1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPUTargetMachine.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/InitializePasses.h"
25 
26 #ifdef EXPENSIVE_CHECKS
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #endif
30 
31 #define DEBUG_TYPE "isel"
32 
33 using namespace llvm;
34 
35 namespace llvm {
36 
37 class R600InstrInfo;
38 
39 } // end namespace llvm
40 
41 //===----------------------------------------------------------------------===//
42 // Instruction Selector Implementation
43 //===----------------------------------------------------------------------===//
44 
45 namespace {
46 
47 static bool isNullConstantOrUndef(SDValue V) {
48   if (V.isUndef())
49     return true;
50 
51   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
52   return Const != nullptr && Const->isNullValue();
53 }
54 
55 static bool getConstantValue(SDValue N, uint32_t &Out) {
56   // This is only used for packed vectors, where ussing 0 for undef should
57   // always be good.
58   if (N.isUndef()) {
59     Out = 0;
60     return true;
61   }
62 
63   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
64     Out = C->getAPIntValue().getSExtValue();
65     return true;
66   }
67 
68   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
69     Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
70     return true;
71   }
72 
73   return false;
74 }
75 
76 // TODO: Handle undef as zero
77 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
78                                  bool Negate = false) {
79   assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
80   uint32_t LHSVal, RHSVal;
81   if (getConstantValue(N->getOperand(0), LHSVal) &&
82       getConstantValue(N->getOperand(1), RHSVal)) {
83     SDLoc SL(N);
84     uint32_t K = Negate ?
85       (-LHSVal & 0xffff) | (-RHSVal << 16) :
86       (LHSVal & 0xffff) | (RHSVal << 16);
87     return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
88                               DAG.getTargetConstant(K, SL, MVT::i32));
89   }
90 
91   return nullptr;
92 }
93 
94 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
95   return packConstantV2I16(N, DAG, true);
96 }
97 
98 /// AMDGPU specific code to select AMDGPU machine instructions for
99 /// SelectionDAG operations.
100 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
101   // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
102   // make the right decision when generating code for different targets.
103   const GCNSubtarget *Subtarget;
104 
105   // Default FP mode for the current function.
106   AMDGPU::SIModeRegisterDefaults Mode;
107 
108   bool EnableLateStructurizeCFG;
109 
110 public:
111   explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
112                               CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
113     : SelectionDAGISel(*TM, OptLevel) {
114     EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
115   }
116   ~AMDGPUDAGToDAGISel() override = default;
117 
118   void getAnalysisUsage(AnalysisUsage &AU) const override {
119     AU.addRequired<AMDGPUArgumentUsageInfo>();
120     AU.addRequired<LegacyDivergenceAnalysis>();
121 #ifdef EXPENSIVE_CHECKS
122     AU.addRequired<DominatorTreeWrapperPass>();
123     AU.addRequired<LoopInfoWrapperPass>();
124 #endif
125     SelectionDAGISel::getAnalysisUsage(AU);
126   }
127 
128   bool matchLoadD16FromBuildVector(SDNode *N) const;
129 
130   bool runOnMachineFunction(MachineFunction &MF) override;
131   void PreprocessISelDAG() override;
132   void Select(SDNode *N) override;
133   StringRef getPassName() const override;
134   void PostprocessISelDAG() override;
135 
136 protected:
137   void SelectBuildVector(SDNode *N, unsigned RegClassID);
138 
139 private:
140   std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
141   bool isNoNanSrc(SDValue N) const;
142   bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
143   bool isNegInlineImmediate(const SDNode *N) const {
144     return isInlineImmediate(N, true);
145   }
146 
147   bool isInlineImmediate16(int64_t Imm) const {
148     return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
149   }
150 
151   bool isInlineImmediate32(int64_t Imm) const {
152     return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
153   }
154 
155   bool isInlineImmediate64(int64_t Imm) const {
156     return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
157   }
158 
159   bool isInlineImmediate(const APFloat &Imm) const {
160     return Subtarget->getInstrInfo()->isInlineConstant(Imm);
161   }
162 
163   bool isVGPRImm(const SDNode *N) const;
164   bool isUniformLoad(const SDNode *N) const;
165   bool isUniformBr(const SDNode *N) const;
166 
167   bool isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
168                                   SDValue &RHS) const;
169 
170   MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
171 
172   SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
173   SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
174   SDNode *glueCopyToM0LDSInit(SDNode *N) const;
175 
176   const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
177   virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
178   virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
179   bool isDSOffsetLegal(SDValue Base, unsigned Offset) const;
180   bool isDSOffset2Legal(SDValue Base, unsigned Offset0, unsigned Offset1,
181                         unsigned Size) const;
182   bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
183   bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
184                                  SDValue &Offset1) const;
185   bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
186                                   SDValue &Offset1) const;
187   bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0,
188                           SDValue &Offset1, unsigned Size) const;
189   bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
190                    SDValue &SOffset, SDValue &Offset, SDValue &Offen,
191                    SDValue &Idxen, SDValue &Addr64) const;
192   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
193                          SDValue &SOffset, SDValue &Offset) const;
194   bool SelectMUBUFScratchOffen(SDNode *Parent,
195                                SDValue Addr, SDValue &RSrc, SDValue &VAddr,
196                                SDValue &SOffset, SDValue &ImmOffset) const;
197   bool SelectMUBUFScratchOffset(SDNode *Parent,
198                                 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
199                                 SDValue &Offset) const;
200 
201   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
202                          SDValue &Offset) const;
203 
204   bool SelectFlatOffsetImpl(SDNode *N, SDValue Addr, SDValue &VAddr,
205                             SDValue &Offset, uint64_t FlatVariant) const;
206   bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
207                         SDValue &Offset) const;
208   bool SelectGlobalOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
209                           SDValue &Offset) const;
210   bool SelectScratchOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
211                            SDValue &Offset) const;
212   bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr,
213                          SDValue &VOffset, SDValue &Offset) const;
214   bool SelectScratchSAddr(SDNode *N, SDValue Addr, SDValue &SAddr,
215                           SDValue &Offset) const;
216 
217   bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
218                         bool &Imm) const;
219   SDValue Expand32BitAddress(SDValue Addr) const;
220   bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
221                   bool &Imm) const;
222   bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
223   bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
224   bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
225   bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
226   bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
227   bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
228 
229   bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
230   bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods,
231                           bool AllowAbs = true) const;
232   bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
233   bool SelectVOP3BMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
234   bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
235   bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
236                        SDValue &Clamp, SDValue &Omod) const;
237   bool SelectVOP3BMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
238                         SDValue &Clamp, SDValue &Omod) const;
239   bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
240                          SDValue &Clamp, SDValue &Omod) const;
241 
242   bool SelectVOP3OMods(SDValue In, SDValue &Src,
243                        SDValue &Clamp, SDValue &Omod) const;
244 
245   bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
246 
247   bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
248 
249   bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
250   bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
251   bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
252 
253   SDValue getHi16Elt(SDValue In) const;
254 
255   SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
256 
257   void SelectADD_SUB_I64(SDNode *N);
258   void SelectAddcSubb(SDNode *N);
259   void SelectUADDO_USUBO(SDNode *N);
260   void SelectDIV_SCALE(SDNode *N);
261   void SelectMAD_64_32(SDNode *N);
262   void SelectFMA_W_CHAIN(SDNode *N);
263   void SelectFMUL_W_CHAIN(SDNode *N);
264 
265   SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
266                    uint32_t Offset, uint32_t Width);
267   void SelectS_BFEFromShifts(SDNode *N);
268   void SelectS_BFE(SDNode *N);
269   bool isCBranchSCC(const SDNode *N) const;
270   void SelectBRCOND(SDNode *N);
271   void SelectFMAD_FMA(SDNode *N);
272   void SelectATOMIC_CMP_SWAP(SDNode *N);
273   void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
274   void SelectDS_GWS(SDNode *N, unsigned IntrID);
275   void SelectInterpP1F16(SDNode *N);
276   void SelectINTRINSIC_W_CHAIN(SDNode *N);
277   void SelectINTRINSIC_WO_CHAIN(SDNode *N);
278   void SelectINTRINSIC_VOID(SDNode *N);
279 
280 protected:
281   // Include the pieces autogenerated from the target description.
282 #include "AMDGPUGenDAGISel.inc"
283 };
284 
285 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
286   const R600Subtarget *Subtarget;
287 
288   bool isConstantLoad(const MemSDNode *N, int cbID) const;
289   bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
290   bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
291                                        SDValue& Offset);
292 public:
293   explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
294       AMDGPUDAGToDAGISel(TM, OptLevel) {}
295 
296   void Select(SDNode *N) override;
297 
298   bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
299                           SDValue &Offset) override;
300   bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
301                           SDValue &Offset) override;
302 
303   bool runOnMachineFunction(MachineFunction &MF) override;
304 
305   void PreprocessISelDAG() override {}
306 
307 protected:
308   // Include the pieces autogenerated from the target description.
309 #include "R600GenDAGISel.inc"
310 };
311 
312 static SDValue stripBitcast(SDValue Val) {
313   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
314 }
315 
316 // Figure out if this is really an extract of the high 16-bits of a dword.
317 static bool isExtractHiElt(SDValue In, SDValue &Out) {
318   In = stripBitcast(In);
319 
320   if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
321     if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
322       if (!Idx->isOne())
323         return false;
324       Out = In.getOperand(0);
325       return true;
326     }
327   }
328 
329   if (In.getOpcode() != ISD::TRUNCATE)
330     return false;
331 
332   SDValue Srl = In.getOperand(0);
333   if (Srl.getOpcode() == ISD::SRL) {
334     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
335       if (ShiftAmt->getZExtValue() == 16) {
336         Out = stripBitcast(Srl.getOperand(0));
337         return true;
338       }
339     }
340   }
341 
342   return false;
343 }
344 
345 // Look through operations that obscure just looking at the low 16-bits of the
346 // same register.
347 static SDValue stripExtractLoElt(SDValue In) {
348   if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
349     if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) {
350       if (Idx->isNullValue() && In.getValueSizeInBits() <= 32)
351         return In.getOperand(0);
352     }
353   }
354 
355   if (In.getOpcode() == ISD::TRUNCATE) {
356     SDValue Src = In.getOperand(0);
357     if (Src.getValueType().getSizeInBits() == 32)
358       return stripBitcast(Src);
359   }
360 
361   return In;
362 }
363 
364 }  // end anonymous namespace
365 
366 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
367                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
368 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
369 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
370 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
371 #ifdef EXPENSIVE_CHECKS
372 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
373 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
374 #endif
375 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
376                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
377 
378 /// This pass converts a legalized DAG into a AMDGPU-specific
379 // DAG, ready for instruction scheduling.
380 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
381                                         CodeGenOpt::Level OptLevel) {
382   return new AMDGPUDAGToDAGISel(TM, OptLevel);
383 }
384 
385 /// This pass converts a legalized DAG into a R600-specific
386 // DAG, ready for instruction scheduling.
387 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
388                                       CodeGenOpt::Level OptLevel) {
389   return new R600DAGToDAGISel(TM, OptLevel);
390 }
391 
392 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
393 #ifdef EXPENSIVE_CHECKS
394   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
395   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
396   for (auto &L : LI->getLoopsInPreorder()) {
397     assert(L->isLCSSAForm(DT));
398   }
399 #endif
400   Subtarget = &MF.getSubtarget<GCNSubtarget>();
401   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
402   return SelectionDAGISel::runOnMachineFunction(MF);
403 }
404 
405 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
406   assert(Subtarget->d16PreservesUnusedBits());
407   MVT VT = N->getValueType(0).getSimpleVT();
408   if (VT != MVT::v2i16 && VT != MVT::v2f16)
409     return false;
410 
411   SDValue Lo = N->getOperand(0);
412   SDValue Hi = N->getOperand(1);
413 
414   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
415 
416   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
417   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
418   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
419 
420   // Need to check for possible indirect dependencies on the other half of the
421   // vector to avoid introducing a cycle.
422   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
423     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
424 
425     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
426     SDValue Ops[] = {
427       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
428     };
429 
430     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
431     if (LdHi->getMemoryVT() == MVT::i8) {
432       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
433         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
434     } else {
435       assert(LdHi->getMemoryVT() == MVT::i16);
436     }
437 
438     SDValue NewLoadHi =
439       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
440                                   Ops, LdHi->getMemoryVT(),
441                                   LdHi->getMemOperand());
442 
443     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
444     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
445     return true;
446   }
447 
448   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
449   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
450   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
451   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
452   if (LdLo && Lo.hasOneUse()) {
453     SDValue TiedIn = getHi16Elt(Hi);
454     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
455       return false;
456 
457     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
458     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
459     if (LdLo->getMemoryVT() == MVT::i8) {
460       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
461         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
462     } else {
463       assert(LdLo->getMemoryVT() == MVT::i16);
464     }
465 
466     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
467 
468     SDValue Ops[] = {
469       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
470     };
471 
472     SDValue NewLoadLo =
473       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
474                                   Ops, LdLo->getMemoryVT(),
475                                   LdLo->getMemOperand());
476 
477     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
478     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
479     return true;
480   }
481 
482   return false;
483 }
484 
485 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
486   if (!Subtarget->d16PreservesUnusedBits())
487     return;
488 
489   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
490 
491   bool MadeChange = false;
492   while (Position != CurDAG->allnodes_begin()) {
493     SDNode *N = &*--Position;
494     if (N->use_empty())
495       continue;
496 
497     switch (N->getOpcode()) {
498     case ISD::BUILD_VECTOR:
499       MadeChange |= matchLoadD16FromBuildVector(N);
500       break;
501     default:
502       break;
503     }
504   }
505 
506   if (MadeChange) {
507     CurDAG->RemoveDeadNodes();
508     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
509                CurDAG->dump(););
510   }
511 }
512 
513 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
514   if (TM.Options.NoNaNsFPMath)
515     return true;
516 
517   // TODO: Move into isKnownNeverNaN
518   if (N->getFlags().hasNoNaNs())
519     return true;
520 
521   return CurDAG->isKnownNeverNaN(N);
522 }
523 
524 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
525                                            bool Negated) const {
526   if (N->isUndef())
527     return true;
528 
529   const SIInstrInfo *TII = Subtarget->getInstrInfo();
530   if (Negated) {
531     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
532       return TII->isInlineConstant(-C->getAPIntValue());
533 
534     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
535       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
536 
537   } else {
538     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
539       return TII->isInlineConstant(C->getAPIntValue());
540 
541     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
542       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
543   }
544 
545   return false;
546 }
547 
548 /// Determine the register class for \p OpNo
549 /// \returns The register class of the virtual register that will be used for
550 /// the given operand number \OpNo or NULL if the register class cannot be
551 /// determined.
552 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
553                                                           unsigned OpNo) const {
554   if (!N->isMachineOpcode()) {
555     if (N->getOpcode() == ISD::CopyToReg) {
556       Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
557       if (Reg.isVirtual()) {
558         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
559         return MRI.getRegClass(Reg);
560       }
561 
562       const SIRegisterInfo *TRI
563         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
564       return TRI->getPhysRegClass(Reg);
565     }
566 
567     return nullptr;
568   }
569 
570   switch (N->getMachineOpcode()) {
571   default: {
572     const MCInstrDesc &Desc =
573         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
574     unsigned OpIdx = Desc.getNumDefs() + OpNo;
575     if (OpIdx >= Desc.getNumOperands())
576       return nullptr;
577     int RegClass = Desc.OpInfo[OpIdx].RegClass;
578     if (RegClass == -1)
579       return nullptr;
580 
581     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
582   }
583   case AMDGPU::REG_SEQUENCE: {
584     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
585     const TargetRegisterClass *SuperRC =
586         Subtarget->getRegisterInfo()->getRegClass(RCID);
587 
588     SDValue SubRegOp = N->getOperand(OpNo + 1);
589     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
590     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
591                                                               SubRegIdx);
592   }
593   }
594 }
595 
596 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
597                                          SDValue Glue) const {
598   SmallVector <SDValue, 8> Ops;
599   Ops.push_back(NewChain); // Replace the chain.
600   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
601     Ops.push_back(N->getOperand(i));
602 
603   Ops.push_back(Glue);
604   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
605 }
606 
607 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
608   const SITargetLowering& Lowering =
609     *static_cast<const SITargetLowering*>(getTargetLowering());
610 
611   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
612 
613   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
614   return glueCopyToOp(N, M0, M0.getValue(1));
615 }
616 
617 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
618   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
619   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
620     if (Subtarget->ldsRequiresM0Init())
621       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
622   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
623     MachineFunction &MF = CurDAG->getMachineFunction();
624     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
625     return
626         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
627   }
628   return N;
629 }
630 
631 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
632                                                   EVT VT) const {
633   SDNode *Lo = CurDAG->getMachineNode(
634       AMDGPU::S_MOV_B32, DL, MVT::i32,
635       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
636   SDNode *Hi =
637       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
638                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
639   const SDValue Ops[] = {
640       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
641       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
642       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
643 
644   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
645 }
646 
647 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
648   EVT VT = N->getValueType(0);
649   unsigned NumVectorElts = VT.getVectorNumElements();
650   EVT EltVT = VT.getVectorElementType();
651   SDLoc DL(N);
652   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
653 
654   if (NumVectorElts == 1) {
655     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
656                          RegClass);
657     return;
658   }
659 
660   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
661                                   "supported yet");
662   // 32 = Max Num Vector Elements
663   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
664   // 1 = Vector Register Class
665   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
666 
667   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
668                Triple::amdgcn;
669   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
670   bool IsRegSeq = true;
671   unsigned NOps = N->getNumOperands();
672   for (unsigned i = 0; i < NOps; i++) {
673     // XXX: Why is this here?
674     if (isa<RegisterSDNode>(N->getOperand(i))) {
675       IsRegSeq = false;
676       break;
677     }
678     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
679                          : R600RegisterInfo::getSubRegFromChannel(i);
680     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
681     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
682   }
683   if (NOps != NumVectorElts) {
684     // Fill in the missing undef elements if this was a scalar_to_vector.
685     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
686     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
687                                                    DL, EltVT);
688     for (unsigned i = NOps; i < NumVectorElts; ++i) {
689       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
690                            : R600RegisterInfo::getSubRegFromChannel(i);
691       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
692       RegSeqArgs[1 + (2 * i) + 1] =
693           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
694     }
695   }
696 
697   if (!IsRegSeq)
698     SelectCode(N);
699   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
700 }
701 
702 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
703   unsigned int Opc = N->getOpcode();
704   if (N->isMachineOpcode()) {
705     N->setNodeId(-1);
706     return;   // Already selected.
707   }
708 
709   // isa<MemSDNode> almost works but is slightly too permissive for some DS
710   // intrinsics.
711   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
712       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
713        Opc == ISD::ATOMIC_LOAD_FADD ||
714        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
715        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
716     N = glueCopyToM0LDSInit(N);
717     SelectCode(N);
718     return;
719   }
720 
721   switch (Opc) {
722   default:
723     break;
724   // We are selecting i64 ADD here instead of custom lower it during
725   // DAG legalization, so we can fold some i64 ADDs used for address
726   // calculation into the LOAD and STORE instructions.
727   case ISD::ADDC:
728   case ISD::ADDE:
729   case ISD::SUBC:
730   case ISD::SUBE: {
731     if (N->getValueType(0) != MVT::i64)
732       break;
733 
734     SelectADD_SUB_I64(N);
735     return;
736   }
737   case ISD::ADDCARRY:
738   case ISD::SUBCARRY:
739     if (N->getValueType(0) != MVT::i32)
740       break;
741 
742     SelectAddcSubb(N);
743     return;
744   case ISD::UADDO:
745   case ISD::USUBO: {
746     SelectUADDO_USUBO(N);
747     return;
748   }
749   case AMDGPUISD::FMUL_W_CHAIN: {
750     SelectFMUL_W_CHAIN(N);
751     return;
752   }
753   case AMDGPUISD::FMA_W_CHAIN: {
754     SelectFMA_W_CHAIN(N);
755     return;
756   }
757 
758   case ISD::SCALAR_TO_VECTOR:
759   case ISD::BUILD_VECTOR: {
760     EVT VT = N->getValueType(0);
761     unsigned NumVectorElts = VT.getVectorNumElements();
762     if (VT.getScalarSizeInBits() == 16) {
763       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
764         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
765           ReplaceNode(N, Packed);
766           return;
767         }
768       }
769 
770       break;
771     }
772 
773     assert(VT.getVectorElementType().bitsEq(MVT::i32));
774     unsigned RegClassID =
775         SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
776     SelectBuildVector(N, RegClassID);
777     return;
778   }
779   case ISD::BUILD_PAIR: {
780     SDValue RC, SubReg0, SubReg1;
781     SDLoc DL(N);
782     if (N->getValueType(0) == MVT::i128) {
783       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
784       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
785       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
786     } else if (N->getValueType(0) == MVT::i64) {
787       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
788       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
789       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
790     } else {
791       llvm_unreachable("Unhandled value type for BUILD_PAIR");
792     }
793     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
794                             N->getOperand(1), SubReg1 };
795     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
796                                           N->getValueType(0), Ops));
797     return;
798   }
799 
800   case ISD::Constant:
801   case ISD::ConstantFP: {
802     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
803       break;
804 
805     uint64_t Imm;
806     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
807       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
808     else {
809       ConstantSDNode *C = cast<ConstantSDNode>(N);
810       Imm = C->getZExtValue();
811     }
812 
813     SDLoc DL(N);
814     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
815     return;
816   }
817   case AMDGPUISD::BFE_I32:
818   case AMDGPUISD::BFE_U32: {
819     // There is a scalar version available, but unlike the vector version which
820     // has a separate operand for the offset and width, the scalar version packs
821     // the width and offset into a single operand. Try to move to the scalar
822     // version if the offsets are constant, so that we can try to keep extended
823     // loads of kernel arguments in SGPRs.
824 
825     // TODO: Technically we could try to pattern match scalar bitshifts of
826     // dynamic values, but it's probably not useful.
827     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
828     if (!Offset)
829       break;
830 
831     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
832     if (!Width)
833       break;
834 
835     bool Signed = Opc == AMDGPUISD::BFE_I32;
836 
837     uint32_t OffsetVal = Offset->getZExtValue();
838     uint32_t WidthVal = Width->getZExtValue();
839 
840     ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
841                             SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
842     return;
843   }
844   case AMDGPUISD::DIV_SCALE: {
845     SelectDIV_SCALE(N);
846     return;
847   }
848   case AMDGPUISD::MAD_I64_I32:
849   case AMDGPUISD::MAD_U64_U32: {
850     SelectMAD_64_32(N);
851     return;
852   }
853   case ISD::CopyToReg: {
854     const SITargetLowering& Lowering =
855       *static_cast<const SITargetLowering*>(getTargetLowering());
856     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
857     break;
858   }
859   case ISD::AND:
860   case ISD::SRL:
861   case ISD::SRA:
862   case ISD::SIGN_EXTEND_INREG:
863     if (N->getValueType(0) != MVT::i32)
864       break;
865 
866     SelectS_BFE(N);
867     return;
868   case ISD::BRCOND:
869     SelectBRCOND(N);
870     return;
871   case ISD::FMAD:
872   case ISD::FMA:
873     SelectFMAD_FMA(N);
874     return;
875   case AMDGPUISD::ATOMIC_CMP_SWAP:
876     SelectATOMIC_CMP_SWAP(N);
877     return;
878   case AMDGPUISD::CVT_PKRTZ_F16_F32:
879   case AMDGPUISD::CVT_PKNORM_I16_F32:
880   case AMDGPUISD::CVT_PKNORM_U16_F32:
881   case AMDGPUISD::CVT_PK_U16_U32:
882   case AMDGPUISD::CVT_PK_I16_I32: {
883     // Hack around using a legal type if f16 is illegal.
884     if (N->getValueType(0) == MVT::i32) {
885       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
886       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
887                               { N->getOperand(0), N->getOperand(1) });
888       SelectCode(N);
889       return;
890     }
891 
892     break;
893   }
894   case ISD::INTRINSIC_W_CHAIN: {
895     SelectINTRINSIC_W_CHAIN(N);
896     return;
897   }
898   case ISD::INTRINSIC_WO_CHAIN: {
899     SelectINTRINSIC_WO_CHAIN(N);
900     return;
901   }
902   case ISD::INTRINSIC_VOID: {
903     SelectINTRINSIC_VOID(N);
904     return;
905   }
906   }
907 
908   SelectCode(N);
909 }
910 
911 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
912   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
913   const Instruction *Term = BB->getTerminator();
914   return Term->getMetadata("amdgpu.uniform") ||
915          Term->getMetadata("structurizecfg.uniform");
916 }
917 
918 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
919                                           SDValue &N0, SDValue &N1) {
920   if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
921       Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
922     // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
923     // (i64 (bitcast (v2i32 (build_vector
924     //                        (or (extract_vector_elt V, 0), OFFSET),
925     //                        (extract_vector_elt V, 1)))))
926     SDValue Lo = Addr.getOperand(0).getOperand(0);
927     if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
928       SDValue BaseLo = Lo.getOperand(0);
929       SDValue BaseHi = Addr.getOperand(0).getOperand(1);
930       // Check that split base (Lo and Hi) are extracted from the same one.
931       if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
932           BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
933           BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
934           // Lo is statically extracted from index 0.
935           isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
936           BaseLo.getConstantOperandVal(1) == 0 &&
937           // Hi is statically extracted from index 0.
938           isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
939           BaseHi.getConstantOperandVal(1) == 1) {
940         N0 = BaseLo.getOperand(0).getOperand(0);
941         N1 = Lo.getOperand(1);
942         return true;
943       }
944     }
945   }
946   return false;
947 }
948 
949 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS,
950                                                     SDValue &RHS) const {
951   if (CurDAG->isBaseWithConstantOffset(Addr)) {
952     LHS = Addr.getOperand(0);
953     RHS = Addr.getOperand(1);
954     return true;
955   }
956 
957   if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) {
958     assert(LHS && RHS && isa<ConstantSDNode>(RHS));
959     return true;
960   }
961 
962   return false;
963 }
964 
965 StringRef AMDGPUDAGToDAGISel::getPassName() const {
966   return "AMDGPU DAG->DAG Pattern Instruction Selection";
967 }
968 
969 //===----------------------------------------------------------------------===//
970 // Complex Patterns
971 //===----------------------------------------------------------------------===//
972 
973 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
974                                             SDValue &Offset) {
975   return false;
976 }
977 
978 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
979                                             SDValue &Offset) {
980   ConstantSDNode *C;
981   SDLoc DL(Addr);
982 
983   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
984     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
985     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
986   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
987              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
988     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
989     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
990   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
991             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
992     Base = Addr.getOperand(0);
993     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
994   } else {
995     Base = Addr;
996     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
997   }
998 
999   return true;
1000 }
1001 
1002 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
1003                                                        const SDLoc &DL) const {
1004   SDNode *Mov = CurDAG->getMachineNode(
1005     AMDGPU::S_MOV_B32, DL, MVT::i32,
1006     CurDAG->getTargetConstant(Val, DL, MVT::i32));
1007   return SDValue(Mov, 0);
1008 }
1009 
1010 // FIXME: Should only handle addcarry/subcarry
1011 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
1012   SDLoc DL(N);
1013   SDValue LHS = N->getOperand(0);
1014   SDValue RHS = N->getOperand(1);
1015 
1016   unsigned Opcode = N->getOpcode();
1017   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
1018   bool ProduceCarry =
1019       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
1020   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
1021 
1022   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1023   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1024 
1025   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1026                                        DL, MVT::i32, LHS, Sub0);
1027   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1028                                        DL, MVT::i32, LHS, Sub1);
1029 
1030   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1031                                        DL, MVT::i32, RHS, Sub0);
1032   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1033                                        DL, MVT::i32, RHS, Sub1);
1034 
1035   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
1036 
1037   static const unsigned OpcMap[2][2][2] = {
1038       {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
1039        {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
1040       {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
1041        {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
1042 
1043   unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
1044   unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
1045 
1046   SDNode *AddLo;
1047   if (!ConsumeCarry) {
1048     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1049     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1050   } else {
1051     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1052     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1053   }
1054   SDValue AddHiArgs[] = {
1055     SDValue(Hi0, 0),
1056     SDValue(Hi1, 0),
1057     SDValue(AddLo, 1)
1058   };
1059   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1060 
1061   SDValue RegSequenceArgs[] = {
1062     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1063     SDValue(AddLo,0),
1064     Sub0,
1065     SDValue(AddHi,0),
1066     Sub1,
1067   };
1068   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1069                                                MVT::i64, RegSequenceArgs);
1070 
1071   if (ProduceCarry) {
1072     // Replace the carry-use
1073     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1074   }
1075 
1076   // Replace the remaining uses.
1077   ReplaceNode(N, RegSequence);
1078 }
1079 
1080 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1081   SDLoc DL(N);
1082   SDValue LHS = N->getOperand(0);
1083   SDValue RHS = N->getOperand(1);
1084   SDValue CI = N->getOperand(2);
1085 
1086   if (N->isDivergent()) {
1087     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1088                                                    : AMDGPU::V_SUBB_U32_e64;
1089     CurDAG->SelectNodeTo(
1090         N, Opc, N->getVTList(),
1091         {LHS, RHS, CI,
1092          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1093   } else {
1094     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
1095                                                    : AMDGPU::S_SUB_CO_PSEUDO;
1096     CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
1097   }
1098 }
1099 
1100 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1101   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1102   // carry out despite the _i32 name. These were renamed in VI to _U32.
1103   // FIXME: We should probably rename the opcodes here.
1104   bool IsAdd = N->getOpcode() == ISD::UADDO;
1105   bool IsVALU = N->isDivergent();
1106 
1107   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
1108        ++UI)
1109     if (UI.getUse().getResNo() == 1) {
1110       if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
1111           (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
1112         IsVALU = true;
1113         break;
1114       }
1115     }
1116 
1117   if (IsVALU) {
1118     unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
1119 
1120     CurDAG->SelectNodeTo(
1121         N, Opc, N->getVTList(),
1122         {N->getOperand(0), N->getOperand(1),
1123          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1124   } else {
1125     unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
1126                                                 : AMDGPU::S_USUBO_PSEUDO;
1127 
1128     CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
1129                          {N->getOperand(0), N->getOperand(1)});
1130   }
1131 }
1132 
1133 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1134   SDLoc SL(N);
1135   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1136   SDValue Ops[10];
1137 
1138   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1139   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1140   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1141   Ops[8] = N->getOperand(0);
1142   Ops[9] = N->getOperand(4);
1143 
1144   CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32_e64, N->getVTList(), Ops);
1145 }
1146 
1147 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1148   SDLoc SL(N);
1149   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
1150   SDValue Ops[8];
1151 
1152   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1153   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1154   Ops[6] = N->getOperand(0);
1155   Ops[7] = N->getOperand(3);
1156 
1157   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1158 }
1159 
1160 // We need to handle this here because tablegen doesn't support matching
1161 // instructions with multiple outputs.
1162 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1163   SDLoc SL(N);
1164   EVT VT = N->getValueType(0);
1165 
1166   assert(VT == MVT::f32 || VT == MVT::f64);
1167 
1168   unsigned Opc
1169     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64;
1170 
1171   // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
1172   // omod
1173   SDValue Ops[8];
1174   SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1175   SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]);
1176   SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]);
1177   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1178 }
1179 
1180 // We need to handle this here because tablegen doesn't support matching
1181 // instructions with multiple outputs.
1182 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1183   SDLoc SL(N);
1184   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1185   unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64;
1186 
1187   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1188   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1189                     Clamp };
1190   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1191 }
1192 
1193 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const {
1194   if (!isUInt<16>(Offset))
1195     return false;
1196 
1197   if (!Base || Subtarget->hasUsableDSOffset() ||
1198       Subtarget->unsafeDSOffsetFoldingEnabled())
1199     return true;
1200 
1201   // On Southern Islands instruction with a negative base value and an offset
1202   // don't seem to work.
1203   return CurDAG->SignBitIsZero(Base);
1204 }
1205 
1206 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1207                                               SDValue &Offset) const {
1208   SDLoc DL(Addr);
1209   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1210     SDValue N0 = Addr.getOperand(0);
1211     SDValue N1 = Addr.getOperand(1);
1212     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1213     if (isDSOffsetLegal(N0, C1->getSExtValue())) {
1214       // (add n0, c0)
1215       Base = N0;
1216       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1217       return true;
1218     }
1219   } else if (Addr.getOpcode() == ISD::SUB) {
1220     // sub C, x -> add (sub 0, x), C
1221     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1222       int64_t ByteOffset = C->getSExtValue();
1223       if (isDSOffsetLegal(SDValue(), ByteOffset)) {
1224         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1225 
1226         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1227         // the known bits in isDSOffsetLegal. We need to emit the selected node
1228         // here, so this is thrown away.
1229         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1230                                       Zero, Addr.getOperand(1));
1231 
1232         if (isDSOffsetLegal(Sub, ByteOffset)) {
1233           SmallVector<SDValue, 3> Opnds;
1234           Opnds.push_back(Zero);
1235           Opnds.push_back(Addr.getOperand(1));
1236 
1237           // FIXME: Select to VOP3 version for with-carry.
1238           unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1239           if (Subtarget->hasAddNoCarry()) {
1240             SubOp = AMDGPU::V_SUB_U32_e64;
1241             Opnds.push_back(
1242                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1243           }
1244 
1245           MachineSDNode *MachineSub =
1246               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1247 
1248           Base = SDValue(MachineSub, 0);
1249           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1250           return true;
1251         }
1252       }
1253     }
1254   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1255     // If we have a constant address, prefer to put the constant into the
1256     // offset. This can save moves to load the constant address since multiple
1257     // operations can share the zero base address register, and enables merging
1258     // into read2 / write2 instructions.
1259 
1260     SDLoc DL(Addr);
1261 
1262     if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) {
1263       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1264       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1265                                  DL, MVT::i32, Zero);
1266       Base = SDValue(MovZero, 0);
1267       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1268       return true;
1269     }
1270   }
1271 
1272   // default case
1273   Base = Addr;
1274   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1275   return true;
1276 }
1277 
1278 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0,
1279                                           unsigned Offset1,
1280                                           unsigned Size) const {
1281   if (Offset0 % Size != 0 || Offset1 % Size != 0)
1282     return false;
1283   if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size))
1284     return false;
1285 
1286   if (!Base || Subtarget->hasUsableDSOffset() ||
1287       Subtarget->unsafeDSOffsetFoldingEnabled())
1288     return true;
1289 
1290   // On Southern Islands instruction with a negative base value and an offset
1291   // don't seem to work.
1292   return CurDAG->SignBitIsZero(Base);
1293 }
1294 
1295 // TODO: If offset is too big, put low 16-bit into offset.
1296 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1297                                                    SDValue &Offset0,
1298                                                    SDValue &Offset1) const {
1299   return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4);
1300 }
1301 
1302 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
1303                                                     SDValue &Offset0,
1304                                                     SDValue &Offset1) const {
1305   return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8);
1306 }
1307 
1308 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
1309                                             SDValue &Offset0, SDValue &Offset1,
1310                                             unsigned Size) const {
1311   SDLoc DL(Addr);
1312 
1313   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1314     SDValue N0 = Addr.getOperand(0);
1315     SDValue N1 = Addr.getOperand(1);
1316     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1317     unsigned OffsetValue0 = C1->getZExtValue();
1318     unsigned OffsetValue1 = OffsetValue0 + Size;
1319 
1320     // (add n0, c0)
1321     if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) {
1322       Base = N0;
1323       Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1324       Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1325       return true;
1326     }
1327   } else if (Addr.getOpcode() == ISD::SUB) {
1328     // sub C, x -> add (sub 0, x), C
1329     if (const ConstantSDNode *C =
1330             dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1331       unsigned OffsetValue0 = C->getZExtValue();
1332       unsigned OffsetValue1 = OffsetValue0 + Size;
1333 
1334       if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1335         SDLoc DL(Addr);
1336         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1337 
1338         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1339         // the known bits in isDSOffsetLegal. We need to emit the selected node
1340         // here, so this is thrown away.
1341         SDValue Sub =
1342             CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
1343 
1344         if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) {
1345           SmallVector<SDValue, 3> Opnds;
1346           Opnds.push_back(Zero);
1347           Opnds.push_back(Addr.getOperand(1));
1348           unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
1349           if (Subtarget->hasAddNoCarry()) {
1350             SubOp = AMDGPU::V_SUB_U32_e64;
1351             Opnds.push_back(
1352                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1353           }
1354 
1355           MachineSDNode *MachineSub = CurDAG->getMachineNode(
1356               SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds);
1357 
1358           Base = SDValue(MachineSub, 0);
1359           Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1360           Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1361           return true;
1362         }
1363       }
1364     }
1365   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1366     unsigned OffsetValue0 = CAddr->getZExtValue();
1367     unsigned OffsetValue1 = OffsetValue0 + Size;
1368 
1369     if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) {
1370       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1371       MachineSDNode *MovZero =
1372           CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
1373       Base = SDValue(MovZero, 0);
1374       Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8);
1375       Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8);
1376       return true;
1377     }
1378   }
1379 
1380   // default case
1381 
1382   Base = Addr;
1383   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1384   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1385   return true;
1386 }
1387 
1388 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr,
1389                                      SDValue &SOffset, SDValue &Offset,
1390                                      SDValue &Offen, SDValue &Idxen,
1391                                      SDValue &Addr64) const {
1392   // Subtarget prefers to use flat instruction
1393   // FIXME: This should be a pattern predicate and not reach here
1394   if (Subtarget->useFlatForGlobal())
1395     return false;
1396 
1397   SDLoc DL(Addr);
1398 
1399   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1400   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1401   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1402   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1403 
1404   ConstantSDNode *C1 = nullptr;
1405   SDValue N0 = Addr;
1406   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1407     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1408     if (isUInt<32>(C1->getZExtValue()))
1409       N0 = Addr.getOperand(0);
1410     else
1411       C1 = nullptr;
1412   }
1413 
1414   if (N0.getOpcode() == ISD::ADD) {
1415     // (add N2, N3) -> addr64, or
1416     // (add (add N2, N3), C1) -> addr64
1417     SDValue N2 = N0.getOperand(0);
1418     SDValue N3 = N0.getOperand(1);
1419     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1420 
1421     if (N2->isDivergent()) {
1422       if (N3->isDivergent()) {
1423         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1424         // addr64, and construct the resource from a 0 address.
1425         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1426         VAddr = N0;
1427       } else {
1428         // N2 is divergent, N3 is not.
1429         Ptr = N3;
1430         VAddr = N2;
1431       }
1432     } else {
1433       // N2 is not divergent.
1434       Ptr = N2;
1435       VAddr = N3;
1436     }
1437     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1438   } else if (N0->isDivergent()) {
1439     // N0 is divergent. Use it as the addr64, and construct the resource from a
1440     // 0 address.
1441     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1442     VAddr = N0;
1443     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1444   } else {
1445     // N0 -> offset, or
1446     // (N0 + C1) -> offset
1447     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1448     Ptr = N0;
1449   }
1450 
1451   if (!C1) {
1452     // No offset.
1453     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1454     return true;
1455   }
1456 
1457   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1458     // Legal offset for instruction.
1459     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1460     return true;
1461   }
1462 
1463   // Illegal offset, store it in soffset.
1464   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1465   SOffset =
1466       SDValue(CurDAG->getMachineNode(
1467                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1468                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1469               0);
1470   return true;
1471 }
1472 
1473 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1474                                            SDValue &VAddr, SDValue &SOffset,
1475                                            SDValue &Offset) const {
1476   SDValue Ptr, Offen, Idxen, Addr64;
1477 
1478   // addr64 bit was removed for volcanic islands.
1479   // FIXME: This should be a pattern predicate and not reach here
1480   if (!Subtarget->hasAddr64())
1481     return false;
1482 
1483   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1484     return false;
1485 
1486   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1487   if (C->getSExtValue()) {
1488     SDLoc DL(Addr);
1489 
1490     const SITargetLowering& Lowering =
1491       *static_cast<const SITargetLowering*>(getTargetLowering());
1492 
1493     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1494     return true;
1495   }
1496 
1497   return false;
1498 }
1499 
1500 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1501   auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1502   return PSV && PSV->isStack();
1503 }
1504 
1505 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1506   SDLoc DL(N);
1507 
1508   auto *FI = dyn_cast<FrameIndexSDNode>(N);
1509   SDValue TFI =
1510       FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N;
1511 
1512   // We rebase the base address into an absolute stack address and hence
1513   // use constant 0 for soffset. This value must be retained until
1514   // frame elimination and eliminateFrameIndex will choose the appropriate
1515   // frame register if need be.
1516   return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32));
1517 }
1518 
1519 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1520                                                  SDValue Addr, SDValue &Rsrc,
1521                                                  SDValue &VAddr, SDValue &SOffset,
1522                                                  SDValue &ImmOffset) const {
1523 
1524   SDLoc DL(Addr);
1525   MachineFunction &MF = CurDAG->getMachineFunction();
1526   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1527 
1528   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1529 
1530   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1531     int64_t Imm = CAddr->getSExtValue();
1532     const int64_t NullPtr =
1533         AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1534     // Don't fold null pointer.
1535     if (Imm != NullPtr) {
1536       SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1537       MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1538         AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1539       VAddr = SDValue(MovHighBits, 0);
1540 
1541       // In a call sequence, stores to the argument stack area are relative to the
1542       // stack pointer.
1543       const MachinePointerInfo &PtrInfo
1544         = cast<MemSDNode>(Parent)->getPointerInfo();
1545       SOffset = isStackPtrRelative(PtrInfo)
1546         ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1547         : CurDAG->getTargetConstant(0, DL, MVT::i32);
1548       ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1549       return true;
1550     }
1551   }
1552 
1553   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1554     // (add n0, c1)
1555 
1556     SDValue N0 = Addr.getOperand(0);
1557     SDValue N1 = Addr.getOperand(1);
1558 
1559     // Offsets in vaddr must be positive if range checking is enabled.
1560     //
1561     // The total computation of vaddr + soffset + offset must not overflow.  If
1562     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1563     // overflowing.
1564     //
1565     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1566     // always perform a range check. If a negative vaddr base index was used,
1567     // this would fail the range check. The overall address computation would
1568     // compute a valid address, but this doesn't happen due to the range
1569     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1570     //
1571     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1572     // MUBUF vaddr, but not on older subtargets which can only do this if the
1573     // sign bit is known 0.
1574     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1575     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1576         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1577          CurDAG->SignBitIsZero(N0))) {
1578       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1579       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1580       return true;
1581     }
1582   }
1583 
1584   // (node)
1585   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1586   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1587   return true;
1588 }
1589 
1590 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1591                                                   SDValue Addr,
1592                                                   SDValue &SRsrc,
1593                                                   SDValue &SOffset,
1594                                                   SDValue &Offset) const {
1595   ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1596   if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1597     return false;
1598 
1599   SDLoc DL(Addr);
1600   MachineFunction &MF = CurDAG->getMachineFunction();
1601   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1602 
1603   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1604 
1605   const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1606 
1607   // FIXME: Get from MachinePointerInfo? We should only be using the frame
1608   // offset if we know this is in a call sequence.
1609   SOffset = isStackPtrRelative(PtrInfo)
1610                 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1611                 : CurDAG->getTargetConstant(0, DL, MVT::i32);
1612 
1613   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1614   return true;
1615 }
1616 
1617 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1618                                            SDValue &SOffset, SDValue &Offset
1619                                            ) const {
1620   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1621   const SIInstrInfo *TII =
1622     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1623 
1624   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64))
1625     return false;
1626 
1627   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1628       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1629       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1630     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1631                     APInt::getAllOnesValue(32).getZExtValue(); // Size
1632     SDLoc DL(Addr);
1633 
1634     const SITargetLowering& Lowering =
1635       *static_cast<const SITargetLowering*>(getTargetLowering());
1636 
1637     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1638     return true;
1639   }
1640   return false;
1641 }
1642 
1643 // Find a load or store from corresponding pattern root.
1644 // Roots may be build_vector, bitconvert or their combinations.
1645 static MemSDNode* findMemSDNode(SDNode *N) {
1646   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1647   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1648     return MN;
1649   assert(isa<BuildVectorSDNode>(N));
1650   for (SDValue V : N->op_values())
1651     if (MemSDNode *MN =
1652           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1653       return MN;
1654   llvm_unreachable("cannot find MemSDNode in the pattern!");
1655 }
1656 
1657 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr,
1658                                               SDValue &VAddr, SDValue &Offset,
1659                                               uint64_t FlatVariant) const {
1660   int64_t OffsetVal = 0;
1661 
1662   unsigned AS = findMemSDNode(N)->getAddressSpace();
1663 
1664   bool CanHaveFlatSegmentOffsetBug =
1665       Subtarget->hasFlatSegmentOffsetBug() &&
1666       FlatVariant == SIInstrFlags::FLAT &&
1667       (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS);
1668 
1669   if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) {
1670     SDValue N0, N1;
1671     if (isBaseWithConstantOffset64(Addr, N0, N1)) {
1672       uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1673 
1674       const SIInstrInfo *TII = Subtarget->getInstrInfo();
1675       if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) {
1676         Addr = N0;
1677         OffsetVal = COffsetVal;
1678       } else {
1679         // If the offset doesn't fit, put the low bits into the offset field and
1680         // add the rest.
1681         //
1682         // For a FLAT instruction the hardware decides whether to access
1683         // global/scratch/shared memory based on the high bits of vaddr,
1684         // ignoring the offset field, so we have to ensure that when we add
1685         // remainder to vaddr it still points into the same underlying object.
1686         // The easiest way to do that is to make sure that we split the offset
1687         // into two pieces that are both >= 0 or both <= 0.
1688 
1689         SDLoc DL(N);
1690         uint64_t RemainderOffset;
1691 
1692         std::tie(OffsetVal, RemainderOffset) =
1693             TII->splitFlatOffset(COffsetVal, AS, FlatVariant);
1694 
1695         SDValue AddOffsetLo =
1696             getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1697         SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1698 
1699         if (Addr.getValueType().getSizeInBits() == 32) {
1700           SmallVector<SDValue, 3> Opnds;
1701           Opnds.push_back(N0);
1702           Opnds.push_back(AddOffsetLo);
1703           unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32;
1704           if (Subtarget->hasAddNoCarry()) {
1705             AddOp = AMDGPU::V_ADD_U32_e64;
1706             Opnds.push_back(Clamp);
1707           }
1708           Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0);
1709         } else {
1710           // TODO: Should this try to use a scalar add pseudo if the base address
1711           // is uniform and saddr is usable?
1712           SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1713           SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1714 
1715           SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1716                                                 DL, MVT::i32, N0, Sub0);
1717           SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1718                                                 DL, MVT::i32, N0, Sub1);
1719 
1720           SDValue AddOffsetHi =
1721               getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1722 
1723           SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1724 
1725           SDNode *Add =
1726               CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
1727                                      {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1728 
1729           SDNode *Addc = CurDAG->getMachineNode(
1730               AMDGPU::V_ADDC_U32_e64, DL, VTs,
1731               {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1732 
1733           SDValue RegSequenceArgs[] = {
1734               CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1735               SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
1736 
1737           Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1738                                                 MVT::i64, RegSequenceArgs),
1739                          0);
1740         }
1741       }
1742     }
1743   }
1744 
1745   VAddr = Addr;
1746   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1747   return true;
1748 }
1749 
1750 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr,
1751                                           SDValue &VAddr,
1752                                           SDValue &Offset) const {
1753   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT);
1754 }
1755 
1756 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr,
1757                                             SDValue &VAddr,
1758                                             SDValue &Offset) const {
1759   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal);
1760 }
1761 
1762 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr,
1763                                              SDValue &VAddr,
1764                                              SDValue &Offset) const {
1765   return SelectFlatOffsetImpl(N, Addr, VAddr, Offset,
1766                               SIInstrFlags::FlatScratch);
1767 }
1768 
1769 // If this matches zero_extend i32:x, return x
1770 static SDValue matchZExtFromI32(SDValue Op) {
1771   if (Op.getOpcode() != ISD::ZERO_EXTEND)
1772     return SDValue();
1773 
1774   SDValue ExtSrc = Op.getOperand(0);
1775   return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
1776 }
1777 
1778 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
1779 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
1780                                            SDValue Addr,
1781                                            SDValue &SAddr,
1782                                            SDValue &VOffset,
1783                                            SDValue &Offset) const {
1784   int64_t ImmOffset = 0;
1785 
1786   // Match the immediate offset first, which canonically is moved as low as
1787   // possible.
1788 
1789   SDValue LHS, RHS;
1790   if (isBaseWithConstantOffset64(Addr, LHS, RHS)) {
1791     int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
1792     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1793 
1794     if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS,
1795                                SIInstrFlags::FlatGlobal)) {
1796       Addr = LHS;
1797       ImmOffset = COffsetVal;
1798     } else if (!LHS->isDivergent()) {
1799       if (COffsetVal > 0) {
1800         SDLoc SL(N);
1801         // saddr + large_offset -> saddr +
1802         //                         (voffset = large_offset & ~MaxOffset) +
1803         //                         (large_offset & MaxOffset);
1804         int64_t SplitImmOffset, RemainderOffset;
1805         std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset(
1806             COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal);
1807 
1808         if (isUInt<32>(RemainderOffset)) {
1809           SDNode *VMov = CurDAG->getMachineNode(
1810               AMDGPU::V_MOV_B32_e32, SL, MVT::i32,
1811               CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32));
1812           VOffset = SDValue(VMov, 0);
1813           SAddr = LHS;
1814           Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16);
1815           return true;
1816         }
1817       }
1818 
1819       // We are adding a 64 bit SGPR and a constant. If constant bus limit
1820       // is 1 we would need to perform 1 or 2 extra moves for each half of
1821       // the constant and it is better to do a scalar add and then issue a
1822       // single VALU instruction to materialize zero. Otherwise it is less
1823       // instructions to perform VALU adds with immediates or inline literals.
1824       unsigned NumLiterals =
1825           !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) +
1826           !TII->isInlineConstant(APInt(32, COffsetVal >> 32));
1827       if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals)
1828         return false;
1829     }
1830   }
1831 
1832   // Match the variable offset.
1833   if (Addr.getOpcode() == ISD::ADD) {
1834     LHS = Addr.getOperand(0);
1835     RHS = Addr.getOperand(1);
1836 
1837     if (!LHS->isDivergent()) {
1838       // add (i64 sgpr), (zero_extend (i32 vgpr))
1839       if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
1840         SAddr = LHS;
1841         VOffset = ZextRHS;
1842       }
1843     }
1844 
1845     if (!SAddr && !RHS->isDivergent()) {
1846       // add (zero_extend (i32 vgpr)), (i64 sgpr)
1847       if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
1848         SAddr = RHS;
1849         VOffset = ZextLHS;
1850       }
1851     }
1852 
1853     if (SAddr) {
1854       Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1855       return true;
1856     }
1857   }
1858 
1859   if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF ||
1860       isa<ConstantSDNode>(Addr))
1861     return false;
1862 
1863   // It's cheaper to materialize a single 32-bit zero for vaddr than the two
1864   // moves required to copy a 64-bit SGPR to VGPR.
1865   SAddr = Addr;
1866   SDNode *VMov =
1867       CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32,
1868                              CurDAG->getTargetConstant(0, SDLoc(), MVT::i32));
1869   VOffset = SDValue(VMov, 0);
1870   Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
1871   return true;
1872 }
1873 
1874 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) {
1875   if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) {
1876     SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0));
1877   } else if (SAddr.getOpcode() == ISD::ADD &&
1878              isa<FrameIndexSDNode>(SAddr.getOperand(0))) {
1879     // Materialize this into a scalar move for scalar address to avoid
1880     // readfirstlane.
1881     auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0));
1882     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1883                                               FI->getValueType(0));
1884     SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, SDLoc(SAddr),
1885                                            MVT::i32, TFI, SAddr.getOperand(1)),
1886                     0);
1887   }
1888 
1889   return SAddr;
1890 }
1891 
1892 // Match (32-bit SGPR base) + sext(imm offset)
1893 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *N,
1894                                             SDValue Addr,
1895                                             SDValue &SAddr,
1896                                             SDValue &Offset) const {
1897   if (Addr->isDivergent())
1898     return false;
1899 
1900   SAddr = Addr;
1901   int64_t COffsetVal = 0;
1902 
1903   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1904     COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue();
1905     SAddr = Addr.getOperand(0);
1906   }
1907 
1908   SAddr = SelectSAddrFI(CurDAG, SAddr);
1909 
1910   const SIInstrInfo *TII = Subtarget->getInstrInfo();
1911 
1912   if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS,
1913                               SIInstrFlags::FlatScratch)) {
1914     const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(*Subtarget, true);
1915     // Use signed division by a power of two to truncate towards 0.
1916     int64_t D = 1LL << (NumBits - 1);
1917     int64_t RemainderOffset = (COffsetVal / D) * D;
1918     int64_t ImmField = COffsetVal - RemainderOffset;
1919 
1920     assert(TII->isLegalFLATOffset(ImmField, AMDGPUAS::PRIVATE_ADDRESS,
1921                                   SIInstrFlags::FlatScratch));
1922     assert(RemainderOffset + ImmField == COffsetVal);
1923 
1924     COffsetVal = ImmField;
1925 
1926     SDLoc DL(N);
1927     SDValue AddOffset =
1928         getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1929     SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_U32, DL, MVT::i32,
1930                                            SAddr, AddOffset), 0);
1931   }
1932 
1933   Offset = CurDAG->getTargetConstant(COffsetVal, SDLoc(), MVT::i16);
1934 
1935   return true;
1936 }
1937 
1938 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1939                                           SDValue &Offset, bool &Imm) const {
1940   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1941   if (!C) {
1942     if (ByteOffsetNode.getValueType().isScalarInteger() &&
1943         ByteOffsetNode.getValueType().getSizeInBits() == 32) {
1944       Offset = ByteOffsetNode;
1945       Imm = false;
1946       return true;
1947     }
1948     if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
1949       if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
1950         Offset = ByteOffsetNode.getOperand(0);
1951         Imm = false;
1952         return true;
1953       }
1954     }
1955     return false;
1956   }
1957 
1958   SDLoc SL(ByteOffsetNode);
1959   // GFX9 and GFX10 have signed byte immediate offsets.
1960   int64_t ByteOffset = C->getSExtValue();
1961   Optional<int64_t> EncodedOffset =
1962       AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
1963   if (EncodedOffset) {
1964     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1965     Imm = true;
1966     return true;
1967   }
1968 
1969   // SGPR and literal offsets are unsigned.
1970   if (ByteOffset < 0)
1971     return false;
1972 
1973   EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1974   if (EncodedOffset) {
1975     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1976     return true;
1977   }
1978 
1979   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1980     return false;
1981 
1982   SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1983   Offset = SDValue(
1984       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1985 
1986   return true;
1987 }
1988 
1989 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1990   if (Addr.getValueType() != MVT::i32)
1991     return Addr;
1992 
1993   // Zero-extend a 32-bit address.
1994   SDLoc SL(Addr);
1995 
1996   const MachineFunction &MF = CurDAG->getMachineFunction();
1997   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1998   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1999   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
2000 
2001   const SDValue Ops[] = {
2002     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
2003     Addr,
2004     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
2005     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
2006             0),
2007     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
2008   };
2009 
2010   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
2011                                         Ops), 0);
2012 }
2013 
2014 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
2015                                      SDValue &Offset, bool &Imm) const {
2016   SDLoc SL(Addr);
2017 
2018   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
2019   // wraparound, because s_load instructions perform the addition in 64 bits.
2020   if ((Addr.getValueType() != MVT::i32 ||
2021        Addr->getFlags().hasNoUnsignedWrap())) {
2022     SDValue N0, N1;
2023     // Extract the base and offset if possible.
2024     if (CurDAG->isBaseWithConstantOffset(Addr) ||
2025         Addr.getOpcode() == ISD::ADD) {
2026       N0 = Addr.getOperand(0);
2027       N1 = Addr.getOperand(1);
2028     } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
2029       assert(N0 && N1 && isa<ConstantSDNode>(N1));
2030     }
2031     if (N0 && N1) {
2032       if (SelectSMRDOffset(N1, Offset, Imm)) {
2033         SBase = Expand32BitAddress(N0);
2034         return true;
2035       }
2036     }
2037   }
2038   SBase = Expand32BitAddress(Addr);
2039   Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
2040   Imm = true;
2041   return true;
2042 }
2043 
2044 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
2045                                        SDValue &Offset) const {
2046   bool Imm = false;
2047   return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
2048 }
2049 
2050 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
2051                                          SDValue &Offset) const {
2052 
2053   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2054 
2055   bool Imm = false;
2056   if (!SelectSMRD(Addr, SBase, Offset, Imm))
2057     return false;
2058 
2059   return !Imm && isa<ConstantSDNode>(Offset);
2060 }
2061 
2062 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
2063                                         SDValue &Offset) const {
2064   bool Imm = false;
2065   return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
2066          !isa<ConstantSDNode>(Offset);
2067 }
2068 
2069 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
2070                                              SDValue &Offset) const {
2071   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
2072     // The immediate offset for S_BUFFER instructions is unsigned.
2073     if (auto Imm =
2074             AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
2075       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
2076       return true;
2077     }
2078   }
2079 
2080   return false;
2081 }
2082 
2083 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
2084                                                SDValue &Offset) const {
2085   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
2086 
2087   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
2088     if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
2089                                                          C->getZExtValue())) {
2090       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
2091       return true;
2092     }
2093   }
2094 
2095   return false;
2096 }
2097 
2098 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
2099                                             SDValue &Base,
2100                                             SDValue &Offset) const {
2101   SDLoc DL(Index);
2102 
2103   if (CurDAG->isBaseWithConstantOffset(Index)) {
2104     SDValue N0 = Index.getOperand(0);
2105     SDValue N1 = Index.getOperand(1);
2106     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
2107 
2108     // (add n0, c0)
2109     // Don't peel off the offset (c0) if doing so could possibly lead
2110     // the base (n0) to be negative.
2111     // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
2112     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
2113         (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
2114       Base = N0;
2115       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
2116       return true;
2117     }
2118   }
2119 
2120   if (isa<ConstantSDNode>(Index))
2121     return false;
2122 
2123   Base = Index;
2124   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2125   return true;
2126 }
2127 
2128 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
2129                                      SDValue Val, uint32_t Offset,
2130                                      uint32_t Width) {
2131   // Transformation function, pack the offset and width of a BFE into
2132   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
2133   // source, bits [5:0] contain the offset and bits [22:16] the width.
2134   uint32_t PackedVal = Offset | (Width << 16);
2135   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
2136 
2137   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
2138 }
2139 
2140 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
2141   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
2142   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
2143   // Predicate: 0 < b <= c < 32
2144 
2145   const SDValue &Shl = N->getOperand(0);
2146   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
2147   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
2148 
2149   if (B && C) {
2150     uint32_t BVal = B->getZExtValue();
2151     uint32_t CVal = C->getZExtValue();
2152 
2153     if (0 < BVal && BVal <= CVal && CVal < 32) {
2154       bool Signed = N->getOpcode() == ISD::SRA;
2155       unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
2156 
2157       ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
2158                               32 - CVal));
2159       return;
2160     }
2161   }
2162   SelectCode(N);
2163 }
2164 
2165 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
2166   switch (N->getOpcode()) {
2167   case ISD::AND:
2168     if (N->getOperand(0).getOpcode() == ISD::SRL) {
2169       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2170       // Predicate: isMask(mask)
2171       const SDValue &Srl = N->getOperand(0);
2172       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
2173       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
2174 
2175       if (Shift && Mask) {
2176         uint32_t ShiftVal = Shift->getZExtValue();
2177         uint32_t MaskVal = Mask->getZExtValue();
2178 
2179         if (isMask_32(MaskVal)) {
2180           uint32_t WidthVal = countPopulation(MaskVal);
2181 
2182           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2183                                   Srl.getOperand(0), ShiftVal, WidthVal));
2184           return;
2185         }
2186       }
2187     }
2188     break;
2189   case ISD::SRL:
2190     if (N->getOperand(0).getOpcode() == ISD::AND) {
2191       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2192       // Predicate: isMask(mask >> b)
2193       const SDValue &And = N->getOperand(0);
2194       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2195       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2196 
2197       if (Shift && Mask) {
2198         uint32_t ShiftVal = Shift->getZExtValue();
2199         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2200 
2201         if (isMask_32(MaskVal)) {
2202           uint32_t WidthVal = countPopulation(MaskVal);
2203 
2204           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2205                                   And.getOperand(0), ShiftVal, WidthVal));
2206           return;
2207         }
2208       }
2209     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2210       SelectS_BFEFromShifts(N);
2211       return;
2212     }
2213     break;
2214   case ISD::SRA:
2215     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2216       SelectS_BFEFromShifts(N);
2217       return;
2218     }
2219     break;
2220 
2221   case ISD::SIGN_EXTEND_INREG: {
2222     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2223     SDValue Src = N->getOperand(0);
2224     if (Src.getOpcode() != ISD::SRL)
2225       break;
2226 
2227     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2228     if (!Amt)
2229       break;
2230 
2231     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2232     ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2233                             Amt->getZExtValue(), Width));
2234     return;
2235   }
2236   }
2237 
2238   SelectCode(N);
2239 }
2240 
2241 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2242   assert(N->getOpcode() == ISD::BRCOND);
2243   if (!N->hasOneUse())
2244     return false;
2245 
2246   SDValue Cond = N->getOperand(1);
2247   if (Cond.getOpcode() == ISD::CopyToReg)
2248     Cond = Cond.getOperand(2);
2249 
2250   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2251     return false;
2252 
2253   MVT VT = Cond.getOperand(0).getSimpleValueType();
2254   if (VT == MVT::i32)
2255     return true;
2256 
2257   if (VT == MVT::i64) {
2258     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2259 
2260     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2261     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2262   }
2263 
2264   return false;
2265 }
2266 
2267 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2268   SDValue Cond = N->getOperand(1);
2269 
2270   if (Cond.isUndef()) {
2271     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2272                          N->getOperand(2), N->getOperand(0));
2273     return;
2274   }
2275 
2276   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2277   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2278 
2279   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2280   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2281   Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2282   SDLoc SL(N);
2283 
2284   if (!UseSCCBr) {
2285     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2286     // analyzed what generates the vcc value, so we do not know whether vcc
2287     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2288     // disabled lanes.
2289     //
2290     // For the case that we select S_CBRANCH_SCC1 and it gets
2291     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2292     // SIInstrInfo::moveToVALU which inserts the S_AND).
2293     //
2294     // We could add an analysis of what generates the vcc value here and omit
2295     // the S_AND when is unnecessary. But it would be better to add a separate
2296     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2297     // catches both cases.
2298     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2299                                                          : AMDGPU::S_AND_B64,
2300                      SL, MVT::i1,
2301                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2302                                                         : AMDGPU::EXEC,
2303                                          MVT::i1),
2304                     Cond),
2305                    0);
2306   }
2307 
2308   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2309   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2310                        N->getOperand(2), // Basic Block
2311                        VCC.getValue(0));
2312 }
2313 
2314 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2315   MVT VT = N->getSimpleValueType(0);
2316   bool IsFMA = N->getOpcode() == ISD::FMA;
2317   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2318                          !Subtarget->hasFmaMixInsts()) ||
2319       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2320        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2321     SelectCode(N);
2322     return;
2323   }
2324 
2325   SDValue Src0 = N->getOperand(0);
2326   SDValue Src1 = N->getOperand(1);
2327   SDValue Src2 = N->getOperand(2);
2328   unsigned Src0Mods, Src1Mods, Src2Mods;
2329 
2330   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2331   // using the conversion from f16.
2332   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2333   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2334   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2335 
2336   assert((IsFMA || !Mode.allFP32Denormals()) &&
2337          "fmad selected with denormals enabled");
2338   // TODO: We can select this with f32 denormals enabled if all the sources are
2339   // converted from f16 (in which case fmad isn't legal).
2340 
2341   if (Sel0 || Sel1 || Sel2) {
2342     // For dummy operands.
2343     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2344     SDValue Ops[] = {
2345       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2346       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2347       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2348       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2349       Zero, Zero
2350     };
2351 
2352     CurDAG->SelectNodeTo(N,
2353                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2354                          MVT::f32, Ops);
2355   } else {
2356     SelectCode(N);
2357   }
2358 }
2359 
2360 // This is here because there isn't a way to use the generated sub0_sub1 as the
2361 // subreg index to EXTRACT_SUBREG in tablegen.
2362 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2363   MemSDNode *Mem = cast<MemSDNode>(N);
2364   unsigned AS = Mem->getAddressSpace();
2365   if (AS == AMDGPUAS::FLAT_ADDRESS) {
2366     SelectCode(N);
2367     return;
2368   }
2369 
2370   MVT VT = N->getSimpleValueType(0);
2371   bool Is32 = (VT == MVT::i32);
2372   SDLoc SL(N);
2373 
2374   MachineSDNode *CmpSwap = nullptr;
2375   if (Subtarget->hasAddr64()) {
2376     SDValue SRsrc, VAddr, SOffset, Offset;
2377 
2378     if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) {
2379       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2380         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2381       SDValue CmpVal = Mem->getOperand(2);
2382       SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32);
2383 
2384       // XXX - Do we care about glue operands?
2385 
2386       SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol,
2387                        Mem->getChain()};
2388 
2389       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2390     }
2391   }
2392 
2393   if (!CmpSwap) {
2394     SDValue SRsrc, SOffset, Offset;
2395     if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) {
2396       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2397         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2398 
2399       SDValue CmpVal = Mem->getOperand(2);
2400       SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32);
2401       SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()};
2402 
2403       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2404     }
2405   }
2406 
2407   if (!CmpSwap) {
2408     SelectCode(N);
2409     return;
2410   }
2411 
2412   MachineMemOperand *MMO = Mem->getMemOperand();
2413   CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2414 
2415   unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2416   SDValue Extract
2417     = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2418 
2419   ReplaceUses(SDValue(N, 0), Extract);
2420   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2421   CurDAG->RemoveDeadNode(N);
2422 }
2423 
2424 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2425   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2426   // be copied to an SGPR with readfirstlane.
2427   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2428     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2429 
2430   SDValue Chain = N->getOperand(0);
2431   SDValue Ptr = N->getOperand(2);
2432   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2433   MachineMemOperand *MMO = M->getMemOperand();
2434   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2435 
2436   SDValue Offset;
2437   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2438     SDValue PtrBase = Ptr.getOperand(0);
2439     SDValue PtrOffset = Ptr.getOperand(1);
2440 
2441     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2442     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) {
2443       N = glueCopyToM0(N, PtrBase);
2444       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2445     }
2446   }
2447 
2448   if (!Offset) {
2449     N = glueCopyToM0(N, Ptr);
2450     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2451   }
2452 
2453   SDValue Ops[] = {
2454     Offset,
2455     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2456     Chain,
2457     N->getOperand(N->getNumOperands() - 1) // New glue
2458   };
2459 
2460   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2461   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2462 }
2463 
2464 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2465   switch (IntrID) {
2466   case Intrinsic::amdgcn_ds_gws_init:
2467     return AMDGPU::DS_GWS_INIT;
2468   case Intrinsic::amdgcn_ds_gws_barrier:
2469     return AMDGPU::DS_GWS_BARRIER;
2470   case Intrinsic::amdgcn_ds_gws_sema_v:
2471     return AMDGPU::DS_GWS_SEMA_V;
2472   case Intrinsic::amdgcn_ds_gws_sema_br:
2473     return AMDGPU::DS_GWS_SEMA_BR;
2474   case Intrinsic::amdgcn_ds_gws_sema_p:
2475     return AMDGPU::DS_GWS_SEMA_P;
2476   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2477     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2478   default:
2479     llvm_unreachable("not a gws intrinsic");
2480   }
2481 }
2482 
2483 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2484   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2485       !Subtarget->hasGWSSemaReleaseAll()) {
2486     // Let this error.
2487     SelectCode(N);
2488     return;
2489   }
2490 
2491   // Chain, intrinsic ID, vsrc, offset
2492   const bool HasVSrc = N->getNumOperands() == 4;
2493   assert(HasVSrc || N->getNumOperands() == 3);
2494 
2495   SDLoc SL(N);
2496   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2497   int ImmOffset = 0;
2498   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2499   MachineMemOperand *MMO = M->getMemOperand();
2500 
2501   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2502   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2503 
2504   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2505   // offset field) % 64. Some versions of the programming guide omit the m0
2506   // part, or claim it's from offset 0.
2507   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2508     // If we have a constant offset, try to use the 0 in m0 as the base.
2509     // TODO: Look into changing the default m0 initialization value. If the
2510     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2511     // the immediate offset.
2512     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2513     ImmOffset = ConstOffset->getZExtValue();
2514   } else {
2515     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2516       ImmOffset = BaseOffset.getConstantOperandVal(1);
2517       BaseOffset = BaseOffset.getOperand(0);
2518     }
2519 
2520     // Prefer to do the shift in an SGPR since it should be possible to use m0
2521     // as the result directly. If it's already an SGPR, it will be eliminated
2522     // later.
2523     SDNode *SGPROffset
2524       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2525                                BaseOffset);
2526     // Shift to offset in m0
2527     SDNode *M0Base
2528       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2529                                SDValue(SGPROffset, 0),
2530                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2531     glueCopyToM0(N, SDValue(M0Base, 0));
2532   }
2533 
2534   SDValue Chain = N->getOperand(0);
2535   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2536 
2537   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2538   SmallVector<SDValue, 5> Ops;
2539   if (HasVSrc)
2540     Ops.push_back(N->getOperand(2));
2541   Ops.push_back(OffsetField);
2542   Ops.push_back(Chain);
2543 
2544   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2545   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2546 }
2547 
2548 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2549   if (Subtarget->getLDSBankCount() != 16) {
2550     // This is a single instruction with a pattern.
2551     SelectCode(N);
2552     return;
2553   }
2554 
2555   SDLoc DL(N);
2556 
2557   // This requires 2 instructions. It is possible to write a pattern to support
2558   // this, but the generated isel emitter doesn't correctly deal with multiple
2559   // output instructions using the same physical register input. The copy to m0
2560   // is incorrectly placed before the second instruction.
2561   //
2562   // TODO: Match source modifiers.
2563   //
2564   // def : Pat <
2565   //   (int_amdgcn_interp_p1_f16
2566   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2567   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2568   //                             (i1 timm:$high), M0),
2569   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2570   //       timm:$attrchan, 0,
2571   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2572   //   let Predicates = [has16BankLDS];
2573   // }
2574 
2575   // 16 bank LDS
2576   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2577                                       N->getOperand(5), SDValue());
2578 
2579   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2580 
2581   SDNode *InterpMov =
2582     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2583         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2584         N->getOperand(3),  // Attr
2585         N->getOperand(2),  // Attrchan
2586         ToM0.getValue(1) // In glue
2587   });
2588 
2589   SDNode *InterpP1LV =
2590     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2591         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2592         N->getOperand(1), // Src0
2593         N->getOperand(3), // Attr
2594         N->getOperand(2), // Attrchan
2595         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2596         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2597         N->getOperand(4), // high
2598         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2599         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2600         SDValue(InterpMov, 1)
2601   });
2602 
2603   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2604 }
2605 
2606 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2607   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2608   switch (IntrID) {
2609   case Intrinsic::amdgcn_ds_append:
2610   case Intrinsic::amdgcn_ds_consume: {
2611     if (N->getValueType(0) != MVT::i32)
2612       break;
2613     SelectDSAppendConsume(N, IntrID);
2614     return;
2615   }
2616   }
2617 
2618   SelectCode(N);
2619 }
2620 
2621 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2622   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2623   unsigned Opcode;
2624   switch (IntrID) {
2625   case Intrinsic::amdgcn_wqm:
2626     Opcode = AMDGPU::WQM;
2627     break;
2628   case Intrinsic::amdgcn_softwqm:
2629     Opcode = AMDGPU::SOFT_WQM;
2630     break;
2631   case Intrinsic::amdgcn_wwm:
2632   case Intrinsic::amdgcn_strict_wwm:
2633     Opcode = AMDGPU::STRICT_WWM;
2634     break;
2635   case Intrinsic::amdgcn_strict_wqm:
2636     Opcode = AMDGPU::STRICT_WQM;
2637     break;
2638   case Intrinsic::amdgcn_interp_p1_f16:
2639     SelectInterpP1F16(N);
2640     return;
2641   default:
2642     SelectCode(N);
2643     return;
2644   }
2645 
2646   SDValue Src = N->getOperand(1);
2647   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2648 }
2649 
2650 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2651   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2652   switch (IntrID) {
2653   case Intrinsic::amdgcn_ds_gws_init:
2654   case Intrinsic::amdgcn_ds_gws_barrier:
2655   case Intrinsic::amdgcn_ds_gws_sema_v:
2656   case Intrinsic::amdgcn_ds_gws_sema_br:
2657   case Intrinsic::amdgcn_ds_gws_sema_p:
2658   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2659     SelectDS_GWS(N, IntrID);
2660     return;
2661   default:
2662     break;
2663   }
2664 
2665   SelectCode(N);
2666 }
2667 
2668 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2669                                             unsigned &Mods,
2670                                             bool AllowAbs) const {
2671   Mods = 0;
2672   Src = In;
2673 
2674   if (Src.getOpcode() == ISD::FNEG) {
2675     Mods |= SISrcMods::NEG;
2676     Src = Src.getOperand(0);
2677   }
2678 
2679   if (AllowAbs && Src.getOpcode() == ISD::FABS) {
2680     Mods |= SISrcMods::ABS;
2681     Src = Src.getOperand(0);
2682   }
2683 
2684   return true;
2685 }
2686 
2687 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2688                                         SDValue &SrcMods) const {
2689   unsigned Mods;
2690   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2691     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2692     return true;
2693   }
2694 
2695   return false;
2696 }
2697 
2698 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src,
2699                                          SDValue &SrcMods) const {
2700   unsigned Mods;
2701   if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) {
2702     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2703     return true;
2704   }
2705 
2706   return false;
2707 }
2708 
2709 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2710                                              SDValue &SrcMods) const {
2711   SelectVOP3Mods(In, Src, SrcMods);
2712   return isNoNanSrc(Src);
2713 }
2714 
2715 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2716   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2717     return false;
2718 
2719   Src = In;
2720   return true;
2721 }
2722 
2723 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2724                                          SDValue &SrcMods, SDValue &Clamp,
2725                                          SDValue &Omod) const {
2726   SDLoc DL(In);
2727   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2728   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2729 
2730   return SelectVOP3Mods(In, Src, SrcMods);
2731 }
2732 
2733 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src,
2734                                           SDValue &SrcMods, SDValue &Clamp,
2735                                           SDValue &Omod) const {
2736   SDLoc DL(In);
2737   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2738   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2739 
2740   return SelectVOP3BMods(In, Src, SrcMods);
2741 }
2742 
2743 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2744                                          SDValue &Clamp, SDValue &Omod) const {
2745   Src = In;
2746 
2747   SDLoc DL(In);
2748   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2749   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2750 
2751   return true;
2752 }
2753 
2754 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2755                                          SDValue &SrcMods) const {
2756   unsigned Mods = 0;
2757   Src = In;
2758 
2759   if (Src.getOpcode() == ISD::FNEG) {
2760     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2761     Src = Src.getOperand(0);
2762   }
2763 
2764   if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2765     unsigned VecMods = Mods;
2766 
2767     SDValue Lo = stripBitcast(Src.getOperand(0));
2768     SDValue Hi = stripBitcast(Src.getOperand(1));
2769 
2770     if (Lo.getOpcode() == ISD::FNEG) {
2771       Lo = stripBitcast(Lo.getOperand(0));
2772       Mods ^= SISrcMods::NEG;
2773     }
2774 
2775     if (Hi.getOpcode() == ISD::FNEG) {
2776       Hi = stripBitcast(Hi.getOperand(0));
2777       Mods ^= SISrcMods::NEG_HI;
2778     }
2779 
2780     if (isExtractHiElt(Lo, Lo))
2781       Mods |= SISrcMods::OP_SEL_0;
2782 
2783     if (isExtractHiElt(Hi, Hi))
2784       Mods |= SISrcMods::OP_SEL_1;
2785 
2786     unsigned VecSize = Src.getValueSizeInBits();
2787     Lo = stripExtractLoElt(Lo);
2788     Hi = stripExtractLoElt(Hi);
2789 
2790     if (Lo.getValueSizeInBits() > VecSize) {
2791       Lo = CurDAG->getTargetExtractSubreg(
2792         (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
2793         MVT::getIntegerVT(VecSize), Lo);
2794     }
2795 
2796     if (Hi.getValueSizeInBits() > VecSize) {
2797       Hi = CurDAG->getTargetExtractSubreg(
2798         (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In),
2799         MVT::getIntegerVT(VecSize), Hi);
2800     }
2801 
2802     assert(Lo.getValueSizeInBits() <= VecSize &&
2803            Hi.getValueSizeInBits() <= VecSize);
2804 
2805     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2806       // Really a scalar input. Just select from the low half of the register to
2807       // avoid packing.
2808 
2809       if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) {
2810         Src = Lo;
2811       } else {
2812         assert(Lo.getValueSizeInBits() == 32 && VecSize == 64);
2813 
2814         SDLoc SL(In);
2815         SDValue Undef = SDValue(
2816           CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL,
2817                                  Lo.getValueType()), 0);
2818         auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID
2819                                     : AMDGPU::SReg_64RegClassID;
2820         const SDValue Ops[] = {
2821           CurDAG->getTargetConstant(RC, SL, MVT::i32),
2822           Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
2823           Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) };
2824 
2825         Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL,
2826                                              Src.getValueType(), Ops), 0);
2827       }
2828       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2829       return true;
2830     }
2831 
2832     if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) {
2833       uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF()
2834                       .bitcastToAPInt().getZExtValue();
2835       if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) {
2836         Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);;
2837         SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2838         return true;
2839       }
2840     }
2841 
2842     Mods = VecMods;
2843   }
2844 
2845   // Packed instructions do not have abs modifiers.
2846   Mods |= SISrcMods::OP_SEL_1;
2847 
2848   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2849   return true;
2850 }
2851 
2852 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2853                                          SDValue &SrcMods) const {
2854   Src = In;
2855   // FIXME: Handle op_sel
2856   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2857   return true;
2858 }
2859 
2860 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2861                                              SDValue &SrcMods) const {
2862   // FIXME: Handle op_sel
2863   return SelectVOP3Mods(In, Src, SrcMods);
2864 }
2865 
2866 // The return value is not whether the match is possible (which it always is),
2867 // but whether or not it a conversion is really used.
2868 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2869                                                    unsigned &Mods) const {
2870   Mods = 0;
2871   SelectVOP3ModsImpl(In, Src, Mods);
2872 
2873   if (Src.getOpcode() == ISD::FP_EXTEND) {
2874     Src = Src.getOperand(0);
2875     assert(Src.getValueType() == MVT::f16);
2876     Src = stripBitcast(Src);
2877 
2878     // Be careful about folding modifiers if we already have an abs. fneg is
2879     // applied last, so we don't want to apply an earlier fneg.
2880     if ((Mods & SISrcMods::ABS) == 0) {
2881       unsigned ModsTmp;
2882       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2883 
2884       if ((ModsTmp & SISrcMods::NEG) != 0)
2885         Mods ^= SISrcMods::NEG;
2886 
2887       if ((ModsTmp & SISrcMods::ABS) != 0)
2888         Mods |= SISrcMods::ABS;
2889     }
2890 
2891     // op_sel/op_sel_hi decide the source type and source.
2892     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2893     // If the sources's op_sel is set, it picks the high half of the source
2894     // register.
2895 
2896     Mods |= SISrcMods::OP_SEL_1;
2897     if (isExtractHiElt(Src, Src)) {
2898       Mods |= SISrcMods::OP_SEL_0;
2899 
2900       // TODO: Should we try to look for neg/abs here?
2901     }
2902 
2903     return true;
2904   }
2905 
2906   return false;
2907 }
2908 
2909 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2910                                                SDValue &SrcMods) const {
2911   unsigned Mods = 0;
2912   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2913   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2914   return true;
2915 }
2916 
2917 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2918   if (In.isUndef())
2919     return CurDAG->getUNDEF(MVT::i32);
2920 
2921   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2922     SDLoc SL(In);
2923     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2924   }
2925 
2926   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2927     SDLoc SL(In);
2928     return CurDAG->getConstant(
2929       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2930   }
2931 
2932   SDValue Src;
2933   if (isExtractHiElt(In, Src))
2934     return Src;
2935 
2936   return SDValue();
2937 }
2938 
2939 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2940   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2941 
2942   const SIRegisterInfo *SIRI =
2943     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2944   const SIInstrInfo * SII =
2945     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2946 
2947   unsigned Limit = 0;
2948   bool AllUsesAcceptSReg = true;
2949   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2950     Limit < 10 && U != E; ++U, ++Limit) {
2951     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2952 
2953     // If the register class is unknown, it could be an unknown
2954     // register class that needs to be an SGPR, e.g. an inline asm
2955     // constraint
2956     if (!RC || SIRI->isSGPRClass(RC))
2957       return false;
2958 
2959     if (RC != &AMDGPU::VS_32RegClass) {
2960       AllUsesAcceptSReg = false;
2961       SDNode * User = *U;
2962       if (User->isMachineOpcode()) {
2963         unsigned Opc = User->getMachineOpcode();
2964         MCInstrDesc Desc = SII->get(Opc);
2965         if (Desc.isCommutable()) {
2966           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2967           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2968           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2969             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2970             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2971             if (CommutedRC == &AMDGPU::VS_32RegClass)
2972               AllUsesAcceptSReg = true;
2973           }
2974         }
2975       }
2976       // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2977       // commuting current user. This means have at least one use
2978       // that strictly require VGPR. Thus, we will not attempt to commute
2979       // other user instructions.
2980       if (!AllUsesAcceptSReg)
2981         break;
2982     }
2983   }
2984   return !AllUsesAcceptSReg && (Limit < 10);
2985 }
2986 
2987 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2988   auto Ld = cast<LoadSDNode>(N);
2989 
2990   return Ld->getAlignment() >= 4 &&
2991         (
2992           (
2993             (
2994               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
2995               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2996             )
2997             &&
2998             !N->isDivergent()
2999           )
3000           ||
3001           (
3002             Subtarget->getScalarizeGlobalBehavior() &&
3003             Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
3004             Ld->isSimple() &&
3005             !N->isDivergent() &&
3006             static_cast<const SITargetLowering *>(
3007               getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
3008           )
3009         );
3010 }
3011 
3012 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
3013   const AMDGPUTargetLowering& Lowering =
3014     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
3015   bool IsModified = false;
3016   do {
3017     IsModified = false;
3018 
3019     // Go over all selected nodes and try to fold them a bit more
3020     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
3021     while (Position != CurDAG->allnodes_end()) {
3022       SDNode *Node = &*Position++;
3023       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
3024       if (!MachineNode)
3025         continue;
3026 
3027       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
3028       if (ResNode != Node) {
3029         if (ResNode)
3030           ReplaceUses(Node, ResNode);
3031         IsModified = true;
3032       }
3033     }
3034     CurDAG->RemoveDeadNodes();
3035   } while (IsModified);
3036 }
3037 
3038 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
3039   Subtarget = &MF.getSubtarget<R600Subtarget>();
3040   return SelectionDAGISel::runOnMachineFunction(MF);
3041 }
3042 
3043 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
3044   if (!N->readMem())
3045     return false;
3046   if (CbId == -1)
3047     return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
3048            N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
3049 
3050   return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
3051 }
3052 
3053 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
3054                                                          SDValue& IntPtr) {
3055   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
3056     IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
3057                                        true);
3058     return true;
3059   }
3060   return false;
3061 }
3062 
3063 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
3064     SDValue& BaseReg, SDValue &Offset) {
3065   if (!isa<ConstantSDNode>(Addr)) {
3066     BaseReg = Addr;
3067     Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
3068     return true;
3069   }
3070   return false;
3071 }
3072 
3073 void R600DAGToDAGISel::Select(SDNode *N) {
3074   unsigned int Opc = N->getOpcode();
3075   if (N->isMachineOpcode()) {
3076     N->setNodeId(-1);
3077     return;   // Already selected.
3078   }
3079 
3080   switch (Opc) {
3081   default: break;
3082   case AMDGPUISD::BUILD_VERTICAL_VECTOR:
3083   case ISD::SCALAR_TO_VECTOR:
3084   case ISD::BUILD_VECTOR: {
3085     EVT VT = N->getValueType(0);
3086     unsigned NumVectorElts = VT.getVectorNumElements();
3087     unsigned RegClassID;
3088     // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
3089     // that adds a 128 bits reg copy when going through TwoAddressInstructions
3090     // pass. We want to avoid 128 bits copies as much as possible because they
3091     // can't be bundled by our scheduler.
3092     switch(NumVectorElts) {
3093     case 2: RegClassID = R600::R600_Reg64RegClassID; break;
3094     case 4:
3095       if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
3096         RegClassID = R600::R600_Reg128VerticalRegClassID;
3097       else
3098         RegClassID = R600::R600_Reg128RegClassID;
3099       break;
3100     default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
3101     }
3102     SelectBuildVector(N, RegClassID);
3103     return;
3104   }
3105   }
3106 
3107   SelectCode(N);
3108 }
3109 
3110 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
3111                                           SDValue &Offset) {
3112   ConstantSDNode *C;
3113   SDLoc DL(Addr);
3114 
3115   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
3116     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
3117     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
3118   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
3119              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
3120     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
3121     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
3122   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
3123             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
3124     Base = Addr.getOperand(0);
3125     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
3126   } else {
3127     Base = Addr;
3128     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
3129   }
3130 
3131   return true;
3132 }
3133 
3134 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
3135                                           SDValue &Offset) {
3136   ConstantSDNode *IMMOffset;
3137 
3138   if (Addr.getOpcode() == ISD::ADD
3139       && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
3140       && isInt<16>(IMMOffset->getZExtValue())) {
3141 
3142       Base = Addr.getOperand(0);
3143       Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
3144                                          MVT::i32);
3145       return true;
3146   // If the pointer address is constant, we can move it to the offset field.
3147   } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
3148              && isInt<16>(IMMOffset->getZExtValue())) {
3149     Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
3150                                   SDLoc(CurDAG->getEntryNode()),
3151                                   R600::ZERO, MVT::i32);
3152     Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
3153                                        MVT::i32);
3154     return true;
3155   }
3156 
3157   // Default case, no offset
3158   Base = Addr;
3159   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
3160   return true;
3161 }
3162