1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/SelectionDAGISel.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/ValueTypes.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/InitializePasses.h"
42 #ifdef EXPENSIVE_CHECKS
43 #include "llvm/IR/Dominators.h"
44 #endif
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/MC/MCInstrDesc.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CodeGen.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MachineValueType.h"
51 #include "llvm/Support/MathExtras.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <new>
55 #include <vector>
56 
57 #define DEBUG_TYPE "isel"
58 
59 using namespace llvm;
60 
61 namespace llvm {
62 
63 class R600InstrInfo;
64 
65 } // end namespace llvm
66 
67 //===----------------------------------------------------------------------===//
68 // Instruction Selector Implementation
69 //===----------------------------------------------------------------------===//
70 
71 namespace {
72 
73 static bool isNullConstantOrUndef(SDValue V) {
74   if (V.isUndef())
75     return true;
76 
77   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
78   return Const != nullptr && Const->isNullValue();
79 }
80 
81 static bool getConstantValue(SDValue N, uint32_t &Out) {
82   // This is only used for packed vectors, where ussing 0 for undef should
83   // always be good.
84   if (N.isUndef()) {
85     Out = 0;
86     return true;
87   }
88 
89   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
90     Out = C->getAPIntValue().getSExtValue();
91     return true;
92   }
93 
94   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
95     Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
96     return true;
97   }
98 
99   return false;
100 }
101 
102 // TODO: Handle undef as zero
103 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
104                                  bool Negate = false) {
105   assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
106   uint32_t LHSVal, RHSVal;
107   if (getConstantValue(N->getOperand(0), LHSVal) &&
108       getConstantValue(N->getOperand(1), RHSVal)) {
109     SDLoc SL(N);
110     uint32_t K = Negate ?
111       (-LHSVal & 0xffff) | (-RHSVal << 16) :
112       (LHSVal & 0xffff) | (RHSVal << 16);
113     return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
114                               DAG.getTargetConstant(K, SL, MVT::i32));
115   }
116 
117   return nullptr;
118 }
119 
120 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
121   return packConstantV2I16(N, DAG, true);
122 }
123 
124 /// AMDGPU specific code to select AMDGPU machine instructions for
125 /// SelectionDAG operations.
126 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
127   // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
128   // make the right decision when generating code for different targets.
129   const GCNSubtarget *Subtarget;
130 
131   // Default FP mode for the current function.
132   AMDGPU::SIModeRegisterDefaults Mode;
133 
134   bool EnableLateStructurizeCFG;
135 
136 public:
137   explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
138                               CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
139     : SelectionDAGISel(*TM, OptLevel) {
140     EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
141   }
142   ~AMDGPUDAGToDAGISel() override = default;
143 
144   void getAnalysisUsage(AnalysisUsage &AU) const override {
145     AU.addRequired<AMDGPUArgumentUsageInfo>();
146     AU.addRequired<LegacyDivergenceAnalysis>();
147 #ifdef EXPENSIVE_CHECKS
148     AU.addRequired<DominatorTreeWrapperPass>();
149     AU.addRequired<LoopInfoWrapperPass>();
150 #endif
151     SelectionDAGISel::getAnalysisUsage(AU);
152   }
153 
154   bool matchLoadD16FromBuildVector(SDNode *N) const;
155 
156   bool runOnMachineFunction(MachineFunction &MF) override;
157   void PreprocessISelDAG() override;
158   void Select(SDNode *N) override;
159   StringRef getPassName() const override;
160   void PostprocessISelDAG() override;
161 
162 protected:
163   void SelectBuildVector(SDNode *N, unsigned RegClassID);
164 
165 private:
166   std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
167   bool isNoNanSrc(SDValue N) const;
168   bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
169   bool isNegInlineImmediate(const SDNode *N) const {
170     return isInlineImmediate(N, true);
171   }
172 
173   bool isInlineImmediate16(int64_t Imm) const {
174     return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
175   }
176 
177   bool isInlineImmediate32(int64_t Imm) const {
178     return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
179   }
180 
181   bool isInlineImmediate64(int64_t Imm) const {
182     return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
183   }
184 
185   bool isInlineImmediate(const APFloat &Imm) const {
186     return Subtarget->getInstrInfo()->isInlineConstant(Imm);
187   }
188 
189   bool isVGPRImm(const SDNode *N) const;
190   bool isUniformLoad(const SDNode *N) const;
191   bool isUniformBr(const SDNode *N) const;
192 
193   MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
194 
195   SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
196   SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
197   SDNode *glueCopyToM0LDSInit(SDNode *N) const;
198 
199   const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
200   virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
201   virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
202   bool isDSOffsetLegal(SDValue Base, unsigned Offset,
203                        unsigned OffsetBits) const;
204   bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
205   bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
206                                  SDValue &Offset1) const;
207   bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
208                    SDValue &SOffset, SDValue &Offset, SDValue &Offen,
209                    SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
210                    SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
211   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
212                          SDValue &SOffset, SDValue &Offset, SDValue &GLC,
213                          SDValue &SLC, SDValue &TFE, SDValue &DLC,
214                          SDValue &SWZ) const;
215   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
216                          SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
217                          SDValue &SLC) const;
218   bool SelectMUBUFScratchOffen(SDNode *Parent,
219                                SDValue Addr, SDValue &RSrc, SDValue &VAddr,
220                                SDValue &SOffset, SDValue &ImmOffset) const;
221   bool SelectMUBUFScratchOffset(SDNode *Parent,
222                                 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
223                                 SDValue &Offset) const;
224 
225   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
226                          SDValue &Offset, SDValue &GLC, SDValue &SLC,
227                          SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
228   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
229                          SDValue &Offset, SDValue &SLC) const;
230   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
231                          SDValue &Offset) const;
232 
233   template <bool IsSigned>
234   bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
235                         SDValue &Offset, SDValue &SLC) const;
236   bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
237                         SDValue &Offset, SDValue &SLC) const;
238   bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
239                               SDValue &Offset, SDValue &SLC) const;
240 
241   bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
242                         bool &Imm) const;
243   SDValue Expand32BitAddress(SDValue Addr) const;
244   bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
245                   bool &Imm) const;
246   bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
247   bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
248   bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
249   bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
250   bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
251   bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
252 
253   bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
254   bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
255   bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
256   bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
257   bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
258                        SDValue &Clamp, SDValue &Omod) const;
259   bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
260                          SDValue &Clamp, SDValue &Omod) const;
261 
262   bool SelectVOP3OMods(SDValue In, SDValue &Src,
263                        SDValue &Clamp, SDValue &Omod) const;
264 
265   bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
266 
267   bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
268   bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
269                         SDValue &Clamp) const;
270 
271   bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
272   bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
273                             SDValue &Clamp) const;
274   bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
275   bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
276 
277   SDValue getHi16Elt(SDValue In) const;
278 
279   SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
280 
281   void SelectADD_SUB_I64(SDNode *N);
282   void SelectAddcSubb(SDNode *N);
283   void SelectUADDO_USUBO(SDNode *N);
284   void SelectDIV_SCALE(SDNode *N);
285   void SelectDIV_FMAS(SDNode *N);
286   void SelectMAD_64_32(SDNode *N);
287   void SelectFMA_W_CHAIN(SDNode *N);
288   void SelectFMUL_W_CHAIN(SDNode *N);
289 
290   SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
291                    uint32_t Offset, uint32_t Width);
292   void SelectS_BFEFromShifts(SDNode *N);
293   void SelectS_BFE(SDNode *N);
294   bool isCBranchSCC(const SDNode *N) const;
295   void SelectBRCOND(SDNode *N);
296   void SelectFMAD_FMA(SDNode *N);
297   void SelectATOMIC_CMP_SWAP(SDNode *N);
298   void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
299   void SelectDS_GWS(SDNode *N, unsigned IntrID);
300   void SelectInterpP1F16(SDNode *N);
301   void SelectINTRINSIC_W_CHAIN(SDNode *N);
302   void SelectINTRINSIC_WO_CHAIN(SDNode *N);
303   void SelectINTRINSIC_VOID(SDNode *N);
304 
305 protected:
306   // Include the pieces autogenerated from the target description.
307 #include "AMDGPUGenDAGISel.inc"
308 };
309 
310 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
311   const R600Subtarget *Subtarget;
312 
313   bool isConstantLoad(const MemSDNode *N, int cbID) const;
314   bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
315   bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
316                                        SDValue& Offset);
317 public:
318   explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
319       AMDGPUDAGToDAGISel(TM, OptLevel) {}
320 
321   void Select(SDNode *N) override;
322 
323   bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
324                           SDValue &Offset) override;
325   bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
326                           SDValue &Offset) override;
327 
328   bool runOnMachineFunction(MachineFunction &MF) override;
329 
330   void PreprocessISelDAG() override {}
331 
332 protected:
333   // Include the pieces autogenerated from the target description.
334 #include "R600GenDAGISel.inc"
335 };
336 
337 static SDValue stripBitcast(SDValue Val) {
338   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
339 }
340 
341 // Figure out if this is really an extract of the high 16-bits of a dword.
342 static bool isExtractHiElt(SDValue In, SDValue &Out) {
343   In = stripBitcast(In);
344   if (In.getOpcode() != ISD::TRUNCATE)
345     return false;
346 
347   SDValue Srl = In.getOperand(0);
348   if (Srl.getOpcode() == ISD::SRL) {
349     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
350       if (ShiftAmt->getZExtValue() == 16) {
351         Out = stripBitcast(Srl.getOperand(0));
352         return true;
353       }
354     }
355   }
356 
357   return false;
358 }
359 
360 // Look through operations that obscure just looking at the low 16-bits of the
361 // same register.
362 static SDValue stripExtractLoElt(SDValue In) {
363   if (In.getOpcode() == ISD::TRUNCATE) {
364     SDValue Src = In.getOperand(0);
365     if (Src.getValueType().getSizeInBits() == 32)
366       return stripBitcast(Src);
367   }
368 
369   return In;
370 }
371 
372 }  // end anonymous namespace
373 
374 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
375                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
376 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
377 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
378 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
379 #ifdef EXPENSIVE_CHECKS
380 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
381 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
382 #endif
383 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
384                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
385 
386 /// This pass converts a legalized DAG into a AMDGPU-specific
387 // DAG, ready for instruction scheduling.
388 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
389                                         CodeGenOpt::Level OptLevel) {
390   return new AMDGPUDAGToDAGISel(TM, OptLevel);
391 }
392 
393 /// This pass converts a legalized DAG into a R600-specific
394 // DAG, ready for instruction scheduling.
395 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
396                                       CodeGenOpt::Level OptLevel) {
397   return new R600DAGToDAGISel(TM, OptLevel);
398 }
399 
400 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
401 #ifdef EXPENSIVE_CHECKS
402   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
403   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
404   for (auto &L : LI->getLoopsInPreorder()) {
405     assert(L->isLCSSAForm(DT));
406   }
407 #endif
408   Subtarget = &MF.getSubtarget<GCNSubtarget>();
409   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction(), *Subtarget);
410   return SelectionDAGISel::runOnMachineFunction(MF);
411 }
412 
413 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
414   assert(Subtarget->d16PreservesUnusedBits());
415   MVT VT = N->getValueType(0).getSimpleVT();
416   if (VT != MVT::v2i16 && VT != MVT::v2f16)
417     return false;
418 
419   SDValue Lo = N->getOperand(0);
420   SDValue Hi = N->getOperand(1);
421 
422   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
423 
424   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
425   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
426   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
427 
428   // Need to check for possible indirect dependencies on the other half of the
429   // vector to avoid introducing a cycle.
430   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
431     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
432 
433     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
434     SDValue Ops[] = {
435       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
436     };
437 
438     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
439     if (LdHi->getMemoryVT() == MVT::i8) {
440       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
441         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
442     } else {
443       assert(LdHi->getMemoryVT() == MVT::i16);
444     }
445 
446     SDValue NewLoadHi =
447       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
448                                   Ops, LdHi->getMemoryVT(),
449                                   LdHi->getMemOperand());
450 
451     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
452     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
453     return true;
454   }
455 
456   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
457   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
458   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
459   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
460   if (LdLo && Lo.hasOneUse()) {
461     SDValue TiedIn = getHi16Elt(Hi);
462     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
463       return false;
464 
465     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
466     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
467     if (LdLo->getMemoryVT() == MVT::i8) {
468       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
469         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
470     } else {
471       assert(LdLo->getMemoryVT() == MVT::i16);
472     }
473 
474     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
475 
476     SDValue Ops[] = {
477       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
478     };
479 
480     SDValue NewLoadLo =
481       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
482                                   Ops, LdLo->getMemoryVT(),
483                                   LdLo->getMemOperand());
484 
485     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
486     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
487     return true;
488   }
489 
490   return false;
491 }
492 
493 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
494   if (!Subtarget->d16PreservesUnusedBits())
495     return;
496 
497   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
498 
499   bool MadeChange = false;
500   while (Position != CurDAG->allnodes_begin()) {
501     SDNode *N = &*--Position;
502     if (N->use_empty())
503       continue;
504 
505     switch (N->getOpcode()) {
506     case ISD::BUILD_VECTOR:
507       MadeChange |= matchLoadD16FromBuildVector(N);
508       break;
509     default:
510       break;
511     }
512   }
513 
514   if (MadeChange) {
515     CurDAG->RemoveDeadNodes();
516     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
517                CurDAG->dump(););
518   }
519 }
520 
521 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
522   if (TM.Options.NoNaNsFPMath)
523     return true;
524 
525   // TODO: Move into isKnownNeverNaN
526   if (N->getFlags().isDefined())
527     return N->getFlags().hasNoNaNs();
528 
529   return CurDAG->isKnownNeverNaN(N);
530 }
531 
532 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
533                                            bool Negated) const {
534   if (N->isUndef())
535     return true;
536 
537   const SIInstrInfo *TII = Subtarget->getInstrInfo();
538   if (Negated) {
539     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
540       return TII->isInlineConstant(-C->getAPIntValue());
541 
542     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
543       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
544 
545   } else {
546     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
547       return TII->isInlineConstant(C->getAPIntValue());
548 
549     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
550       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
551   }
552 
553   return false;
554 }
555 
556 /// Determine the register class for \p OpNo
557 /// \returns The register class of the virtual register that will be used for
558 /// the given operand number \OpNo or NULL if the register class cannot be
559 /// determined.
560 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
561                                                           unsigned OpNo) const {
562   if (!N->isMachineOpcode()) {
563     if (N->getOpcode() == ISD::CopyToReg) {
564       unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
565       if (Register::isVirtualRegister(Reg)) {
566         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
567         return MRI.getRegClass(Reg);
568       }
569 
570       const SIRegisterInfo *TRI
571         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
572       return TRI->getPhysRegClass(Reg);
573     }
574 
575     return nullptr;
576   }
577 
578   switch (N->getMachineOpcode()) {
579   default: {
580     const MCInstrDesc &Desc =
581         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
582     unsigned OpIdx = Desc.getNumDefs() + OpNo;
583     if (OpIdx >= Desc.getNumOperands())
584       return nullptr;
585     int RegClass = Desc.OpInfo[OpIdx].RegClass;
586     if (RegClass == -1)
587       return nullptr;
588 
589     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
590   }
591   case AMDGPU::REG_SEQUENCE: {
592     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
593     const TargetRegisterClass *SuperRC =
594         Subtarget->getRegisterInfo()->getRegClass(RCID);
595 
596     SDValue SubRegOp = N->getOperand(OpNo + 1);
597     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
598     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
599                                                               SubRegIdx);
600   }
601   }
602 }
603 
604 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
605                                          SDValue Glue) const {
606   SmallVector <SDValue, 8> Ops;
607   Ops.push_back(NewChain); // Replace the chain.
608   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
609     Ops.push_back(N->getOperand(i));
610 
611   Ops.push_back(Glue);
612   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
613 }
614 
615 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
616   const SITargetLowering& Lowering =
617     *static_cast<const SITargetLowering*>(getTargetLowering());
618 
619   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
620 
621   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
622   return glueCopyToOp(N, M0, M0.getValue(1));
623 }
624 
625 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
626   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
627   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
628     if (Subtarget->ldsRequiresM0Init())
629       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
630   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
631     MachineFunction &MF = CurDAG->getMachineFunction();
632     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
633     return
634         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
635   }
636   return N;
637 }
638 
639 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
640                                                   EVT VT) const {
641   SDNode *Lo = CurDAG->getMachineNode(
642       AMDGPU::S_MOV_B32, DL, MVT::i32,
643       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
644   SDNode *Hi =
645       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
646                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
647   const SDValue Ops[] = {
648       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
649       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
650       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
651 
652   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
653 }
654 
655 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
656   switch (NumVectorElts) {
657   case 1:
658     return AMDGPU::SReg_32RegClassID;
659   case 2:
660     return AMDGPU::SReg_64RegClassID;
661   case 3:
662     return AMDGPU::SGPR_96RegClassID;
663   case 4:
664     return AMDGPU::SGPR_128RegClassID;
665   case 5:
666     return AMDGPU::SGPR_160RegClassID;
667   case 8:
668     return AMDGPU::SReg_256RegClassID;
669   case 16:
670     return AMDGPU::SReg_512RegClassID;
671   case 32:
672     return AMDGPU::SReg_1024RegClassID;
673   }
674 
675   llvm_unreachable("invalid vector size");
676 }
677 
678 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
679   EVT VT = N->getValueType(0);
680   unsigned NumVectorElts = VT.getVectorNumElements();
681   EVT EltVT = VT.getVectorElementType();
682   SDLoc DL(N);
683   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
684 
685   if (NumVectorElts == 1) {
686     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
687                          RegClass);
688     return;
689   }
690 
691   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
692                                   "supported yet");
693   // 32 = Max Num Vector Elements
694   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
695   // 1 = Vector Register Class
696   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
697 
698   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
699                Triple::amdgcn;
700   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
701   bool IsRegSeq = true;
702   unsigned NOps = N->getNumOperands();
703   for (unsigned i = 0; i < NOps; i++) {
704     // XXX: Why is this here?
705     if (isa<RegisterSDNode>(N->getOperand(i))) {
706       IsRegSeq = false;
707       break;
708     }
709     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
710                          : R600RegisterInfo::getSubRegFromChannel(i);
711     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
712     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
713   }
714   if (NOps != NumVectorElts) {
715     // Fill in the missing undef elements if this was a scalar_to_vector.
716     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
717     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
718                                                    DL, EltVT);
719     for (unsigned i = NOps; i < NumVectorElts; ++i) {
720       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
721                            : R600RegisterInfo::getSubRegFromChannel(i);
722       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
723       RegSeqArgs[1 + (2 * i) + 1] =
724           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
725     }
726   }
727 
728   if (!IsRegSeq)
729     SelectCode(N);
730   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
731 }
732 
733 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
734   unsigned int Opc = N->getOpcode();
735   if (N->isMachineOpcode()) {
736     N->setNodeId(-1);
737     return;   // Already selected.
738   }
739 
740   // isa<MemSDNode> almost works but is slightly too permissive for some DS
741   // intrinsics.
742   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
743       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
744        Opc == ISD::ATOMIC_LOAD_FADD ||
745        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
746        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
747     N = glueCopyToM0LDSInit(N);
748     SelectCode(N);
749     return;
750   }
751 
752   switch (Opc) {
753   default:
754     break;
755   // We are selecting i64 ADD here instead of custom lower it during
756   // DAG legalization, so we can fold some i64 ADDs used for address
757   // calculation into the LOAD and STORE instructions.
758   case ISD::ADDC:
759   case ISD::ADDE:
760   case ISD::SUBC:
761   case ISD::SUBE: {
762     if (N->getValueType(0) != MVT::i64)
763       break;
764 
765     SelectADD_SUB_I64(N);
766     return;
767   }
768   case ISD::ADDCARRY:
769   case ISD::SUBCARRY:
770     if (N->getValueType(0) != MVT::i32)
771       break;
772 
773     SelectAddcSubb(N);
774     return;
775   case ISD::UADDO:
776   case ISD::USUBO: {
777     SelectUADDO_USUBO(N);
778     return;
779   }
780   case AMDGPUISD::FMUL_W_CHAIN: {
781     SelectFMUL_W_CHAIN(N);
782     return;
783   }
784   case AMDGPUISD::FMA_W_CHAIN: {
785     SelectFMA_W_CHAIN(N);
786     return;
787   }
788 
789   case ISD::SCALAR_TO_VECTOR:
790   case ISD::BUILD_VECTOR: {
791     EVT VT = N->getValueType(0);
792     unsigned NumVectorElts = VT.getVectorNumElements();
793     if (VT.getScalarSizeInBits() == 16) {
794       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
795         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
796           ReplaceNode(N, Packed);
797           return;
798         }
799       }
800 
801       break;
802     }
803 
804     assert(VT.getVectorElementType().bitsEq(MVT::i32));
805     unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
806     SelectBuildVector(N, RegClassID);
807     return;
808   }
809   case ISD::BUILD_PAIR: {
810     SDValue RC, SubReg0, SubReg1;
811     SDLoc DL(N);
812     if (N->getValueType(0) == MVT::i128) {
813       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
814       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
815       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
816     } else if (N->getValueType(0) == MVT::i64) {
817       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
818       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
819       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
820     } else {
821       llvm_unreachable("Unhandled value type for BUILD_PAIR");
822     }
823     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
824                             N->getOperand(1), SubReg1 };
825     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
826                                           N->getValueType(0), Ops));
827     return;
828   }
829 
830   case ISD::Constant:
831   case ISD::ConstantFP: {
832     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
833       break;
834 
835     uint64_t Imm;
836     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
837       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
838     else {
839       ConstantSDNode *C = cast<ConstantSDNode>(N);
840       Imm = C->getZExtValue();
841     }
842 
843     SDLoc DL(N);
844     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
845     return;
846   }
847   case AMDGPUISD::BFE_I32:
848   case AMDGPUISD::BFE_U32: {
849     // There is a scalar version available, but unlike the vector version which
850     // has a separate operand for the offset and width, the scalar version packs
851     // the width and offset into a single operand. Try to move to the scalar
852     // version if the offsets are constant, so that we can try to keep extended
853     // loads of kernel arguments in SGPRs.
854 
855     // TODO: Technically we could try to pattern match scalar bitshifts of
856     // dynamic values, but it's probably not useful.
857     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
858     if (!Offset)
859       break;
860 
861     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
862     if (!Width)
863       break;
864 
865     bool Signed = Opc == AMDGPUISD::BFE_I32;
866 
867     uint32_t OffsetVal = Offset->getZExtValue();
868     uint32_t WidthVal = Width->getZExtValue();
869 
870     ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
871                             SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
872     return;
873   }
874   case AMDGPUISD::DIV_SCALE: {
875     SelectDIV_SCALE(N);
876     return;
877   }
878   case AMDGPUISD::DIV_FMAS: {
879     SelectDIV_FMAS(N);
880     return;
881   }
882   case AMDGPUISD::MAD_I64_I32:
883   case AMDGPUISD::MAD_U64_U32: {
884     SelectMAD_64_32(N);
885     return;
886   }
887   case ISD::CopyToReg: {
888     const SITargetLowering& Lowering =
889       *static_cast<const SITargetLowering*>(getTargetLowering());
890     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
891     break;
892   }
893   case ISD::AND:
894   case ISD::SRL:
895   case ISD::SRA:
896   case ISD::SIGN_EXTEND_INREG:
897     if (N->getValueType(0) != MVT::i32)
898       break;
899 
900     SelectS_BFE(N);
901     return;
902   case ISD::BRCOND:
903     SelectBRCOND(N);
904     return;
905   case ISD::FMAD:
906   case ISD::FMA:
907     SelectFMAD_FMA(N);
908     return;
909   case AMDGPUISD::ATOMIC_CMP_SWAP:
910     SelectATOMIC_CMP_SWAP(N);
911     return;
912   case AMDGPUISD::CVT_PKRTZ_F16_F32:
913   case AMDGPUISD::CVT_PKNORM_I16_F32:
914   case AMDGPUISD::CVT_PKNORM_U16_F32:
915   case AMDGPUISD::CVT_PK_U16_U32:
916   case AMDGPUISD::CVT_PK_I16_I32: {
917     // Hack around using a legal type if f16 is illegal.
918     if (N->getValueType(0) == MVT::i32) {
919       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
920       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
921                               { N->getOperand(0), N->getOperand(1) });
922       SelectCode(N);
923       return;
924     }
925 
926     break;
927   }
928   case ISD::INTRINSIC_W_CHAIN: {
929     SelectINTRINSIC_W_CHAIN(N);
930     return;
931   }
932   case ISD::INTRINSIC_WO_CHAIN: {
933     SelectINTRINSIC_WO_CHAIN(N);
934     return;
935   }
936   case ISD::INTRINSIC_VOID: {
937     SelectINTRINSIC_VOID(N);
938     return;
939   }
940   }
941 
942   SelectCode(N);
943 }
944 
945 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
946   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
947   const Instruction *Term = BB->getTerminator();
948   return Term->getMetadata("amdgpu.uniform") ||
949          Term->getMetadata("structurizecfg.uniform");
950 }
951 
952 StringRef AMDGPUDAGToDAGISel::getPassName() const {
953   return "AMDGPU DAG->DAG Pattern Instruction Selection";
954 }
955 
956 //===----------------------------------------------------------------------===//
957 // Complex Patterns
958 //===----------------------------------------------------------------------===//
959 
960 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
961                                             SDValue &Offset) {
962   return false;
963 }
964 
965 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
966                                             SDValue &Offset) {
967   ConstantSDNode *C;
968   SDLoc DL(Addr);
969 
970   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
971     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
972     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
973   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
974              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
975     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
976     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
977   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
978             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
979     Base = Addr.getOperand(0);
980     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
981   } else {
982     Base = Addr;
983     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
984   }
985 
986   return true;
987 }
988 
989 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
990                                                        const SDLoc &DL) const {
991   SDNode *Mov = CurDAG->getMachineNode(
992     AMDGPU::S_MOV_B32, DL, MVT::i32,
993     CurDAG->getTargetConstant(Val, DL, MVT::i32));
994   return SDValue(Mov, 0);
995 }
996 
997 // FIXME: Should only handle addcarry/subcarry
998 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
999   SDLoc DL(N);
1000   SDValue LHS = N->getOperand(0);
1001   SDValue RHS = N->getOperand(1);
1002 
1003   unsigned Opcode = N->getOpcode();
1004   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
1005   bool ProduceCarry =
1006       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
1007   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
1008 
1009   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1010   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1011 
1012   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1013                                        DL, MVT::i32, LHS, Sub0);
1014   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1015                                        DL, MVT::i32, LHS, Sub1);
1016 
1017   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1018                                        DL, MVT::i32, RHS, Sub0);
1019   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1020                                        DL, MVT::i32, RHS, Sub1);
1021 
1022   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
1023 
1024   unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
1025   unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
1026 
1027   SDNode *AddLo;
1028   if (!ConsumeCarry) {
1029     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1030     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1031   } else {
1032     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1033     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1034   }
1035   SDValue AddHiArgs[] = {
1036     SDValue(Hi0, 0),
1037     SDValue(Hi1, 0),
1038     SDValue(AddLo, 1)
1039   };
1040   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1041 
1042   SDValue RegSequenceArgs[] = {
1043     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1044     SDValue(AddLo,0),
1045     Sub0,
1046     SDValue(AddHi,0),
1047     Sub1,
1048   };
1049   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1050                                                MVT::i64, RegSequenceArgs);
1051 
1052   if (ProduceCarry) {
1053     // Replace the carry-use
1054     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1055   }
1056 
1057   // Replace the remaining uses.
1058   ReplaceNode(N, RegSequence);
1059 }
1060 
1061 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1062   SDLoc DL(N);
1063   SDValue LHS = N->getOperand(0);
1064   SDValue RHS = N->getOperand(1);
1065   SDValue CI = N->getOperand(2);
1066 
1067   unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1068                                                  : AMDGPU::V_SUBB_U32_e64;
1069   CurDAG->SelectNodeTo(
1070       N, Opc, N->getVTList(),
1071       {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1072 }
1073 
1074 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1075   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1076   // carry out despite the _i32 name. These were renamed in VI to _U32.
1077   // FIXME: We should probably rename the opcodes here.
1078   unsigned Opc = N->getOpcode() == ISD::UADDO ?
1079     AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1080 
1081   CurDAG->SelectNodeTo(
1082       N, Opc, N->getVTList(),
1083       {N->getOperand(0), N->getOperand(1),
1084        CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1085 }
1086 
1087 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1088   SDLoc SL(N);
1089   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1090   SDValue Ops[10];
1091 
1092   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1093   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1094   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1095   Ops[8] = N->getOperand(0);
1096   Ops[9] = N->getOperand(4);
1097 
1098   CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1099 }
1100 
1101 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1102   SDLoc SL(N);
1103   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
1104   SDValue Ops[8];
1105 
1106   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1107   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1108   Ops[6] = N->getOperand(0);
1109   Ops[7] = N->getOperand(3);
1110 
1111   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1112 }
1113 
1114 // We need to handle this here because tablegen doesn't support matching
1115 // instructions with multiple outputs.
1116 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1117   SDLoc SL(N);
1118   EVT VT = N->getValueType(0);
1119 
1120   assert(VT == MVT::f32 || VT == MVT::f64);
1121 
1122   unsigned Opc
1123     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1124 
1125   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1126   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1127 }
1128 
1129 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) {
1130   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1131   const SIRegisterInfo *TRI = ST->getRegisterInfo();
1132 
1133   SDLoc SL(N);
1134   EVT VT = N->getValueType(0);
1135 
1136   assert(VT == MVT::f32 || VT == MVT::f64);
1137 
1138   unsigned Opc
1139     = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32;
1140 
1141   SDValue CarryIn = N->getOperand(3);
1142   // V_DIV_FMAS implicitly reads VCC.
1143   SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL,
1144                                      TRI->getVCC(), CarryIn, SDValue());
1145 
1146   SDValue Ops[10];
1147 
1148   SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1149   SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]);
1150   SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]);
1151 
1152   Ops[8] = VCC;
1153   Ops[9] = VCC.getValue(1);
1154 
1155   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1156 }
1157 
1158 // We need to handle this here because tablegen doesn't support matching
1159 // instructions with multiple outputs.
1160 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1161   SDLoc SL(N);
1162   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1163   unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1164 
1165   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1166   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1167                     Clamp };
1168   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1169 }
1170 
1171 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1172                                          unsigned OffsetBits) const {
1173   if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1174       (OffsetBits == 8 && !isUInt<8>(Offset)))
1175     return false;
1176 
1177   if (Subtarget->hasUsableDSOffset() ||
1178       Subtarget->unsafeDSOffsetFoldingEnabled())
1179     return true;
1180 
1181   // On Southern Islands instruction with a negative base value and an offset
1182   // don't seem to work.
1183   return CurDAG->SignBitIsZero(Base);
1184 }
1185 
1186 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1187                                               SDValue &Offset) const {
1188   SDLoc DL(Addr);
1189   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1190     SDValue N0 = Addr.getOperand(0);
1191     SDValue N1 = Addr.getOperand(1);
1192     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1193     if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1194       // (add n0, c0)
1195       Base = N0;
1196       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1197       return true;
1198     }
1199   } else if (Addr.getOpcode() == ISD::SUB) {
1200     // sub C, x -> add (sub 0, x), C
1201     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1202       int64_t ByteOffset = C->getSExtValue();
1203       if (isUInt<16>(ByteOffset)) {
1204         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1205 
1206         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1207         // the known bits in isDSOffsetLegal. We need to emit the selected node
1208         // here, so this is thrown away.
1209         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1210                                       Zero, Addr.getOperand(1));
1211 
1212         if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1213           SmallVector<SDValue, 3> Opnds;
1214           Opnds.push_back(Zero);
1215           Opnds.push_back(Addr.getOperand(1));
1216 
1217           // FIXME: Select to VOP3 version for with-carry.
1218           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1219           if (Subtarget->hasAddNoCarry()) {
1220             SubOp = AMDGPU::V_SUB_U32_e64;
1221             Opnds.push_back(
1222                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1223           }
1224 
1225           MachineSDNode *MachineSub =
1226               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1227 
1228           Base = SDValue(MachineSub, 0);
1229           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1230           return true;
1231         }
1232       }
1233     }
1234   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1235     // If we have a constant address, prefer to put the constant into the
1236     // offset. This can save moves to load the constant address since multiple
1237     // operations can share the zero base address register, and enables merging
1238     // into read2 / write2 instructions.
1239 
1240     SDLoc DL(Addr);
1241 
1242     if (isUInt<16>(CAddr->getZExtValue())) {
1243       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1244       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1245                                  DL, MVT::i32, Zero);
1246       Base = SDValue(MovZero, 0);
1247       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1248       return true;
1249     }
1250   }
1251 
1252   // default case
1253   Base = Addr;
1254   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1255   return true;
1256 }
1257 
1258 // TODO: If offset is too big, put low 16-bit into offset.
1259 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1260                                                    SDValue &Offset0,
1261                                                    SDValue &Offset1) const {
1262   SDLoc DL(Addr);
1263 
1264   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1265     SDValue N0 = Addr.getOperand(0);
1266     SDValue N1 = Addr.getOperand(1);
1267     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1268     unsigned DWordOffset0 = C1->getZExtValue() / 4;
1269     unsigned DWordOffset1 = DWordOffset0 + 1;
1270     // (add n0, c0)
1271     if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1272       Base = N0;
1273       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1274       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1275       return true;
1276     }
1277   } else if (Addr.getOpcode() == ISD::SUB) {
1278     // sub C, x -> add (sub 0, x), C
1279     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1280       unsigned DWordOffset0 = C->getZExtValue() / 4;
1281       unsigned DWordOffset1 = DWordOffset0 + 1;
1282 
1283       if (isUInt<8>(DWordOffset0)) {
1284         SDLoc DL(Addr);
1285         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1286 
1287         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1288         // the known bits in isDSOffsetLegal. We need to emit the selected node
1289         // here, so this is thrown away.
1290         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1291                                       Zero, Addr.getOperand(1));
1292 
1293         if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1294           SmallVector<SDValue, 3> Opnds;
1295           Opnds.push_back(Zero);
1296           Opnds.push_back(Addr.getOperand(1));
1297           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1298           if (Subtarget->hasAddNoCarry()) {
1299             SubOp = AMDGPU::V_SUB_U32_e64;
1300             Opnds.push_back(
1301                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1302           }
1303 
1304           MachineSDNode *MachineSub
1305             = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1306 
1307           Base = SDValue(MachineSub, 0);
1308           Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1309           Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1310           return true;
1311         }
1312       }
1313     }
1314   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1315     unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1316     unsigned DWordOffset1 = DWordOffset0 + 1;
1317     assert(4 * DWordOffset0 == CAddr->getZExtValue());
1318 
1319     if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1320       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1321       MachineSDNode *MovZero
1322         = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1323                                  DL, MVT::i32, Zero);
1324       Base = SDValue(MovZero, 0);
1325       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1326       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1327       return true;
1328     }
1329   }
1330 
1331   // default case
1332 
1333   Base = Addr;
1334   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1335   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1336   return true;
1337 }
1338 
1339 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1340                                      SDValue &VAddr, SDValue &SOffset,
1341                                      SDValue &Offset, SDValue &Offen,
1342                                      SDValue &Idxen, SDValue &Addr64,
1343                                      SDValue &GLC, SDValue &SLC,
1344                                      SDValue &TFE, SDValue &DLC,
1345                                      SDValue &SWZ) const {
1346   // Subtarget prefers to use flat instruction
1347   // FIXME: This should be a pattern predicate and not reach here
1348   if (Subtarget->useFlatForGlobal())
1349     return false;
1350 
1351   SDLoc DL(Addr);
1352 
1353   if (!GLC.getNode())
1354     GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1355   if (!SLC.getNode())
1356     SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1357   TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1358   DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1359   SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1360 
1361   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1362   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1363   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1364   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1365 
1366   ConstantSDNode *C1 = nullptr;
1367   SDValue N0 = Addr;
1368   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1369     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1370     if (isUInt<32>(C1->getZExtValue()))
1371       N0 = Addr.getOperand(0);
1372     else
1373       C1 = nullptr;
1374   }
1375 
1376   if (N0.getOpcode() == ISD::ADD) {
1377     // (add N2, N3) -> addr64, or
1378     // (add (add N2, N3), C1) -> addr64
1379     SDValue N2 = N0.getOperand(0);
1380     SDValue N3 = N0.getOperand(1);
1381     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1382 
1383     if (N2->isDivergent()) {
1384       if (N3->isDivergent()) {
1385         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1386         // addr64, and construct the resource from a 0 address.
1387         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1388         VAddr = N0;
1389       } else {
1390         // N2 is divergent, N3 is not.
1391         Ptr = N3;
1392         VAddr = N2;
1393       }
1394     } else {
1395       // N2 is not divergent.
1396       Ptr = N2;
1397       VAddr = N3;
1398     }
1399     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1400   } else if (N0->isDivergent()) {
1401     // N0 is divergent. Use it as the addr64, and construct the resource from a
1402     // 0 address.
1403     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1404     VAddr = N0;
1405     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1406   } else {
1407     // N0 -> offset, or
1408     // (N0 + C1) -> offset
1409     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1410     Ptr = N0;
1411   }
1412 
1413   if (!C1) {
1414     // No offset.
1415     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1416     return true;
1417   }
1418 
1419   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1420     // Legal offset for instruction.
1421     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1422     return true;
1423   }
1424 
1425   // Illegal offset, store it in soffset.
1426   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1427   SOffset =
1428       SDValue(CurDAG->getMachineNode(
1429                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1430                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1431               0);
1432   return true;
1433 }
1434 
1435 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1436                                            SDValue &VAddr, SDValue &SOffset,
1437                                            SDValue &Offset, SDValue &GLC,
1438                                            SDValue &SLC, SDValue &TFE,
1439                                            SDValue &DLC, SDValue &SWZ) const {
1440   SDValue Ptr, Offen, Idxen, Addr64;
1441 
1442   // addr64 bit was removed for volcanic islands.
1443   // FIXME: This should be a pattern predicate and not reach here
1444   if (!Subtarget->hasAddr64())
1445     return false;
1446 
1447   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1448               GLC, SLC, TFE, DLC, SWZ))
1449     return false;
1450 
1451   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1452   if (C->getSExtValue()) {
1453     SDLoc DL(Addr);
1454 
1455     const SITargetLowering& Lowering =
1456       *static_cast<const SITargetLowering*>(getTargetLowering());
1457 
1458     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1459     return true;
1460   }
1461 
1462   return false;
1463 }
1464 
1465 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1466                                            SDValue &VAddr, SDValue &SOffset,
1467                                            SDValue &Offset,
1468                                            SDValue &SLC) const {
1469   SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1470   SDValue GLC, TFE, DLC, SWZ;
1471 
1472   return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1473 }
1474 
1475 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1476   auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1477   return PSV && PSV->isStack();
1478 }
1479 
1480 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1481   const MachineFunction &MF = CurDAG->getMachineFunction();
1482   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1483 
1484   if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1485     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1486                                               FI->getValueType(0));
1487 
1488     // If we can resolve this to a frame index access, this will be relative to
1489     // either the stack or frame pointer SGPR.
1490     return std::make_pair(
1491         TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1492   }
1493 
1494   // If we don't know this private access is a local stack object, it needs to
1495   // be relative to the entry point's scratch wave offset register.
1496   return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
1497                                                MVT::i32));
1498 }
1499 
1500 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1501                                                  SDValue Addr, SDValue &Rsrc,
1502                                                  SDValue &VAddr, SDValue &SOffset,
1503                                                  SDValue &ImmOffset) const {
1504 
1505   SDLoc DL(Addr);
1506   MachineFunction &MF = CurDAG->getMachineFunction();
1507   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1508 
1509   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1510 
1511   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1512     unsigned Imm = CAddr->getZExtValue();
1513 
1514     SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1515     MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1516                                                         DL, MVT::i32, HighBits);
1517     VAddr = SDValue(MovHighBits, 0);
1518 
1519     // In a call sequence, stores to the argument stack area are relative to the
1520     // stack pointer.
1521     const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1522     unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1523       Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1524 
1525     SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1526     ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1527     return true;
1528   }
1529 
1530   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1531     // (add n0, c1)
1532 
1533     SDValue N0 = Addr.getOperand(0);
1534     SDValue N1 = Addr.getOperand(1);
1535 
1536     // Offsets in vaddr must be positive if range checking is enabled.
1537     //
1538     // The total computation of vaddr + soffset + offset must not overflow.  If
1539     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1540     // overflowing.
1541     //
1542     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1543     // always perform a range check. If a negative vaddr base index was used,
1544     // this would fail the range check. The overall address computation would
1545     // compute a valid address, but this doesn't happen due to the range
1546     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1547     //
1548     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1549     // MUBUF vaddr, but not on older subtargets which can only do this if the
1550     // sign bit is known 0.
1551     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1552     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1553         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1554          CurDAG->SignBitIsZero(N0))) {
1555       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1556       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1557       return true;
1558     }
1559   }
1560 
1561   // (node)
1562   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1563   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1564   return true;
1565 }
1566 
1567 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1568                                                   SDValue Addr,
1569                                                   SDValue &SRsrc,
1570                                                   SDValue &SOffset,
1571                                                   SDValue &Offset) const {
1572   ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1573   if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1574     return false;
1575 
1576   SDLoc DL(Addr);
1577   MachineFunction &MF = CurDAG->getMachineFunction();
1578   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1579 
1580   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1581 
1582   const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1583   unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1584     Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1585 
1586   // FIXME: Get from MachinePointerInfo? We should only be using the frame
1587   // offset if we know this is in a call sequence.
1588   SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1589 
1590   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1591   return true;
1592 }
1593 
1594 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1595                                            SDValue &SOffset, SDValue &Offset,
1596                                            SDValue &GLC, SDValue &SLC,
1597                                            SDValue &TFE, SDValue &DLC,
1598                                            SDValue &SWZ) const {
1599   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1600   const SIInstrInfo *TII =
1601     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1602 
1603   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1604               GLC, SLC, TFE, DLC, SWZ))
1605     return false;
1606 
1607   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1608       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1609       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1610     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1611                     APInt::getAllOnesValue(32).getZExtValue(); // Size
1612     SDLoc DL(Addr);
1613 
1614     const SITargetLowering& Lowering =
1615       *static_cast<const SITargetLowering*>(getTargetLowering());
1616 
1617     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1618     return true;
1619   }
1620   return false;
1621 }
1622 
1623 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1624                                            SDValue &Soffset, SDValue &Offset
1625                                            ) const {
1626   SDValue GLC, SLC, TFE, DLC, SWZ;
1627 
1628   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1629 }
1630 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1631                                            SDValue &Soffset, SDValue &Offset,
1632                                            SDValue &SLC) const {
1633   SDValue GLC, TFE, DLC, SWZ;
1634 
1635   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1636 }
1637 
1638 // Find a load or store from corresponding pattern root.
1639 // Roots may be build_vector, bitconvert or their combinations.
1640 static MemSDNode* findMemSDNode(SDNode *N) {
1641   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1642   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1643     return MN;
1644   assert(isa<BuildVectorSDNode>(N));
1645   for (SDValue V : N->op_values())
1646     if (MemSDNode *MN =
1647           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1648       return MN;
1649   llvm_unreachable("cannot find MemSDNode in the pattern!");
1650 }
1651 
1652 template <bool IsSigned>
1653 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1654                                           SDValue Addr,
1655                                           SDValue &VAddr,
1656                                           SDValue &Offset,
1657                                           SDValue &SLC) const {
1658   int64_t OffsetVal = 0;
1659 
1660   if (Subtarget->hasFlatInstOffsets() &&
1661       (!Subtarget->hasFlatSegmentOffsetBug() ||
1662        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
1663       CurDAG->isBaseWithConstantOffset(Addr)) {
1664     SDValue N0 = Addr.getOperand(0);
1665     SDValue N1 = Addr.getOperand(1);
1666     uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1667 
1668     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1669     unsigned AS = findMemSDNode(N)->getAddressSpace();
1670     if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
1671       Addr = N0;
1672       OffsetVal = COffsetVal;
1673     } else {
1674       // If the offset doesn't fit, put the low bits into the offset field and
1675       // add the rest.
1676 
1677       SDLoc DL(N);
1678       uint64_t ImmField;
1679       const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
1680       if (IsSigned) {
1681         ImmField = SignExtend64(COffsetVal, NumBits);
1682 
1683         // Don't use a negative offset field if the base offset is positive.
1684         // Since the scheduler currently relies on the offset field, doing so
1685         // could result in strange scheduling decisions.
1686 
1687         // TODO: Should we not do this in the opposite direction as well?
1688         if (static_cast<int64_t>(COffsetVal) > 0) {
1689           if (static_cast<int64_t>(ImmField) < 0) {
1690             const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits - 1);
1691             ImmField = COffsetVal & OffsetMask;
1692           }
1693         }
1694       } else {
1695         // TODO: Should we do this for a negative offset?
1696         const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
1697         ImmField = COffsetVal & OffsetMask;
1698       }
1699 
1700       uint64_t RemainderOffset = COffsetVal - ImmField;
1701 
1702       assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
1703       assert(RemainderOffset + ImmField == COffsetVal);
1704 
1705       OffsetVal = ImmField;
1706 
1707       // TODO: Should this try to use a scalar add pseudo if the base address is
1708       // uniform and saddr is usable?
1709       SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1710       SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1711 
1712       SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1713                                             DL, MVT::i32, N0, Sub0);
1714       SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1715                                             DL, MVT::i32, N0, Sub1);
1716 
1717       SDValue AddOffsetLo
1718         = getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1719       SDValue AddOffsetHi
1720         = getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1721 
1722       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1723       SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1724 
1725       SDNode *Add = CurDAG->getMachineNode(
1726         AMDGPU::V_ADD_I32_e64, DL, VTs,
1727         {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1728 
1729       SDNode *Addc = CurDAG->getMachineNode(
1730         AMDGPU::V_ADDC_U32_e64, DL, VTs,
1731         {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1732 
1733       SDValue RegSequenceArgs[] = {
1734         CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1735         SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1
1736       };
1737 
1738       Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1739                                             MVT::i64, RegSequenceArgs), 0);
1740     }
1741   }
1742 
1743   VAddr = Addr;
1744   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1745   SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1746   return true;
1747 }
1748 
1749 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1750                                           SDValue Addr,
1751                                           SDValue &VAddr,
1752                                           SDValue &Offset,
1753                                           SDValue &SLC) const {
1754   return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1755 }
1756 
1757 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1758                                                 SDValue Addr,
1759                                                 SDValue &VAddr,
1760                                                 SDValue &Offset,
1761                                                 SDValue &SLC) const {
1762   return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1763 }
1764 
1765 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1766                                           SDValue &Offset, bool &Imm) const {
1767 
1768   // FIXME: Handle non-constant offsets.
1769   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1770   if (!C)
1771     return false;
1772 
1773   SDLoc SL(ByteOffsetNode);
1774   GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1775   uint64_t ByteOffset = C->getZExtValue();
1776   Optional<int64_t> EncodedOffset =
1777       AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1778   if (EncodedOffset) {
1779     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1780     Imm = true;
1781     return true;
1782   }
1783 
1784   if (Gen == AMDGPUSubtarget::SEA_ISLANDS) {
1785     EncodedOffset =
1786         AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1787     if (EncodedOffset) {
1788       Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1789       return true;
1790     }
1791   }
1792 
1793   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1794     return false;
1795 
1796   SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1797   Offset = SDValue(
1798       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1799 
1800   return true;
1801 }
1802 
1803 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1804   if (Addr.getValueType() != MVT::i32)
1805     return Addr;
1806 
1807   // Zero-extend a 32-bit address.
1808   SDLoc SL(Addr);
1809 
1810   const MachineFunction &MF = CurDAG->getMachineFunction();
1811   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1812   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1813   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1814 
1815   const SDValue Ops[] = {
1816     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1817     Addr,
1818     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1819     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1820             0),
1821     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1822   };
1823 
1824   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1825                                         Ops), 0);
1826 }
1827 
1828 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1829                                      SDValue &Offset, bool &Imm) const {
1830   SDLoc SL(Addr);
1831 
1832   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1833   // wraparound, because s_load instructions perform the addition in 64 bits.
1834   if ((Addr.getValueType() != MVT::i32 ||
1835        Addr->getFlags().hasNoUnsignedWrap()) &&
1836       CurDAG->isBaseWithConstantOffset(Addr)) {
1837     SDValue N0 = Addr.getOperand(0);
1838     SDValue N1 = Addr.getOperand(1);
1839 
1840     if (SelectSMRDOffset(N1, Offset, Imm)) {
1841       SBase = Expand32BitAddress(N0);
1842       return true;
1843     }
1844   }
1845   SBase = Expand32BitAddress(Addr);
1846   Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1847   Imm = true;
1848   return true;
1849 }
1850 
1851 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1852                                        SDValue &Offset) const {
1853   bool Imm = false;
1854   return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1855 }
1856 
1857 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1858                                          SDValue &Offset) const {
1859 
1860   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1861 
1862   bool Imm = false;
1863   if (!SelectSMRD(Addr, SBase, Offset, Imm))
1864     return false;
1865 
1866   return !Imm && isa<ConstantSDNode>(Offset);
1867 }
1868 
1869 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1870                                         SDValue &Offset) const {
1871   bool Imm = false;
1872   return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1873          !isa<ConstantSDNode>(Offset);
1874 }
1875 
1876 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1877                                              SDValue &Offset) const {
1878   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1879     if (auto Imm = AMDGPU::getSMRDEncodedOffset(*Subtarget,
1880                                                 C->getZExtValue())) {
1881       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1882       return true;
1883     }
1884   }
1885 
1886   return false;
1887 }
1888 
1889 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1890                                                SDValue &Offset) const {
1891   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1892 
1893   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1894     if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
1895                                                          C->getZExtValue())) {
1896       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1897       return true;
1898     }
1899   }
1900 
1901   return false;
1902 }
1903 
1904 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1905                                             SDValue &Base,
1906                                             SDValue &Offset) const {
1907   SDLoc DL(Index);
1908 
1909   if (CurDAG->isBaseWithConstantOffset(Index)) {
1910     SDValue N0 = Index.getOperand(0);
1911     SDValue N1 = Index.getOperand(1);
1912     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1913 
1914     // (add n0, c0)
1915     // Don't peel off the offset (c0) if doing so could possibly lead
1916     // the base (n0) to be negative.
1917     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1918       Base = N0;
1919       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1920       return true;
1921     }
1922   }
1923 
1924   if (isa<ConstantSDNode>(Index))
1925     return false;
1926 
1927   Base = Index;
1928   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1929   return true;
1930 }
1931 
1932 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1933                                      SDValue Val, uint32_t Offset,
1934                                      uint32_t Width) {
1935   // Transformation function, pack the offset and width of a BFE into
1936   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1937   // source, bits [5:0] contain the offset and bits [22:16] the width.
1938   uint32_t PackedVal = Offset | (Width << 16);
1939   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1940 
1941   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1942 }
1943 
1944 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1945   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1946   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1947   // Predicate: 0 < b <= c < 32
1948 
1949   const SDValue &Shl = N->getOperand(0);
1950   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1951   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1952 
1953   if (B && C) {
1954     uint32_t BVal = B->getZExtValue();
1955     uint32_t CVal = C->getZExtValue();
1956 
1957     if (0 < BVal && BVal <= CVal && CVal < 32) {
1958       bool Signed = N->getOpcode() == ISD::SRA;
1959       unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1960 
1961       ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1962                               32 - CVal));
1963       return;
1964     }
1965   }
1966   SelectCode(N);
1967 }
1968 
1969 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1970   switch (N->getOpcode()) {
1971   case ISD::AND:
1972     if (N->getOperand(0).getOpcode() == ISD::SRL) {
1973       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1974       // Predicate: isMask(mask)
1975       const SDValue &Srl = N->getOperand(0);
1976       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1977       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1978 
1979       if (Shift && Mask) {
1980         uint32_t ShiftVal = Shift->getZExtValue();
1981         uint32_t MaskVal = Mask->getZExtValue();
1982 
1983         if (isMask_32(MaskVal)) {
1984           uint32_t WidthVal = countPopulation(MaskVal);
1985 
1986           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1987                                   Srl.getOperand(0), ShiftVal, WidthVal));
1988           return;
1989         }
1990       }
1991     }
1992     break;
1993   case ISD::SRL:
1994     if (N->getOperand(0).getOpcode() == ISD::AND) {
1995       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1996       // Predicate: isMask(mask >> b)
1997       const SDValue &And = N->getOperand(0);
1998       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1999       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2000 
2001       if (Shift && Mask) {
2002         uint32_t ShiftVal = Shift->getZExtValue();
2003         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2004 
2005         if (isMask_32(MaskVal)) {
2006           uint32_t WidthVal = countPopulation(MaskVal);
2007 
2008           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2009                                   And.getOperand(0), ShiftVal, WidthVal));
2010           return;
2011         }
2012       }
2013     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2014       SelectS_BFEFromShifts(N);
2015       return;
2016     }
2017     break;
2018   case ISD::SRA:
2019     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2020       SelectS_BFEFromShifts(N);
2021       return;
2022     }
2023     break;
2024 
2025   case ISD::SIGN_EXTEND_INREG: {
2026     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2027     SDValue Src = N->getOperand(0);
2028     if (Src.getOpcode() != ISD::SRL)
2029       break;
2030 
2031     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2032     if (!Amt)
2033       break;
2034 
2035     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2036     ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2037                             Amt->getZExtValue(), Width));
2038     return;
2039   }
2040   }
2041 
2042   SelectCode(N);
2043 }
2044 
2045 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2046   assert(N->getOpcode() == ISD::BRCOND);
2047   if (!N->hasOneUse())
2048     return false;
2049 
2050   SDValue Cond = N->getOperand(1);
2051   if (Cond.getOpcode() == ISD::CopyToReg)
2052     Cond = Cond.getOperand(2);
2053 
2054   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2055     return false;
2056 
2057   MVT VT = Cond.getOperand(0).getSimpleValueType();
2058   if (VT == MVT::i32)
2059     return true;
2060 
2061   if (VT == MVT::i64) {
2062     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2063 
2064     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2065     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2066   }
2067 
2068   return false;
2069 }
2070 
2071 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2072   SDValue Cond = N->getOperand(1);
2073 
2074   if (Cond.isUndef()) {
2075     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2076                          N->getOperand(2), N->getOperand(0));
2077     return;
2078   }
2079 
2080   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2081   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2082 
2083   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2084   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2085   unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC();
2086   SDLoc SL(N);
2087 
2088   if (!UseSCCBr) {
2089     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2090     // analyzed what generates the vcc value, so we do not know whether vcc
2091     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2092     // disabled lanes.
2093     //
2094     // For the case that we select S_CBRANCH_SCC1 and it gets
2095     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2096     // SIInstrInfo::moveToVALU which inserts the S_AND).
2097     //
2098     // We could add an analysis of what generates the vcc value here and omit
2099     // the S_AND when is unnecessary. But it would be better to add a separate
2100     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2101     // catches both cases.
2102     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2103                                                          : AMDGPU::S_AND_B64,
2104                      SL, MVT::i1,
2105                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2106                                                         : AMDGPU::EXEC,
2107                                          MVT::i1),
2108                     Cond),
2109                    0);
2110   }
2111 
2112   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2113   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2114                        N->getOperand(2), // Basic Block
2115                        VCC.getValue(0));
2116 }
2117 
2118 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2119   MVT VT = N->getSimpleValueType(0);
2120   bool IsFMA = N->getOpcode() == ISD::FMA;
2121   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2122                          !Subtarget->hasFmaMixInsts()) ||
2123       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2124        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2125     SelectCode(N);
2126     return;
2127   }
2128 
2129   SDValue Src0 = N->getOperand(0);
2130   SDValue Src1 = N->getOperand(1);
2131   SDValue Src2 = N->getOperand(2);
2132   unsigned Src0Mods, Src1Mods, Src2Mods;
2133 
2134   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2135   // using the conversion from f16.
2136   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2137   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2138   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2139 
2140   assert((IsFMA || !Mode.allFP32Denormals()) &&
2141          "fmad selected with denormals enabled");
2142   // TODO: We can select this with f32 denormals enabled if all the sources are
2143   // converted from f16 (in which case fmad isn't legal).
2144 
2145   if (Sel0 || Sel1 || Sel2) {
2146     // For dummy operands.
2147     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2148     SDValue Ops[] = {
2149       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2150       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2151       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2152       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2153       Zero, Zero
2154     };
2155 
2156     CurDAG->SelectNodeTo(N,
2157                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2158                          MVT::f32, Ops);
2159   } else {
2160     SelectCode(N);
2161   }
2162 }
2163 
2164 // This is here because there isn't a way to use the generated sub0_sub1 as the
2165 // subreg index to EXTRACT_SUBREG in tablegen.
2166 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2167   MemSDNode *Mem = cast<MemSDNode>(N);
2168   unsigned AS = Mem->getAddressSpace();
2169   if (AS == AMDGPUAS::FLAT_ADDRESS) {
2170     SelectCode(N);
2171     return;
2172   }
2173 
2174   MVT VT = N->getSimpleValueType(0);
2175   bool Is32 = (VT == MVT::i32);
2176   SDLoc SL(N);
2177 
2178   MachineSDNode *CmpSwap = nullptr;
2179   if (Subtarget->hasAddr64()) {
2180     SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2181 
2182     if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2183       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2184         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2185       SDValue CmpVal = Mem->getOperand(2);
2186 
2187       // XXX - Do we care about glue operands?
2188 
2189       SDValue Ops[] = {
2190         CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2191       };
2192 
2193       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2194     }
2195   }
2196 
2197   if (!CmpSwap) {
2198     SDValue SRsrc, SOffset, Offset, SLC;
2199     if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2200       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2201         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2202 
2203       SDValue CmpVal = Mem->getOperand(2);
2204       SDValue Ops[] = {
2205         CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2206       };
2207 
2208       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2209     }
2210   }
2211 
2212   if (!CmpSwap) {
2213     SelectCode(N);
2214     return;
2215   }
2216 
2217   MachineMemOperand *MMO = Mem->getMemOperand();
2218   CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2219 
2220   unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2221   SDValue Extract
2222     = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2223 
2224   ReplaceUses(SDValue(N, 0), Extract);
2225   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2226   CurDAG->RemoveDeadNode(N);
2227 }
2228 
2229 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2230   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2231   // be copied to an SGPR with readfirstlane.
2232   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2233     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2234 
2235   SDValue Chain = N->getOperand(0);
2236   SDValue Ptr = N->getOperand(2);
2237   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2238   MachineMemOperand *MMO = M->getMemOperand();
2239   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2240 
2241   SDValue Offset;
2242   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2243     SDValue PtrBase = Ptr.getOperand(0);
2244     SDValue PtrOffset = Ptr.getOperand(1);
2245 
2246     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2247     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2248       N = glueCopyToM0(N, PtrBase);
2249       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2250     }
2251   }
2252 
2253   if (!Offset) {
2254     N = glueCopyToM0(N, Ptr);
2255     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2256   }
2257 
2258   SDValue Ops[] = {
2259     Offset,
2260     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2261     Chain,
2262     N->getOperand(N->getNumOperands() - 1) // New glue
2263   };
2264 
2265   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2266   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2267 }
2268 
2269 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2270   switch (IntrID) {
2271   case Intrinsic::amdgcn_ds_gws_init:
2272     return AMDGPU::DS_GWS_INIT;
2273   case Intrinsic::amdgcn_ds_gws_barrier:
2274     return AMDGPU::DS_GWS_BARRIER;
2275   case Intrinsic::amdgcn_ds_gws_sema_v:
2276     return AMDGPU::DS_GWS_SEMA_V;
2277   case Intrinsic::amdgcn_ds_gws_sema_br:
2278     return AMDGPU::DS_GWS_SEMA_BR;
2279   case Intrinsic::amdgcn_ds_gws_sema_p:
2280     return AMDGPU::DS_GWS_SEMA_P;
2281   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2282     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2283   default:
2284     llvm_unreachable("not a gws intrinsic");
2285   }
2286 }
2287 
2288 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2289   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2290       !Subtarget->hasGWSSemaReleaseAll()) {
2291     // Let this error.
2292     SelectCode(N);
2293     return;
2294   }
2295 
2296   // Chain, intrinsic ID, vsrc, offset
2297   const bool HasVSrc = N->getNumOperands() == 4;
2298   assert(HasVSrc || N->getNumOperands() == 3);
2299 
2300   SDLoc SL(N);
2301   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2302   int ImmOffset = 0;
2303   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2304   MachineMemOperand *MMO = M->getMemOperand();
2305 
2306   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2307   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2308 
2309   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2310   // offset field) % 64. Some versions of the programming guide omit the m0
2311   // part, or claim it's from offset 0.
2312   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2313     // If we have a constant offset, try to use the 0 in m0 as the base.
2314     // TODO: Look into changing the default m0 initialization value. If the
2315     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2316     // the immediate offset.
2317     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2318     ImmOffset = ConstOffset->getZExtValue();
2319   } else {
2320     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2321       ImmOffset = BaseOffset.getConstantOperandVal(1);
2322       BaseOffset = BaseOffset.getOperand(0);
2323     }
2324 
2325     // Prefer to do the shift in an SGPR since it should be possible to use m0
2326     // as the result directly. If it's already an SGPR, it will be eliminated
2327     // later.
2328     SDNode *SGPROffset
2329       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2330                                BaseOffset);
2331     // Shift to offset in m0
2332     SDNode *M0Base
2333       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2334                                SDValue(SGPROffset, 0),
2335                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2336     glueCopyToM0(N, SDValue(M0Base, 0));
2337   }
2338 
2339   SDValue Chain = N->getOperand(0);
2340   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2341 
2342   // TODO: Can this just be removed from the instruction?
2343   SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2344 
2345   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2346   SmallVector<SDValue, 5> Ops;
2347   if (HasVSrc)
2348     Ops.push_back(N->getOperand(2));
2349   Ops.push_back(OffsetField);
2350   Ops.push_back(GDS);
2351   Ops.push_back(Chain);
2352 
2353   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2354   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2355 }
2356 
2357 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2358   if (Subtarget->getLDSBankCount() != 16) {
2359     // This is a single instruction with a pattern.
2360     SelectCode(N);
2361     return;
2362   }
2363 
2364   SDLoc DL(N);
2365 
2366   // This requires 2 instructions. It is possible to write a pattern to support
2367   // this, but the generated isel emitter doesn't correctly deal with multiple
2368   // output instructions using the same physical register input. The copy to m0
2369   // is incorrectly placed before the second instruction.
2370   //
2371   // TODO: Match source modifiers.
2372   //
2373   // def : Pat <
2374   //   (int_amdgcn_interp_p1_f16
2375   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2376   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2377   //                             (i1 timm:$high), M0),
2378   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2379   //       timm:$attrchan, 0,
2380   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2381   //   let Predicates = [has16BankLDS];
2382   // }
2383 
2384   // 16 bank LDS
2385   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2386                                       N->getOperand(5), SDValue());
2387 
2388   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2389 
2390   SDNode *InterpMov =
2391     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2392         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2393         N->getOperand(3),  // Attr
2394         N->getOperand(2),  // Attrchan
2395         ToM0.getValue(1) // In glue
2396   });
2397 
2398   SDNode *InterpP1LV =
2399     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2400         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2401         N->getOperand(1), // Src0
2402         N->getOperand(3), // Attr
2403         N->getOperand(2), // Attrchan
2404         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2405         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2406         N->getOperand(4), // high
2407         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2408         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2409         SDValue(InterpMov, 1)
2410   });
2411 
2412   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2413 }
2414 
2415 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2416   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2417   switch (IntrID) {
2418   case Intrinsic::amdgcn_ds_append:
2419   case Intrinsic::amdgcn_ds_consume: {
2420     if (N->getValueType(0) != MVT::i32)
2421       break;
2422     SelectDSAppendConsume(N, IntrID);
2423     return;
2424   }
2425   }
2426 
2427   SelectCode(N);
2428 }
2429 
2430 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2431   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2432   unsigned Opcode;
2433   switch (IntrID) {
2434   case Intrinsic::amdgcn_wqm:
2435     Opcode = AMDGPU::WQM;
2436     break;
2437   case Intrinsic::amdgcn_softwqm:
2438     Opcode = AMDGPU::SOFT_WQM;
2439     break;
2440   case Intrinsic::amdgcn_wwm:
2441     Opcode = AMDGPU::WWM;
2442     break;
2443   case Intrinsic::amdgcn_interp_p1_f16:
2444     SelectInterpP1F16(N);
2445     return;
2446   default:
2447     SelectCode(N);
2448     return;
2449   }
2450 
2451   SDValue Src = N->getOperand(1);
2452   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2453 }
2454 
2455 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2456   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2457   switch (IntrID) {
2458   case Intrinsic::amdgcn_ds_gws_init:
2459   case Intrinsic::amdgcn_ds_gws_barrier:
2460   case Intrinsic::amdgcn_ds_gws_sema_v:
2461   case Intrinsic::amdgcn_ds_gws_sema_br:
2462   case Intrinsic::amdgcn_ds_gws_sema_p:
2463   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2464     SelectDS_GWS(N, IntrID);
2465     return;
2466   default:
2467     break;
2468   }
2469 
2470   SelectCode(N);
2471 }
2472 
2473 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2474                                             unsigned &Mods) const {
2475   Mods = 0;
2476   Src = In;
2477 
2478   if (Src.getOpcode() == ISD::FNEG) {
2479     Mods |= SISrcMods::NEG;
2480     Src = Src.getOperand(0);
2481   }
2482 
2483   if (Src.getOpcode() == ISD::FABS) {
2484     Mods |= SISrcMods::ABS;
2485     Src = Src.getOperand(0);
2486   }
2487 
2488   return true;
2489 }
2490 
2491 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2492                                         SDValue &SrcMods) const {
2493   unsigned Mods;
2494   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2495     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2496     return true;
2497   }
2498 
2499   return false;
2500 }
2501 
2502 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2503                                              SDValue &SrcMods) const {
2504   SelectVOP3Mods(In, Src, SrcMods);
2505   return isNoNanSrc(Src);
2506 }
2507 
2508 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2509   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2510     return false;
2511 
2512   Src = In;
2513   return true;
2514 }
2515 
2516 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2517                                          SDValue &SrcMods, SDValue &Clamp,
2518                                          SDValue &Omod) const {
2519   SDLoc DL(In);
2520   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2521   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2522 
2523   return SelectVOP3Mods(In, Src, SrcMods);
2524 }
2525 
2526 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2527                                          SDValue &Clamp, SDValue &Omod) const {
2528   Src = In;
2529 
2530   SDLoc DL(In);
2531   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2532   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2533 
2534   return true;
2535 }
2536 
2537 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2538                                          SDValue &SrcMods) const {
2539   unsigned Mods = 0;
2540   Src = In;
2541 
2542   if (Src.getOpcode() == ISD::FNEG) {
2543     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2544     Src = Src.getOperand(0);
2545   }
2546 
2547   if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2548     unsigned VecMods = Mods;
2549 
2550     SDValue Lo = stripBitcast(Src.getOperand(0));
2551     SDValue Hi = stripBitcast(Src.getOperand(1));
2552 
2553     if (Lo.getOpcode() == ISD::FNEG) {
2554       Lo = stripBitcast(Lo.getOperand(0));
2555       Mods ^= SISrcMods::NEG;
2556     }
2557 
2558     if (Hi.getOpcode() == ISD::FNEG) {
2559       Hi = stripBitcast(Hi.getOperand(0));
2560       Mods ^= SISrcMods::NEG_HI;
2561     }
2562 
2563     if (isExtractHiElt(Lo, Lo))
2564       Mods |= SISrcMods::OP_SEL_0;
2565 
2566     if (isExtractHiElt(Hi, Hi))
2567       Mods |= SISrcMods::OP_SEL_1;
2568 
2569     Lo = stripExtractLoElt(Lo);
2570     Hi = stripExtractLoElt(Hi);
2571 
2572     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2573       // Really a scalar input. Just select from the low half of the register to
2574       // avoid packing.
2575 
2576       Src = Lo;
2577       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2578       return true;
2579     }
2580 
2581     Mods = VecMods;
2582   }
2583 
2584   // Packed instructions do not have abs modifiers.
2585   Mods |= SISrcMods::OP_SEL_1;
2586 
2587   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2588   return true;
2589 }
2590 
2591 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2592                                          SDValue &SrcMods) const {
2593   Src = In;
2594   // FIXME: Handle op_sel
2595   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2596   return true;
2597 }
2598 
2599 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
2600                                           SDValue &SrcMods,
2601                                           SDValue &Clamp) const {
2602   SDLoc SL(In);
2603 
2604   // FIXME: Handle clamp
2605   Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2606 
2607   return SelectVOP3OpSel(In, Src, SrcMods);
2608 }
2609 
2610 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2611                                              SDValue &SrcMods) const {
2612   // FIXME: Handle op_sel
2613   return SelectVOP3Mods(In, Src, SrcMods);
2614 }
2615 
2616 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
2617                                               SDValue &SrcMods,
2618                                               SDValue &Clamp) const {
2619   SDLoc SL(In);
2620 
2621   // FIXME: Handle clamp
2622   Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2623 
2624   return SelectVOP3OpSelMods(In, Src, SrcMods);
2625 }
2626 
2627 // The return value is not whether the match is possible (which it always is),
2628 // but whether or not it a conversion is really used.
2629 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2630                                                    unsigned &Mods) const {
2631   Mods = 0;
2632   SelectVOP3ModsImpl(In, Src, Mods);
2633 
2634   if (Src.getOpcode() == ISD::FP_EXTEND) {
2635     Src = Src.getOperand(0);
2636     assert(Src.getValueType() == MVT::f16);
2637     Src = stripBitcast(Src);
2638 
2639     // Be careful about folding modifiers if we already have an abs. fneg is
2640     // applied last, so we don't want to apply an earlier fneg.
2641     if ((Mods & SISrcMods::ABS) == 0) {
2642       unsigned ModsTmp;
2643       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2644 
2645       if ((ModsTmp & SISrcMods::NEG) != 0)
2646         Mods ^= SISrcMods::NEG;
2647 
2648       if ((ModsTmp & SISrcMods::ABS) != 0)
2649         Mods |= SISrcMods::ABS;
2650     }
2651 
2652     // op_sel/op_sel_hi decide the source type and source.
2653     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2654     // If the sources's op_sel is set, it picks the high half of the source
2655     // register.
2656 
2657     Mods |= SISrcMods::OP_SEL_1;
2658     if (isExtractHiElt(Src, Src)) {
2659       Mods |= SISrcMods::OP_SEL_0;
2660 
2661       // TODO: Should we try to look for neg/abs here?
2662     }
2663 
2664     return true;
2665   }
2666 
2667   return false;
2668 }
2669 
2670 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2671                                                SDValue &SrcMods) const {
2672   unsigned Mods = 0;
2673   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2674   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2675   return true;
2676 }
2677 
2678 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2679   if (In.isUndef())
2680     return CurDAG->getUNDEF(MVT::i32);
2681 
2682   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2683     SDLoc SL(In);
2684     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2685   }
2686 
2687   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2688     SDLoc SL(In);
2689     return CurDAG->getConstant(
2690       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2691   }
2692 
2693   SDValue Src;
2694   if (isExtractHiElt(In, Src))
2695     return Src;
2696 
2697   return SDValue();
2698 }
2699 
2700 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2701   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2702 
2703   const SIRegisterInfo *SIRI =
2704     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2705   const SIInstrInfo * SII =
2706     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2707 
2708   unsigned Limit = 0;
2709   bool AllUsesAcceptSReg = true;
2710   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2711     Limit < 10 && U != E; ++U, ++Limit) {
2712     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2713 
2714     // If the register class is unknown, it could be an unknown
2715     // register class that needs to be an SGPR, e.g. an inline asm
2716     // constraint
2717     if (!RC || SIRI->isSGPRClass(RC))
2718       return false;
2719 
2720     if (RC != &AMDGPU::VS_32RegClass) {
2721       AllUsesAcceptSReg = false;
2722       SDNode * User = *U;
2723       if (User->isMachineOpcode()) {
2724         unsigned Opc = User->getMachineOpcode();
2725         MCInstrDesc Desc = SII->get(Opc);
2726         if (Desc.isCommutable()) {
2727           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2728           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2729           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2730             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2731             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2732             if (CommutedRC == &AMDGPU::VS_32RegClass)
2733               AllUsesAcceptSReg = true;
2734           }
2735         }
2736       }
2737       // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2738       // commuting current user. This means have at least one use
2739       // that strictly require VGPR. Thus, we will not attempt to commute
2740       // other user instructions.
2741       if (!AllUsesAcceptSReg)
2742         break;
2743     }
2744   }
2745   return !AllUsesAcceptSReg && (Limit < 10);
2746 }
2747 
2748 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2749   auto Ld = cast<LoadSDNode>(N);
2750 
2751   return Ld->getAlignment() >= 4 &&
2752         (
2753           (
2754             (
2755               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
2756               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2757             )
2758             &&
2759             !N->isDivergent()
2760           )
2761           ||
2762           (
2763             Subtarget->getScalarizeGlobalBehavior() &&
2764             Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2765             !Ld->isVolatile() &&
2766             !N->isDivergent() &&
2767             static_cast<const SITargetLowering *>(
2768               getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2769           )
2770         );
2771 }
2772 
2773 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2774   const AMDGPUTargetLowering& Lowering =
2775     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2776   bool IsModified = false;
2777   do {
2778     IsModified = false;
2779 
2780     // Go over all selected nodes and try to fold them a bit more
2781     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2782     while (Position != CurDAG->allnodes_end()) {
2783       SDNode *Node = &*Position++;
2784       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2785       if (!MachineNode)
2786         continue;
2787 
2788       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2789       if (ResNode != Node) {
2790         if (ResNode)
2791           ReplaceUses(Node, ResNode);
2792         IsModified = true;
2793       }
2794     }
2795     CurDAG->RemoveDeadNodes();
2796   } while (IsModified);
2797 }
2798 
2799 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2800   Subtarget = &MF.getSubtarget<R600Subtarget>();
2801   return SelectionDAGISel::runOnMachineFunction(MF);
2802 }
2803 
2804 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2805   if (!N->readMem())
2806     return false;
2807   if (CbId == -1)
2808     return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2809            N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2810 
2811   return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2812 }
2813 
2814 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2815                                                          SDValue& IntPtr) {
2816   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2817     IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2818                                        true);
2819     return true;
2820   }
2821   return false;
2822 }
2823 
2824 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2825     SDValue& BaseReg, SDValue &Offset) {
2826   if (!isa<ConstantSDNode>(Addr)) {
2827     BaseReg = Addr;
2828     Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2829     return true;
2830   }
2831   return false;
2832 }
2833 
2834 void R600DAGToDAGISel::Select(SDNode *N) {
2835   unsigned int Opc = N->getOpcode();
2836   if (N->isMachineOpcode()) {
2837     N->setNodeId(-1);
2838     return;   // Already selected.
2839   }
2840 
2841   switch (Opc) {
2842   default: break;
2843   case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2844   case ISD::SCALAR_TO_VECTOR:
2845   case ISD::BUILD_VECTOR: {
2846     EVT VT = N->getValueType(0);
2847     unsigned NumVectorElts = VT.getVectorNumElements();
2848     unsigned RegClassID;
2849     // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2850     // that adds a 128 bits reg copy when going through TwoAddressInstructions
2851     // pass. We want to avoid 128 bits copies as much as possible because they
2852     // can't be bundled by our scheduler.
2853     switch(NumVectorElts) {
2854     case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2855     case 4:
2856       if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2857         RegClassID = R600::R600_Reg128VerticalRegClassID;
2858       else
2859         RegClassID = R600::R600_Reg128RegClassID;
2860       break;
2861     default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2862     }
2863     SelectBuildVector(N, RegClassID);
2864     return;
2865   }
2866   }
2867 
2868   SelectCode(N);
2869 }
2870 
2871 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2872                                           SDValue &Offset) {
2873   ConstantSDNode *C;
2874   SDLoc DL(Addr);
2875 
2876   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2877     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2878     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2879   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2880              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2881     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2882     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2883   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2884             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2885     Base = Addr.getOperand(0);
2886     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2887   } else {
2888     Base = Addr;
2889     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2890   }
2891 
2892   return true;
2893 }
2894 
2895 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2896                                           SDValue &Offset) {
2897   ConstantSDNode *IMMOffset;
2898 
2899   if (Addr.getOpcode() == ISD::ADD
2900       && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2901       && isInt<16>(IMMOffset->getZExtValue())) {
2902 
2903       Base = Addr.getOperand(0);
2904       Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2905                                          MVT::i32);
2906       return true;
2907   // If the pointer address is constant, we can move it to the offset field.
2908   } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2909              && isInt<16>(IMMOffset->getZExtValue())) {
2910     Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2911                                   SDLoc(CurDAG->getEntryNode()),
2912                                   R600::ZERO, MVT::i32);
2913     Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2914                                        MVT::i32);
2915     return true;
2916   }
2917 
2918   // Default case, no offset
2919   Base = Addr;
2920   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2921   return true;
2922 }
2923