1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "MCTargetDesc/R600MCTargetDesc.h" 18 #include "R600RegisterInfo.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/SelectionDAGISel.h" 25 #include "llvm/CodeGen/SelectionDAGNodes.h" 26 #include "llvm/IR/IntrinsicsAMDGPU.h" 27 #include "llvm/InitializePasses.h" 28 29 #ifdef EXPENSIVE_CHECKS 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #endif 33 34 #define DEBUG_TYPE "isel" 35 36 using namespace llvm; 37 38 //===----------------------------------------------------------------------===// 39 // Instruction Selector Implementation 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 44 static SDValue stripBitcast(SDValue Val) { 45 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 46 } 47 48 // Figure out if this is really an extract of the high 16-bits of a dword. 49 static bool isExtractHiElt(SDValue In, SDValue &Out) { 50 In = stripBitcast(In); 51 52 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 53 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 54 if (!Idx->isOne()) 55 return false; 56 Out = In.getOperand(0); 57 return true; 58 } 59 } 60 61 if (In.getOpcode() != ISD::TRUNCATE) 62 return false; 63 64 SDValue Srl = In.getOperand(0); 65 if (Srl.getOpcode() == ISD::SRL) { 66 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 67 if (ShiftAmt->getZExtValue() == 16) { 68 Out = stripBitcast(Srl.getOperand(0)); 69 return true; 70 } 71 } 72 } 73 74 return false; 75 } 76 77 // Look through operations that obscure just looking at the low 16-bits of the 78 // same register. 79 static SDValue stripExtractLoElt(SDValue In) { 80 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 81 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 82 if (Idx->isZero() && In.getValueSizeInBits() <= 32) 83 return In.getOperand(0); 84 } 85 } 86 87 if (In.getOpcode() == ISD::TRUNCATE) { 88 SDValue Src = In.getOperand(0); 89 if (Src.getValueType().getSizeInBits() == 32) 90 return stripBitcast(Src); 91 } 92 93 return In; 94 } 95 96 } // end anonymous namespace 97 98 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 99 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 100 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 101 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 102 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 103 #ifdef EXPENSIVE_CHECKS 104 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 105 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 106 #endif 107 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 108 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 109 110 /// This pass converts a legalized DAG into a AMDGPU-specific 111 // DAG, ready for instruction scheduling. 112 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 113 CodeGenOpt::Level OptLevel) { 114 return new AMDGPUDAGToDAGISel(TM, OptLevel); 115 } 116 117 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel( 118 TargetMachine *TM /*= nullptr*/, 119 CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/) 120 : SelectionDAGISel(*TM, OptLevel) { 121 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 122 } 123 124 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 125 #ifdef EXPENSIVE_CHECKS 126 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 127 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 128 for (auto &L : LI->getLoopsInPreorder()) { 129 assert(L->isLCSSAForm(DT)); 130 } 131 #endif 132 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 133 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 134 return SelectionDAGISel::runOnMachineFunction(MF); 135 } 136 137 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 138 // XXX - only need to list legal operations. 139 switch (Opc) { 140 case ISD::FADD: 141 case ISD::FSUB: 142 case ISD::FMUL: 143 case ISD::FDIV: 144 case ISD::FREM: 145 case ISD::FCANONICALIZE: 146 case ISD::UINT_TO_FP: 147 case ISD::SINT_TO_FP: 148 case ISD::FABS: 149 // Fabs is lowered to a bit operation, but it's an and which will clear the 150 // high bits anyway. 151 case ISD::FSQRT: 152 case ISD::FSIN: 153 case ISD::FCOS: 154 case ISD::FPOWI: 155 case ISD::FPOW: 156 case ISD::FLOG: 157 case ISD::FLOG2: 158 case ISD::FLOG10: 159 case ISD::FEXP: 160 case ISD::FEXP2: 161 case ISD::FCEIL: 162 case ISD::FTRUNC: 163 case ISD::FRINT: 164 case ISD::FNEARBYINT: 165 case ISD::FROUND: 166 case ISD::FFLOOR: 167 case ISD::FMINNUM: 168 case ISD::FMAXNUM: 169 case AMDGPUISD::FRACT: 170 case AMDGPUISD::CLAMP: 171 case AMDGPUISD::COS_HW: 172 case AMDGPUISD::SIN_HW: 173 case AMDGPUISD::FMIN3: 174 case AMDGPUISD::FMAX3: 175 case AMDGPUISD::FMED3: 176 case AMDGPUISD::FMAD_FTZ: 177 case AMDGPUISD::RCP: 178 case AMDGPUISD::RSQ: 179 case AMDGPUISD::RCP_IFLAG: 180 case AMDGPUISD::LDEXP: 181 // On gfx10, all 16-bit instructions preserve the high bits. 182 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 183 case ISD::FP_ROUND: 184 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 185 // high bits on gfx9. 186 // TODO: If we had the source node we could see if the source was fma/mad 187 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 188 case ISD::FMA: 189 case ISD::FMAD: 190 case AMDGPUISD::DIV_FIXUP: 191 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 192 default: 193 // fcopysign, select and others may be lowered to 32-bit bit operations 194 // which don't zero the high bits. 195 return false; 196 } 197 } 198 199 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.addRequired<AMDGPUArgumentUsageInfo>(); 201 AU.addRequired<LegacyDivergenceAnalysis>(); 202 #ifdef EXPENSIVE_CHECKS 203 AU.addRequired<DominatorTreeWrapperPass>(); 204 AU.addRequired<LoopInfoWrapperPass>(); 205 #endif 206 SelectionDAGISel::getAnalysisUsage(AU); 207 } 208 209 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 210 assert(Subtarget->d16PreservesUnusedBits()); 211 MVT VT = N->getValueType(0).getSimpleVT(); 212 if (VT != MVT::v2i16 && VT != MVT::v2f16) 213 return false; 214 215 SDValue Lo = N->getOperand(0); 216 SDValue Hi = N->getOperand(1); 217 218 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 219 220 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 221 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 222 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 223 224 // Need to check for possible indirect dependencies on the other half of the 225 // vector to avoid introducing a cycle. 226 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 227 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 228 229 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 230 SDValue Ops[] = { 231 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 232 }; 233 234 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 235 if (LdHi->getMemoryVT() == MVT::i8) { 236 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 237 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 238 } else { 239 assert(LdHi->getMemoryVT() == MVT::i16); 240 } 241 242 SDValue NewLoadHi = 243 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 244 Ops, LdHi->getMemoryVT(), 245 LdHi->getMemOperand()); 246 247 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 248 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 249 return true; 250 } 251 252 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 253 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 254 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 255 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 256 if (LdLo && Lo.hasOneUse()) { 257 SDValue TiedIn = getHi16Elt(Hi); 258 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 259 return false; 260 261 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 262 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 263 if (LdLo->getMemoryVT() == MVT::i8) { 264 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 265 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 266 } else { 267 assert(LdLo->getMemoryVT() == MVT::i16); 268 } 269 270 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 271 272 SDValue Ops[] = { 273 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 274 }; 275 276 SDValue NewLoadLo = 277 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 278 Ops, LdLo->getMemoryVT(), 279 LdLo->getMemOperand()); 280 281 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 282 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 283 return true; 284 } 285 286 return false; 287 } 288 289 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 290 if (!Subtarget->d16PreservesUnusedBits()) 291 return; 292 293 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 294 295 bool MadeChange = false; 296 while (Position != CurDAG->allnodes_begin()) { 297 SDNode *N = &*--Position; 298 if (N->use_empty()) 299 continue; 300 301 switch (N->getOpcode()) { 302 case ISD::BUILD_VECTOR: 303 MadeChange |= matchLoadD16FromBuildVector(N); 304 break; 305 default: 306 break; 307 } 308 } 309 310 if (MadeChange) { 311 CurDAG->RemoveDeadNodes(); 312 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 313 CurDAG->dump();); 314 } 315 } 316 317 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 318 if (TM.Options.NoNaNsFPMath) 319 return true; 320 321 // TODO: Move into isKnownNeverNaN 322 if (N->getFlags().hasNoNaNs()) 323 return true; 324 325 return CurDAG->isKnownNeverNaN(N); 326 } 327 328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 329 bool Negated) const { 330 if (N->isUndef()) 331 return true; 332 333 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 334 if (Negated) { 335 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 336 return TII->isInlineConstant(-C->getAPIntValue()); 337 338 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 339 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 340 341 } else { 342 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 343 return TII->isInlineConstant(C->getAPIntValue()); 344 345 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 346 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 347 } 348 349 return false; 350 } 351 352 /// Determine the register class for \p OpNo 353 /// \returns The register class of the virtual register that will be used for 354 /// the given operand number \OpNo or NULL if the register class cannot be 355 /// determined. 356 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 357 unsigned OpNo) const { 358 if (!N->isMachineOpcode()) { 359 if (N->getOpcode() == ISD::CopyToReg) { 360 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 361 if (Reg.isVirtual()) { 362 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 363 return MRI.getRegClass(Reg); 364 } 365 366 const SIRegisterInfo *TRI 367 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 368 return TRI->getPhysRegClass(Reg); 369 } 370 371 return nullptr; 372 } 373 374 switch (N->getMachineOpcode()) { 375 default: { 376 const MCInstrDesc &Desc = 377 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 378 unsigned OpIdx = Desc.getNumDefs() + OpNo; 379 if (OpIdx >= Desc.getNumOperands()) 380 return nullptr; 381 int RegClass = Desc.OpInfo[OpIdx].RegClass; 382 if (RegClass == -1) 383 return nullptr; 384 385 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 386 } 387 case AMDGPU::REG_SEQUENCE: { 388 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 389 const TargetRegisterClass *SuperRC = 390 Subtarget->getRegisterInfo()->getRegClass(RCID); 391 392 SDValue SubRegOp = N->getOperand(OpNo + 1); 393 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 394 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 395 SubRegIdx); 396 } 397 } 398 } 399 400 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 401 SDValue Glue) const { 402 SmallVector <SDValue, 8> Ops; 403 Ops.push_back(NewChain); // Replace the chain. 404 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 405 Ops.push_back(N->getOperand(i)); 406 407 Ops.push_back(Glue); 408 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 409 } 410 411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 412 const SITargetLowering& Lowering = 413 *static_cast<const SITargetLowering*>(getTargetLowering()); 414 415 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 416 417 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 418 return glueCopyToOp(N, M0, M0.getValue(1)); 419 } 420 421 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 422 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 423 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 424 if (Subtarget->ldsRequiresM0Init()) 425 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 426 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 427 MachineFunction &MF = CurDAG->getMachineFunction(); 428 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 429 return 430 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 431 } 432 return N; 433 } 434 435 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 436 EVT VT) const { 437 SDNode *Lo = CurDAG->getMachineNode( 438 AMDGPU::S_MOV_B32, DL, MVT::i32, 439 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 440 SDNode *Hi = 441 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 442 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 443 const SDValue Ops[] = { 444 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 445 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 446 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 447 448 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 449 } 450 451 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 452 EVT VT = N->getValueType(0); 453 unsigned NumVectorElts = VT.getVectorNumElements(); 454 EVT EltVT = VT.getVectorElementType(); 455 SDLoc DL(N); 456 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 458 if (NumVectorElts == 1) { 459 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 460 RegClass); 461 return; 462 } 463 464 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 465 "supported yet"); 466 // 32 = Max Num Vector Elements 467 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 468 // 1 = Vector Register Class 469 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 470 471 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 472 Triple::amdgcn; 473 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 474 bool IsRegSeq = true; 475 unsigned NOps = N->getNumOperands(); 476 for (unsigned i = 0; i < NOps; i++) { 477 // XXX: Why is this here? 478 if (isa<RegisterSDNode>(N->getOperand(i))) { 479 IsRegSeq = false; 480 break; 481 } 482 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 483 : R600RegisterInfo::getSubRegFromChannel(i); 484 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 485 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 486 } 487 if (NOps != NumVectorElts) { 488 // Fill in the missing undef elements if this was a scalar_to_vector. 489 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 490 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 491 DL, EltVT); 492 for (unsigned i = NOps; i < NumVectorElts; ++i) { 493 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 494 : R600RegisterInfo::getSubRegFromChannel(i); 495 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 496 RegSeqArgs[1 + (2 * i) + 1] = 497 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 498 } 499 } 500 501 if (!IsRegSeq) 502 SelectCode(N); 503 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 504 } 505 506 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 507 unsigned int Opc = N->getOpcode(); 508 if (N->isMachineOpcode()) { 509 N->setNodeId(-1); 510 return; // Already selected. 511 } 512 513 // isa<MemSDNode> almost works but is slightly too permissive for some DS 514 // intrinsics. 515 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 516 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 517 Opc == ISD::ATOMIC_LOAD_FADD || 518 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 519 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 520 N = glueCopyToM0LDSInit(N); 521 SelectCode(N); 522 return; 523 } 524 525 switch (Opc) { 526 default: 527 break; 528 // We are selecting i64 ADD here instead of custom lower it during 529 // DAG legalization, so we can fold some i64 ADDs used for address 530 // calculation into the LOAD and STORE instructions. 531 case ISD::ADDC: 532 case ISD::ADDE: 533 case ISD::SUBC: 534 case ISD::SUBE: { 535 if (N->getValueType(0) != MVT::i64) 536 break; 537 538 SelectADD_SUB_I64(N); 539 return; 540 } 541 case ISD::ADDCARRY: 542 case ISD::SUBCARRY: 543 if (N->getValueType(0) != MVT::i32) 544 break; 545 546 SelectAddcSubb(N); 547 return; 548 case ISD::UADDO: 549 case ISD::USUBO: { 550 SelectUADDO_USUBO(N); 551 return; 552 } 553 case AMDGPUISD::FMUL_W_CHAIN: { 554 SelectFMUL_W_CHAIN(N); 555 return; 556 } 557 case AMDGPUISD::FMA_W_CHAIN: { 558 SelectFMA_W_CHAIN(N); 559 return; 560 } 561 562 case ISD::SCALAR_TO_VECTOR: 563 case ISD::BUILD_VECTOR: { 564 EVT VT = N->getValueType(0); 565 unsigned NumVectorElts = VT.getVectorNumElements(); 566 if (VT.getScalarSizeInBits() == 16) { 567 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 568 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 569 ReplaceNode(N, Packed); 570 return; 571 } 572 } 573 574 break; 575 } 576 577 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 578 unsigned RegClassID = 579 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 580 SelectBuildVector(N, RegClassID); 581 return; 582 } 583 case ISD::BUILD_PAIR: { 584 SDValue RC, SubReg0, SubReg1; 585 SDLoc DL(N); 586 if (N->getValueType(0) == MVT::i128) { 587 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 588 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 589 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 590 } else if (N->getValueType(0) == MVT::i64) { 591 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 592 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 593 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 594 } else { 595 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 596 } 597 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 598 N->getOperand(1), SubReg1 }; 599 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 600 N->getValueType(0), Ops)); 601 return; 602 } 603 604 case ISD::Constant: 605 case ISD::ConstantFP: { 606 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 607 break; 608 609 uint64_t Imm; 610 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 611 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 612 else { 613 ConstantSDNode *C = cast<ConstantSDNode>(N); 614 Imm = C->getZExtValue(); 615 } 616 617 SDLoc DL(N); 618 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 619 return; 620 } 621 case AMDGPUISD::BFE_I32: 622 case AMDGPUISD::BFE_U32: { 623 // There is a scalar version available, but unlike the vector version which 624 // has a separate operand for the offset and width, the scalar version packs 625 // the width and offset into a single operand. Try to move to the scalar 626 // version if the offsets are constant, so that we can try to keep extended 627 // loads of kernel arguments in SGPRs. 628 629 // TODO: Technically we could try to pattern match scalar bitshifts of 630 // dynamic values, but it's probably not useful. 631 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 632 if (!Offset) 633 break; 634 635 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 636 if (!Width) 637 break; 638 639 bool Signed = Opc == AMDGPUISD::BFE_I32; 640 641 uint32_t OffsetVal = Offset->getZExtValue(); 642 uint32_t WidthVal = Width->getZExtValue(); 643 644 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 645 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 646 return; 647 } 648 case AMDGPUISD::DIV_SCALE: { 649 SelectDIV_SCALE(N); 650 return; 651 } 652 case AMDGPUISD::MAD_I64_I32: 653 case AMDGPUISD::MAD_U64_U32: { 654 SelectMAD_64_32(N); 655 return; 656 } 657 case ISD::CopyToReg: { 658 const SITargetLowering& Lowering = 659 *static_cast<const SITargetLowering*>(getTargetLowering()); 660 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 661 break; 662 } 663 case ISD::AND: 664 case ISD::SRL: 665 case ISD::SRA: 666 case ISD::SIGN_EXTEND_INREG: 667 if (N->getValueType(0) != MVT::i32) 668 break; 669 670 SelectS_BFE(N); 671 return; 672 case ISD::BRCOND: 673 SelectBRCOND(N); 674 return; 675 case ISD::FMAD: 676 case ISD::FMA: 677 SelectFMAD_FMA(N); 678 return; 679 case AMDGPUISD::ATOMIC_CMP_SWAP: 680 SelectATOMIC_CMP_SWAP(N); 681 return; 682 case AMDGPUISD::CVT_PKRTZ_F16_F32: 683 case AMDGPUISD::CVT_PKNORM_I16_F32: 684 case AMDGPUISD::CVT_PKNORM_U16_F32: 685 case AMDGPUISD::CVT_PK_U16_U32: 686 case AMDGPUISD::CVT_PK_I16_I32: { 687 // Hack around using a legal type if f16 is illegal. 688 if (N->getValueType(0) == MVT::i32) { 689 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 690 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 691 { N->getOperand(0), N->getOperand(1) }); 692 SelectCode(N); 693 return; 694 } 695 696 break; 697 } 698 case ISD::INTRINSIC_W_CHAIN: { 699 SelectINTRINSIC_W_CHAIN(N); 700 return; 701 } 702 case ISD::INTRINSIC_WO_CHAIN: { 703 SelectINTRINSIC_WO_CHAIN(N); 704 return; 705 } 706 case ISD::INTRINSIC_VOID: { 707 SelectINTRINSIC_VOID(N); 708 return; 709 } 710 } 711 712 SelectCode(N); 713 } 714 715 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 716 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 717 const Instruction *Term = BB->getTerminator(); 718 return Term->getMetadata("amdgpu.uniform") || 719 Term->getMetadata("structurizecfg.uniform"); 720 } 721 722 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 723 SDValue &N0, SDValue &N1) { 724 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 725 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 726 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 727 // (i64 (bitcast (v2i32 (build_vector 728 // (or (extract_vector_elt V, 0), OFFSET), 729 // (extract_vector_elt V, 1))))) 730 SDValue Lo = Addr.getOperand(0).getOperand(0); 731 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 732 SDValue BaseLo = Lo.getOperand(0); 733 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 734 // Check that split base (Lo and Hi) are extracted from the same one. 735 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 736 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 737 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 738 // Lo is statically extracted from index 0. 739 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 740 BaseLo.getConstantOperandVal(1) == 0 && 741 // Hi is statically extracted from index 0. 742 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 743 BaseHi.getConstantOperandVal(1) == 1) { 744 N0 = BaseLo.getOperand(0).getOperand(0); 745 N1 = Lo.getOperand(1); 746 return true; 747 } 748 } 749 } 750 return false; 751 } 752 753 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 754 SDValue &RHS) const { 755 if (CurDAG->isBaseWithConstantOffset(Addr)) { 756 LHS = Addr.getOperand(0); 757 RHS = Addr.getOperand(1); 758 return true; 759 } 760 761 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 762 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 763 return true; 764 } 765 766 return false; 767 } 768 769 StringRef AMDGPUDAGToDAGISel::getPassName() const { 770 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 771 } 772 773 //===----------------------------------------------------------------------===// 774 // Complex Patterns 775 //===----------------------------------------------------------------------===// 776 777 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 778 SDValue &Offset) { 779 return false; 780 } 781 782 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 783 SDValue &Offset) { 784 ConstantSDNode *C; 785 SDLoc DL(Addr); 786 787 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 788 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 789 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 790 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 791 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 792 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 793 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 794 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 795 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 796 Base = Addr.getOperand(0); 797 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 798 } else { 799 Base = Addr; 800 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 801 } 802 803 return true; 804 } 805 806 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 807 const SDLoc &DL) const { 808 SDNode *Mov = CurDAG->getMachineNode( 809 AMDGPU::S_MOV_B32, DL, MVT::i32, 810 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 811 return SDValue(Mov, 0); 812 } 813 814 // FIXME: Should only handle addcarry/subcarry 815 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 816 SDLoc DL(N); 817 SDValue LHS = N->getOperand(0); 818 SDValue RHS = N->getOperand(1); 819 820 unsigned Opcode = N->getOpcode(); 821 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 822 bool ProduceCarry = 823 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 824 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 825 826 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 827 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 828 829 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 830 DL, MVT::i32, LHS, Sub0); 831 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 832 DL, MVT::i32, LHS, Sub1); 833 834 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 835 DL, MVT::i32, RHS, Sub0); 836 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 837 DL, MVT::i32, RHS, Sub1); 838 839 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 840 841 static const unsigned OpcMap[2][2][2] = { 842 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 843 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 844 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 845 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 846 847 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 848 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 849 850 SDNode *AddLo; 851 if (!ConsumeCarry) { 852 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 853 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 854 } else { 855 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 856 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 857 } 858 SDValue AddHiArgs[] = { 859 SDValue(Hi0, 0), 860 SDValue(Hi1, 0), 861 SDValue(AddLo, 1) 862 }; 863 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 864 865 SDValue RegSequenceArgs[] = { 866 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 867 SDValue(AddLo,0), 868 Sub0, 869 SDValue(AddHi,0), 870 Sub1, 871 }; 872 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 873 MVT::i64, RegSequenceArgs); 874 875 if (ProduceCarry) { 876 // Replace the carry-use 877 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 878 } 879 880 // Replace the remaining uses. 881 ReplaceNode(N, RegSequence); 882 } 883 884 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 885 SDLoc DL(N); 886 SDValue LHS = N->getOperand(0); 887 SDValue RHS = N->getOperand(1); 888 SDValue CI = N->getOperand(2); 889 890 if (N->isDivergent()) { 891 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 892 : AMDGPU::V_SUBB_U32_e64; 893 CurDAG->SelectNodeTo( 894 N, Opc, N->getVTList(), 895 {LHS, RHS, CI, 896 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 897 } else { 898 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 899 : AMDGPU::S_SUB_CO_PSEUDO; 900 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 901 } 902 } 903 904 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 905 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 906 // carry out despite the _i32 name. These were renamed in VI to _U32. 907 // FIXME: We should probably rename the opcodes here. 908 bool IsAdd = N->getOpcode() == ISD::UADDO; 909 bool IsVALU = N->isDivergent(); 910 911 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 912 ++UI) 913 if (UI.getUse().getResNo() == 1) { 914 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 915 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 916 IsVALU = true; 917 break; 918 } 919 } 920 921 if (IsVALU) { 922 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 923 924 CurDAG->SelectNodeTo( 925 N, Opc, N->getVTList(), 926 {N->getOperand(0), N->getOperand(1), 927 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 928 } else { 929 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 930 : AMDGPU::S_USUBO_PSEUDO; 931 932 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 933 {N->getOperand(0), N->getOperand(1)}); 934 } 935 } 936 937 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 938 SDLoc SL(N); 939 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 940 SDValue Ops[10]; 941 942 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 943 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 944 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 945 Ops[8] = N->getOperand(0); 946 Ops[9] = N->getOperand(4); 947 948 // If there are no source modifiers, prefer fmac over fma because it can use 949 // the smaller VOP2 encoding. 950 bool UseFMAC = Subtarget->hasDLInsts() && 951 cast<ConstantSDNode>(Ops[0])->isZero() && 952 cast<ConstantSDNode>(Ops[2])->isZero() && 953 cast<ConstantSDNode>(Ops[4])->isZero(); 954 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 955 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 956 } 957 958 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 959 SDLoc SL(N); 960 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 961 SDValue Ops[8]; 962 963 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 964 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 965 Ops[6] = N->getOperand(0); 966 Ops[7] = N->getOperand(3); 967 968 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 969 } 970 971 // We need to handle this here because tablegen doesn't support matching 972 // instructions with multiple outputs. 973 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 974 SDLoc SL(N); 975 EVT VT = N->getValueType(0); 976 977 assert(VT == MVT::f32 || VT == MVT::f64); 978 979 unsigned Opc 980 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 981 982 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 983 // omod 984 SDValue Ops[8]; 985 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 986 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 987 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 988 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 989 } 990 991 // We need to handle this here because tablegen doesn't support matching 992 // instructions with multiple outputs. 993 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 994 SDLoc SL(N); 995 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 996 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 997 998 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 999 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1000 Clamp }; 1001 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1002 } 1003 1004 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1005 if (!isUInt<16>(Offset)) 1006 return false; 1007 1008 if (!Base || Subtarget->hasUsableDSOffset() || 1009 Subtarget->unsafeDSOffsetFoldingEnabled()) 1010 return true; 1011 1012 // On Southern Islands instruction with a negative base value and an offset 1013 // don't seem to work. 1014 return CurDAG->SignBitIsZero(Base); 1015 } 1016 1017 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1018 SDValue &Offset) const { 1019 SDLoc DL(Addr); 1020 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1021 SDValue N0 = Addr.getOperand(0); 1022 SDValue N1 = Addr.getOperand(1); 1023 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1024 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1025 // (add n0, c0) 1026 Base = N0; 1027 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1028 return true; 1029 } 1030 } else if (Addr.getOpcode() == ISD::SUB) { 1031 // sub C, x -> add (sub 0, x), C 1032 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1033 int64_t ByteOffset = C->getSExtValue(); 1034 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1035 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1036 1037 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1038 // the known bits in isDSOffsetLegal. We need to emit the selected node 1039 // here, so this is thrown away. 1040 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1041 Zero, Addr.getOperand(1)); 1042 1043 if (isDSOffsetLegal(Sub, ByteOffset)) { 1044 SmallVector<SDValue, 3> Opnds; 1045 Opnds.push_back(Zero); 1046 Opnds.push_back(Addr.getOperand(1)); 1047 1048 // FIXME: Select to VOP3 version for with-carry. 1049 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1050 if (Subtarget->hasAddNoCarry()) { 1051 SubOp = AMDGPU::V_SUB_U32_e64; 1052 Opnds.push_back( 1053 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1054 } 1055 1056 MachineSDNode *MachineSub = 1057 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1058 1059 Base = SDValue(MachineSub, 0); 1060 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1061 return true; 1062 } 1063 } 1064 } 1065 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1066 // If we have a constant address, prefer to put the constant into the 1067 // offset. This can save moves to load the constant address since multiple 1068 // operations can share the zero base address register, and enables merging 1069 // into read2 / write2 instructions. 1070 1071 SDLoc DL(Addr); 1072 1073 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1074 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1075 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1076 DL, MVT::i32, Zero); 1077 Base = SDValue(MovZero, 0); 1078 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1079 return true; 1080 } 1081 } 1082 1083 // default case 1084 Base = Addr; 1085 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1086 return true; 1087 } 1088 1089 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1090 unsigned Offset1, 1091 unsigned Size) const { 1092 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1093 return false; 1094 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1095 return false; 1096 1097 if (!Base || Subtarget->hasUsableDSOffset() || 1098 Subtarget->unsafeDSOffsetFoldingEnabled()) 1099 return true; 1100 1101 // On Southern Islands instruction with a negative base value and an offset 1102 // don't seem to work. 1103 return CurDAG->SignBitIsZero(Base); 1104 } 1105 1106 // TODO: If offset is too big, put low 16-bit into offset. 1107 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1108 SDValue &Offset0, 1109 SDValue &Offset1) const { 1110 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1111 } 1112 1113 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1114 SDValue &Offset0, 1115 SDValue &Offset1) const { 1116 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1117 } 1118 1119 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1120 SDValue &Offset0, SDValue &Offset1, 1121 unsigned Size) const { 1122 SDLoc DL(Addr); 1123 1124 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1125 SDValue N0 = Addr.getOperand(0); 1126 SDValue N1 = Addr.getOperand(1); 1127 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1128 unsigned OffsetValue0 = C1->getZExtValue(); 1129 unsigned OffsetValue1 = OffsetValue0 + Size; 1130 1131 // (add n0, c0) 1132 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1133 Base = N0; 1134 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1135 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1136 return true; 1137 } 1138 } else if (Addr.getOpcode() == ISD::SUB) { 1139 // sub C, x -> add (sub 0, x), C 1140 if (const ConstantSDNode *C = 1141 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1142 unsigned OffsetValue0 = C->getZExtValue(); 1143 unsigned OffsetValue1 = OffsetValue0 + Size; 1144 1145 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1146 SDLoc DL(Addr); 1147 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1148 1149 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1150 // the known bits in isDSOffsetLegal. We need to emit the selected node 1151 // here, so this is thrown away. 1152 SDValue Sub = 1153 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1154 1155 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1156 SmallVector<SDValue, 3> Opnds; 1157 Opnds.push_back(Zero); 1158 Opnds.push_back(Addr.getOperand(1)); 1159 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1160 if (Subtarget->hasAddNoCarry()) { 1161 SubOp = AMDGPU::V_SUB_U32_e64; 1162 Opnds.push_back( 1163 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1164 } 1165 1166 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1167 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1168 1169 Base = SDValue(MachineSub, 0); 1170 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1171 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1172 return true; 1173 } 1174 } 1175 } 1176 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1177 unsigned OffsetValue0 = CAddr->getZExtValue(); 1178 unsigned OffsetValue1 = OffsetValue0 + Size; 1179 1180 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1181 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1182 MachineSDNode *MovZero = 1183 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1184 Base = SDValue(MovZero, 0); 1185 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1186 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1187 return true; 1188 } 1189 } 1190 1191 // default case 1192 1193 Base = Addr; 1194 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1195 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1196 return true; 1197 } 1198 1199 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1200 SDValue &SOffset, SDValue &Offset, 1201 SDValue &Offen, SDValue &Idxen, 1202 SDValue &Addr64) const { 1203 // Subtarget prefers to use flat instruction 1204 // FIXME: This should be a pattern predicate and not reach here 1205 if (Subtarget->useFlatForGlobal()) 1206 return false; 1207 1208 SDLoc DL(Addr); 1209 1210 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1211 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1212 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1213 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1214 1215 ConstantSDNode *C1 = nullptr; 1216 SDValue N0 = Addr; 1217 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1218 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1219 if (isUInt<32>(C1->getZExtValue())) 1220 N0 = Addr.getOperand(0); 1221 else 1222 C1 = nullptr; 1223 } 1224 1225 if (N0.getOpcode() == ISD::ADD) { 1226 // (add N2, N3) -> addr64, or 1227 // (add (add N2, N3), C1) -> addr64 1228 SDValue N2 = N0.getOperand(0); 1229 SDValue N3 = N0.getOperand(1); 1230 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1231 1232 if (N2->isDivergent()) { 1233 if (N3->isDivergent()) { 1234 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1235 // addr64, and construct the resource from a 0 address. 1236 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1237 VAddr = N0; 1238 } else { 1239 // N2 is divergent, N3 is not. 1240 Ptr = N3; 1241 VAddr = N2; 1242 } 1243 } else { 1244 // N2 is not divergent. 1245 Ptr = N2; 1246 VAddr = N3; 1247 } 1248 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1249 } else if (N0->isDivergent()) { 1250 // N0 is divergent. Use it as the addr64, and construct the resource from a 1251 // 0 address. 1252 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1253 VAddr = N0; 1254 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1255 } else { 1256 // N0 -> offset, or 1257 // (N0 + C1) -> offset 1258 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1259 Ptr = N0; 1260 } 1261 1262 if (!C1) { 1263 // No offset. 1264 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1265 return true; 1266 } 1267 1268 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1269 // Legal offset for instruction. 1270 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1271 return true; 1272 } 1273 1274 // Illegal offset, store it in soffset. 1275 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1276 SOffset = 1277 SDValue(CurDAG->getMachineNode( 1278 AMDGPU::S_MOV_B32, DL, MVT::i32, 1279 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1280 0); 1281 return true; 1282 } 1283 1284 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1285 SDValue &VAddr, SDValue &SOffset, 1286 SDValue &Offset) const { 1287 SDValue Ptr, Offen, Idxen, Addr64; 1288 1289 // addr64 bit was removed for volcanic islands. 1290 // FIXME: This should be a pattern predicate and not reach here 1291 if (!Subtarget->hasAddr64()) 1292 return false; 1293 1294 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1295 return false; 1296 1297 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1298 if (C->getSExtValue()) { 1299 SDLoc DL(Addr); 1300 1301 const SITargetLowering& Lowering = 1302 *static_cast<const SITargetLowering*>(getTargetLowering()); 1303 1304 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1305 return true; 1306 } 1307 1308 return false; 1309 } 1310 1311 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1312 SDLoc DL(N); 1313 1314 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1315 SDValue TFI = 1316 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1317 1318 // We rebase the base address into an absolute stack address and hence 1319 // use constant 0 for soffset. This value must be retained until 1320 // frame elimination and eliminateFrameIndex will choose the appropriate 1321 // frame register if need be. 1322 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1323 } 1324 1325 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1326 SDValue Addr, SDValue &Rsrc, 1327 SDValue &VAddr, SDValue &SOffset, 1328 SDValue &ImmOffset) const { 1329 1330 SDLoc DL(Addr); 1331 MachineFunction &MF = CurDAG->getMachineFunction(); 1332 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1333 1334 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1335 1336 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1337 int64_t Imm = CAddr->getSExtValue(); 1338 const int64_t NullPtr = 1339 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1340 // Don't fold null pointer. 1341 if (Imm != NullPtr) { 1342 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1343 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1344 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1345 VAddr = SDValue(MovHighBits, 0); 1346 1347 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1348 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1349 return true; 1350 } 1351 } 1352 1353 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1354 // (add n0, c1) 1355 1356 SDValue N0 = Addr.getOperand(0); 1357 SDValue N1 = Addr.getOperand(1); 1358 1359 // Offsets in vaddr must be positive if range checking is enabled. 1360 // 1361 // The total computation of vaddr + soffset + offset must not overflow. If 1362 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1363 // overflowing. 1364 // 1365 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1366 // always perform a range check. If a negative vaddr base index was used, 1367 // this would fail the range check. The overall address computation would 1368 // compute a valid address, but this doesn't happen due to the range 1369 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1370 // 1371 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1372 // MUBUF vaddr, but not on older subtargets which can only do this if the 1373 // sign bit is known 0. 1374 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1375 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1376 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1377 CurDAG->SignBitIsZero(N0))) { 1378 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1379 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1380 return true; 1381 } 1382 } 1383 1384 // (node) 1385 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1386 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1387 return true; 1388 } 1389 1390 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1391 if (Val.getOpcode() != ISD::CopyFromReg) 1392 return false; 1393 auto RC = 1394 TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg()); 1395 return RC && TRI.isSGPRClass(RC); 1396 } 1397 1398 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1399 SDValue Addr, 1400 SDValue &SRsrc, 1401 SDValue &SOffset, 1402 SDValue &Offset) const { 1403 const SIRegisterInfo *TRI = 1404 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1405 MachineFunction &MF = CurDAG->getMachineFunction(); 1406 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1407 SDLoc DL(Addr); 1408 1409 // CopyFromReg <sgpr> 1410 if (IsCopyFromSGPR(*TRI, Addr)) { 1411 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1412 SOffset = Addr; 1413 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1414 return true; 1415 } 1416 1417 ConstantSDNode *CAddr; 1418 if (Addr.getOpcode() == ISD::ADD) { 1419 // Add (CopyFromReg <sgpr>) <constant> 1420 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1421 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1422 return false; 1423 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1424 return false; 1425 1426 SOffset = Addr.getOperand(0); 1427 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1428 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1429 // <constant> 1430 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1431 } else { 1432 return false; 1433 } 1434 1435 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1436 1437 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1438 return true; 1439 } 1440 1441 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1442 SDValue &SOffset, SDValue &Offset 1443 ) const { 1444 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1445 const SIInstrInfo *TII = 1446 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1447 1448 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1449 return false; 1450 1451 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1452 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1453 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1454 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1455 APInt::getAllOnes(32).getZExtValue(); // Size 1456 SDLoc DL(Addr); 1457 1458 const SITargetLowering& Lowering = 1459 *static_cast<const SITargetLowering*>(getTargetLowering()); 1460 1461 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1462 return true; 1463 } 1464 return false; 1465 } 1466 1467 // Find a load or store from corresponding pattern root. 1468 // Roots may be build_vector, bitconvert or their combinations. 1469 static MemSDNode* findMemSDNode(SDNode *N) { 1470 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1471 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1472 return MN; 1473 assert(isa<BuildVectorSDNode>(N)); 1474 for (SDValue V : N->op_values()) 1475 if (MemSDNode *MN = 1476 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1477 return MN; 1478 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1479 } 1480 1481 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1482 SDValue &VAddr, SDValue &Offset, 1483 uint64_t FlatVariant) const { 1484 int64_t OffsetVal = 0; 1485 1486 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1487 1488 bool CanHaveFlatSegmentOffsetBug = 1489 Subtarget->hasFlatSegmentOffsetBug() && 1490 FlatVariant == SIInstrFlags::FLAT && 1491 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1492 1493 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1494 SDValue N0, N1; 1495 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1496 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1497 1498 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1499 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1500 Addr = N0; 1501 OffsetVal = COffsetVal; 1502 } else { 1503 // If the offset doesn't fit, put the low bits into the offset field and 1504 // add the rest. 1505 // 1506 // For a FLAT instruction the hardware decides whether to access 1507 // global/scratch/shared memory based on the high bits of vaddr, 1508 // ignoring the offset field, so we have to ensure that when we add 1509 // remainder to vaddr it still points into the same underlying object. 1510 // The easiest way to do that is to make sure that we split the offset 1511 // into two pieces that are both >= 0 or both <= 0. 1512 1513 SDLoc DL(N); 1514 uint64_t RemainderOffset; 1515 1516 std::tie(OffsetVal, RemainderOffset) = 1517 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1518 1519 SDValue AddOffsetLo = 1520 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1521 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1522 1523 if (Addr.getValueType().getSizeInBits() == 32) { 1524 SmallVector<SDValue, 3> Opnds; 1525 Opnds.push_back(N0); 1526 Opnds.push_back(AddOffsetLo); 1527 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1528 if (Subtarget->hasAddNoCarry()) { 1529 AddOp = AMDGPU::V_ADD_U32_e64; 1530 Opnds.push_back(Clamp); 1531 } 1532 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1533 } else { 1534 // TODO: Should this try to use a scalar add pseudo if the base address 1535 // is uniform and saddr is usable? 1536 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1537 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1538 1539 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1540 DL, MVT::i32, N0, Sub0); 1541 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1542 DL, MVT::i32, N0, Sub1); 1543 1544 SDValue AddOffsetHi = 1545 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1546 1547 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1548 1549 SDNode *Add = 1550 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1551 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1552 1553 SDNode *Addc = CurDAG->getMachineNode( 1554 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1555 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1556 1557 SDValue RegSequenceArgs[] = { 1558 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1559 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1560 1561 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1562 MVT::i64, RegSequenceArgs), 1563 0); 1564 } 1565 } 1566 } 1567 } 1568 1569 VAddr = Addr; 1570 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1571 return true; 1572 } 1573 1574 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1575 SDValue &VAddr, 1576 SDValue &Offset) const { 1577 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1578 } 1579 1580 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1581 SDValue &VAddr, 1582 SDValue &Offset) const { 1583 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1584 } 1585 1586 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1587 SDValue &VAddr, 1588 SDValue &Offset) const { 1589 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1590 SIInstrFlags::FlatScratch); 1591 } 1592 1593 // If this matches zero_extend i32:x, return x 1594 static SDValue matchZExtFromI32(SDValue Op) { 1595 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1596 return SDValue(); 1597 1598 SDValue ExtSrc = Op.getOperand(0); 1599 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1600 } 1601 1602 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1603 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1604 SDValue Addr, 1605 SDValue &SAddr, 1606 SDValue &VOffset, 1607 SDValue &Offset) const { 1608 int64_t ImmOffset = 0; 1609 1610 // Match the immediate offset first, which canonically is moved as low as 1611 // possible. 1612 1613 SDValue LHS, RHS; 1614 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1615 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1616 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1617 1618 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1619 SIInstrFlags::FlatGlobal)) { 1620 Addr = LHS; 1621 ImmOffset = COffsetVal; 1622 } else if (!LHS->isDivergent()) { 1623 if (COffsetVal > 0) { 1624 SDLoc SL(N); 1625 // saddr + large_offset -> saddr + 1626 // (voffset = large_offset & ~MaxOffset) + 1627 // (large_offset & MaxOffset); 1628 int64_t SplitImmOffset, RemainderOffset; 1629 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1630 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1631 1632 if (isUInt<32>(RemainderOffset)) { 1633 SDNode *VMov = CurDAG->getMachineNode( 1634 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1635 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1636 VOffset = SDValue(VMov, 0); 1637 SAddr = LHS; 1638 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1639 return true; 1640 } 1641 } 1642 1643 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1644 // is 1 we would need to perform 1 or 2 extra moves for each half of 1645 // the constant and it is better to do a scalar add and then issue a 1646 // single VALU instruction to materialize zero. Otherwise it is less 1647 // instructions to perform VALU adds with immediates or inline literals. 1648 unsigned NumLiterals = 1649 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1650 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1651 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1652 return false; 1653 } 1654 } 1655 1656 // Match the variable offset. 1657 if (Addr.getOpcode() == ISD::ADD) { 1658 LHS = Addr.getOperand(0); 1659 RHS = Addr.getOperand(1); 1660 1661 if (!LHS->isDivergent()) { 1662 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1663 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1664 SAddr = LHS; 1665 VOffset = ZextRHS; 1666 } 1667 } 1668 1669 if (!SAddr && !RHS->isDivergent()) { 1670 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1671 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1672 SAddr = RHS; 1673 VOffset = ZextLHS; 1674 } 1675 } 1676 1677 if (SAddr) { 1678 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1679 return true; 1680 } 1681 } 1682 1683 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1684 isa<ConstantSDNode>(Addr)) 1685 return false; 1686 1687 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1688 // moves required to copy a 64-bit SGPR to VGPR. 1689 SAddr = Addr; 1690 SDNode *VMov = 1691 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1692 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1693 VOffset = SDValue(VMov, 0); 1694 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1695 return true; 1696 } 1697 1698 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1699 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1700 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1701 } else if (SAddr.getOpcode() == ISD::ADD && 1702 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1703 // Materialize this into a scalar move for scalar address to avoid 1704 // readfirstlane. 1705 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1706 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1707 FI->getValueType(0)); 1708 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1709 MVT::i32, TFI, SAddr.getOperand(1)), 1710 0); 1711 } 1712 1713 return SAddr; 1714 } 1715 1716 // Match (32-bit SGPR base) + sext(imm offset) 1717 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1718 SDValue &SAddr, 1719 SDValue &Offset) const { 1720 if (Addr->isDivergent()) 1721 return false; 1722 1723 SDLoc DL(Addr); 1724 1725 int64_t COffsetVal = 0; 1726 1727 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1728 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1729 SAddr = Addr.getOperand(0); 1730 } else { 1731 SAddr = Addr; 1732 } 1733 1734 SAddr = SelectSAddrFI(CurDAG, SAddr); 1735 1736 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1737 1738 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1739 SIInstrFlags::FlatScratch)) { 1740 int64_t SplitImmOffset, RemainderOffset; 1741 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1742 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1743 1744 COffsetVal = SplitImmOffset; 1745 1746 SDValue AddOffset = 1747 SAddr.getOpcode() == ISD::TargetFrameIndex 1748 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1749 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1750 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1751 SAddr, AddOffset), 1752 0); 1753 } 1754 1755 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1756 1757 return true; 1758 } 1759 1760 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1761 SDValue &Offset, bool &Imm) const { 1762 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1763 if (!C) { 1764 if (ByteOffsetNode.getValueType().isScalarInteger() && 1765 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1766 Offset = ByteOffsetNode; 1767 Imm = false; 1768 return true; 1769 } 1770 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1771 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1772 Offset = ByteOffsetNode.getOperand(0); 1773 Imm = false; 1774 return true; 1775 } 1776 } 1777 return false; 1778 } 1779 1780 SDLoc SL(ByteOffsetNode); 1781 // GFX9 and GFX10 have signed byte immediate offsets. 1782 int64_t ByteOffset = C->getSExtValue(); 1783 Optional<int64_t> EncodedOffset = 1784 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1785 if (EncodedOffset) { 1786 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1787 Imm = true; 1788 return true; 1789 } 1790 1791 // SGPR and literal offsets are unsigned. 1792 if (ByteOffset < 0) 1793 return false; 1794 1795 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1796 if (EncodedOffset) { 1797 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1798 return true; 1799 } 1800 1801 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1802 return false; 1803 1804 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1805 Offset = SDValue( 1806 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1807 1808 return true; 1809 } 1810 1811 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1812 if (Addr.getValueType() != MVT::i32) 1813 return Addr; 1814 1815 // Zero-extend a 32-bit address. 1816 SDLoc SL(Addr); 1817 1818 const MachineFunction &MF = CurDAG->getMachineFunction(); 1819 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1820 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1821 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1822 1823 const SDValue Ops[] = { 1824 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1825 Addr, 1826 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1827 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1828 0), 1829 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1830 }; 1831 1832 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1833 Ops), 0); 1834 } 1835 1836 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1837 SDValue &Offset, bool &Imm) const { 1838 SDLoc SL(Addr); 1839 1840 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1841 // wraparound, because s_load instructions perform the addition in 64 bits. 1842 if ((Addr.getValueType() != MVT::i32 || 1843 Addr->getFlags().hasNoUnsignedWrap())) { 1844 SDValue N0, N1; 1845 // Extract the base and offset if possible. 1846 if (CurDAG->isBaseWithConstantOffset(Addr) || 1847 Addr.getOpcode() == ISD::ADD) { 1848 N0 = Addr.getOperand(0); 1849 N1 = Addr.getOperand(1); 1850 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1851 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1852 } 1853 if (N0 && N1) { 1854 if (SelectSMRDOffset(N1, Offset, Imm)) { 1855 SBase = Expand32BitAddress(N0); 1856 return true; 1857 } 1858 } 1859 } 1860 SBase = Expand32BitAddress(Addr); 1861 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1862 Imm = true; 1863 return true; 1864 } 1865 1866 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1867 SDValue &Offset) const { 1868 bool Imm = false; 1869 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1870 } 1871 1872 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1873 SDValue &Offset) const { 1874 1875 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1876 1877 bool Imm = false; 1878 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1879 return false; 1880 1881 return !Imm && isa<ConstantSDNode>(Offset); 1882 } 1883 1884 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1885 SDValue &Offset) const { 1886 bool Imm = false; 1887 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1888 !isa<ConstantSDNode>(Offset); 1889 } 1890 1891 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1892 SDValue &Offset) const { 1893 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1894 // The immediate offset for S_BUFFER instructions is unsigned. 1895 if (auto Imm = 1896 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 1897 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1898 return true; 1899 } 1900 } 1901 1902 return false; 1903 } 1904 1905 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 1906 SDValue &Offset) const { 1907 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1908 1909 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1910 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 1911 C->getZExtValue())) { 1912 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1913 return true; 1914 } 1915 } 1916 1917 return false; 1918 } 1919 1920 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 1921 SDValue &Base, 1922 SDValue &Offset) const { 1923 SDLoc DL(Index); 1924 1925 if (CurDAG->isBaseWithConstantOffset(Index)) { 1926 SDValue N0 = Index.getOperand(0); 1927 SDValue N1 = Index.getOperand(1); 1928 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1929 1930 // (add n0, c0) 1931 // Don't peel off the offset (c0) if doing so could possibly lead 1932 // the base (n0) to be negative. 1933 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 1934 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 1935 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 1936 Base = N0; 1937 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 1938 return true; 1939 } 1940 } 1941 1942 if (isa<ConstantSDNode>(Index)) 1943 return false; 1944 1945 Base = Index; 1946 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1947 return true; 1948 } 1949 1950 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 1951 SDValue Val, uint32_t Offset, 1952 uint32_t Width) { 1953 // Transformation function, pack the offset and width of a BFE into 1954 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 1955 // source, bits [5:0] contain the offset and bits [22:16] the width. 1956 uint32_t PackedVal = Offset | (Width << 16); 1957 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 1958 1959 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 1960 } 1961 1962 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 1963 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 1964 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 1965 // Predicate: 0 < b <= c < 32 1966 1967 const SDValue &Shl = N->getOperand(0); 1968 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 1969 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1970 1971 if (B && C) { 1972 uint32_t BVal = B->getZExtValue(); 1973 uint32_t CVal = C->getZExtValue(); 1974 1975 if (0 < BVal && BVal <= CVal && CVal < 32) { 1976 bool Signed = N->getOpcode() == ISD::SRA; 1977 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 1978 1979 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 1980 32 - CVal)); 1981 return; 1982 } 1983 } 1984 SelectCode(N); 1985 } 1986 1987 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 1988 switch (N->getOpcode()) { 1989 case ISD::AND: 1990 if (N->getOperand(0).getOpcode() == ISD::SRL) { 1991 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 1992 // Predicate: isMask(mask) 1993 const SDValue &Srl = N->getOperand(0); 1994 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 1995 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 1996 1997 if (Shift && Mask) { 1998 uint32_t ShiftVal = Shift->getZExtValue(); 1999 uint32_t MaskVal = Mask->getZExtValue(); 2000 2001 if (isMask_32(MaskVal)) { 2002 uint32_t WidthVal = countPopulation(MaskVal); 2003 2004 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2005 Srl.getOperand(0), ShiftVal, WidthVal)); 2006 return; 2007 } 2008 } 2009 } 2010 break; 2011 case ISD::SRL: 2012 if (N->getOperand(0).getOpcode() == ISD::AND) { 2013 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2014 // Predicate: isMask(mask >> b) 2015 const SDValue &And = N->getOperand(0); 2016 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2017 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2018 2019 if (Shift && Mask) { 2020 uint32_t ShiftVal = Shift->getZExtValue(); 2021 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2022 2023 if (isMask_32(MaskVal)) { 2024 uint32_t WidthVal = countPopulation(MaskVal); 2025 2026 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2027 And.getOperand(0), ShiftVal, WidthVal)); 2028 return; 2029 } 2030 } 2031 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2032 SelectS_BFEFromShifts(N); 2033 return; 2034 } 2035 break; 2036 case ISD::SRA: 2037 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2038 SelectS_BFEFromShifts(N); 2039 return; 2040 } 2041 break; 2042 2043 case ISD::SIGN_EXTEND_INREG: { 2044 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2045 SDValue Src = N->getOperand(0); 2046 if (Src.getOpcode() != ISD::SRL) 2047 break; 2048 2049 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2050 if (!Amt) 2051 break; 2052 2053 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2054 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2055 Amt->getZExtValue(), Width)); 2056 return; 2057 } 2058 } 2059 2060 SelectCode(N); 2061 } 2062 2063 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2064 assert(N->getOpcode() == ISD::BRCOND); 2065 if (!N->hasOneUse()) 2066 return false; 2067 2068 SDValue Cond = N->getOperand(1); 2069 if (Cond.getOpcode() == ISD::CopyToReg) 2070 Cond = Cond.getOperand(2); 2071 2072 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2073 return false; 2074 2075 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2076 if (VT == MVT::i32) 2077 return true; 2078 2079 if (VT == MVT::i64) { 2080 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2081 2082 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2083 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2084 } 2085 2086 return false; 2087 } 2088 2089 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2090 SDValue Cond = N->getOperand(1); 2091 2092 if (Cond.isUndef()) { 2093 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2094 N->getOperand(2), N->getOperand(0)); 2095 return; 2096 } 2097 2098 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2099 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2100 2101 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2102 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2103 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2104 SDLoc SL(N); 2105 2106 if (!UseSCCBr) { 2107 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2108 // analyzed what generates the vcc value, so we do not know whether vcc 2109 // bits for disabled lanes are 0. Thus we need to mask out bits for 2110 // disabled lanes. 2111 // 2112 // For the case that we select S_CBRANCH_SCC1 and it gets 2113 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2114 // SIInstrInfo::moveToVALU which inserts the S_AND). 2115 // 2116 // We could add an analysis of what generates the vcc value here and omit 2117 // the S_AND when is unnecessary. But it would be better to add a separate 2118 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2119 // catches both cases. 2120 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2121 : AMDGPU::S_AND_B64, 2122 SL, MVT::i1, 2123 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2124 : AMDGPU::EXEC, 2125 MVT::i1), 2126 Cond), 2127 0); 2128 } 2129 2130 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2131 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2132 N->getOperand(2), // Basic Block 2133 VCC.getValue(0)); 2134 } 2135 2136 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2137 MVT VT = N->getSimpleValueType(0); 2138 bool IsFMA = N->getOpcode() == ISD::FMA; 2139 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2140 !Subtarget->hasFmaMixInsts()) || 2141 ((IsFMA && Subtarget->hasMadMixInsts()) || 2142 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2143 SelectCode(N); 2144 return; 2145 } 2146 2147 SDValue Src0 = N->getOperand(0); 2148 SDValue Src1 = N->getOperand(1); 2149 SDValue Src2 = N->getOperand(2); 2150 unsigned Src0Mods, Src1Mods, Src2Mods; 2151 2152 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2153 // using the conversion from f16. 2154 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2155 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2156 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2157 2158 assert((IsFMA || !Mode.allFP32Denormals()) && 2159 "fmad selected with denormals enabled"); 2160 // TODO: We can select this with f32 denormals enabled if all the sources are 2161 // converted from f16 (in which case fmad isn't legal). 2162 2163 if (Sel0 || Sel1 || Sel2) { 2164 // For dummy operands. 2165 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2166 SDValue Ops[] = { 2167 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2168 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2169 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2170 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2171 Zero, Zero 2172 }; 2173 2174 CurDAG->SelectNodeTo(N, 2175 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2176 MVT::f32, Ops); 2177 } else { 2178 SelectCode(N); 2179 } 2180 } 2181 2182 // This is here because there isn't a way to use the generated sub0_sub1 as the 2183 // subreg index to EXTRACT_SUBREG in tablegen. 2184 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2185 MemSDNode *Mem = cast<MemSDNode>(N); 2186 unsigned AS = Mem->getAddressSpace(); 2187 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2188 SelectCode(N); 2189 return; 2190 } 2191 2192 MVT VT = N->getSimpleValueType(0); 2193 bool Is32 = (VT == MVT::i32); 2194 SDLoc SL(N); 2195 2196 MachineSDNode *CmpSwap = nullptr; 2197 if (Subtarget->hasAddr64()) { 2198 SDValue SRsrc, VAddr, SOffset, Offset; 2199 2200 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) { 2201 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2202 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2203 SDValue CmpVal = Mem->getOperand(2); 2204 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2205 2206 // XXX - Do we care about glue operands? 2207 2208 SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol, 2209 Mem->getChain()}; 2210 2211 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2212 } 2213 } 2214 2215 if (!CmpSwap) { 2216 SDValue SRsrc, SOffset, Offset; 2217 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) { 2218 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2219 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2220 2221 SDValue CmpVal = Mem->getOperand(2); 2222 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2223 SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()}; 2224 2225 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2226 } 2227 } 2228 2229 if (!CmpSwap) { 2230 SelectCode(N); 2231 return; 2232 } 2233 2234 MachineMemOperand *MMO = Mem->getMemOperand(); 2235 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2236 2237 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2238 SDValue Extract 2239 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2240 2241 ReplaceUses(SDValue(N, 0), Extract); 2242 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2243 CurDAG->RemoveDeadNode(N); 2244 } 2245 2246 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2247 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2248 // be copied to an SGPR with readfirstlane. 2249 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2250 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2251 2252 SDValue Chain = N->getOperand(0); 2253 SDValue Ptr = N->getOperand(2); 2254 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2255 MachineMemOperand *MMO = M->getMemOperand(); 2256 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2257 2258 SDValue Offset; 2259 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2260 SDValue PtrBase = Ptr.getOperand(0); 2261 SDValue PtrOffset = Ptr.getOperand(1); 2262 2263 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2264 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2265 N = glueCopyToM0(N, PtrBase); 2266 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2267 } 2268 } 2269 2270 if (!Offset) { 2271 N = glueCopyToM0(N, Ptr); 2272 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2273 } 2274 2275 SDValue Ops[] = { 2276 Offset, 2277 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2278 Chain, 2279 N->getOperand(N->getNumOperands() - 1) // New glue 2280 }; 2281 2282 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2283 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2284 } 2285 2286 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2287 switch (IntrID) { 2288 case Intrinsic::amdgcn_ds_gws_init: 2289 return AMDGPU::DS_GWS_INIT; 2290 case Intrinsic::amdgcn_ds_gws_barrier: 2291 return AMDGPU::DS_GWS_BARRIER; 2292 case Intrinsic::amdgcn_ds_gws_sema_v: 2293 return AMDGPU::DS_GWS_SEMA_V; 2294 case Intrinsic::amdgcn_ds_gws_sema_br: 2295 return AMDGPU::DS_GWS_SEMA_BR; 2296 case Intrinsic::amdgcn_ds_gws_sema_p: 2297 return AMDGPU::DS_GWS_SEMA_P; 2298 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2299 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2300 default: 2301 llvm_unreachable("not a gws intrinsic"); 2302 } 2303 } 2304 2305 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2306 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2307 !Subtarget->hasGWSSemaReleaseAll()) { 2308 // Let this error. 2309 SelectCode(N); 2310 return; 2311 } 2312 2313 // Chain, intrinsic ID, vsrc, offset 2314 const bool HasVSrc = N->getNumOperands() == 4; 2315 assert(HasVSrc || N->getNumOperands() == 3); 2316 2317 SDLoc SL(N); 2318 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2319 int ImmOffset = 0; 2320 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2321 MachineMemOperand *MMO = M->getMemOperand(); 2322 2323 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2324 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2325 2326 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2327 // offset field) % 64. Some versions of the programming guide omit the m0 2328 // part, or claim it's from offset 0. 2329 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2330 // If we have a constant offset, try to use the 0 in m0 as the base. 2331 // TODO: Look into changing the default m0 initialization value. If the 2332 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2333 // the immediate offset. 2334 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2335 ImmOffset = ConstOffset->getZExtValue(); 2336 } else { 2337 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2338 ImmOffset = BaseOffset.getConstantOperandVal(1); 2339 BaseOffset = BaseOffset.getOperand(0); 2340 } 2341 2342 // Prefer to do the shift in an SGPR since it should be possible to use m0 2343 // as the result directly. If it's already an SGPR, it will be eliminated 2344 // later. 2345 SDNode *SGPROffset 2346 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2347 BaseOffset); 2348 // Shift to offset in m0 2349 SDNode *M0Base 2350 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2351 SDValue(SGPROffset, 0), 2352 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2353 glueCopyToM0(N, SDValue(M0Base, 0)); 2354 } 2355 2356 SDValue Chain = N->getOperand(0); 2357 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2358 2359 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2360 SmallVector<SDValue, 5> Ops; 2361 if (HasVSrc) 2362 Ops.push_back(N->getOperand(2)); 2363 Ops.push_back(OffsetField); 2364 Ops.push_back(Chain); 2365 2366 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2367 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2368 } 2369 2370 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2371 if (Subtarget->getLDSBankCount() != 16) { 2372 // This is a single instruction with a pattern. 2373 SelectCode(N); 2374 return; 2375 } 2376 2377 SDLoc DL(N); 2378 2379 // This requires 2 instructions. It is possible to write a pattern to support 2380 // this, but the generated isel emitter doesn't correctly deal with multiple 2381 // output instructions using the same physical register input. The copy to m0 2382 // is incorrectly placed before the second instruction. 2383 // 2384 // TODO: Match source modifiers. 2385 // 2386 // def : Pat < 2387 // (int_amdgcn_interp_p1_f16 2388 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2389 // (i32 timm:$attrchan), (i32 timm:$attr), 2390 // (i1 timm:$high), M0), 2391 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2392 // timm:$attrchan, 0, 2393 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2394 // let Predicates = [has16BankLDS]; 2395 // } 2396 2397 // 16 bank LDS 2398 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2399 N->getOperand(5), SDValue()); 2400 2401 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2402 2403 SDNode *InterpMov = 2404 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2405 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2406 N->getOperand(3), // Attr 2407 N->getOperand(2), // Attrchan 2408 ToM0.getValue(1) // In glue 2409 }); 2410 2411 SDNode *InterpP1LV = 2412 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2413 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2414 N->getOperand(1), // Src0 2415 N->getOperand(3), // Attr 2416 N->getOperand(2), // Attrchan 2417 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2418 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2419 N->getOperand(4), // high 2420 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2421 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2422 SDValue(InterpMov, 1) 2423 }); 2424 2425 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2426 } 2427 2428 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2429 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2430 switch (IntrID) { 2431 case Intrinsic::amdgcn_ds_append: 2432 case Intrinsic::amdgcn_ds_consume: { 2433 if (N->getValueType(0) != MVT::i32) 2434 break; 2435 SelectDSAppendConsume(N, IntrID); 2436 return; 2437 } 2438 } 2439 2440 SelectCode(N); 2441 } 2442 2443 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2444 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2445 unsigned Opcode; 2446 switch (IntrID) { 2447 case Intrinsic::amdgcn_wqm: 2448 Opcode = AMDGPU::WQM; 2449 break; 2450 case Intrinsic::amdgcn_softwqm: 2451 Opcode = AMDGPU::SOFT_WQM; 2452 break; 2453 case Intrinsic::amdgcn_wwm: 2454 case Intrinsic::amdgcn_strict_wwm: 2455 Opcode = AMDGPU::STRICT_WWM; 2456 break; 2457 case Intrinsic::amdgcn_strict_wqm: 2458 Opcode = AMDGPU::STRICT_WQM; 2459 break; 2460 case Intrinsic::amdgcn_interp_p1_f16: 2461 SelectInterpP1F16(N); 2462 return; 2463 default: 2464 SelectCode(N); 2465 return; 2466 } 2467 2468 SDValue Src = N->getOperand(1); 2469 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2470 } 2471 2472 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2473 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2474 switch (IntrID) { 2475 case Intrinsic::amdgcn_ds_gws_init: 2476 case Intrinsic::amdgcn_ds_gws_barrier: 2477 case Intrinsic::amdgcn_ds_gws_sema_v: 2478 case Intrinsic::amdgcn_ds_gws_sema_br: 2479 case Intrinsic::amdgcn_ds_gws_sema_p: 2480 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2481 SelectDS_GWS(N, IntrID); 2482 return; 2483 default: 2484 break; 2485 } 2486 2487 SelectCode(N); 2488 } 2489 2490 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2491 unsigned &Mods, 2492 bool AllowAbs) const { 2493 Mods = 0; 2494 Src = In; 2495 2496 if (Src.getOpcode() == ISD::FNEG) { 2497 Mods |= SISrcMods::NEG; 2498 Src = Src.getOperand(0); 2499 } 2500 2501 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2502 Mods |= SISrcMods::ABS; 2503 Src = Src.getOperand(0); 2504 } 2505 2506 return true; 2507 } 2508 2509 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2510 SDValue &SrcMods) const { 2511 unsigned Mods; 2512 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2513 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2514 return true; 2515 } 2516 2517 return false; 2518 } 2519 2520 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2521 SDValue &SrcMods) const { 2522 unsigned Mods; 2523 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2524 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2525 return true; 2526 } 2527 2528 return false; 2529 } 2530 2531 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2532 SDValue &SrcMods) const { 2533 SelectVOP3Mods(In, Src, SrcMods); 2534 return isNoNanSrc(Src); 2535 } 2536 2537 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2538 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2539 return false; 2540 2541 Src = In; 2542 return true; 2543 } 2544 2545 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2546 SDValue &SrcMods, SDValue &Clamp, 2547 SDValue &Omod) const { 2548 SDLoc DL(In); 2549 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2550 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2551 2552 return SelectVOP3Mods(In, Src, SrcMods); 2553 } 2554 2555 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2556 SDValue &SrcMods, SDValue &Clamp, 2557 SDValue &Omod) const { 2558 SDLoc DL(In); 2559 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2560 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2561 2562 return SelectVOP3BMods(In, Src, SrcMods); 2563 } 2564 2565 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2566 SDValue &Clamp, SDValue &Omod) const { 2567 Src = In; 2568 2569 SDLoc DL(In); 2570 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2571 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2572 2573 return true; 2574 } 2575 2576 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2577 SDValue &SrcMods) const { 2578 unsigned Mods = 0; 2579 Src = In; 2580 2581 if (Src.getOpcode() == ISD::FNEG) { 2582 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2583 Src = Src.getOperand(0); 2584 } 2585 2586 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2587 unsigned VecMods = Mods; 2588 2589 SDValue Lo = stripBitcast(Src.getOperand(0)); 2590 SDValue Hi = stripBitcast(Src.getOperand(1)); 2591 2592 if (Lo.getOpcode() == ISD::FNEG) { 2593 Lo = stripBitcast(Lo.getOperand(0)); 2594 Mods ^= SISrcMods::NEG; 2595 } 2596 2597 if (Hi.getOpcode() == ISD::FNEG) { 2598 Hi = stripBitcast(Hi.getOperand(0)); 2599 Mods ^= SISrcMods::NEG_HI; 2600 } 2601 2602 if (isExtractHiElt(Lo, Lo)) 2603 Mods |= SISrcMods::OP_SEL_0; 2604 2605 if (isExtractHiElt(Hi, Hi)) 2606 Mods |= SISrcMods::OP_SEL_1; 2607 2608 unsigned VecSize = Src.getValueSizeInBits(); 2609 Lo = stripExtractLoElt(Lo); 2610 Hi = stripExtractLoElt(Hi); 2611 2612 if (Lo.getValueSizeInBits() > VecSize) { 2613 Lo = CurDAG->getTargetExtractSubreg( 2614 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2615 MVT::getIntegerVT(VecSize), Lo); 2616 } 2617 2618 if (Hi.getValueSizeInBits() > VecSize) { 2619 Hi = CurDAG->getTargetExtractSubreg( 2620 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2621 MVT::getIntegerVT(VecSize), Hi); 2622 } 2623 2624 assert(Lo.getValueSizeInBits() <= VecSize && 2625 Hi.getValueSizeInBits() <= VecSize); 2626 2627 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2628 // Really a scalar input. Just select from the low half of the register to 2629 // avoid packing. 2630 2631 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2632 Src = Lo; 2633 } else { 2634 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2635 2636 SDLoc SL(In); 2637 SDValue Undef = SDValue( 2638 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2639 Lo.getValueType()), 0); 2640 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2641 : AMDGPU::SReg_64RegClassID; 2642 const SDValue Ops[] = { 2643 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2644 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2645 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2646 2647 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2648 Src.getValueType(), Ops), 0); 2649 } 2650 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2651 return true; 2652 } 2653 2654 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2655 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2656 .bitcastToAPInt().getZExtValue(); 2657 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2658 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2659 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2660 return true; 2661 } 2662 } 2663 2664 Mods = VecMods; 2665 } 2666 2667 // Packed instructions do not have abs modifiers. 2668 Mods |= SISrcMods::OP_SEL_1; 2669 2670 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2671 return true; 2672 } 2673 2674 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2675 SDValue &SrcMods) const { 2676 Src = In; 2677 // FIXME: Handle op_sel 2678 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2679 return true; 2680 } 2681 2682 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2683 SDValue &SrcMods) const { 2684 // FIXME: Handle op_sel 2685 return SelectVOP3Mods(In, Src, SrcMods); 2686 } 2687 2688 // The return value is not whether the match is possible (which it always is), 2689 // but whether or not it a conversion is really used. 2690 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2691 unsigned &Mods) const { 2692 Mods = 0; 2693 SelectVOP3ModsImpl(In, Src, Mods); 2694 2695 if (Src.getOpcode() == ISD::FP_EXTEND) { 2696 Src = Src.getOperand(0); 2697 assert(Src.getValueType() == MVT::f16); 2698 Src = stripBitcast(Src); 2699 2700 // Be careful about folding modifiers if we already have an abs. fneg is 2701 // applied last, so we don't want to apply an earlier fneg. 2702 if ((Mods & SISrcMods::ABS) == 0) { 2703 unsigned ModsTmp; 2704 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2705 2706 if ((ModsTmp & SISrcMods::NEG) != 0) 2707 Mods ^= SISrcMods::NEG; 2708 2709 if ((ModsTmp & SISrcMods::ABS) != 0) 2710 Mods |= SISrcMods::ABS; 2711 } 2712 2713 // op_sel/op_sel_hi decide the source type and source. 2714 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2715 // If the sources's op_sel is set, it picks the high half of the source 2716 // register. 2717 2718 Mods |= SISrcMods::OP_SEL_1; 2719 if (isExtractHiElt(Src, Src)) { 2720 Mods |= SISrcMods::OP_SEL_0; 2721 2722 // TODO: Should we try to look for neg/abs here? 2723 } 2724 2725 return true; 2726 } 2727 2728 return false; 2729 } 2730 2731 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2732 SDValue &SrcMods) const { 2733 unsigned Mods = 0; 2734 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2735 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2736 return true; 2737 } 2738 2739 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2740 if (In.isUndef()) 2741 return CurDAG->getUNDEF(MVT::i32); 2742 2743 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2744 SDLoc SL(In); 2745 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2746 } 2747 2748 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2749 SDLoc SL(In); 2750 return CurDAG->getConstant( 2751 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2752 } 2753 2754 SDValue Src; 2755 if (isExtractHiElt(In, Src)) 2756 return Src; 2757 2758 return SDValue(); 2759 } 2760 2761 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2762 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2763 2764 const SIRegisterInfo *SIRI = 2765 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2766 const SIInstrInfo * SII = 2767 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2768 2769 unsigned Limit = 0; 2770 bool AllUsesAcceptSReg = true; 2771 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2772 Limit < 10 && U != E; ++U, ++Limit) { 2773 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2774 2775 // If the register class is unknown, it could be an unknown 2776 // register class that needs to be an SGPR, e.g. an inline asm 2777 // constraint 2778 if (!RC || SIRI->isSGPRClass(RC)) 2779 return false; 2780 2781 if (RC != &AMDGPU::VS_32RegClass) { 2782 AllUsesAcceptSReg = false; 2783 SDNode * User = *U; 2784 if (User->isMachineOpcode()) { 2785 unsigned Opc = User->getMachineOpcode(); 2786 MCInstrDesc Desc = SII->get(Opc); 2787 if (Desc.isCommutable()) { 2788 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2789 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2790 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2791 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2792 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2793 if (CommutedRC == &AMDGPU::VS_32RegClass) 2794 AllUsesAcceptSReg = true; 2795 } 2796 } 2797 } 2798 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2799 // commuting current user. This means have at least one use 2800 // that strictly require VGPR. Thus, we will not attempt to commute 2801 // other user instructions. 2802 if (!AllUsesAcceptSReg) 2803 break; 2804 } 2805 } 2806 return !AllUsesAcceptSReg && (Limit < 10); 2807 } 2808 2809 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2810 auto Ld = cast<LoadSDNode>(N); 2811 2812 return Ld->getAlignment() >= 4 && 2813 ( 2814 ( 2815 ( 2816 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2817 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2818 ) 2819 && 2820 !N->isDivergent() 2821 ) 2822 || 2823 ( 2824 Subtarget->getScalarizeGlobalBehavior() && 2825 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2826 Ld->isSimple() && 2827 !N->isDivergent() && 2828 static_cast<const SITargetLowering *>( 2829 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2830 ) 2831 ); 2832 } 2833 2834 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2835 const AMDGPUTargetLowering& Lowering = 2836 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2837 bool IsModified = false; 2838 do { 2839 IsModified = false; 2840 2841 // Go over all selected nodes and try to fold them a bit more 2842 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2843 while (Position != CurDAG->allnodes_end()) { 2844 SDNode *Node = &*Position++; 2845 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2846 if (!MachineNode) 2847 continue; 2848 2849 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2850 if (ResNode != Node) { 2851 if (ResNode) 2852 ReplaceUses(Node, ResNode); 2853 IsModified = true; 2854 } 2855 } 2856 CurDAG->RemoveDeadNodes(); 2857 } while (IsModified); 2858 } 2859