1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUTargetMachine.h" 16 #include "SIMachineFunctionInfo.h" 17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 18 #include "llvm/Analysis/ValueTracking.h" 19 #include "llvm/CodeGen/FunctionLoweringInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/SelectionDAGISel.h" 22 #include "llvm/CodeGen/SelectionDAGNodes.h" 23 #include "llvm/IR/IntrinsicsAMDGPU.h" 24 #include "llvm/InitializePasses.h" 25 26 #ifdef EXPENSIVE_CHECKS 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/Dominators.h" 29 #endif 30 31 #define DEBUG_TYPE "isel" 32 33 using namespace llvm; 34 35 namespace llvm { 36 37 class R600InstrInfo; 38 39 } // end namespace llvm 40 41 //===----------------------------------------------------------------------===// 42 // Instruction Selector Implementation 43 //===----------------------------------------------------------------------===// 44 45 namespace { 46 47 static bool isNullConstantOrUndef(SDValue V) { 48 if (V.isUndef()) 49 return true; 50 51 ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V); 52 return Const != nullptr && Const->isNullValue(); 53 } 54 55 static bool getConstantValue(SDValue N, uint32_t &Out) { 56 // This is only used for packed vectors, where ussing 0 for undef should 57 // always be good. 58 if (N.isUndef()) { 59 Out = 0; 60 return true; 61 } 62 63 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) { 64 Out = C->getAPIntValue().getSExtValue(); 65 return true; 66 } 67 68 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) { 69 Out = C->getValueAPF().bitcastToAPInt().getSExtValue(); 70 return true; 71 } 72 73 return false; 74 } 75 76 // TODO: Handle undef as zero 77 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG, 78 bool Negate = false) { 79 assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2); 80 uint32_t LHSVal, RHSVal; 81 if (getConstantValue(N->getOperand(0), LHSVal) && 82 getConstantValue(N->getOperand(1), RHSVal)) { 83 SDLoc SL(N); 84 uint32_t K = Negate ? 85 (-LHSVal & 0xffff) | (-RHSVal << 16) : 86 (LHSVal & 0xffff) | (RHSVal << 16); 87 return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0), 88 DAG.getTargetConstant(K, SL, MVT::i32)); 89 } 90 91 return nullptr; 92 } 93 94 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) { 95 return packConstantV2I16(N, DAG, true); 96 } 97 98 /// AMDGPU specific code to select AMDGPU machine instructions for 99 /// SelectionDAG operations. 100 class AMDGPUDAGToDAGISel : public SelectionDAGISel { 101 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can 102 // make the right decision when generating code for different targets. 103 const GCNSubtarget *Subtarget; 104 105 // Default FP mode for the current function. 106 AMDGPU::SIModeRegisterDefaults Mode; 107 108 bool EnableLateStructurizeCFG; 109 110 public: 111 explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr, 112 CodeGenOpt::Level OptLevel = CodeGenOpt::Default) 113 : SelectionDAGISel(*TM, OptLevel) { 114 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 115 } 116 ~AMDGPUDAGToDAGISel() override = default; 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.addRequired<AMDGPUArgumentUsageInfo>(); 120 AU.addRequired<LegacyDivergenceAnalysis>(); 121 #ifdef EXPENSIVE_CHECKS 122 AU.addRequired<DominatorTreeWrapperPass>(); 123 AU.addRequired<LoopInfoWrapperPass>(); 124 #endif 125 SelectionDAGISel::getAnalysisUsage(AU); 126 } 127 128 bool matchLoadD16FromBuildVector(SDNode *N) const; 129 130 bool runOnMachineFunction(MachineFunction &MF) override; 131 void PreprocessISelDAG() override; 132 void Select(SDNode *N) override; 133 StringRef getPassName() const override; 134 void PostprocessISelDAG() override; 135 136 protected: 137 void SelectBuildVector(SDNode *N, unsigned RegClassID); 138 139 private: 140 std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const; 141 bool isNoNanSrc(SDValue N) const; 142 bool isInlineImmediate(const SDNode *N, bool Negated = false) const; 143 bool isNegInlineImmediate(const SDNode *N) const { 144 return isInlineImmediate(N, true); 145 } 146 147 bool isInlineImmediate16(int64_t Imm) const { 148 return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm()); 149 } 150 151 bool isInlineImmediate32(int64_t Imm) const { 152 return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm()); 153 } 154 155 bool isInlineImmediate64(int64_t Imm) const { 156 return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm()); 157 } 158 159 bool isInlineImmediate(const APFloat &Imm) const { 160 return Subtarget->getInstrInfo()->isInlineConstant(Imm); 161 } 162 163 bool isVGPRImm(const SDNode *N) const; 164 bool isUniformLoad(const SDNode *N) const; 165 bool isUniformBr(const SDNode *N) const; 166 167 bool isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 168 SDValue &RHS) const; 169 170 MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const; 171 172 SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const; 173 SDNode *glueCopyToM0(SDNode *N, SDValue Val) const; 174 SDNode *glueCopyToM0LDSInit(SDNode *N) const; 175 176 const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const; 177 virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset); 178 virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset); 179 bool isDSOffsetLegal(SDValue Base, unsigned Offset) const; 180 bool isDSOffset2Legal(SDValue Base, unsigned Offset0, unsigned Offset1, 181 unsigned Size) const; 182 bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const; 183 bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 184 SDValue &Offset1) const; 185 bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0, 186 SDValue &Offset1) const; 187 bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0, 188 SDValue &Offset1, unsigned Size) const; 189 bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 190 SDValue &SOffset, SDValue &Offset, SDValue &Offen, 191 SDValue &Idxen, SDValue &Addr64) const; 192 bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr, 193 SDValue &SOffset, SDValue &Offset) const; 194 bool SelectMUBUFScratchOffen(SDNode *Parent, 195 SDValue Addr, SDValue &RSrc, SDValue &VAddr, 196 SDValue &SOffset, SDValue &ImmOffset) const; 197 bool SelectMUBUFScratchOffset(SDNode *Parent, 198 SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 199 SDValue &Offset) const; 200 201 bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset, 202 SDValue &Offset) const; 203 204 bool SelectFlatOffsetImpl(SDNode *N, SDValue Addr, SDValue &VAddr, 205 SDValue &Offset, uint64_t FlatVariant) const; 206 bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 207 SDValue &Offset) const; 208 bool SelectGlobalOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 209 SDValue &Offset) const; 210 bool SelectScratchOffset(SDNode *N, SDValue Addr, SDValue &VAddr, 211 SDValue &Offset) const; 212 bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 213 SDValue &VOffset, SDValue &Offset) const; 214 bool SelectScratchSAddr(SDNode *N, SDValue Addr, SDValue &SAddr, 215 SDValue &Offset) const; 216 217 bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset, 218 bool &Imm) const; 219 SDValue Expand32BitAddress(SDValue Addr) const; 220 bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset, 221 bool &Imm) const; 222 bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 223 bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 224 bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const; 225 bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const; 226 bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const; 227 bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const; 228 229 bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const; 230 bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods, 231 bool AllowAbs = true) const; 232 bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 233 bool SelectVOP3BMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 234 bool SelectVOP3NoMods(SDValue In, SDValue &Src) const; 235 bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods, 236 SDValue &Clamp, SDValue &Omod) const; 237 bool SelectVOP3BMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 238 SDValue &Clamp, SDValue &Omod) const; 239 bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods, 240 SDValue &Clamp, SDValue &Omod) const; 241 242 bool SelectVOP3OMods(SDValue In, SDValue &Src, 243 SDValue &Clamp, SDValue &Omod) const; 244 245 bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 246 247 bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const; 248 249 bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 250 bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const; 251 bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const; 252 253 SDValue getHi16Elt(SDValue In) const; 254 255 SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const; 256 257 void SelectADD_SUB_I64(SDNode *N); 258 void SelectAddcSubb(SDNode *N); 259 void SelectUADDO_USUBO(SDNode *N); 260 void SelectDIV_SCALE(SDNode *N); 261 void SelectMAD_64_32(SDNode *N); 262 void SelectFMA_W_CHAIN(SDNode *N); 263 void SelectFMUL_W_CHAIN(SDNode *N); 264 265 SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val, 266 uint32_t Offset, uint32_t Width); 267 void SelectS_BFEFromShifts(SDNode *N); 268 void SelectS_BFE(SDNode *N); 269 bool isCBranchSCC(const SDNode *N) const; 270 void SelectBRCOND(SDNode *N); 271 void SelectFMAD_FMA(SDNode *N); 272 void SelectATOMIC_CMP_SWAP(SDNode *N); 273 void SelectDSAppendConsume(SDNode *N, unsigned IntrID); 274 void SelectDS_GWS(SDNode *N, unsigned IntrID); 275 void SelectInterpP1F16(SDNode *N); 276 void SelectINTRINSIC_W_CHAIN(SDNode *N); 277 void SelectINTRINSIC_WO_CHAIN(SDNode *N); 278 void SelectINTRINSIC_VOID(SDNode *N); 279 280 protected: 281 // Include the pieces autogenerated from the target description. 282 #include "AMDGPUGenDAGISel.inc" 283 }; 284 285 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel { 286 const R600Subtarget *Subtarget; 287 288 bool isConstantLoad(const MemSDNode *N, int cbID) const; 289 bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr); 290 bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg, 291 SDValue& Offset); 292 public: 293 explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) : 294 AMDGPUDAGToDAGISel(TM, OptLevel) {} 295 296 void Select(SDNode *N) override; 297 298 bool SelectADDRIndirect(SDValue Addr, SDValue &Base, 299 SDValue &Offset) override; 300 bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 301 SDValue &Offset) override; 302 303 bool runOnMachineFunction(MachineFunction &MF) override; 304 305 void PreprocessISelDAG() override {} 306 307 protected: 308 // Include the pieces autogenerated from the target description. 309 #include "R600GenDAGISel.inc" 310 }; 311 312 static SDValue stripBitcast(SDValue Val) { 313 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 314 } 315 316 // Figure out if this is really an extract of the high 16-bits of a dword. 317 static bool isExtractHiElt(SDValue In, SDValue &Out) { 318 In = stripBitcast(In); 319 320 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 321 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 322 if (!Idx->isOne()) 323 return false; 324 Out = In.getOperand(0); 325 return true; 326 } 327 } 328 329 if (In.getOpcode() != ISD::TRUNCATE) 330 return false; 331 332 SDValue Srl = In.getOperand(0); 333 if (Srl.getOpcode() == ISD::SRL) { 334 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 335 if (ShiftAmt->getZExtValue() == 16) { 336 Out = stripBitcast(Srl.getOperand(0)); 337 return true; 338 } 339 } 340 } 341 342 return false; 343 } 344 345 // Look through operations that obscure just looking at the low 16-bits of the 346 // same register. 347 static SDValue stripExtractLoElt(SDValue In) { 348 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 349 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 350 if (Idx->isNullValue() && In.getValueSizeInBits() <= 32) 351 return In.getOperand(0); 352 } 353 } 354 355 if (In.getOpcode() == ISD::TRUNCATE) { 356 SDValue Src = In.getOperand(0); 357 if (Src.getValueType().getSizeInBits() == 32) 358 return stripBitcast(Src); 359 } 360 361 return In; 362 } 363 364 } // end anonymous namespace 365 366 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 367 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 368 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 369 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 370 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 371 #ifdef EXPENSIVE_CHECKS 372 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 373 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 374 #endif 375 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 376 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 377 378 /// This pass converts a legalized DAG into a AMDGPU-specific 379 // DAG, ready for instruction scheduling. 380 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 381 CodeGenOpt::Level OptLevel) { 382 return new AMDGPUDAGToDAGISel(TM, OptLevel); 383 } 384 385 /// This pass converts a legalized DAG into a R600-specific 386 // DAG, ready for instruction scheduling. 387 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM, 388 CodeGenOpt::Level OptLevel) { 389 return new R600DAGToDAGISel(TM, OptLevel); 390 } 391 392 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 393 #ifdef EXPENSIVE_CHECKS 394 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 395 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 396 for (auto &L : LI->getLoopsInPreorder()) { 397 assert(L->isLCSSAForm(DT)); 398 } 399 #endif 400 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 401 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 402 return SelectionDAGISel::runOnMachineFunction(MF); 403 } 404 405 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 406 assert(Subtarget->d16PreservesUnusedBits()); 407 MVT VT = N->getValueType(0).getSimpleVT(); 408 if (VT != MVT::v2i16 && VT != MVT::v2f16) 409 return false; 410 411 SDValue Lo = N->getOperand(0); 412 SDValue Hi = N->getOperand(1); 413 414 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 415 416 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 417 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 418 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 419 420 // Need to check for possible indirect dependencies on the other half of the 421 // vector to avoid introducing a cycle. 422 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 423 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 424 425 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 426 SDValue Ops[] = { 427 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 428 }; 429 430 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 431 if (LdHi->getMemoryVT() == MVT::i8) { 432 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 433 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 434 } else { 435 assert(LdHi->getMemoryVT() == MVT::i16); 436 } 437 438 SDValue NewLoadHi = 439 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 440 Ops, LdHi->getMemoryVT(), 441 LdHi->getMemOperand()); 442 443 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 444 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 445 return true; 446 } 447 448 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 449 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 450 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 451 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 452 if (LdLo && Lo.hasOneUse()) { 453 SDValue TiedIn = getHi16Elt(Hi); 454 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 455 return false; 456 457 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 458 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 459 if (LdLo->getMemoryVT() == MVT::i8) { 460 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 461 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 462 } else { 463 assert(LdLo->getMemoryVT() == MVT::i16); 464 } 465 466 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 467 468 SDValue Ops[] = { 469 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 470 }; 471 472 SDValue NewLoadLo = 473 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 474 Ops, LdLo->getMemoryVT(), 475 LdLo->getMemOperand()); 476 477 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 478 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 479 return true; 480 } 481 482 return false; 483 } 484 485 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 486 if (!Subtarget->d16PreservesUnusedBits()) 487 return; 488 489 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 490 491 bool MadeChange = false; 492 while (Position != CurDAG->allnodes_begin()) { 493 SDNode *N = &*--Position; 494 if (N->use_empty()) 495 continue; 496 497 switch (N->getOpcode()) { 498 case ISD::BUILD_VECTOR: 499 MadeChange |= matchLoadD16FromBuildVector(N); 500 break; 501 default: 502 break; 503 } 504 } 505 506 if (MadeChange) { 507 CurDAG->RemoveDeadNodes(); 508 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 509 CurDAG->dump();); 510 } 511 } 512 513 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 514 if (TM.Options.NoNaNsFPMath) 515 return true; 516 517 // TODO: Move into isKnownNeverNaN 518 if (N->getFlags().hasNoNaNs()) 519 return true; 520 521 return CurDAG->isKnownNeverNaN(N); 522 } 523 524 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 525 bool Negated) const { 526 if (N->isUndef()) 527 return true; 528 529 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 530 if (Negated) { 531 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 532 return TII->isInlineConstant(-C->getAPIntValue()); 533 534 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 535 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 536 537 } else { 538 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 539 return TII->isInlineConstant(C->getAPIntValue()); 540 541 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 542 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 543 } 544 545 return false; 546 } 547 548 /// Determine the register class for \p OpNo 549 /// \returns The register class of the virtual register that will be used for 550 /// the given operand number \OpNo or NULL if the register class cannot be 551 /// determined. 552 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 553 unsigned OpNo) const { 554 if (!N->isMachineOpcode()) { 555 if (N->getOpcode() == ISD::CopyToReg) { 556 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 557 if (Reg.isVirtual()) { 558 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 559 return MRI.getRegClass(Reg); 560 } 561 562 const SIRegisterInfo *TRI 563 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 564 return TRI->getPhysRegClass(Reg); 565 } 566 567 return nullptr; 568 } 569 570 switch (N->getMachineOpcode()) { 571 default: { 572 const MCInstrDesc &Desc = 573 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 574 unsigned OpIdx = Desc.getNumDefs() + OpNo; 575 if (OpIdx >= Desc.getNumOperands()) 576 return nullptr; 577 int RegClass = Desc.OpInfo[OpIdx].RegClass; 578 if (RegClass == -1) 579 return nullptr; 580 581 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 582 } 583 case AMDGPU::REG_SEQUENCE: { 584 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 585 const TargetRegisterClass *SuperRC = 586 Subtarget->getRegisterInfo()->getRegClass(RCID); 587 588 SDValue SubRegOp = N->getOperand(OpNo + 1); 589 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 590 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 591 SubRegIdx); 592 } 593 } 594 } 595 596 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 597 SDValue Glue) const { 598 SmallVector <SDValue, 8> Ops; 599 Ops.push_back(NewChain); // Replace the chain. 600 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 601 Ops.push_back(N->getOperand(i)); 602 603 Ops.push_back(Glue); 604 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 605 } 606 607 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 608 const SITargetLowering& Lowering = 609 *static_cast<const SITargetLowering*>(getTargetLowering()); 610 611 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 612 613 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 614 return glueCopyToOp(N, M0, M0.getValue(1)); 615 } 616 617 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 618 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 619 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 620 if (Subtarget->ldsRequiresM0Init()) 621 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 622 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 623 MachineFunction &MF = CurDAG->getMachineFunction(); 624 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 625 return 626 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 627 } 628 return N; 629 } 630 631 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 632 EVT VT) const { 633 SDNode *Lo = CurDAG->getMachineNode( 634 AMDGPU::S_MOV_B32, DL, MVT::i32, 635 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 636 SDNode *Hi = 637 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 638 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 639 const SDValue Ops[] = { 640 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 641 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 642 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 643 644 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 645 } 646 647 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 648 EVT VT = N->getValueType(0); 649 unsigned NumVectorElts = VT.getVectorNumElements(); 650 EVT EltVT = VT.getVectorElementType(); 651 SDLoc DL(N); 652 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 653 654 if (NumVectorElts == 1) { 655 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 656 RegClass); 657 return; 658 } 659 660 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 661 "supported yet"); 662 // 32 = Max Num Vector Elements 663 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 664 // 1 = Vector Register Class 665 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 666 667 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 668 Triple::amdgcn; 669 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 670 bool IsRegSeq = true; 671 unsigned NOps = N->getNumOperands(); 672 for (unsigned i = 0; i < NOps; i++) { 673 // XXX: Why is this here? 674 if (isa<RegisterSDNode>(N->getOperand(i))) { 675 IsRegSeq = false; 676 break; 677 } 678 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 679 : R600RegisterInfo::getSubRegFromChannel(i); 680 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 681 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 682 } 683 if (NOps != NumVectorElts) { 684 // Fill in the missing undef elements if this was a scalar_to_vector. 685 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 686 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 687 DL, EltVT); 688 for (unsigned i = NOps; i < NumVectorElts; ++i) { 689 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 690 : R600RegisterInfo::getSubRegFromChannel(i); 691 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 692 RegSeqArgs[1 + (2 * i) + 1] = 693 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 694 } 695 } 696 697 if (!IsRegSeq) 698 SelectCode(N); 699 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 700 } 701 702 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 703 unsigned int Opc = N->getOpcode(); 704 if (N->isMachineOpcode()) { 705 N->setNodeId(-1); 706 return; // Already selected. 707 } 708 709 // isa<MemSDNode> almost works but is slightly too permissive for some DS 710 // intrinsics. 711 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 712 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 713 Opc == ISD::ATOMIC_LOAD_FADD || 714 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 715 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 716 N = glueCopyToM0LDSInit(N); 717 SelectCode(N); 718 return; 719 } 720 721 switch (Opc) { 722 default: 723 break; 724 // We are selecting i64 ADD here instead of custom lower it during 725 // DAG legalization, so we can fold some i64 ADDs used for address 726 // calculation into the LOAD and STORE instructions. 727 case ISD::ADDC: 728 case ISD::ADDE: 729 case ISD::SUBC: 730 case ISD::SUBE: { 731 if (N->getValueType(0) != MVT::i64) 732 break; 733 734 SelectADD_SUB_I64(N); 735 return; 736 } 737 case ISD::ADDCARRY: 738 case ISD::SUBCARRY: 739 if (N->getValueType(0) != MVT::i32) 740 break; 741 742 SelectAddcSubb(N); 743 return; 744 case ISD::UADDO: 745 case ISD::USUBO: { 746 SelectUADDO_USUBO(N); 747 return; 748 } 749 case AMDGPUISD::FMUL_W_CHAIN: { 750 SelectFMUL_W_CHAIN(N); 751 return; 752 } 753 case AMDGPUISD::FMA_W_CHAIN: { 754 SelectFMA_W_CHAIN(N); 755 return; 756 } 757 758 case ISD::SCALAR_TO_VECTOR: 759 case ISD::BUILD_VECTOR: { 760 EVT VT = N->getValueType(0); 761 unsigned NumVectorElts = VT.getVectorNumElements(); 762 if (VT.getScalarSizeInBits() == 16) { 763 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 764 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 765 ReplaceNode(N, Packed); 766 return; 767 } 768 } 769 770 break; 771 } 772 773 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 774 unsigned RegClassID = 775 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 776 SelectBuildVector(N, RegClassID); 777 return; 778 } 779 case ISD::BUILD_PAIR: { 780 SDValue RC, SubReg0, SubReg1; 781 SDLoc DL(N); 782 if (N->getValueType(0) == MVT::i128) { 783 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 784 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 785 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 786 } else if (N->getValueType(0) == MVT::i64) { 787 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 788 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 789 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 790 } else { 791 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 792 } 793 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 794 N->getOperand(1), SubReg1 }; 795 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 796 N->getValueType(0), Ops)); 797 return; 798 } 799 800 case ISD::Constant: 801 case ISD::ConstantFP: { 802 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 803 break; 804 805 uint64_t Imm; 806 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 807 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 808 else { 809 ConstantSDNode *C = cast<ConstantSDNode>(N); 810 Imm = C->getZExtValue(); 811 } 812 813 SDLoc DL(N); 814 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 815 return; 816 } 817 case AMDGPUISD::BFE_I32: 818 case AMDGPUISD::BFE_U32: { 819 // There is a scalar version available, but unlike the vector version which 820 // has a separate operand for the offset and width, the scalar version packs 821 // the width and offset into a single operand. Try to move to the scalar 822 // version if the offsets are constant, so that we can try to keep extended 823 // loads of kernel arguments in SGPRs. 824 825 // TODO: Technically we could try to pattern match scalar bitshifts of 826 // dynamic values, but it's probably not useful. 827 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 828 if (!Offset) 829 break; 830 831 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 832 if (!Width) 833 break; 834 835 bool Signed = Opc == AMDGPUISD::BFE_I32; 836 837 uint32_t OffsetVal = Offset->getZExtValue(); 838 uint32_t WidthVal = Width->getZExtValue(); 839 840 ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32, 841 SDLoc(N), N->getOperand(0), OffsetVal, WidthVal)); 842 return; 843 } 844 case AMDGPUISD::DIV_SCALE: { 845 SelectDIV_SCALE(N); 846 return; 847 } 848 case AMDGPUISD::MAD_I64_I32: 849 case AMDGPUISD::MAD_U64_U32: { 850 SelectMAD_64_32(N); 851 return; 852 } 853 case ISD::CopyToReg: { 854 const SITargetLowering& Lowering = 855 *static_cast<const SITargetLowering*>(getTargetLowering()); 856 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 857 break; 858 } 859 case ISD::AND: 860 case ISD::SRL: 861 case ISD::SRA: 862 case ISD::SIGN_EXTEND_INREG: 863 if (N->getValueType(0) != MVT::i32) 864 break; 865 866 SelectS_BFE(N); 867 return; 868 case ISD::BRCOND: 869 SelectBRCOND(N); 870 return; 871 case ISD::FMAD: 872 case ISD::FMA: 873 SelectFMAD_FMA(N); 874 return; 875 case AMDGPUISD::ATOMIC_CMP_SWAP: 876 SelectATOMIC_CMP_SWAP(N); 877 return; 878 case AMDGPUISD::CVT_PKRTZ_F16_F32: 879 case AMDGPUISD::CVT_PKNORM_I16_F32: 880 case AMDGPUISD::CVT_PKNORM_U16_F32: 881 case AMDGPUISD::CVT_PK_U16_U32: 882 case AMDGPUISD::CVT_PK_I16_I32: { 883 // Hack around using a legal type if f16 is illegal. 884 if (N->getValueType(0) == MVT::i32) { 885 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 886 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 887 { N->getOperand(0), N->getOperand(1) }); 888 SelectCode(N); 889 return; 890 } 891 892 break; 893 } 894 case ISD::INTRINSIC_W_CHAIN: { 895 SelectINTRINSIC_W_CHAIN(N); 896 return; 897 } 898 case ISD::INTRINSIC_WO_CHAIN: { 899 SelectINTRINSIC_WO_CHAIN(N); 900 return; 901 } 902 case ISD::INTRINSIC_VOID: { 903 SelectINTRINSIC_VOID(N); 904 return; 905 } 906 } 907 908 SelectCode(N); 909 } 910 911 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 912 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 913 const Instruction *Term = BB->getTerminator(); 914 return Term->getMetadata("amdgpu.uniform") || 915 Term->getMetadata("structurizecfg.uniform"); 916 } 917 918 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 919 SDValue &N0, SDValue &N1) { 920 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 921 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 922 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 923 // (i64 (bitcast (v2i32 (build_vector 924 // (or (extract_vector_elt V, 0), OFFSET), 925 // (extract_vector_elt V, 1))))) 926 SDValue Lo = Addr.getOperand(0).getOperand(0); 927 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 928 SDValue BaseLo = Lo.getOperand(0); 929 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 930 // Check that split base (Lo and Hi) are extracted from the same one. 931 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 932 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 933 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 934 // Lo is statically extracted from index 0. 935 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 936 BaseLo.getConstantOperandVal(1) == 0 && 937 // Hi is statically extracted from index 0. 938 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 939 BaseHi.getConstantOperandVal(1) == 1) { 940 N0 = BaseLo.getOperand(0).getOperand(0); 941 N1 = Lo.getOperand(1); 942 return true; 943 } 944 } 945 } 946 return false; 947 } 948 949 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 950 SDValue &RHS) const { 951 if (CurDAG->isBaseWithConstantOffset(Addr)) { 952 LHS = Addr.getOperand(0); 953 RHS = Addr.getOperand(1); 954 return true; 955 } 956 957 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 958 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 959 return true; 960 } 961 962 return false; 963 } 964 965 StringRef AMDGPUDAGToDAGISel::getPassName() const { 966 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 967 } 968 969 //===----------------------------------------------------------------------===// 970 // Complex Patterns 971 //===----------------------------------------------------------------------===// 972 973 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 974 SDValue &Offset) { 975 return false; 976 } 977 978 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 979 SDValue &Offset) { 980 ConstantSDNode *C; 981 SDLoc DL(Addr); 982 983 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 984 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 985 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 986 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 987 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 988 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 989 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 990 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 991 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 992 Base = Addr.getOperand(0); 993 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 994 } else { 995 Base = Addr; 996 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 997 } 998 999 return true; 1000 } 1001 1002 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 1003 const SDLoc &DL) const { 1004 SDNode *Mov = CurDAG->getMachineNode( 1005 AMDGPU::S_MOV_B32, DL, MVT::i32, 1006 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 1007 return SDValue(Mov, 0); 1008 } 1009 1010 // FIXME: Should only handle addcarry/subcarry 1011 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 1012 SDLoc DL(N); 1013 SDValue LHS = N->getOperand(0); 1014 SDValue RHS = N->getOperand(1); 1015 1016 unsigned Opcode = N->getOpcode(); 1017 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 1018 bool ProduceCarry = 1019 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 1020 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 1021 1022 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1023 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1024 1025 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1026 DL, MVT::i32, LHS, Sub0); 1027 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1028 DL, MVT::i32, LHS, Sub1); 1029 1030 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1031 DL, MVT::i32, RHS, Sub0); 1032 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1033 DL, MVT::i32, RHS, Sub1); 1034 1035 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 1036 1037 static const unsigned OpcMap[2][2][2] = { 1038 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 1039 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 1040 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 1041 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 1042 1043 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 1044 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 1045 1046 SDNode *AddLo; 1047 if (!ConsumeCarry) { 1048 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 1049 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 1050 } else { 1051 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 1052 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 1053 } 1054 SDValue AddHiArgs[] = { 1055 SDValue(Hi0, 0), 1056 SDValue(Hi1, 0), 1057 SDValue(AddLo, 1) 1058 }; 1059 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 1060 1061 SDValue RegSequenceArgs[] = { 1062 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 1063 SDValue(AddLo,0), 1064 Sub0, 1065 SDValue(AddHi,0), 1066 Sub1, 1067 }; 1068 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1069 MVT::i64, RegSequenceArgs); 1070 1071 if (ProduceCarry) { 1072 // Replace the carry-use 1073 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 1074 } 1075 1076 // Replace the remaining uses. 1077 ReplaceNode(N, RegSequence); 1078 } 1079 1080 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 1081 SDLoc DL(N); 1082 SDValue LHS = N->getOperand(0); 1083 SDValue RHS = N->getOperand(1); 1084 SDValue CI = N->getOperand(2); 1085 1086 if (N->isDivergent()) { 1087 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 1088 : AMDGPU::V_SUBB_U32_e64; 1089 CurDAG->SelectNodeTo( 1090 N, Opc, N->getVTList(), 1091 {LHS, RHS, CI, 1092 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1093 } else { 1094 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 1095 : AMDGPU::S_SUB_CO_PSEUDO; 1096 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 1097 } 1098 } 1099 1100 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 1101 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 1102 // carry out despite the _i32 name. These were renamed in VI to _U32. 1103 // FIXME: We should probably rename the opcodes here. 1104 bool IsAdd = N->getOpcode() == ISD::UADDO; 1105 bool IsVALU = N->isDivergent(); 1106 1107 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 1108 ++UI) 1109 if (UI.getUse().getResNo() == 1) { 1110 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 1111 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 1112 IsVALU = true; 1113 break; 1114 } 1115 } 1116 1117 if (IsVALU) { 1118 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 1119 1120 CurDAG->SelectNodeTo( 1121 N, Opc, N->getVTList(), 1122 {N->getOperand(0), N->getOperand(1), 1123 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 1124 } else { 1125 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 1126 : AMDGPU::S_USUBO_PSEUDO; 1127 1128 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 1129 {N->getOperand(0), N->getOperand(1)}); 1130 } 1131 } 1132 1133 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 1134 SDLoc SL(N); 1135 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 1136 SDValue Ops[10]; 1137 1138 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 1139 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1140 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 1141 Ops[8] = N->getOperand(0); 1142 Ops[9] = N->getOperand(4); 1143 1144 CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32_e64, N->getVTList(), Ops); 1145 } 1146 1147 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 1148 SDLoc SL(N); 1149 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 1150 SDValue Ops[8]; 1151 1152 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 1153 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 1154 Ops[6] = N->getOperand(0); 1155 Ops[7] = N->getOperand(3); 1156 1157 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 1158 } 1159 1160 // We need to handle this here because tablegen doesn't support matching 1161 // instructions with multiple outputs. 1162 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 1163 SDLoc SL(N); 1164 EVT VT = N->getValueType(0); 1165 1166 assert(VT == MVT::f32 || VT == MVT::f64); 1167 1168 unsigned Opc 1169 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 1170 1171 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 1172 // omod 1173 SDValue Ops[8]; 1174 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1175 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1176 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1177 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1178 } 1179 1180 // We need to handle this here because tablegen doesn't support matching 1181 // instructions with multiple outputs. 1182 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1183 SDLoc SL(N); 1184 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1185 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1186 1187 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1188 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1189 Clamp }; 1190 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1191 } 1192 1193 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1194 if (!isUInt<16>(Offset)) 1195 return false; 1196 1197 if (!Base || Subtarget->hasUsableDSOffset() || 1198 Subtarget->unsafeDSOffsetFoldingEnabled()) 1199 return true; 1200 1201 // On Southern Islands instruction with a negative base value and an offset 1202 // don't seem to work. 1203 return CurDAG->SignBitIsZero(Base); 1204 } 1205 1206 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1207 SDValue &Offset) const { 1208 SDLoc DL(Addr); 1209 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1210 SDValue N0 = Addr.getOperand(0); 1211 SDValue N1 = Addr.getOperand(1); 1212 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1213 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1214 // (add n0, c0) 1215 Base = N0; 1216 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1217 return true; 1218 } 1219 } else if (Addr.getOpcode() == ISD::SUB) { 1220 // sub C, x -> add (sub 0, x), C 1221 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1222 int64_t ByteOffset = C->getSExtValue(); 1223 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1224 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1225 1226 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1227 // the known bits in isDSOffsetLegal. We need to emit the selected node 1228 // here, so this is thrown away. 1229 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1230 Zero, Addr.getOperand(1)); 1231 1232 if (isDSOffsetLegal(Sub, ByteOffset)) { 1233 SmallVector<SDValue, 3> Opnds; 1234 Opnds.push_back(Zero); 1235 Opnds.push_back(Addr.getOperand(1)); 1236 1237 // FIXME: Select to VOP3 version for with-carry. 1238 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1239 if (Subtarget->hasAddNoCarry()) { 1240 SubOp = AMDGPU::V_SUB_U32_e64; 1241 Opnds.push_back( 1242 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1243 } 1244 1245 MachineSDNode *MachineSub = 1246 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1247 1248 Base = SDValue(MachineSub, 0); 1249 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1250 return true; 1251 } 1252 } 1253 } 1254 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1255 // If we have a constant address, prefer to put the constant into the 1256 // offset. This can save moves to load the constant address since multiple 1257 // operations can share the zero base address register, and enables merging 1258 // into read2 / write2 instructions. 1259 1260 SDLoc DL(Addr); 1261 1262 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1263 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1264 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1265 DL, MVT::i32, Zero); 1266 Base = SDValue(MovZero, 0); 1267 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1268 return true; 1269 } 1270 } 1271 1272 // default case 1273 Base = Addr; 1274 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1275 return true; 1276 } 1277 1278 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1279 unsigned Offset1, 1280 unsigned Size) const { 1281 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1282 return false; 1283 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1284 return false; 1285 1286 if (!Base || Subtarget->hasUsableDSOffset() || 1287 Subtarget->unsafeDSOffsetFoldingEnabled()) 1288 return true; 1289 1290 // On Southern Islands instruction with a negative base value and an offset 1291 // don't seem to work. 1292 return CurDAG->SignBitIsZero(Base); 1293 } 1294 1295 // TODO: If offset is too big, put low 16-bit into offset. 1296 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1297 SDValue &Offset0, 1298 SDValue &Offset1) const { 1299 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1300 } 1301 1302 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1303 SDValue &Offset0, 1304 SDValue &Offset1) const { 1305 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1306 } 1307 1308 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1309 SDValue &Offset0, SDValue &Offset1, 1310 unsigned Size) const { 1311 SDLoc DL(Addr); 1312 1313 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1314 SDValue N0 = Addr.getOperand(0); 1315 SDValue N1 = Addr.getOperand(1); 1316 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1317 unsigned OffsetValue0 = C1->getZExtValue(); 1318 unsigned OffsetValue1 = OffsetValue0 + Size; 1319 1320 // (add n0, c0) 1321 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1322 Base = N0; 1323 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1324 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1325 return true; 1326 } 1327 } else if (Addr.getOpcode() == ISD::SUB) { 1328 // sub C, x -> add (sub 0, x), C 1329 if (const ConstantSDNode *C = 1330 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1331 unsigned OffsetValue0 = C->getZExtValue(); 1332 unsigned OffsetValue1 = OffsetValue0 + Size; 1333 1334 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1335 SDLoc DL(Addr); 1336 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1337 1338 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1339 // the known bits in isDSOffsetLegal. We need to emit the selected node 1340 // here, so this is thrown away. 1341 SDValue Sub = 1342 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1343 1344 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1345 SmallVector<SDValue, 3> Opnds; 1346 Opnds.push_back(Zero); 1347 Opnds.push_back(Addr.getOperand(1)); 1348 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1349 if (Subtarget->hasAddNoCarry()) { 1350 SubOp = AMDGPU::V_SUB_U32_e64; 1351 Opnds.push_back( 1352 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1353 } 1354 1355 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1356 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1357 1358 Base = SDValue(MachineSub, 0); 1359 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1360 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1361 return true; 1362 } 1363 } 1364 } 1365 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1366 unsigned OffsetValue0 = CAddr->getZExtValue(); 1367 unsigned OffsetValue1 = OffsetValue0 + Size; 1368 1369 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1370 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1371 MachineSDNode *MovZero = 1372 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1373 Base = SDValue(MovZero, 0); 1374 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1375 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1376 return true; 1377 } 1378 } 1379 1380 // default case 1381 1382 Base = Addr; 1383 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1384 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1385 return true; 1386 } 1387 1388 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1389 SDValue &SOffset, SDValue &Offset, 1390 SDValue &Offen, SDValue &Idxen, 1391 SDValue &Addr64) const { 1392 // Subtarget prefers to use flat instruction 1393 // FIXME: This should be a pattern predicate and not reach here 1394 if (Subtarget->useFlatForGlobal()) 1395 return false; 1396 1397 SDLoc DL(Addr); 1398 1399 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1400 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1401 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1402 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1403 1404 ConstantSDNode *C1 = nullptr; 1405 SDValue N0 = Addr; 1406 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1407 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1408 if (isUInt<32>(C1->getZExtValue())) 1409 N0 = Addr.getOperand(0); 1410 else 1411 C1 = nullptr; 1412 } 1413 1414 if (N0.getOpcode() == ISD::ADD) { 1415 // (add N2, N3) -> addr64, or 1416 // (add (add N2, N3), C1) -> addr64 1417 SDValue N2 = N0.getOperand(0); 1418 SDValue N3 = N0.getOperand(1); 1419 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1420 1421 if (N2->isDivergent()) { 1422 if (N3->isDivergent()) { 1423 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1424 // addr64, and construct the resource from a 0 address. 1425 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1426 VAddr = N0; 1427 } else { 1428 // N2 is divergent, N3 is not. 1429 Ptr = N3; 1430 VAddr = N2; 1431 } 1432 } else { 1433 // N2 is not divergent. 1434 Ptr = N2; 1435 VAddr = N3; 1436 } 1437 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1438 } else if (N0->isDivergent()) { 1439 // N0 is divergent. Use it as the addr64, and construct the resource from a 1440 // 0 address. 1441 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1442 VAddr = N0; 1443 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1444 } else { 1445 // N0 -> offset, or 1446 // (N0 + C1) -> offset 1447 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1448 Ptr = N0; 1449 } 1450 1451 if (!C1) { 1452 // No offset. 1453 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1454 return true; 1455 } 1456 1457 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1458 // Legal offset for instruction. 1459 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1460 return true; 1461 } 1462 1463 // Illegal offset, store it in soffset. 1464 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1465 SOffset = 1466 SDValue(CurDAG->getMachineNode( 1467 AMDGPU::S_MOV_B32, DL, MVT::i32, 1468 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1469 0); 1470 return true; 1471 } 1472 1473 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1474 SDValue &VAddr, SDValue &SOffset, 1475 SDValue &Offset) const { 1476 SDValue Ptr, Offen, Idxen, Addr64; 1477 1478 // addr64 bit was removed for volcanic islands. 1479 // FIXME: This should be a pattern predicate and not reach here 1480 if (!Subtarget->hasAddr64()) 1481 return false; 1482 1483 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1484 return false; 1485 1486 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1487 if (C->getSExtValue()) { 1488 SDLoc DL(Addr); 1489 1490 const SITargetLowering& Lowering = 1491 *static_cast<const SITargetLowering*>(getTargetLowering()); 1492 1493 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1494 return true; 1495 } 1496 1497 return false; 1498 } 1499 1500 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1501 SDLoc DL(N); 1502 1503 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1504 SDValue TFI = 1505 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1506 1507 // We rebase the base address into an absolute stack address and hence 1508 // use constant 0 for soffset. This value must be retained until 1509 // frame elimination and eliminateFrameIndex will choose the appropriate 1510 // frame register if need be. 1511 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1512 } 1513 1514 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1515 SDValue Addr, SDValue &Rsrc, 1516 SDValue &VAddr, SDValue &SOffset, 1517 SDValue &ImmOffset) const { 1518 1519 SDLoc DL(Addr); 1520 MachineFunction &MF = CurDAG->getMachineFunction(); 1521 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1522 1523 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1524 1525 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1526 int64_t Imm = CAddr->getSExtValue(); 1527 const int64_t NullPtr = 1528 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1529 // Don't fold null pointer. 1530 if (Imm != NullPtr) { 1531 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1532 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1533 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1534 VAddr = SDValue(MovHighBits, 0); 1535 1536 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1537 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1538 return true; 1539 } 1540 } 1541 1542 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1543 // (add n0, c1) 1544 1545 SDValue N0 = Addr.getOperand(0); 1546 SDValue N1 = Addr.getOperand(1); 1547 1548 // Offsets in vaddr must be positive if range checking is enabled. 1549 // 1550 // The total computation of vaddr + soffset + offset must not overflow. If 1551 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1552 // overflowing. 1553 // 1554 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1555 // always perform a range check. If a negative vaddr base index was used, 1556 // this would fail the range check. The overall address computation would 1557 // compute a valid address, but this doesn't happen due to the range 1558 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1559 // 1560 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1561 // MUBUF vaddr, but not on older subtargets which can only do this if the 1562 // sign bit is known 0. 1563 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1564 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1565 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1566 CurDAG->SignBitIsZero(N0))) { 1567 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1568 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1569 return true; 1570 } 1571 } 1572 1573 // (node) 1574 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1575 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1576 return true; 1577 } 1578 1579 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1580 if (Val.getOpcode() != ISD::CopyFromReg) 1581 return false; 1582 auto RC = 1583 TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg()); 1584 return RC && TRI.isSGPRClass(RC); 1585 } 1586 1587 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1588 SDValue Addr, 1589 SDValue &SRsrc, 1590 SDValue &SOffset, 1591 SDValue &Offset) const { 1592 const SIRegisterInfo *TRI = 1593 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1594 MachineFunction &MF = CurDAG->getMachineFunction(); 1595 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1596 SDLoc DL(Addr); 1597 1598 // CopyFromReg <sgpr> 1599 if (IsCopyFromSGPR(*TRI, Addr)) { 1600 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1601 SOffset = Addr; 1602 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1603 return true; 1604 } 1605 1606 ConstantSDNode *CAddr; 1607 if (Addr.getOpcode() == ISD::ADD) { 1608 // Add (CopyFromReg <sgpr>) <constant> 1609 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1610 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1611 return false; 1612 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1613 return false; 1614 1615 SOffset = Addr.getOperand(0); 1616 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1617 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1618 // <constant> 1619 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1620 } else { 1621 return false; 1622 } 1623 1624 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1625 1626 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1627 return true; 1628 } 1629 1630 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1631 SDValue &SOffset, SDValue &Offset 1632 ) const { 1633 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1634 const SIInstrInfo *TII = 1635 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1636 1637 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1638 return false; 1639 1640 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1641 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1642 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1643 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1644 APInt::getAllOnesValue(32).getZExtValue(); // Size 1645 SDLoc DL(Addr); 1646 1647 const SITargetLowering& Lowering = 1648 *static_cast<const SITargetLowering*>(getTargetLowering()); 1649 1650 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1651 return true; 1652 } 1653 return false; 1654 } 1655 1656 // Find a load or store from corresponding pattern root. 1657 // Roots may be build_vector, bitconvert or their combinations. 1658 static MemSDNode* findMemSDNode(SDNode *N) { 1659 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1660 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1661 return MN; 1662 assert(isa<BuildVectorSDNode>(N)); 1663 for (SDValue V : N->op_values()) 1664 if (MemSDNode *MN = 1665 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1666 return MN; 1667 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1668 } 1669 1670 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1671 SDValue &VAddr, SDValue &Offset, 1672 uint64_t FlatVariant) const { 1673 int64_t OffsetVal = 0; 1674 1675 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1676 1677 bool CanHaveFlatSegmentOffsetBug = 1678 Subtarget->hasFlatSegmentOffsetBug() && 1679 FlatVariant == SIInstrFlags::FLAT && 1680 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1681 1682 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1683 SDValue N0, N1; 1684 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1685 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1686 1687 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1688 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1689 Addr = N0; 1690 OffsetVal = COffsetVal; 1691 } else { 1692 // If the offset doesn't fit, put the low bits into the offset field and 1693 // add the rest. 1694 // 1695 // For a FLAT instruction the hardware decides whether to access 1696 // global/scratch/shared memory based on the high bits of vaddr, 1697 // ignoring the offset field, so we have to ensure that when we add 1698 // remainder to vaddr it still points into the same underlying object. 1699 // The easiest way to do that is to make sure that we split the offset 1700 // into two pieces that are both >= 0 or both <= 0. 1701 1702 SDLoc DL(N); 1703 uint64_t RemainderOffset; 1704 1705 std::tie(OffsetVal, RemainderOffset) = 1706 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1707 1708 SDValue AddOffsetLo = 1709 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1710 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1711 1712 if (Addr.getValueType().getSizeInBits() == 32) { 1713 SmallVector<SDValue, 3> Opnds; 1714 Opnds.push_back(N0); 1715 Opnds.push_back(AddOffsetLo); 1716 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1717 if (Subtarget->hasAddNoCarry()) { 1718 AddOp = AMDGPU::V_ADD_U32_e64; 1719 Opnds.push_back(Clamp); 1720 } 1721 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1722 } else { 1723 // TODO: Should this try to use a scalar add pseudo if the base address 1724 // is uniform and saddr is usable? 1725 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1726 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1727 1728 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1729 DL, MVT::i32, N0, Sub0); 1730 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1731 DL, MVT::i32, N0, Sub1); 1732 1733 SDValue AddOffsetHi = 1734 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1735 1736 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1737 1738 SDNode *Add = 1739 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1740 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1741 1742 SDNode *Addc = CurDAG->getMachineNode( 1743 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1744 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1745 1746 SDValue RegSequenceArgs[] = { 1747 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1748 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1749 1750 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1751 MVT::i64, RegSequenceArgs), 1752 0); 1753 } 1754 } 1755 } 1756 } 1757 1758 VAddr = Addr; 1759 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1760 return true; 1761 } 1762 1763 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1764 SDValue &VAddr, 1765 SDValue &Offset) const { 1766 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1767 } 1768 1769 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1770 SDValue &VAddr, 1771 SDValue &Offset) const { 1772 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1773 } 1774 1775 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1776 SDValue &VAddr, 1777 SDValue &Offset) const { 1778 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1779 SIInstrFlags::FlatScratch); 1780 } 1781 1782 // If this matches zero_extend i32:x, return x 1783 static SDValue matchZExtFromI32(SDValue Op) { 1784 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1785 return SDValue(); 1786 1787 SDValue ExtSrc = Op.getOperand(0); 1788 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1789 } 1790 1791 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1792 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1793 SDValue Addr, 1794 SDValue &SAddr, 1795 SDValue &VOffset, 1796 SDValue &Offset) const { 1797 int64_t ImmOffset = 0; 1798 1799 // Match the immediate offset first, which canonically is moved as low as 1800 // possible. 1801 1802 SDValue LHS, RHS; 1803 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1804 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1805 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1806 1807 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1808 SIInstrFlags::FlatGlobal)) { 1809 Addr = LHS; 1810 ImmOffset = COffsetVal; 1811 } else if (!LHS->isDivergent()) { 1812 if (COffsetVal > 0) { 1813 SDLoc SL(N); 1814 // saddr + large_offset -> saddr + 1815 // (voffset = large_offset & ~MaxOffset) + 1816 // (large_offset & MaxOffset); 1817 int64_t SplitImmOffset, RemainderOffset; 1818 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1819 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1820 1821 if (isUInt<32>(RemainderOffset)) { 1822 SDNode *VMov = CurDAG->getMachineNode( 1823 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1824 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1825 VOffset = SDValue(VMov, 0); 1826 SAddr = LHS; 1827 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1828 return true; 1829 } 1830 } 1831 1832 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1833 // is 1 we would need to perform 1 or 2 extra moves for each half of 1834 // the constant and it is better to do a scalar add and then issue a 1835 // single VALU instruction to materialize zero. Otherwise it is less 1836 // instructions to perform VALU adds with immediates or inline literals. 1837 unsigned NumLiterals = 1838 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1839 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1840 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1841 return false; 1842 } 1843 } 1844 1845 // Match the variable offset. 1846 if (Addr.getOpcode() == ISD::ADD) { 1847 LHS = Addr.getOperand(0); 1848 RHS = Addr.getOperand(1); 1849 1850 if (!LHS->isDivergent()) { 1851 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1852 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1853 SAddr = LHS; 1854 VOffset = ZextRHS; 1855 } 1856 } 1857 1858 if (!SAddr && !RHS->isDivergent()) { 1859 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1860 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1861 SAddr = RHS; 1862 VOffset = ZextLHS; 1863 } 1864 } 1865 1866 if (SAddr) { 1867 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1868 return true; 1869 } 1870 } 1871 1872 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1873 isa<ConstantSDNode>(Addr)) 1874 return false; 1875 1876 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1877 // moves required to copy a 64-bit SGPR to VGPR. 1878 SAddr = Addr; 1879 SDNode *VMov = 1880 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1881 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1882 VOffset = SDValue(VMov, 0); 1883 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1884 return true; 1885 } 1886 1887 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1888 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1889 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1890 } else if (SAddr.getOpcode() == ISD::ADD && 1891 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1892 // Materialize this into a scalar move for scalar address to avoid 1893 // readfirstlane. 1894 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1895 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1896 FI->getValueType(0)); 1897 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, SDLoc(SAddr), 1898 MVT::i32, TFI, SAddr.getOperand(1)), 1899 0); 1900 } 1901 1902 return SAddr; 1903 } 1904 1905 // Match (32-bit SGPR base) + sext(imm offset) 1906 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1907 SDValue &SAddr, 1908 SDValue &Offset) const { 1909 if (Addr->isDivergent()) 1910 return false; 1911 1912 SDLoc DL(Addr); 1913 1914 int64_t COffsetVal = 0; 1915 1916 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1917 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1918 SAddr = Addr.getOperand(0); 1919 } else { 1920 SAddr = Addr; 1921 } 1922 1923 SAddr = SelectSAddrFI(CurDAG, SAddr); 1924 1925 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1926 1927 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1928 SIInstrFlags::FlatScratch)) { 1929 int64_t SplitImmOffset, RemainderOffset; 1930 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1931 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1932 1933 COffsetVal = SplitImmOffset; 1934 1935 SDValue AddOffset = 1936 SAddr.getOpcode() == ISD::TargetFrameIndex 1937 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1938 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1939 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, DL, MVT::i32, 1940 SAddr, AddOffset), 0); 1941 } 1942 1943 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1944 1945 return true; 1946 } 1947 1948 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1949 SDValue &Offset, bool &Imm) const { 1950 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1951 if (!C) { 1952 if (ByteOffsetNode.getValueType().isScalarInteger() && 1953 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1954 Offset = ByteOffsetNode; 1955 Imm = false; 1956 return true; 1957 } 1958 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1959 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1960 Offset = ByteOffsetNode.getOperand(0); 1961 Imm = false; 1962 return true; 1963 } 1964 } 1965 return false; 1966 } 1967 1968 SDLoc SL(ByteOffsetNode); 1969 // GFX9 and GFX10 have signed byte immediate offsets. 1970 int64_t ByteOffset = C->getSExtValue(); 1971 Optional<int64_t> EncodedOffset = 1972 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1973 if (EncodedOffset) { 1974 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1975 Imm = true; 1976 return true; 1977 } 1978 1979 // SGPR and literal offsets are unsigned. 1980 if (ByteOffset < 0) 1981 return false; 1982 1983 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1984 if (EncodedOffset) { 1985 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1986 return true; 1987 } 1988 1989 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1990 return false; 1991 1992 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1993 Offset = SDValue( 1994 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1995 1996 return true; 1997 } 1998 1999 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 2000 if (Addr.getValueType() != MVT::i32) 2001 return Addr; 2002 2003 // Zero-extend a 32-bit address. 2004 SDLoc SL(Addr); 2005 2006 const MachineFunction &MF = CurDAG->getMachineFunction(); 2007 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 2008 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 2009 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 2010 2011 const SDValue Ops[] = { 2012 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 2013 Addr, 2014 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2015 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 2016 0), 2017 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 2018 }; 2019 2020 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 2021 Ops), 0); 2022 } 2023 2024 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 2025 SDValue &Offset, bool &Imm) const { 2026 SDLoc SL(Addr); 2027 2028 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 2029 // wraparound, because s_load instructions perform the addition in 64 bits. 2030 if ((Addr.getValueType() != MVT::i32 || 2031 Addr->getFlags().hasNoUnsignedWrap())) { 2032 SDValue N0, N1; 2033 // Extract the base and offset if possible. 2034 if (CurDAG->isBaseWithConstantOffset(Addr) || 2035 Addr.getOpcode() == ISD::ADD) { 2036 N0 = Addr.getOperand(0); 2037 N1 = Addr.getOperand(1); 2038 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 2039 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 2040 } 2041 if (N0 && N1) { 2042 if (SelectSMRDOffset(N1, Offset, Imm)) { 2043 SBase = Expand32BitAddress(N0); 2044 return true; 2045 } 2046 } 2047 } 2048 SBase = Expand32BitAddress(Addr); 2049 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 2050 Imm = true; 2051 return true; 2052 } 2053 2054 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 2055 SDValue &Offset) const { 2056 bool Imm = false; 2057 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 2058 } 2059 2060 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 2061 SDValue &Offset) const { 2062 2063 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2064 2065 bool Imm = false; 2066 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 2067 return false; 2068 2069 return !Imm && isa<ConstantSDNode>(Offset); 2070 } 2071 2072 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 2073 SDValue &Offset) const { 2074 bool Imm = false; 2075 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 2076 !isa<ConstantSDNode>(Offset); 2077 } 2078 2079 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 2080 SDValue &Offset) const { 2081 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2082 // The immediate offset for S_BUFFER instructions is unsigned. 2083 if (auto Imm = 2084 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 2085 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2086 return true; 2087 } 2088 } 2089 2090 return false; 2091 } 2092 2093 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2094 SDValue &Offset) const { 2095 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2096 2097 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2098 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2099 C->getZExtValue())) { 2100 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2101 return true; 2102 } 2103 } 2104 2105 return false; 2106 } 2107 2108 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2109 SDValue &Base, 2110 SDValue &Offset) const { 2111 SDLoc DL(Index); 2112 2113 if (CurDAG->isBaseWithConstantOffset(Index)) { 2114 SDValue N0 = Index.getOperand(0); 2115 SDValue N1 = Index.getOperand(1); 2116 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2117 2118 // (add n0, c0) 2119 // Don't peel off the offset (c0) if doing so could possibly lead 2120 // the base (n0) to be negative. 2121 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2122 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2123 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2124 Base = N0; 2125 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2126 return true; 2127 } 2128 } 2129 2130 if (isa<ConstantSDNode>(Index)) 2131 return false; 2132 2133 Base = Index; 2134 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2135 return true; 2136 } 2137 2138 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL, 2139 SDValue Val, uint32_t Offset, 2140 uint32_t Width) { 2141 // Transformation function, pack the offset and width of a BFE into 2142 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2143 // source, bits [5:0] contain the offset and bits [22:16] the width. 2144 uint32_t PackedVal = Offset | (Width << 16); 2145 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2146 2147 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2148 } 2149 2150 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2151 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2152 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2153 // Predicate: 0 < b <= c < 32 2154 2155 const SDValue &Shl = N->getOperand(0); 2156 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2157 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2158 2159 if (B && C) { 2160 uint32_t BVal = B->getZExtValue(); 2161 uint32_t CVal = C->getZExtValue(); 2162 2163 if (0 < BVal && BVal <= CVal && CVal < 32) { 2164 bool Signed = N->getOpcode() == ISD::SRA; 2165 unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2166 2167 ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2168 32 - CVal)); 2169 return; 2170 } 2171 } 2172 SelectCode(N); 2173 } 2174 2175 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2176 switch (N->getOpcode()) { 2177 case ISD::AND: 2178 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2179 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2180 // Predicate: isMask(mask) 2181 const SDValue &Srl = N->getOperand(0); 2182 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2183 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2184 2185 if (Shift && Mask) { 2186 uint32_t ShiftVal = Shift->getZExtValue(); 2187 uint32_t MaskVal = Mask->getZExtValue(); 2188 2189 if (isMask_32(MaskVal)) { 2190 uint32_t WidthVal = countPopulation(MaskVal); 2191 2192 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2193 Srl.getOperand(0), ShiftVal, WidthVal)); 2194 return; 2195 } 2196 } 2197 } 2198 break; 2199 case ISD::SRL: 2200 if (N->getOperand(0).getOpcode() == ISD::AND) { 2201 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2202 // Predicate: isMask(mask >> b) 2203 const SDValue &And = N->getOperand(0); 2204 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2205 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2206 2207 if (Shift && Mask) { 2208 uint32_t ShiftVal = Shift->getZExtValue(); 2209 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2210 2211 if (isMask_32(MaskVal)) { 2212 uint32_t WidthVal = countPopulation(MaskVal); 2213 2214 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N), 2215 And.getOperand(0), ShiftVal, WidthVal)); 2216 return; 2217 } 2218 } 2219 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2220 SelectS_BFEFromShifts(N); 2221 return; 2222 } 2223 break; 2224 case ISD::SRA: 2225 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2226 SelectS_BFEFromShifts(N); 2227 return; 2228 } 2229 break; 2230 2231 case ISD::SIGN_EXTEND_INREG: { 2232 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2233 SDValue Src = N->getOperand(0); 2234 if (Src.getOpcode() != ISD::SRL) 2235 break; 2236 2237 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2238 if (!Amt) 2239 break; 2240 2241 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2242 ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0), 2243 Amt->getZExtValue(), Width)); 2244 return; 2245 } 2246 } 2247 2248 SelectCode(N); 2249 } 2250 2251 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2252 assert(N->getOpcode() == ISD::BRCOND); 2253 if (!N->hasOneUse()) 2254 return false; 2255 2256 SDValue Cond = N->getOperand(1); 2257 if (Cond.getOpcode() == ISD::CopyToReg) 2258 Cond = Cond.getOperand(2); 2259 2260 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2261 return false; 2262 2263 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2264 if (VT == MVT::i32) 2265 return true; 2266 2267 if (VT == MVT::i64) { 2268 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2269 2270 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2271 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2272 } 2273 2274 return false; 2275 } 2276 2277 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2278 SDValue Cond = N->getOperand(1); 2279 2280 if (Cond.isUndef()) { 2281 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2282 N->getOperand(2), N->getOperand(0)); 2283 return; 2284 } 2285 2286 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2287 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2288 2289 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2290 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2291 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2292 SDLoc SL(N); 2293 2294 if (!UseSCCBr) { 2295 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2296 // analyzed what generates the vcc value, so we do not know whether vcc 2297 // bits for disabled lanes are 0. Thus we need to mask out bits for 2298 // disabled lanes. 2299 // 2300 // For the case that we select S_CBRANCH_SCC1 and it gets 2301 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2302 // SIInstrInfo::moveToVALU which inserts the S_AND). 2303 // 2304 // We could add an analysis of what generates the vcc value here and omit 2305 // the S_AND when is unnecessary. But it would be better to add a separate 2306 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2307 // catches both cases. 2308 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2309 : AMDGPU::S_AND_B64, 2310 SL, MVT::i1, 2311 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2312 : AMDGPU::EXEC, 2313 MVT::i1), 2314 Cond), 2315 0); 2316 } 2317 2318 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2319 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2320 N->getOperand(2), // Basic Block 2321 VCC.getValue(0)); 2322 } 2323 2324 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2325 MVT VT = N->getSimpleValueType(0); 2326 bool IsFMA = N->getOpcode() == ISD::FMA; 2327 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2328 !Subtarget->hasFmaMixInsts()) || 2329 ((IsFMA && Subtarget->hasMadMixInsts()) || 2330 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2331 SelectCode(N); 2332 return; 2333 } 2334 2335 SDValue Src0 = N->getOperand(0); 2336 SDValue Src1 = N->getOperand(1); 2337 SDValue Src2 = N->getOperand(2); 2338 unsigned Src0Mods, Src1Mods, Src2Mods; 2339 2340 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2341 // using the conversion from f16. 2342 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2343 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2344 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2345 2346 assert((IsFMA || !Mode.allFP32Denormals()) && 2347 "fmad selected with denormals enabled"); 2348 // TODO: We can select this with f32 denormals enabled if all the sources are 2349 // converted from f16 (in which case fmad isn't legal). 2350 2351 if (Sel0 || Sel1 || Sel2) { 2352 // For dummy operands. 2353 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2354 SDValue Ops[] = { 2355 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2356 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2357 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2358 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2359 Zero, Zero 2360 }; 2361 2362 CurDAG->SelectNodeTo(N, 2363 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2364 MVT::f32, Ops); 2365 } else { 2366 SelectCode(N); 2367 } 2368 } 2369 2370 // This is here because there isn't a way to use the generated sub0_sub1 as the 2371 // subreg index to EXTRACT_SUBREG in tablegen. 2372 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2373 MemSDNode *Mem = cast<MemSDNode>(N); 2374 unsigned AS = Mem->getAddressSpace(); 2375 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2376 SelectCode(N); 2377 return; 2378 } 2379 2380 MVT VT = N->getSimpleValueType(0); 2381 bool Is32 = (VT == MVT::i32); 2382 SDLoc SL(N); 2383 2384 MachineSDNode *CmpSwap = nullptr; 2385 if (Subtarget->hasAddr64()) { 2386 SDValue SRsrc, VAddr, SOffset, Offset; 2387 2388 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) { 2389 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2390 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2391 SDValue CmpVal = Mem->getOperand(2); 2392 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2393 2394 // XXX - Do we care about glue operands? 2395 2396 SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol, 2397 Mem->getChain()}; 2398 2399 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2400 } 2401 } 2402 2403 if (!CmpSwap) { 2404 SDValue SRsrc, SOffset, Offset; 2405 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) { 2406 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2407 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2408 2409 SDValue CmpVal = Mem->getOperand(2); 2410 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2411 SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()}; 2412 2413 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2414 } 2415 } 2416 2417 if (!CmpSwap) { 2418 SelectCode(N); 2419 return; 2420 } 2421 2422 MachineMemOperand *MMO = Mem->getMemOperand(); 2423 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2424 2425 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2426 SDValue Extract 2427 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2428 2429 ReplaceUses(SDValue(N, 0), Extract); 2430 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2431 CurDAG->RemoveDeadNode(N); 2432 } 2433 2434 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2435 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2436 // be copied to an SGPR with readfirstlane. 2437 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2438 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2439 2440 SDValue Chain = N->getOperand(0); 2441 SDValue Ptr = N->getOperand(2); 2442 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2443 MachineMemOperand *MMO = M->getMemOperand(); 2444 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2445 2446 SDValue Offset; 2447 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2448 SDValue PtrBase = Ptr.getOperand(0); 2449 SDValue PtrOffset = Ptr.getOperand(1); 2450 2451 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2452 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2453 N = glueCopyToM0(N, PtrBase); 2454 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2455 } 2456 } 2457 2458 if (!Offset) { 2459 N = glueCopyToM0(N, Ptr); 2460 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2461 } 2462 2463 SDValue Ops[] = { 2464 Offset, 2465 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2466 Chain, 2467 N->getOperand(N->getNumOperands() - 1) // New glue 2468 }; 2469 2470 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2471 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2472 } 2473 2474 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2475 switch (IntrID) { 2476 case Intrinsic::amdgcn_ds_gws_init: 2477 return AMDGPU::DS_GWS_INIT; 2478 case Intrinsic::amdgcn_ds_gws_barrier: 2479 return AMDGPU::DS_GWS_BARRIER; 2480 case Intrinsic::amdgcn_ds_gws_sema_v: 2481 return AMDGPU::DS_GWS_SEMA_V; 2482 case Intrinsic::amdgcn_ds_gws_sema_br: 2483 return AMDGPU::DS_GWS_SEMA_BR; 2484 case Intrinsic::amdgcn_ds_gws_sema_p: 2485 return AMDGPU::DS_GWS_SEMA_P; 2486 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2487 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2488 default: 2489 llvm_unreachable("not a gws intrinsic"); 2490 } 2491 } 2492 2493 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2494 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2495 !Subtarget->hasGWSSemaReleaseAll()) { 2496 // Let this error. 2497 SelectCode(N); 2498 return; 2499 } 2500 2501 // Chain, intrinsic ID, vsrc, offset 2502 const bool HasVSrc = N->getNumOperands() == 4; 2503 assert(HasVSrc || N->getNumOperands() == 3); 2504 2505 SDLoc SL(N); 2506 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2507 int ImmOffset = 0; 2508 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2509 MachineMemOperand *MMO = M->getMemOperand(); 2510 2511 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2512 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2513 2514 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2515 // offset field) % 64. Some versions of the programming guide omit the m0 2516 // part, or claim it's from offset 0. 2517 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2518 // If we have a constant offset, try to use the 0 in m0 as the base. 2519 // TODO: Look into changing the default m0 initialization value. If the 2520 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2521 // the immediate offset. 2522 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2523 ImmOffset = ConstOffset->getZExtValue(); 2524 } else { 2525 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2526 ImmOffset = BaseOffset.getConstantOperandVal(1); 2527 BaseOffset = BaseOffset.getOperand(0); 2528 } 2529 2530 // Prefer to do the shift in an SGPR since it should be possible to use m0 2531 // as the result directly. If it's already an SGPR, it will be eliminated 2532 // later. 2533 SDNode *SGPROffset 2534 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2535 BaseOffset); 2536 // Shift to offset in m0 2537 SDNode *M0Base 2538 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2539 SDValue(SGPROffset, 0), 2540 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2541 glueCopyToM0(N, SDValue(M0Base, 0)); 2542 } 2543 2544 SDValue Chain = N->getOperand(0); 2545 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2546 2547 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2548 SmallVector<SDValue, 5> Ops; 2549 if (HasVSrc) 2550 Ops.push_back(N->getOperand(2)); 2551 Ops.push_back(OffsetField); 2552 Ops.push_back(Chain); 2553 2554 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2555 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2556 } 2557 2558 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2559 if (Subtarget->getLDSBankCount() != 16) { 2560 // This is a single instruction with a pattern. 2561 SelectCode(N); 2562 return; 2563 } 2564 2565 SDLoc DL(N); 2566 2567 // This requires 2 instructions. It is possible to write a pattern to support 2568 // this, but the generated isel emitter doesn't correctly deal with multiple 2569 // output instructions using the same physical register input. The copy to m0 2570 // is incorrectly placed before the second instruction. 2571 // 2572 // TODO: Match source modifiers. 2573 // 2574 // def : Pat < 2575 // (int_amdgcn_interp_p1_f16 2576 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2577 // (i32 timm:$attrchan), (i32 timm:$attr), 2578 // (i1 timm:$high), M0), 2579 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2580 // timm:$attrchan, 0, 2581 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2582 // let Predicates = [has16BankLDS]; 2583 // } 2584 2585 // 16 bank LDS 2586 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2587 N->getOperand(5), SDValue()); 2588 2589 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2590 2591 SDNode *InterpMov = 2592 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2593 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2594 N->getOperand(3), // Attr 2595 N->getOperand(2), // Attrchan 2596 ToM0.getValue(1) // In glue 2597 }); 2598 2599 SDNode *InterpP1LV = 2600 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2601 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2602 N->getOperand(1), // Src0 2603 N->getOperand(3), // Attr 2604 N->getOperand(2), // Attrchan 2605 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2606 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2607 N->getOperand(4), // high 2608 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2609 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2610 SDValue(InterpMov, 1) 2611 }); 2612 2613 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2614 } 2615 2616 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2617 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2618 switch (IntrID) { 2619 case Intrinsic::amdgcn_ds_append: 2620 case Intrinsic::amdgcn_ds_consume: { 2621 if (N->getValueType(0) != MVT::i32) 2622 break; 2623 SelectDSAppendConsume(N, IntrID); 2624 return; 2625 } 2626 } 2627 2628 SelectCode(N); 2629 } 2630 2631 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2632 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2633 unsigned Opcode; 2634 switch (IntrID) { 2635 case Intrinsic::amdgcn_wqm: 2636 Opcode = AMDGPU::WQM; 2637 break; 2638 case Intrinsic::amdgcn_softwqm: 2639 Opcode = AMDGPU::SOFT_WQM; 2640 break; 2641 case Intrinsic::amdgcn_wwm: 2642 case Intrinsic::amdgcn_strict_wwm: 2643 Opcode = AMDGPU::STRICT_WWM; 2644 break; 2645 case Intrinsic::amdgcn_strict_wqm: 2646 Opcode = AMDGPU::STRICT_WQM; 2647 break; 2648 case Intrinsic::amdgcn_interp_p1_f16: 2649 SelectInterpP1F16(N); 2650 return; 2651 default: 2652 SelectCode(N); 2653 return; 2654 } 2655 2656 SDValue Src = N->getOperand(1); 2657 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2658 } 2659 2660 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2661 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2662 switch (IntrID) { 2663 case Intrinsic::amdgcn_ds_gws_init: 2664 case Intrinsic::amdgcn_ds_gws_barrier: 2665 case Intrinsic::amdgcn_ds_gws_sema_v: 2666 case Intrinsic::amdgcn_ds_gws_sema_br: 2667 case Intrinsic::amdgcn_ds_gws_sema_p: 2668 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2669 SelectDS_GWS(N, IntrID); 2670 return; 2671 default: 2672 break; 2673 } 2674 2675 SelectCode(N); 2676 } 2677 2678 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2679 unsigned &Mods, 2680 bool AllowAbs) const { 2681 Mods = 0; 2682 Src = In; 2683 2684 if (Src.getOpcode() == ISD::FNEG) { 2685 Mods |= SISrcMods::NEG; 2686 Src = Src.getOperand(0); 2687 } 2688 2689 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2690 Mods |= SISrcMods::ABS; 2691 Src = Src.getOperand(0); 2692 } 2693 2694 return true; 2695 } 2696 2697 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2698 SDValue &SrcMods) const { 2699 unsigned Mods; 2700 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2701 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2702 return true; 2703 } 2704 2705 return false; 2706 } 2707 2708 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2709 SDValue &SrcMods) const { 2710 unsigned Mods; 2711 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2712 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2713 return true; 2714 } 2715 2716 return false; 2717 } 2718 2719 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2720 SDValue &SrcMods) const { 2721 SelectVOP3Mods(In, Src, SrcMods); 2722 return isNoNanSrc(Src); 2723 } 2724 2725 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2726 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2727 return false; 2728 2729 Src = In; 2730 return true; 2731 } 2732 2733 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2734 SDValue &SrcMods, SDValue &Clamp, 2735 SDValue &Omod) const { 2736 SDLoc DL(In); 2737 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2738 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2739 2740 return SelectVOP3Mods(In, Src, SrcMods); 2741 } 2742 2743 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2744 SDValue &SrcMods, SDValue &Clamp, 2745 SDValue &Omod) const { 2746 SDLoc DL(In); 2747 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2748 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2749 2750 return SelectVOP3BMods(In, Src, SrcMods); 2751 } 2752 2753 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2754 SDValue &Clamp, SDValue &Omod) const { 2755 Src = In; 2756 2757 SDLoc DL(In); 2758 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2759 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2760 2761 return true; 2762 } 2763 2764 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2765 SDValue &SrcMods) const { 2766 unsigned Mods = 0; 2767 Src = In; 2768 2769 if (Src.getOpcode() == ISD::FNEG) { 2770 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2771 Src = Src.getOperand(0); 2772 } 2773 2774 if (Src.getOpcode() == ISD::BUILD_VECTOR) { 2775 unsigned VecMods = Mods; 2776 2777 SDValue Lo = stripBitcast(Src.getOperand(0)); 2778 SDValue Hi = stripBitcast(Src.getOperand(1)); 2779 2780 if (Lo.getOpcode() == ISD::FNEG) { 2781 Lo = stripBitcast(Lo.getOperand(0)); 2782 Mods ^= SISrcMods::NEG; 2783 } 2784 2785 if (Hi.getOpcode() == ISD::FNEG) { 2786 Hi = stripBitcast(Hi.getOperand(0)); 2787 Mods ^= SISrcMods::NEG_HI; 2788 } 2789 2790 if (isExtractHiElt(Lo, Lo)) 2791 Mods |= SISrcMods::OP_SEL_0; 2792 2793 if (isExtractHiElt(Hi, Hi)) 2794 Mods |= SISrcMods::OP_SEL_1; 2795 2796 unsigned VecSize = Src.getValueSizeInBits(); 2797 Lo = stripExtractLoElt(Lo); 2798 Hi = stripExtractLoElt(Hi); 2799 2800 if (Lo.getValueSizeInBits() > VecSize) { 2801 Lo = CurDAG->getTargetExtractSubreg( 2802 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2803 MVT::getIntegerVT(VecSize), Lo); 2804 } 2805 2806 if (Hi.getValueSizeInBits() > VecSize) { 2807 Hi = CurDAG->getTargetExtractSubreg( 2808 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2809 MVT::getIntegerVT(VecSize), Hi); 2810 } 2811 2812 assert(Lo.getValueSizeInBits() <= VecSize && 2813 Hi.getValueSizeInBits() <= VecSize); 2814 2815 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2816 // Really a scalar input. Just select from the low half of the register to 2817 // avoid packing. 2818 2819 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2820 Src = Lo; 2821 } else { 2822 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2823 2824 SDLoc SL(In); 2825 SDValue Undef = SDValue( 2826 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2827 Lo.getValueType()), 0); 2828 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2829 : AMDGPU::SReg_64RegClassID; 2830 const SDValue Ops[] = { 2831 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2832 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2833 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2834 2835 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2836 Src.getValueType(), Ops), 0); 2837 } 2838 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2839 return true; 2840 } 2841 2842 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2843 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2844 .bitcastToAPInt().getZExtValue(); 2845 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2846 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2847 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2848 return true; 2849 } 2850 } 2851 2852 Mods = VecMods; 2853 } 2854 2855 // Packed instructions do not have abs modifiers. 2856 Mods |= SISrcMods::OP_SEL_1; 2857 2858 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2859 return true; 2860 } 2861 2862 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2863 SDValue &SrcMods) const { 2864 Src = In; 2865 // FIXME: Handle op_sel 2866 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2867 return true; 2868 } 2869 2870 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2871 SDValue &SrcMods) const { 2872 // FIXME: Handle op_sel 2873 return SelectVOP3Mods(In, Src, SrcMods); 2874 } 2875 2876 // The return value is not whether the match is possible (which it always is), 2877 // but whether or not it a conversion is really used. 2878 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2879 unsigned &Mods) const { 2880 Mods = 0; 2881 SelectVOP3ModsImpl(In, Src, Mods); 2882 2883 if (Src.getOpcode() == ISD::FP_EXTEND) { 2884 Src = Src.getOperand(0); 2885 assert(Src.getValueType() == MVT::f16); 2886 Src = stripBitcast(Src); 2887 2888 // Be careful about folding modifiers if we already have an abs. fneg is 2889 // applied last, so we don't want to apply an earlier fneg. 2890 if ((Mods & SISrcMods::ABS) == 0) { 2891 unsigned ModsTmp; 2892 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2893 2894 if ((ModsTmp & SISrcMods::NEG) != 0) 2895 Mods ^= SISrcMods::NEG; 2896 2897 if ((ModsTmp & SISrcMods::ABS) != 0) 2898 Mods |= SISrcMods::ABS; 2899 } 2900 2901 // op_sel/op_sel_hi decide the source type and source. 2902 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2903 // If the sources's op_sel is set, it picks the high half of the source 2904 // register. 2905 2906 Mods |= SISrcMods::OP_SEL_1; 2907 if (isExtractHiElt(Src, Src)) { 2908 Mods |= SISrcMods::OP_SEL_0; 2909 2910 // TODO: Should we try to look for neg/abs here? 2911 } 2912 2913 return true; 2914 } 2915 2916 return false; 2917 } 2918 2919 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2920 SDValue &SrcMods) const { 2921 unsigned Mods = 0; 2922 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2923 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2924 return true; 2925 } 2926 2927 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2928 if (In.isUndef()) 2929 return CurDAG->getUNDEF(MVT::i32); 2930 2931 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2932 SDLoc SL(In); 2933 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2934 } 2935 2936 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2937 SDLoc SL(In); 2938 return CurDAG->getConstant( 2939 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2940 } 2941 2942 SDValue Src; 2943 if (isExtractHiElt(In, Src)) 2944 return Src; 2945 2946 return SDValue(); 2947 } 2948 2949 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2950 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2951 2952 const SIRegisterInfo *SIRI = 2953 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2954 const SIInstrInfo * SII = 2955 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2956 2957 unsigned Limit = 0; 2958 bool AllUsesAcceptSReg = true; 2959 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2960 Limit < 10 && U != E; ++U, ++Limit) { 2961 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2962 2963 // If the register class is unknown, it could be an unknown 2964 // register class that needs to be an SGPR, e.g. an inline asm 2965 // constraint 2966 if (!RC || SIRI->isSGPRClass(RC)) 2967 return false; 2968 2969 if (RC != &AMDGPU::VS_32RegClass) { 2970 AllUsesAcceptSReg = false; 2971 SDNode * User = *U; 2972 if (User->isMachineOpcode()) { 2973 unsigned Opc = User->getMachineOpcode(); 2974 MCInstrDesc Desc = SII->get(Opc); 2975 if (Desc.isCommutable()) { 2976 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2977 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2978 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2979 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2980 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2981 if (CommutedRC == &AMDGPU::VS_32RegClass) 2982 AllUsesAcceptSReg = true; 2983 } 2984 } 2985 } 2986 // If "AllUsesAcceptSReg == false" so far we haven't suceeded 2987 // commuting current user. This means have at least one use 2988 // that strictly require VGPR. Thus, we will not attempt to commute 2989 // other user instructions. 2990 if (!AllUsesAcceptSReg) 2991 break; 2992 } 2993 } 2994 return !AllUsesAcceptSReg && (Limit < 10); 2995 } 2996 2997 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2998 auto Ld = cast<LoadSDNode>(N); 2999 3000 return Ld->getAlignment() >= 4 && 3001 ( 3002 ( 3003 ( 3004 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3005 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 3006 ) 3007 && 3008 !N->isDivergent() 3009 ) 3010 || 3011 ( 3012 Subtarget->getScalarizeGlobalBehavior() && 3013 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 3014 Ld->isSimple() && 3015 !N->isDivergent() && 3016 static_cast<const SITargetLowering *>( 3017 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 3018 ) 3019 ); 3020 } 3021 3022 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 3023 const AMDGPUTargetLowering& Lowering = 3024 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 3025 bool IsModified = false; 3026 do { 3027 IsModified = false; 3028 3029 // Go over all selected nodes and try to fold them a bit more 3030 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 3031 while (Position != CurDAG->allnodes_end()) { 3032 SDNode *Node = &*Position++; 3033 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 3034 if (!MachineNode) 3035 continue; 3036 3037 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 3038 if (ResNode != Node) { 3039 if (ResNode) 3040 ReplaceUses(Node, ResNode); 3041 IsModified = true; 3042 } 3043 } 3044 CurDAG->RemoveDeadNodes(); 3045 } while (IsModified); 3046 } 3047 3048 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 3049 Subtarget = &MF.getSubtarget<R600Subtarget>(); 3050 return SelectionDAGISel::runOnMachineFunction(MF); 3051 } 3052 3053 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const { 3054 if (!N->readMem()) 3055 return false; 3056 if (CbId == -1) 3057 return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 3058 N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 3059 3060 return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId; 3061 } 3062 3063 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr, 3064 SDValue& IntPtr) { 3065 if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) { 3066 IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr), 3067 true); 3068 return true; 3069 } 3070 return false; 3071 } 3072 3073 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr, 3074 SDValue& BaseReg, SDValue &Offset) { 3075 if (!isa<ConstantSDNode>(Addr)) { 3076 BaseReg = Addr; 3077 Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true); 3078 return true; 3079 } 3080 return false; 3081 } 3082 3083 void R600DAGToDAGISel::Select(SDNode *N) { 3084 unsigned int Opc = N->getOpcode(); 3085 if (N->isMachineOpcode()) { 3086 N->setNodeId(-1); 3087 return; // Already selected. 3088 } 3089 3090 switch (Opc) { 3091 default: break; 3092 case AMDGPUISD::BUILD_VERTICAL_VECTOR: 3093 case ISD::SCALAR_TO_VECTOR: 3094 case ISD::BUILD_VECTOR: { 3095 EVT VT = N->getValueType(0); 3096 unsigned NumVectorElts = VT.getVectorNumElements(); 3097 unsigned RegClassID; 3098 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG 3099 // that adds a 128 bits reg copy when going through TwoAddressInstructions 3100 // pass. We want to avoid 128 bits copies as much as possible because they 3101 // can't be bundled by our scheduler. 3102 switch(NumVectorElts) { 3103 case 2: RegClassID = R600::R600_Reg64RegClassID; break; 3104 case 4: 3105 if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR) 3106 RegClassID = R600::R600_Reg128VerticalRegClassID; 3107 else 3108 RegClassID = R600::R600_Reg128RegClassID; 3109 break; 3110 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR"); 3111 } 3112 SelectBuildVector(N, RegClassID); 3113 return; 3114 } 3115 } 3116 3117 SelectCode(N); 3118 } 3119 3120 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 3121 SDValue &Offset) { 3122 ConstantSDNode *C; 3123 SDLoc DL(Addr); 3124 3125 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 3126 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3127 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3128 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 3129 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 3130 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 3131 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3132 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 3133 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 3134 Base = Addr.getOperand(0); 3135 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 3136 } else { 3137 Base = Addr; 3138 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 3139 } 3140 3141 return true; 3142 } 3143 3144 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 3145 SDValue &Offset) { 3146 ConstantSDNode *IMMOffset; 3147 3148 if (Addr.getOpcode() == ISD::ADD 3149 && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1))) 3150 && isInt<16>(IMMOffset->getZExtValue())) { 3151 3152 Base = Addr.getOperand(0); 3153 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3154 MVT::i32); 3155 return true; 3156 // If the pointer address is constant, we can move it to the offset field. 3157 } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr)) 3158 && isInt<16>(IMMOffset->getZExtValue())) { 3159 Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), 3160 SDLoc(CurDAG->getEntryNode()), 3161 R600::ZERO, MVT::i32); 3162 Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr), 3163 MVT::i32); 3164 return true; 3165 } 3166 3167 // Default case, no offset 3168 Base = Addr; 3169 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32); 3170 return true; 3171 } 3172