, 2447 N->getOperand(N->getNumOperands() - 1) // New glue 2448 }; 2449 2450 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2451 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2452 } 2453 2454 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2455 switch (IntrID) { 2456 case Intrinsic::amdgcn_ds_gws_init: 2457 return AMDGPU::DS_GWS_INIT; 2458 case Intrinsic::amdgcn_ds_gws_barrier: 2459 return AMDGPU::DS_GWS_BARRIER; 2460 case Intrinsic::amdgcn_ds_gws_sema_v: 2461 return AMDGPU::DS_GWS_SEMA_V; 2462 case Intrinsic::amdgcn_ds_gws_sema_br: 2463 return AMDGPU::DS_GWS_SEMA_BR; 2464 case Intrinsic::amdgcn_ds_gws_sema_p: 2465 return AMDGPU::DS_GWS_SEMA_P; 2466 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2467 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2468 default: 2469 llvm_unreachable("not a gws intrinsic"); 2470 } 2471 } 2472 2473 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2474 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2475 !Subtarget->hasGWSSemaReleaseAll()) { 2476 // Let this error. 2477 SelectCode(N); 2478 return; 2479 } 2480 2481 // Chain, intrinsic ID, vsrc, offset 2482 const bool HasVSrc = N->getNumOperands() == 4; 2483 assert(HasVSrc || N->getNumOperands() == 3); 2484 2485 SDLoc SL(N); 2486 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2487 int ImmOffset = 0; 2488 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2489 MachineMemOperand *MMO = M->getMemOperand(); 2490 2491 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2492 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2493 2494 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2495 // offset field) % 64. Some versions of the programming guide omit the m0 2496 // part, or claim it's from offset 0. 2497 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2498 // If we have a constant offset, try to use the 0 in m0 as the base. 2499 // TODO: Look into changing the default m0 initialization value. If the 2500 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2501 // the immediate offset. 2502 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2503 ImmOffset = ConstOffset->getZExtValue(); 2504 } else { 2505 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2506 ImmOffset = BaseOffset.getConstantOperandVal(1); 2507 BaseOffset = BaseOffset.getOperand(0); 2508 } 2509 2510 // Prefer to do the shift in an SGPR since it should be possible to use m0 2511 // as the result directly. If it's already an SGPR, it will be eliminated 2512 // later. 2513 SDNode *SGPROffset 2514 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2515 BaseOffset); 2516 // Shift to offset in m0 2517 SDNode *M0Base 2518 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2519 SDValue(SGPROffset, 0), 2520 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2521 glueCopyToM0(N, SDValue(M0Base, 0)); 2522 } 2523 2524 SDValue Chain = N->getOperand(0); 2525 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2526 2527 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2528 SmallVector<SDValue, 5> Ops; 2529 if (HasVSrc) 2530 Ops.push_back(N->getOperand(2)); 2531 Ops.push_back(OffsetField); 2532 Ops.push_back(Chain); 2533 2534 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2535 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2536 } 2537 2538 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2539 if (Subtarget->getLDSBankCount() != 16) { 2540 // This is a single instruction with a pattern. 2541 SelectCode(N); 2542 return; 2543 } 2544 2545 SDLoc DL(N); 2546 2547 // This requires 2 instructions. It is possible to write a pattern to support 2548 // this, but the generated isel emitter doesn't correctly deal with multiple 2549 // output instructions using the same physical register input. The copy to m0 2550 // is incorrectly placed before the second instruction. 2551 // 2552 // TODO: Match source modifiers. 2553 // 2554 // def : Pat < 2555 // (int_amdgcn_interp_p1_f16 2556 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2557 // (i32 timm:$attrchan), (i32 timm:$attr), 2558 // (i1 timm:$high), M0), 2559 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2560 // timm:$attrchan, 0, 2561 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2562 // let Predicates = [has16BankLDS]; 2563 // } 2564 2565 // 16 bank LDS 2566 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2567 N->getOperand(5), SDValue()); 2568 2569 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2570 2571 SDNode *InterpMov = 2572 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2573 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2574 N->getOperand(3), // Attr 2575 N->getOperand(2), // Attrchan 2576 ToM0.getValue(1) // In glue 2577 }); 2578 2579 SDNode *InterpP1LV = 2580 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2581 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2582 N->getOperand(1), // Src0 2583 N->getOperand(3), // Attr 2584 N->getOperand(2), // Attrchan 2585 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2586 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2587 N->getOperand(4), // high 2588 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2589 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2590 SDValue(InterpMov, 1) 2591 }); 2592 2593 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2594 } 2595 2596 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2597 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2598 switch (IntrID) { 2599 case Intrinsic::amdgcn_ds_append: 2600 case Intrinsic::amdgcn_ds_consume: { 2601 if (N->getValueType(0) != MVT::i32) 2602 break; 2603 SelectDSAppendConsume(N, IntrID); 2604 return; 2605 } 2606 } 2607 2608 SelectCode(N); 2609 } 2610 2611 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2612 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2613 unsigned Opcode; 2614 switch (IntrID) { 2615 case Intrinsic::amdgcn_wqm: 2616 Opcode = AMDGPU::WQM; 2617 break; 2618 case Intrinsic::amdgcn_softwqm: 2619 Opcode = AMDGPU::SOFT_WQM; 2620 break; 2621 case Intrinsic::amdgcn_wwm: 2622 Opcode = AMDGPU::WWM; 2623 break; 2624 case Intrinsic::amdgcn_interp_p1_f16: 2625 SelectInterpP1F16(N); 2626 return; 2627 default: 2628 SelectCode(N); 2629 return; 2630 } 2631 2632 SDValue Src = N->getOperand(1); 2633 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2634 } 2635 2636 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2637 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2638 switch (IntrID) { 2639 case Intrinsic::amdgcn_ds_gws_init: 2640 case Intrinsic::amdgcn_ds_gws_barrier: 2641 case Intrinsic::amdgcn_ds_gws_sema_v: 2642 case Intrinsic::amdgcn_ds_gws_sema_br: 2643 case Intrinsic::amdgcn_ds_gws_sema_p: 2644 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2645 SelectDS_GWS(N, IntrID); 2646 return; 2647 default: 2648 break; 2649 } 2650 2651 SelectCode(N); 2652 } 2653 2654 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2655 unsigned &Mods, 2656 bool AllowAbs) const { 2657 Mods = 0; 2658 Src = In; 2659 2660 if (Src.getOpcode() == ISD::FNEG) { 2661 Mods |= SISrcMods::NEG; 2662 Src = Src.getOperand(0); 2663 } 2664 2665 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2666 Mods |= SISrcMods::ABS; 2667 Src = Src.getOperand(0); 2668 } 2669 2670 return true; 2671 } 2672 2673 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2674 SDValue &SrcMods) const { 2675 unsigned Mods; 2676 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2677 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2678 return true; 2679 } 2680 2681 return false; 2682 } 2683 2684 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2685 SDValue &SrcMods) const { 2686 unsigned Mods; 2687 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2688 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2689 return true; 2690 } 2691 2692 return false; 2693 } 2694 2695 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2696 SDValue &SrcMods) const { 2697 SelectVOP3Mods(In, Src, SrcMods); 2698 return isNoNanSrc(Src); 2699 } 2700 2701 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2702 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2703 return false; 2704 2705 Src = In; 2706 return true; 2707 } 2708 2709 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2710 SDValue &SrcMods, SDValue &Clamp, 2711 SDValue &Omod) const { 2712 SDLoc DL(In); 2713 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2714 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2715 2716 return SelectVOP3Mods(In, Src, SrcMods); 2717 } 2718 2719 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2720 SDValue &SrcMods, SDValue &Clamp, 2721 SDValue &Omod) const { 2722 SDLoc DL(In); 2723 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2724 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2725 2726 return SelectVOP3BMods(In, Src, SrcMods); 2727 } 2728 2729 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2730 SDValue &Clamp, SDValue &Omod) const { 2731 Src = In; 2732 2733 SDLoc DL(In); 2734 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2735 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2736 2737 return true; 2738 } 2739 2740 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2741 SDValue &SrcMods) const { 2742 unsigned Mods = 0; 2743 Src = In; 2744 2745 if (Src.getOpcode() == ISD::FNEG) { 2746 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2747 Src = Src.getOperand(0); 2748 } 2749 2750 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2751 unsigned VecMods = Mods; 2752 2753 SDValue Lo = stripBitcast(Src.getOperand(0)); 2754 SDValue Hi = stripBitcast(Src.getOperand(1)); 2755 2756 if (Lo.getOpcode() == ISD::FNEG) { 2757 Lo = stripBitcast(Lo.getOperand(0)); 2758 Mods ^= SISrcMods::NEG; 2759 } 2760 2761 if (Hi.getOpcode() == ISD::FNEG) { 2762 Hi = stripBitcast(Hi.getOperand(0)); 2763 Mods ^= SISrcMods::NEG_HI; 2764 } 2765 2766 if (isExtractHiElt(Lo, Lo)) 2767 Mods |= SISrcMods::OP_SEL_0; 2768 2769 if (isExtractHiElt(Hi, Hi)) 2770 Mods |= SISrcMods::OP_SEL_1; 2771 2772 Lo = stripExtractLoElt(Lo); 2773 Hi = stripExtractLoElt(Hi); 2774 2775 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2776 // Really a scalar input. Just select from the low half of the register to 2777 // avoid packing. 2778 2779 Src = Lo; 2780 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2781 return true; 2782 } 2783 2784 Mods = VecMods; 2785 } 2786 2787 // Packed instructions do not have abs modifiers. 2788 Mods |= SISrcMods::OP_SEL_1; 2789 2790 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2791 return true; 2792 } 2793 2794 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2795 SDValue &SrcMods) const { 2796 Src = In; 2797 // FIXME: Handle op_sel 2798 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2799 return true; 2800 } 2801 2802 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2803 SDValue &SrcMods) const { 2804 // FIXME: Handle op_sel 2805 return SelectVOP3Mods(In, Src, SrcMods); 2806 } 2807 2808 // The return value is not whether the match is possible (which it always is), 2809 // but whether or not it a conversion is really used. 2810 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2811 unsigned &Mods) const { 2812 Mods = 0; 2813 SelectVOP3ModsImpl(In, Src, Mods); 2814 2815 if (Src.getOpcode() == ISD::FP_EXTEND) { 2816 Src = Src.getOperand(0); 2817 assert(Src.getValueType() == MVT::f16); 2818 Src = stripBitcast(Src); 2819 2820 // Be careful about folding modifiers if we already have an abs. fneg is 2821 // applied last, so we don't want to apply an earlier fneg. 2822 if ((Mods & SISrcMods::ABS) == 0) { 2823 unsigned ModsTmp; 2824 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2825 2826 if ((ModsTmp & SISrcMods::NEG) != 0) 2827 Mods ^= SISrcMods::NEG; 2828 2829 if ((ModsTmp & SISrcMods::ABS) != 0) 2830 Mods |= SISrcMods::ABS; 2831 } 2832 2833 // op_sel/op_sel_hi decide the source type and source. 2834 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2835 // If the sources's op_sel is set, it picks the high half of the source 2836 // register. 2837 2838 Mods |= SISrcMods::OP_SEL_1; 2839 if (isExtractHiElt(Src, Src)) { 2840 Mods |= SISrcMods::OP_SEL_0; 2841 2842 // TODO: Should we try to look for neg/abs here? 2843 } 2844 2845 return true; 2846 } 2847 2848 return false; 2849 } 2850 2851 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2852 SDValue &SrcMods) const { 2853 unsigned Mods = 0; 2854 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2855 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2856 return true; 2857 } 2858 2859 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2860 if (In.isUndef()) 2861 return CurDAG->getUNDEF(MVT::i32); 2862 2863 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2864 SDLoc SL(In); 2865 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2866 } 2867 2868 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2869 SDLoc SL(In); 2870 return CurDAG->getConstant( 2871 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2872 } 2873 2874 SDValue Src; 2875 if (isExtractHiElt(In, Src)) 2876 return Src; 2877 2878 return SDValue(); 2879 } 2880 2881 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2882 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2883 2884 const SIRegisterInfo *SIRI = 2885 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2886 const SIInstrInfo * SII = 2887 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2888 2889 unsigned Limit = 0; 2890 bool AllUsesAcceptSReg = true; 2891 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2892 Limit < 10 && U != E; ++U, ++Limit) { 2893 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2894 2895 // If the register class is unknown, it could be an unknown 2896 // register class that needs to be an SGPR, e.g. an inline asm 2897 // constraint 2898 if (!RC || SIRI->isSGPRClass(RC)) 2899 return false; 2900 2901 if (RC != &AMDGPU::VS_32RegClass) { 2902 AllUsesAcceptSReg = false; 2903 SDNode * User = *U; 2904 if (User->isMachineOpcode()) { 2905 unsigned Opc = User->getMachineOpcode(); 2906 MCInstrDesc Desc = SII->get(Opc); 2907 if (Desc.isCommutable()) { 2908 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2909 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2910 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2911 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2912 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2913 if (CommutedRC == &AMDGPU::VS_32RegClass) 2914 AllUsesAcceptSReg = true; 2915 } 2916 } 2917 } 2918 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2919 // commuting current user. This means have at least one use 2920 // that strictly require VGPR. Thus, we will not attempt to commute 2921 // other user instructions. 2922 if (!AllUsesAcceptSReg) 2923 break; 2924 } 2925 } 2926 return !AllUsesAcceptSReg && (Limit < 10); 2927 } 2928 2929 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2930 auto Ld = cast<LoadSDNode>(N); 2931 2932 return Ld->getAlignment() >= 4 && 2933 ( 2934 ( 2935 ( 2936 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2937 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2938 ) 2939 && 2940 !N->isDivergent() 2941 ) 2942 || 2943 ( 2944 Subtarget->getScalarizeGlobalBehavior() && 2945 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2946 Ld->isSimple() && 2947 !N->isDivergent() && 2948 static_cast<const SITargetLowering *>( 2949 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2950 ) 2951 ); 2952 } 2953 2954 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2955 const AMDGPUTargetLowering& Lowering = 2956 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2957 bool IsModified = false; 2958 do { 2959 IsModified = false; 2960 2961 // Go over all selected nodes and try to fold them a bit more 2962 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2963 while (Position != CurDAG->allnodes_end()) { 2964 SDNode *Node = &*Position++; 2965 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2966 if (!MachineNode) 2967 continue; 2968 2969 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2970 if (ResNode != Node) { 2971 if (ResNode) 2972 ReplaceUses(Node, ResNode); 2973 IsModified = true; 2974 } 2975 } 2976 CurDAG->RemoveDeadNodes(); 2977 } while (IsModified); 2978 } 2979 2980 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 2981 Subtarget = &MF.getSubtarget<R600Subtarget>(); 2982 return SelectionDAGISel::runOnMachineFunction(MF); 2983 } 2984 2985 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 2986 if (!N->readMem()) 2987 return false; 2988 if (CbId == -1) 2989 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2990 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 2991 2992 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 2993 } 2994 2995 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 2996 SDValue& IntPtr) { 2997 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 2998 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 2999 true); 3000 return true; 3001 } 3002 return false; 3003 } 3004 3005 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 3006 SDValue& BaseReg, SDValue &Offset) { 3007 if (!isa<ConstantSDNode>(Addr)) { 3008 BaseReg = Addr; 3009 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 3010 return true; 3011 } 3012 return false; 3013 } 3014 3015 void R600DAGToDAGISel::Select(SDNode *N) { 3016 unsigned int Opc = N->getOpcode(); 3017 if (N->isMachineOpcode()) { 3018 N->setNodeId(-1); 3019 return; // Already selected. 3020 } 3021 3022 switch (Opc) { 3023 default: break; 3024 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 3025 case ISD::SCALAR_TO_VECTOR: 3026 case ISD::BUILD_VECTOR: { 3027 EVT VT = N->getValueType(0); 3028 unsigned NumVectorElts = VT.getVectorNumElements(); 3029 unsigned RegClassID; 3030 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 3031 // that adds a 128 bits reg copy when going through TwoAddressInstructions 3032 // pass. We want to avoid 128 bits copies as much as possible because they 3033 // can't be bundled by our scheduler. 3034 switch(NumVectorElts) { 3035 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 3036 case 4: 3037 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 3038 RegClassID = R600::R600_Reg128VerticalRegClassID; 3039 else 3040 RegClassID = R600::R600_Reg128RegClassID; 3041 break; 3042 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 3043 } 3044 SelectBuildVector(N, RegClassID); 3045 return; 3046 } 3047 } 3048 3049 SelectCode(N); 3050 } 3051 3052 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 3053 SDValue &Offset) { 3054 ConstantSDNode *C; 3055 SDLoc DL(Addr); 3056 3057 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 3058 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3059 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3060 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 3061 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 3062 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3063 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3064 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 3065 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 3066 Base = Addr.getOperand(0); 3067 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3068 } else { 3069 Base = Addr; 3070 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 3071 } 3072 3073 return true; 3074 } 3075 3076 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 3077 SDValue &Offset) { 3078 ConstantSDNode *IMMOffset; 3079 3080 if (Addr.getOpcode() == ISD::ADD 3081 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 3082 && isInt<16>(IMMOffset->getZExtValue())) { 3083 3084 Base = Addr.getOperand(0); 3085 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3086 MVT::i32); 3087 return true; 3088 // If the pointer address is constant, we can move it to the offset field. 3089 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 3090 && isInt<16>(IMMOffset->getZExtValue())) { 3091 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 3092 SDLoc(CurDAG->getEntryNode()), 3093 R600::ZERO, MVT::i32); 3094 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3095 MVT::i32); 3096 return true; 3097 } 3098 3099 // Default case, no offset 3100 Base = Addr; 3101 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 3102 return true; 3103 } 3104