1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //==-----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Defines an instruction selector for the AMDGPU target. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPUISelDAGToDAG.h" 15 #include "AMDGPU.h" 16 #include "AMDGPUTargetMachine.h" 17 #include "MCTargetDesc/R600MCTargetDesc.h" 18 #include "R600RegisterInfo.h" 19 #include "SIMachineFunctionInfo.h" 20 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/FunctionLoweringInfo.h" 23 #include "llvm/CodeGen/SelectionDAG.h" 24 #include "llvm/CodeGen/SelectionDAGISel.h" 25 #include "llvm/CodeGen/SelectionDAGNodes.h" 26 #include "llvm/IR/IntrinsicsAMDGPU.h" 27 #include "llvm/InitializePasses.h" 28 29 #ifdef EXPENSIVE_CHECKS 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/IR/Dominators.h" 32 #endif 33 34 #define DEBUG_TYPE "isel" 35 36 using namespace llvm; 37 38 //===----------------------------------------------------------------------===// 39 // Instruction Selector Implementation 40 //===----------------------------------------------------------------------===// 41 42 namespace { 43 44 static SDValue stripBitcast(SDValue Val) { 45 return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val; 46 } 47 48 // Figure out if this is really an extract of the high 16-bits of a dword. 49 static bool isExtractHiElt(SDValue In, SDValue &Out) { 50 In = stripBitcast(In); 51 52 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 53 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 54 if (!Idx->isOne()) 55 return false; 56 Out = In.getOperand(0); 57 return true; 58 } 59 } 60 61 if (In.getOpcode() != ISD::TRUNCATE) 62 return false; 63 64 SDValue Srl = In.getOperand(0); 65 if (Srl.getOpcode() == ISD::SRL) { 66 if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) { 67 if (ShiftAmt->getZExtValue() == 16) { 68 Out = stripBitcast(Srl.getOperand(0)); 69 return true; 70 } 71 } 72 } 73 74 return false; 75 } 76 77 // Look through operations that obscure just looking at the low 16-bits of the 78 // same register. 79 static SDValue stripExtractLoElt(SDValue In) { 80 if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 81 if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(In.getOperand(1))) { 82 if (Idx->isZero() && In.getValueSizeInBits() <= 32) 83 return In.getOperand(0); 84 } 85 } 86 87 if (In.getOpcode() == ISD::TRUNCATE) { 88 SDValue Src = In.getOperand(0); 89 if (Src.getValueType().getSizeInBits() == 32) 90 return stripBitcast(Src); 91 } 92 93 return In; 94 } 95 96 } // end anonymous namespace 97 98 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel", 99 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 100 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) 101 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) 102 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) 103 #ifdef EXPENSIVE_CHECKS 104 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 105 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 106 #endif 107 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel", 108 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false) 109 110 /// This pass converts a legalized DAG into a AMDGPU-specific 111 // DAG, ready for instruction scheduling. 112 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM, 113 CodeGenOpt::Level OptLevel) { 114 return new AMDGPUDAGToDAGISel(TM, OptLevel); 115 } 116 117 AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel( 118 TargetMachine *TM /*= nullptr*/, 119 CodeGenOpt::Level OptLevel /*= CodeGenOpt::Default*/) 120 : SelectionDAGISel(*TM, OptLevel) { 121 EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; 122 } 123 124 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { 125 #ifdef EXPENSIVE_CHECKS 126 DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 127 LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 128 for (auto &L : LI->getLoopsInPreorder()) { 129 assert(L->isLCSSAForm(DT)); 130 } 131 #endif 132 Subtarget = &MF.getSubtarget<GCNSubtarget>(); 133 Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction()); 134 return SelectionDAGISel::runOnMachineFunction(MF); 135 } 136 137 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { 138 // XXX - only need to list legal operations. 139 switch (Opc) { 140 case ISD::FADD: 141 case ISD::FSUB: 142 case ISD::FMUL: 143 case ISD::FDIV: 144 case ISD::FREM: 145 case ISD::FCANONICALIZE: 146 case ISD::UINT_TO_FP: 147 case ISD::SINT_TO_FP: 148 case ISD::FABS: 149 // Fabs is lowered to a bit operation, but it's an and which will clear the 150 // high bits anyway. 151 case ISD::FSQRT: 152 case ISD::FSIN: 153 case ISD::FCOS: 154 case ISD::FPOWI: 155 case ISD::FPOW: 156 case ISD::FLOG: 157 case ISD::FLOG2: 158 case ISD::FLOG10: 159 case ISD::FEXP: 160 case ISD::FEXP2: 161 case ISD::FCEIL: 162 case ISD::FTRUNC: 163 case ISD::FRINT: 164 case ISD::FNEARBYINT: 165 case ISD::FROUND: 166 case ISD::FFLOOR: 167 case ISD::FMINNUM: 168 case ISD::FMAXNUM: 169 case AMDGPUISD::FRACT: 170 case AMDGPUISD::CLAMP: 171 case AMDGPUISD::COS_HW: 172 case AMDGPUISD::SIN_HW: 173 case AMDGPUISD::FMIN3: 174 case AMDGPUISD::FMAX3: 175 case AMDGPUISD::FMED3: 176 case AMDGPUISD::FMAD_FTZ: 177 case AMDGPUISD::RCP: 178 case AMDGPUISD::RSQ: 179 case AMDGPUISD::RCP_IFLAG: 180 case AMDGPUISD::LDEXP: 181 // On gfx10, all 16-bit instructions preserve the high bits. 182 return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; 183 case ISD::FP_ROUND: 184 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the 185 // high bits on gfx9. 186 // TODO: If we had the source node we could see if the source was fma/mad 187 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 188 case ISD::FMA: 189 case ISD::FMAD: 190 case AMDGPUISD::DIV_FIXUP: 191 return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; 192 default: 193 // fcopysign, select and others may be lowered to 32-bit bit operations 194 // which don't zero the high bits. 195 return false; 196 } 197 } 198 199 void AMDGPUDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 200 AU.addRequired<AMDGPUArgumentUsageInfo>(); 201 AU.addRequired<LegacyDivergenceAnalysis>(); 202 #ifdef EXPENSIVE_CHECKS 203 AU.addRequired<DominatorTreeWrapperPass>(); 204 AU.addRequired<LoopInfoWrapperPass>(); 205 #endif 206 SelectionDAGISel::getAnalysisUsage(AU); 207 } 208 209 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { 210 assert(Subtarget->d16PreservesUnusedBits()); 211 MVT VT = N->getValueType(0).getSimpleVT(); 212 if (VT != MVT::v2i16 && VT != MVT::v2f16) 213 return false; 214 215 SDValue Lo = N->getOperand(0); 216 SDValue Hi = N->getOperand(1); 217 218 LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi)); 219 220 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo 221 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo 222 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo 223 224 // Need to check for possible indirect dependencies on the other half of the 225 // vector to avoid introducing a cycle. 226 if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) { 227 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 228 229 SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo); 230 SDValue Ops[] = { 231 LdHi->getChain(), LdHi->getBasePtr(), TiedIn 232 }; 233 234 unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; 235 if (LdHi->getMemoryVT() == MVT::i8) { 236 LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? 237 AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; 238 } else { 239 assert(LdHi->getMemoryVT() == MVT::i16); 240 } 241 242 SDValue NewLoadHi = 243 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList, 244 Ops, LdHi->getMemoryVT(), 245 LdHi->getMemOperand()); 246 247 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi); 248 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1)); 249 return true; 250 } 251 252 // build_vector (load ptr), hi -> load_d16_lo ptr, hi 253 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi 254 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi 255 LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo)); 256 if (LdLo && Lo.hasOneUse()) { 257 SDValue TiedIn = getHi16Elt(Hi); 258 if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode())) 259 return false; 260 261 SDVTList VTList = CurDAG->getVTList(VT, MVT::Other); 262 unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; 263 if (LdLo->getMemoryVT() == MVT::i8) { 264 LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? 265 AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; 266 } else { 267 assert(LdLo->getMemoryVT() == MVT::i16); 268 } 269 270 TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn); 271 272 SDValue Ops[] = { 273 LdLo->getChain(), LdLo->getBasePtr(), TiedIn 274 }; 275 276 SDValue NewLoadLo = 277 CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList, 278 Ops, LdLo->getMemoryVT(), 279 LdLo->getMemOperand()); 280 281 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo); 282 CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1)); 283 return true; 284 } 285 286 return false; 287 } 288 289 void AMDGPUDAGToDAGISel::PreprocessISelDAG() { 290 if (!Subtarget->d16PreservesUnusedBits()) 291 return; 292 293 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); 294 295 bool MadeChange = false; 296 while (Position != CurDAG->allnodes_begin()) { 297 SDNode *N = &*--Position; 298 if (N->use_empty()) 299 continue; 300 301 switch (N->getOpcode()) { 302 case ISD::BUILD_VECTOR: 303 MadeChange |= matchLoadD16FromBuildVector(N); 304 break; 305 default: 306 break; 307 } 308 } 309 310 if (MadeChange) { 311 CurDAG->RemoveDeadNodes(); 312 LLVM_DEBUG(dbgs() << "After PreProcess:\n"; 313 CurDAG->dump();); 314 } 315 } 316 317 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const { 318 if (TM.Options.NoNaNsFPMath) 319 return true; 320 321 // TODO: Move into isKnownNeverNaN 322 if (N->getFlags().hasNoNaNs()) 323 return true; 324 325 return CurDAG->isKnownNeverNaN(N); 326 } 327 328 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N, 329 bool Negated) const { 330 if (N->isUndef()) 331 return true; 332 333 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 334 if (Negated) { 335 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 336 return TII->isInlineConstant(-C->getAPIntValue()); 337 338 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 339 return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt()); 340 341 } else { 342 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) 343 return TII->isInlineConstant(C->getAPIntValue()); 344 345 if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) 346 return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt()); 347 } 348 349 return false; 350 } 351 352 /// Determine the register class for \p OpNo 353 /// \returns The register class of the virtual register that will be used for 354 /// the given operand number \OpNo or NULL if the register class cannot be 355 /// determined. 356 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, 357 unsigned OpNo) const { 358 if (!N->isMachineOpcode()) { 359 if (N->getOpcode() == ISD::CopyToReg) { 360 Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 361 if (Reg.isVirtual()) { 362 MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); 363 return MRI.getRegClass(Reg); 364 } 365 366 const SIRegisterInfo *TRI 367 = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); 368 return TRI->getPhysRegClass(Reg); 369 } 370 371 return nullptr; 372 } 373 374 switch (N->getMachineOpcode()) { 375 default: { 376 const MCInstrDesc &Desc = 377 Subtarget->getInstrInfo()->get(N->getMachineOpcode()); 378 unsigned OpIdx = Desc.getNumDefs() + OpNo; 379 if (OpIdx >= Desc.getNumOperands()) 380 return nullptr; 381 int RegClass = Desc.OpInfo[OpIdx].RegClass; 382 if (RegClass == -1) 383 return nullptr; 384 385 return Subtarget->getRegisterInfo()->getRegClass(RegClass); 386 } 387 case AMDGPU::REG_SEQUENCE: { 388 unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 389 const TargetRegisterClass *SuperRC = 390 Subtarget->getRegisterInfo()->getRegClass(RCID); 391 392 SDValue SubRegOp = N->getOperand(OpNo + 1); 393 unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue(); 394 return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, 395 SubRegIdx); 396 } 397 } 398 } 399 400 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, 401 SDValue Glue) const { 402 SmallVector <SDValue, 8> Ops; 403 Ops.push_back(NewChain); // Replace the chain. 404 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 405 Ops.push_back(N->getOperand(i)); 406 407 Ops.push_back(Glue); 408 return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops); 409 } 410 411 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { 412 const SITargetLowering& Lowering = 413 *static_cast<const SITargetLowering*>(getTargetLowering()); 414 415 assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain"); 416 417 SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val); 418 return glueCopyToOp(N, M0, M0.getValue(1)); 419 } 420 421 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { 422 unsigned AS = cast<MemSDNode>(N)->getAddressSpace(); 423 if (AS == AMDGPUAS::LOCAL_ADDRESS) { 424 if (Subtarget->ldsRequiresM0Init()) 425 return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32)); 426 } else if (AS == AMDGPUAS::REGION_ADDRESS) { 427 MachineFunction &MF = CurDAG->getMachineFunction(); 428 unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); 429 return 430 glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32)); 431 } 432 return N; 433 } 434 435 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, 436 EVT VT) const { 437 SDNode *Lo = CurDAG->getMachineNode( 438 AMDGPU::S_MOV_B32, DL, MVT::i32, 439 CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32)); 440 SDNode *Hi = 441 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, 442 CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32)); 443 const SDValue Ops[] = { 444 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 445 SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32), 446 SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)}; 447 448 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops); 449 } 450 451 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { 452 EVT VT = N->getValueType(0); 453 unsigned NumVectorElts = VT.getVectorNumElements(); 454 EVT EltVT = VT.getVectorElementType(); 455 SDLoc DL(N); 456 SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 457 458 if (NumVectorElts == 1) { 459 CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0), 460 RegClass); 461 return; 462 } 463 464 assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " 465 "supported yet"); 466 // 32 = Max Num Vector Elements 467 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) 468 // 1 = Vector Register Class 469 SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); 470 471 bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == 472 Triple::amdgcn; 473 RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32); 474 bool IsRegSeq = true; 475 unsigned NOps = N->getNumOperands(); 476 for (unsigned i = 0; i < NOps; i++) { 477 // XXX: Why is this here? 478 if (isa<RegisterSDNode>(N->getOperand(i))) { 479 IsRegSeq = false; 480 break; 481 } 482 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 483 : R600RegisterInfo::getSubRegFromChannel(i); 484 RegSeqArgs[1 + (2 * i)] = N->getOperand(i); 485 RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32); 486 } 487 if (NOps != NumVectorElts) { 488 // Fill in the missing undef elements if this was a scalar_to_vector. 489 assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); 490 MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, 491 DL, EltVT); 492 for (unsigned i = NOps; i < NumVectorElts; ++i) { 493 unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i) 494 : R600RegisterInfo::getSubRegFromChannel(i); 495 RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); 496 RegSeqArgs[1 + (2 * i) + 1] = 497 CurDAG->getTargetConstant(Sub, DL, MVT::i32); 498 } 499 } 500 501 if (!IsRegSeq) 502 SelectCode(N); 503 CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs); 504 } 505 506 void AMDGPUDAGToDAGISel::Select(SDNode *N) { 507 unsigned int Opc = N->getOpcode(); 508 if (N->isMachineOpcode()) { 509 N->setNodeId(-1); 510 return; // Already selected. 511 } 512 513 // isa<MemSDNode> almost works but is slightly too permissive for some DS 514 // intrinsics. 515 if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) || 516 (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC || 517 Opc == ISD::ATOMIC_LOAD_FADD || 518 Opc == AMDGPUISD::ATOMIC_LOAD_FMIN || 519 Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) { 520 N = glueCopyToM0LDSInit(N); 521 SelectCode(N); 522 return; 523 } 524 525 switch (Opc) { 526 default: 527 break; 528 // We are selecting i64 ADD here instead of custom lower it during 529 // DAG legalization, so we can fold some i64 ADDs used for address 530 // calculation into the LOAD and STORE instructions. 531 case ISD::ADDC: 532 case ISD::ADDE: 533 case ISD::SUBC: 534 case ISD::SUBE: { 535 if (N->getValueType(0) != MVT::i64) 536 break; 537 538 SelectADD_SUB_I64(N); 539 return; 540 } 541 case ISD::ADDCARRY: 542 case ISD::SUBCARRY: 543 if (N->getValueType(0) != MVT::i32) 544 break; 545 546 SelectAddcSubb(N); 547 return; 548 case ISD::UADDO: 549 case ISD::USUBO: { 550 SelectUADDO_USUBO(N); 551 return; 552 } 553 case AMDGPUISD::FMUL_W_CHAIN: { 554 SelectFMUL_W_CHAIN(N); 555 return; 556 } 557 case AMDGPUISD::FMA_W_CHAIN: { 558 SelectFMA_W_CHAIN(N); 559 return; 560 } 561 562 case ISD::SCALAR_TO_VECTOR: 563 case ISD::BUILD_VECTOR: { 564 EVT VT = N->getValueType(0); 565 unsigned NumVectorElts = VT.getVectorNumElements(); 566 if (VT.getScalarSizeInBits() == 16) { 567 if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { 568 if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) { 569 ReplaceNode(N, Packed); 570 return; 571 } 572 } 573 574 break; 575 } 576 577 assert(VT.getVectorElementType().bitsEq(MVT::i32)); 578 unsigned RegClassID = 579 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID(); 580 SelectBuildVector(N, RegClassID); 581 return; 582 } 583 case ISD::BUILD_PAIR: { 584 SDValue RC, SubReg0, SubReg1; 585 SDLoc DL(N); 586 if (N->getValueType(0) == MVT::i128) { 587 RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32); 588 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32); 589 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32); 590 } else if (N->getValueType(0) == MVT::i64) { 591 RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32); 592 SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 593 SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 594 } else { 595 llvm_unreachable("Unhandled value type for BUILD_PAIR"); 596 } 597 const SDValue Ops[] = { RC, N->getOperand(0), SubReg0, 598 N->getOperand(1), SubReg1 }; 599 ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, 600 N->getValueType(0), Ops)); 601 return; 602 } 603 604 case ISD::Constant: 605 case ISD::ConstantFP: { 606 if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N)) 607 break; 608 609 uint64_t Imm; 610 if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N)) 611 Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); 612 else { 613 ConstantSDNode *C = cast<ConstantSDNode>(N); 614 Imm = C->getZExtValue(); 615 } 616 617 SDLoc DL(N); 618 ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0))); 619 return; 620 } 621 case AMDGPUISD::BFE_I32: 622 case AMDGPUISD::BFE_U32: { 623 // There is a scalar version available, but unlike the vector version which 624 // has a separate operand for the offset and width, the scalar version packs 625 // the width and offset into a single operand. Try to move to the scalar 626 // version if the offsets are constant, so that we can try to keep extended 627 // loads of kernel arguments in SGPRs. 628 629 // TODO: Technically we could try to pattern match scalar bitshifts of 630 // dynamic values, but it's probably not useful. 631 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 632 if (!Offset) 633 break; 634 635 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 636 if (!Width) 637 break; 638 639 bool Signed = Opc == AMDGPUISD::BFE_I32; 640 641 uint32_t OffsetVal = Offset->getZExtValue(); 642 uint32_t WidthVal = Width->getZExtValue(); 643 644 ReplaceNode(N, getBFE32(Signed, SDLoc(N), N->getOperand(0), OffsetVal, 645 WidthVal)); 646 return; 647 } 648 case AMDGPUISD::DIV_SCALE: { 649 SelectDIV_SCALE(N); 650 return; 651 } 652 case AMDGPUISD::MAD_I64_I32: 653 case AMDGPUISD::MAD_U64_U32: { 654 SelectMAD_64_32(N); 655 return; 656 } 657 case ISD::SMUL_LOHI: 658 case ISD::UMUL_LOHI: 659 return SelectMUL_LOHI(N); 660 case ISD::CopyToReg: { 661 const SITargetLowering& Lowering = 662 *static_cast<const SITargetLowering*>(getTargetLowering()); 663 N = Lowering.legalizeTargetIndependentNode(N, *CurDAG); 664 break; 665 } 666 case ISD::AND: 667 case ISD::SRL: 668 case ISD::SRA: 669 case ISD::SIGN_EXTEND_INREG: 670 if (N->getValueType(0) != MVT::i32) 671 break; 672 673 SelectS_BFE(N); 674 return; 675 case ISD::BRCOND: 676 SelectBRCOND(N); 677 return; 678 case ISD::FMAD: 679 case ISD::FMA: 680 SelectFMAD_FMA(N); 681 return; 682 case AMDGPUISD::ATOMIC_CMP_SWAP: 683 SelectATOMIC_CMP_SWAP(N); 684 return; 685 case AMDGPUISD::CVT_PKRTZ_F16_F32: 686 case AMDGPUISD::CVT_PKNORM_I16_F32: 687 case AMDGPUISD::CVT_PKNORM_U16_F32: 688 case AMDGPUISD::CVT_PK_U16_U32: 689 case AMDGPUISD::CVT_PK_I16_I32: { 690 // Hack around using a legal type if f16 is illegal. 691 if (N->getValueType(0) == MVT::i32) { 692 MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; 693 N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT), 694 { N->getOperand(0), N->getOperand(1) }); 695 SelectCode(N); 696 return; 697 } 698 699 break; 700 } 701 case ISD::INTRINSIC_W_CHAIN: { 702 SelectINTRINSIC_W_CHAIN(N); 703 return; 704 } 705 case ISD::INTRINSIC_WO_CHAIN: { 706 SelectINTRINSIC_WO_CHAIN(N); 707 return; 708 } 709 case ISD::INTRINSIC_VOID: { 710 SelectINTRINSIC_VOID(N); 711 return; 712 } 713 } 714 715 SelectCode(N); 716 } 717 718 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { 719 const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); 720 const Instruction *Term = BB->getTerminator(); 721 return Term->getMetadata("amdgpu.uniform") || 722 Term->getMetadata("structurizecfg.uniform"); 723 } 724 725 bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, 726 unsigned ShAmtBits) const { 727 assert(N->getOpcode() == ISD::AND); 728 729 const APInt &RHS = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 730 if (RHS.countTrailingOnes() >= ShAmtBits) 731 return true; 732 733 const APInt &LHSKnownZeros = CurDAG->computeKnownBits(N->getOperand(0)).Zero; 734 return (LHSKnownZeros | RHS).countTrailingOnes() >= ShAmtBits; 735 } 736 737 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, 738 SDValue &N0, SDValue &N1) { 739 if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && 740 Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) { 741 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. 742 // (i64 (bitcast (v2i32 (build_vector 743 // (or (extract_vector_elt V, 0), OFFSET), 744 // (extract_vector_elt V, 1))))) 745 SDValue Lo = Addr.getOperand(0).getOperand(0); 746 if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) { 747 SDValue BaseLo = Lo.getOperand(0); 748 SDValue BaseHi = Addr.getOperand(0).getOperand(1); 749 // Check that split base (Lo and Hi) are extracted from the same one. 750 if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 751 BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 752 BaseLo.getOperand(0) == BaseHi.getOperand(0) && 753 // Lo is statically extracted from index 0. 754 isa<ConstantSDNode>(BaseLo.getOperand(1)) && 755 BaseLo.getConstantOperandVal(1) == 0 && 756 // Hi is statically extracted from index 0. 757 isa<ConstantSDNode>(BaseHi.getOperand(1)) && 758 BaseHi.getConstantOperandVal(1) == 1) { 759 N0 = BaseLo.getOperand(0).getOperand(0); 760 N1 = Lo.getOperand(1); 761 return true; 762 } 763 } 764 } 765 return false; 766 } 767 768 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, 769 SDValue &RHS) const { 770 if (CurDAG->isBaseWithConstantOffset(Addr)) { 771 LHS = Addr.getOperand(0); 772 RHS = Addr.getOperand(1); 773 return true; 774 } 775 776 if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, LHS, RHS)) { 777 assert(LHS && RHS && isa<ConstantSDNode>(RHS)); 778 return true; 779 } 780 781 return false; 782 } 783 784 StringRef AMDGPUDAGToDAGISel::getPassName() const { 785 return "AMDGPU DAG->DAG Pattern Instruction Selection"; 786 } 787 788 //===----------------------------------------------------------------------===// 789 // Complex Patterns 790 //===----------------------------------------------------------------------===// 791 792 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, 793 SDValue &Offset) { 794 return false; 795 } 796 797 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, 798 SDValue &Offset) { 799 ConstantSDNode *C; 800 SDLoc DL(Addr); 801 802 if ((C = dyn_cast<ConstantSDNode>(Addr))) { 803 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 804 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 805 } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && 806 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) { 807 Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32); 808 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 809 } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && 810 (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) { 811 Base = Addr.getOperand(0); 812 Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32); 813 } else { 814 Base = Addr; 815 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 816 } 817 818 return true; 819 } 820 821 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, 822 const SDLoc &DL) const { 823 SDNode *Mov = CurDAG->getMachineNode( 824 AMDGPU::S_MOV_B32, DL, MVT::i32, 825 CurDAG->getTargetConstant(Val, DL, MVT::i32)); 826 return SDValue(Mov, 0); 827 } 828 829 // FIXME: Should only handle addcarry/subcarry 830 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { 831 SDLoc DL(N); 832 SDValue LHS = N->getOperand(0); 833 SDValue RHS = N->getOperand(1); 834 835 unsigned Opcode = N->getOpcode(); 836 bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); 837 bool ProduceCarry = 838 ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; 839 bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; 840 841 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 842 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 843 844 SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 845 DL, MVT::i32, LHS, Sub0); 846 SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 847 DL, MVT::i32, LHS, Sub1); 848 849 SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 850 DL, MVT::i32, RHS, Sub0); 851 SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 852 DL, MVT::i32, RHS, Sub1); 853 854 SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue); 855 856 static const unsigned OpcMap[2][2][2] = { 857 {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, 858 {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, 859 {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, 860 {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; 861 862 unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; 863 unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; 864 865 SDNode *AddLo; 866 if (!ConsumeCarry) { 867 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; 868 AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args); 869 } else { 870 SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) }; 871 AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args); 872 } 873 SDValue AddHiArgs[] = { 874 SDValue(Hi0, 0), 875 SDValue(Hi1, 0), 876 SDValue(AddLo, 1) 877 }; 878 SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs); 879 880 SDValue RegSequenceArgs[] = { 881 CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32), 882 SDValue(AddLo,0), 883 Sub0, 884 SDValue(AddHi,0), 885 Sub1, 886 }; 887 SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 888 MVT::i64, RegSequenceArgs); 889 890 if (ProduceCarry) { 891 // Replace the carry-use 892 ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1)); 893 } 894 895 // Replace the remaining uses. 896 ReplaceNode(N, RegSequence); 897 } 898 899 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { 900 SDLoc DL(N); 901 SDValue LHS = N->getOperand(0); 902 SDValue RHS = N->getOperand(1); 903 SDValue CI = N->getOperand(2); 904 905 if (N->isDivergent()) { 906 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64 907 : AMDGPU::V_SUBB_U32_e64; 908 CurDAG->SelectNodeTo( 909 N, Opc, N->getVTList(), 910 {LHS, RHS, CI, 911 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 912 } else { 913 unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO 914 : AMDGPU::S_SUB_CO_PSEUDO; 915 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI}); 916 } 917 } 918 919 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { 920 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned 921 // carry out despite the _i32 name. These were renamed in VI to _U32. 922 // FIXME: We should probably rename the opcodes here. 923 bool IsAdd = N->getOpcode() == ISD::UADDO; 924 bool IsVALU = N->isDivergent(); 925 926 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; 927 ++UI) 928 if (UI.getUse().getResNo() == 1) { 929 if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) || 930 (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) { 931 IsVALU = true; 932 break; 933 } 934 } 935 936 if (IsVALU) { 937 unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; 938 939 CurDAG->SelectNodeTo( 940 N, Opc, N->getVTList(), 941 {N->getOperand(0), N->getOperand(1), 942 CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/}); 943 } else { 944 unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO 945 : AMDGPU::S_USUBO_PSEUDO; 946 947 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), 948 {N->getOperand(0), N->getOperand(1)}); 949 } 950 } 951 952 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { 953 SDLoc SL(N); 954 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod 955 SDValue Ops[10]; 956 957 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]); 958 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 959 SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]); 960 Ops[8] = N->getOperand(0); 961 Ops[9] = N->getOperand(4); 962 963 // If there are no source modifiers, prefer fmac over fma because it can use 964 // the smaller VOP2 encoding. 965 bool UseFMAC = Subtarget->hasDLInsts() && 966 cast<ConstantSDNode>(Ops[0])->isZero() && 967 cast<ConstantSDNode>(Ops[2])->isZero() && 968 cast<ConstantSDNode>(Ops[4])->isZero(); 969 unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; 970 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), Ops); 971 } 972 973 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { 974 SDLoc SL(N); 975 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod 976 SDValue Ops[8]; 977 978 SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]); 979 SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]); 980 Ops[6] = N->getOperand(0); 981 Ops[7] = N->getOperand(3); 982 983 CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops); 984 } 985 986 // We need to handle this here because tablegen doesn't support matching 987 // instructions with multiple outputs. 988 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { 989 SDLoc SL(N); 990 EVT VT = N->getValueType(0); 991 992 assert(VT == MVT::f32 || VT == MVT::f64); 993 994 unsigned Opc 995 = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; 996 997 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, 998 // omod 999 SDValue Ops[8]; 1000 SelectVOP3BMods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]); 1001 SelectVOP3BMods(N->getOperand(1), Ops[3], Ops[2]); 1002 SelectVOP3BMods(N->getOperand(2), Ops[5], Ops[4]); 1003 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1004 } 1005 1006 // We need to handle this here because tablegen doesn't support matching 1007 // instructions with multiple outputs. 1008 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { 1009 SDLoc SL(N); 1010 bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; 1011 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1012 1013 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1014 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2), 1015 Clamp }; 1016 CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 1017 } 1018 1019 // We need to handle this here because tablegen doesn't support matching 1020 // instructions with multiple outputs. 1021 void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { 1022 SDLoc SL(N); 1023 bool Signed = N->getOpcode() == ISD::SMUL_LOHI; 1024 unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; 1025 1026 SDValue Zero = CurDAG->getTargetConstant(0, SL, MVT::i64); 1027 SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1); 1028 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), Zero, Clamp}; 1029 SDNode *Mad = CurDAG->getMachineNode(Opc, SL, N->getVTList(), Ops); 1030 if (!SDValue(N, 0).use_empty()) { 1031 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32); 1032 SDNode *Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1033 MVT::i32, SDValue(Mad, 0), Sub0); 1034 ReplaceUses(SDValue(N, 0), SDValue(Lo, 0)); 1035 } 1036 if (!SDValue(N, 1).use_empty()) { 1037 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32); 1038 SDNode *Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, SL, 1039 MVT::i32, SDValue(Mad, 0), Sub1); 1040 ReplaceUses(SDValue(N, 1), SDValue(Hi, 0)); 1041 } 1042 CurDAG->RemoveDeadNode(N); 1043 } 1044 1045 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { 1046 if (!isUInt<16>(Offset)) 1047 return false; 1048 1049 if (!Base || Subtarget->hasUsableDSOffset() || 1050 Subtarget->unsafeDSOffsetFoldingEnabled()) 1051 return true; 1052 1053 // On Southern Islands instruction with a negative base value and an offset 1054 // don't seem to work. 1055 return CurDAG->SignBitIsZero(Base); 1056 } 1057 1058 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, 1059 SDValue &Offset) const { 1060 SDLoc DL(Addr); 1061 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1062 SDValue N0 = Addr.getOperand(0); 1063 SDValue N1 = Addr.getOperand(1); 1064 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1065 if (isDSOffsetLegal(N0, C1->getSExtValue())) { 1066 // (add n0, c0) 1067 Base = N0; 1068 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1069 return true; 1070 } 1071 } else if (Addr.getOpcode() == ISD::SUB) { 1072 // sub C, x -> add (sub 0, x), C 1073 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1074 int64_t ByteOffset = C->getSExtValue(); 1075 if (isDSOffsetLegal(SDValue(), ByteOffset)) { 1076 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1077 1078 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1079 // the known bits in isDSOffsetLegal. We need to emit the selected node 1080 // here, so this is thrown away. 1081 SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32, 1082 Zero, Addr.getOperand(1)); 1083 1084 if (isDSOffsetLegal(Sub, ByteOffset)) { 1085 SmallVector<SDValue, 3> Opnds; 1086 Opnds.push_back(Zero); 1087 Opnds.push_back(Addr.getOperand(1)); 1088 1089 // FIXME: Select to VOP3 version for with-carry. 1090 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1091 if (Subtarget->hasAddNoCarry()) { 1092 SubOp = AMDGPU::V_SUB_U32_e64; 1093 Opnds.push_back( 1094 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1095 } 1096 1097 MachineSDNode *MachineSub = 1098 CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds); 1099 1100 Base = SDValue(MachineSub, 0); 1101 Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16); 1102 return true; 1103 } 1104 } 1105 } 1106 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1107 // If we have a constant address, prefer to put the constant into the 1108 // offset. This can save moves to load the constant address since multiple 1109 // operations can share the zero base address register, and enables merging 1110 // into read2 / write2 instructions. 1111 1112 SDLoc DL(Addr); 1113 1114 if (isDSOffsetLegal(SDValue(), CAddr->getZExtValue())) { 1115 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1116 MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, 1117 DL, MVT::i32, Zero); 1118 Base = SDValue(MovZero, 0); 1119 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1120 return true; 1121 } 1122 } 1123 1124 // default case 1125 Base = Addr; 1126 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16); 1127 return true; 1128 } 1129 1130 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, 1131 unsigned Offset1, 1132 unsigned Size) const { 1133 if (Offset0 % Size != 0 || Offset1 % Size != 0) 1134 return false; 1135 if (!isUInt<8>(Offset0 / Size) || !isUInt<8>(Offset1 / Size)) 1136 return false; 1137 1138 if (!Base || Subtarget->hasUsableDSOffset() || 1139 Subtarget->unsafeDSOffsetFoldingEnabled()) 1140 return true; 1141 1142 // On Southern Islands instruction with a negative base value and an offset 1143 // don't seem to work. 1144 return CurDAG->SignBitIsZero(Base); 1145 } 1146 1147 // TODO: If offset is too big, put low 16-bit into offset. 1148 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, 1149 SDValue &Offset0, 1150 SDValue &Offset1) const { 1151 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 4); 1152 } 1153 1154 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, 1155 SDValue &Offset0, 1156 SDValue &Offset1) const { 1157 return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, 8); 1158 } 1159 1160 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, 1161 SDValue &Offset0, SDValue &Offset1, 1162 unsigned Size) const { 1163 SDLoc DL(Addr); 1164 1165 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1166 SDValue N0 = Addr.getOperand(0); 1167 SDValue N1 = Addr.getOperand(1); 1168 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1169 unsigned OffsetValue0 = C1->getZExtValue(); 1170 unsigned OffsetValue1 = OffsetValue0 + Size; 1171 1172 // (add n0, c0) 1173 if (isDSOffset2Legal(N0, OffsetValue0, OffsetValue1, Size)) { 1174 Base = N0; 1175 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1176 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1177 return true; 1178 } 1179 } else if (Addr.getOpcode() == ISD::SUB) { 1180 // sub C, x -> add (sub 0, x), C 1181 if (const ConstantSDNode *C = 1182 dyn_cast<ConstantSDNode>(Addr.getOperand(0))) { 1183 unsigned OffsetValue0 = C->getZExtValue(); 1184 unsigned OffsetValue1 = OffsetValue0 + Size; 1185 1186 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1187 SDLoc DL(Addr); 1188 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1189 1190 // XXX - This is kind of hacky. Create a dummy sub node so we can check 1191 // the known bits in isDSOffsetLegal. We need to emit the selected node 1192 // here, so this is thrown away. 1193 SDValue Sub = 1194 CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1)); 1195 1196 if (isDSOffset2Legal(Sub, OffsetValue0, OffsetValue1, Size)) { 1197 SmallVector<SDValue, 3> Opnds; 1198 Opnds.push_back(Zero); 1199 Opnds.push_back(Addr.getOperand(1)); 1200 unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; 1201 if (Subtarget->hasAddNoCarry()) { 1202 SubOp = AMDGPU::V_SUB_U32_e64; 1203 Opnds.push_back( 1204 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit 1205 } 1206 1207 MachineSDNode *MachineSub = CurDAG->getMachineNode( 1208 SubOp, DL, MVT::getIntegerVT(Size * 8), Opnds); 1209 1210 Base = SDValue(MachineSub, 0); 1211 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1212 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1213 return true; 1214 } 1215 } 1216 } 1217 } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1218 unsigned OffsetValue0 = CAddr->getZExtValue(); 1219 unsigned OffsetValue1 = OffsetValue0 + Size; 1220 1221 if (isDSOffset2Legal(SDValue(), OffsetValue0, OffsetValue1, Size)) { 1222 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); 1223 MachineSDNode *MovZero = 1224 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero); 1225 Base = SDValue(MovZero, 0); 1226 Offset0 = CurDAG->getTargetConstant(OffsetValue0 / Size, DL, MVT::i8); 1227 Offset1 = CurDAG->getTargetConstant(OffsetValue1 / Size, DL, MVT::i8); 1228 return true; 1229 } 1230 } 1231 1232 // default case 1233 1234 Base = Addr; 1235 Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8); 1236 Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8); 1237 return true; 1238 } 1239 1240 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, 1241 SDValue &SOffset, SDValue &Offset, 1242 SDValue &Offen, SDValue &Idxen, 1243 SDValue &Addr64) const { 1244 // Subtarget prefers to use flat instruction 1245 // FIXME: This should be a pattern predicate and not reach here 1246 if (Subtarget->useFlatForGlobal()) 1247 return false; 1248 1249 SDLoc DL(Addr); 1250 1251 Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1252 Offen = CurDAG->getTargetConstant(0, DL, MVT::i1); 1253 Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1); 1254 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1255 1256 ConstantSDNode *C1 = nullptr; 1257 SDValue N0 = Addr; 1258 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1259 C1 = cast<ConstantSDNode>(Addr.getOperand(1)); 1260 if (isUInt<32>(C1->getZExtValue())) 1261 N0 = Addr.getOperand(0); 1262 else 1263 C1 = nullptr; 1264 } 1265 1266 if (N0.getOpcode() == ISD::ADD) { 1267 // (add N2, N3) -> addr64, or 1268 // (add (add N2, N3), C1) -> addr64 1269 SDValue N2 = N0.getOperand(0); 1270 SDValue N3 = N0.getOperand(1); 1271 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1272 1273 if (N2->isDivergent()) { 1274 if (N3->isDivergent()) { 1275 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the 1276 // addr64, and construct the resource from a 0 address. 1277 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1278 VAddr = N0; 1279 } else { 1280 // N2 is divergent, N3 is not. 1281 Ptr = N3; 1282 VAddr = N2; 1283 } 1284 } else { 1285 // N2 is not divergent. 1286 Ptr = N2; 1287 VAddr = N3; 1288 } 1289 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1290 } else if (N0->isDivergent()) { 1291 // N0 is divergent. Use it as the addr64, and construct the resource from a 1292 // 0 address. 1293 Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0); 1294 VAddr = N0; 1295 Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1); 1296 } else { 1297 // N0 -> offset, or 1298 // (N0 + C1) -> offset 1299 VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32); 1300 Ptr = N0; 1301 } 1302 1303 if (!C1) { 1304 // No offset. 1305 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1306 return true; 1307 } 1308 1309 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) { 1310 // Legal offset for instruction. 1311 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1312 return true; 1313 } 1314 1315 // Illegal offset, store it in soffset. 1316 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1317 SOffset = 1318 SDValue(CurDAG->getMachineNode( 1319 AMDGPU::S_MOV_B32, DL, MVT::i32, 1320 CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)), 1321 0); 1322 return true; 1323 } 1324 1325 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, 1326 SDValue &VAddr, SDValue &SOffset, 1327 SDValue &Offset) const { 1328 SDValue Ptr, Offen, Idxen, Addr64; 1329 1330 // addr64 bit was removed for volcanic islands. 1331 // FIXME: This should be a pattern predicate and not reach here 1332 if (!Subtarget->hasAddr64()) 1333 return false; 1334 1335 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1336 return false; 1337 1338 ConstantSDNode *C = cast<ConstantSDNode>(Addr64); 1339 if (C->getSExtValue()) { 1340 SDLoc DL(Addr); 1341 1342 const SITargetLowering& Lowering = 1343 *static_cast<const SITargetLowering*>(getTargetLowering()); 1344 1345 SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0); 1346 return true; 1347 } 1348 1349 return false; 1350 } 1351 1352 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { 1353 SDLoc DL(N); 1354 1355 auto *FI = dyn_cast<FrameIndexSDNode>(N); 1356 SDValue TFI = 1357 FI ? CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)) : N; 1358 1359 // We rebase the base address into an absolute stack address and hence 1360 // use constant 0 for soffset. This value must be retained until 1361 // frame elimination and eliminateFrameIndex will choose the appropriate 1362 // frame register if need be. 1363 return std::make_pair(TFI, CurDAG->getTargetConstant(0, DL, MVT::i32)); 1364 } 1365 1366 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, 1367 SDValue Addr, SDValue &Rsrc, 1368 SDValue &VAddr, SDValue &SOffset, 1369 SDValue &ImmOffset) const { 1370 1371 SDLoc DL(Addr); 1372 MachineFunction &MF = CurDAG->getMachineFunction(); 1373 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1374 1375 Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1376 1377 if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) { 1378 int64_t Imm = CAddr->getSExtValue(); 1379 const int64_t NullPtr = 1380 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS); 1381 // Don't fold null pointer. 1382 if (Imm != NullPtr) { 1383 SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32); 1384 MachineSDNode *MovHighBits = CurDAG->getMachineNode( 1385 AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits); 1386 VAddr = SDValue(MovHighBits, 0); 1387 1388 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1389 ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16); 1390 return true; 1391 } 1392 } 1393 1394 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1395 // (add n0, c1) 1396 1397 SDValue N0 = Addr.getOperand(0); 1398 SDValue N1 = Addr.getOperand(1); 1399 1400 // Offsets in vaddr must be positive if range checking is enabled. 1401 // 1402 // The total computation of vaddr + soffset + offset must not overflow. If 1403 // vaddr is negative, even if offset is 0 the sgpr offset add will end up 1404 // overflowing. 1405 // 1406 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would 1407 // always perform a range check. If a negative vaddr base index was used, 1408 // this would fail the range check. The overall address computation would 1409 // compute a valid address, but this doesn't happen due to the range 1410 // check. For out-of-bounds MUBUF loads, a 0 is returned. 1411 // 1412 // Therefore it should be safe to fold any VGPR offset on gfx9 into the 1413 // MUBUF vaddr, but not on older subtargets which can only do this if the 1414 // sign bit is known 0. 1415 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 1416 if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) && 1417 (!Subtarget->privateMemoryResourceIsRangeChecked() || 1418 CurDAG->SignBitIsZero(N0))) { 1419 std::tie(VAddr, SOffset) = foldFrameIndex(N0); 1420 ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16); 1421 return true; 1422 } 1423 } 1424 1425 // (node) 1426 std::tie(VAddr, SOffset) = foldFrameIndex(Addr); 1427 ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1428 return true; 1429 } 1430 1431 static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { 1432 if (Val.getOpcode() != ISD::CopyFromReg) 1433 return false; 1434 auto RC = 1435 TRI.getPhysRegClass(cast<RegisterSDNode>(Val.getOperand(1))->getReg()); 1436 return RC && TRI.isSGPRClass(RC); 1437 } 1438 1439 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, 1440 SDValue Addr, 1441 SDValue &SRsrc, 1442 SDValue &SOffset, 1443 SDValue &Offset) const { 1444 const SIRegisterInfo *TRI = 1445 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 1446 MachineFunction &MF = CurDAG->getMachineFunction(); 1447 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1448 SDLoc DL(Addr); 1449 1450 // CopyFromReg <sgpr> 1451 if (IsCopyFromSGPR(*TRI, Addr)) { 1452 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1453 SOffset = Addr; 1454 Offset = CurDAG->getTargetConstant(0, DL, MVT::i16); 1455 return true; 1456 } 1457 1458 ConstantSDNode *CAddr; 1459 if (Addr.getOpcode() == ISD::ADD) { 1460 // Add (CopyFromReg <sgpr>) <constant> 1461 CAddr = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); 1462 if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) 1463 return false; 1464 if (!IsCopyFromSGPR(*TRI, Addr.getOperand(0))) 1465 return false; 1466 1467 SOffset = Addr.getOperand(0); 1468 } else if ((CAddr = dyn_cast<ConstantSDNode>(Addr)) && 1469 SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue())) { 1470 // <constant> 1471 SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32); 1472 } else { 1473 return false; 1474 } 1475 1476 SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32); 1477 1478 Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16); 1479 return true; 1480 } 1481 1482 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, 1483 SDValue &SOffset, SDValue &Offset 1484 ) const { 1485 SDValue Ptr, VAddr, Offen, Idxen, Addr64; 1486 const SIInstrInfo *TII = 1487 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 1488 1489 if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) 1490 return false; 1491 1492 if (!cast<ConstantSDNode>(Offen)->getSExtValue() && 1493 !cast<ConstantSDNode>(Idxen)->getSExtValue() && 1494 !cast<ConstantSDNode>(Addr64)->getSExtValue()) { 1495 uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | 1496 APInt::getAllOnes(32).getZExtValue(); // Size 1497 SDLoc DL(Addr); 1498 1499 const SITargetLowering& Lowering = 1500 *static_cast<const SITargetLowering*>(getTargetLowering()); 1501 1502 SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0); 1503 return true; 1504 } 1505 return false; 1506 } 1507 1508 // Find a load or store from corresponding pattern root. 1509 // Roots may be build_vector, bitconvert or their combinations. 1510 static MemSDNode* findMemSDNode(SDNode *N) { 1511 N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode(); 1512 if (MemSDNode *MN = dyn_cast<MemSDNode>(N)) 1513 return MN; 1514 assert(isa<BuildVectorSDNode>(N)); 1515 for (SDValue V : N->op_values()) 1516 if (MemSDNode *MN = 1517 dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V))) 1518 return MN; 1519 llvm_unreachable("cannot find MemSDNode in the pattern!"); 1520 } 1521 1522 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, 1523 SDValue &VAddr, SDValue &Offset, 1524 uint64_t FlatVariant) const { 1525 int64_t OffsetVal = 0; 1526 1527 unsigned AS = findMemSDNode(N)->getAddressSpace(); 1528 1529 bool CanHaveFlatSegmentOffsetBug = 1530 Subtarget->hasFlatSegmentOffsetBug() && 1531 FlatVariant == SIInstrFlags::FLAT && 1532 (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); 1533 1534 if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { 1535 SDValue N0, N1; 1536 if (isBaseWithConstantOffset64(Addr, N0, N1)) { 1537 int64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue(); 1538 1539 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1540 if (TII->isLegalFLATOffset(COffsetVal, AS, FlatVariant)) { 1541 Addr = N0; 1542 OffsetVal = COffsetVal; 1543 } else { 1544 // If the offset doesn't fit, put the low bits into the offset field and 1545 // add the rest. 1546 // 1547 // For a FLAT instruction the hardware decides whether to access 1548 // global/scratch/shared memory based on the high bits of vaddr, 1549 // ignoring the offset field, so we have to ensure that when we add 1550 // remainder to vaddr it still points into the same underlying object. 1551 // The easiest way to do that is to make sure that we split the offset 1552 // into two pieces that are both >= 0 or both <= 0. 1553 1554 SDLoc DL(N); 1555 uint64_t RemainderOffset; 1556 1557 std::tie(OffsetVal, RemainderOffset) = 1558 TII->splitFlatOffset(COffsetVal, AS, FlatVariant); 1559 1560 SDValue AddOffsetLo = 1561 getMaterializedScalarImm32(Lo_32(RemainderOffset), DL); 1562 SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 1563 1564 if (Addr.getValueType().getSizeInBits() == 32) { 1565 SmallVector<SDValue, 3> Opnds; 1566 Opnds.push_back(N0); 1567 Opnds.push_back(AddOffsetLo); 1568 unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; 1569 if (Subtarget->hasAddNoCarry()) { 1570 AddOp = AMDGPU::V_ADD_U32_e64; 1571 Opnds.push_back(Clamp); 1572 } 1573 Addr = SDValue(CurDAG->getMachineNode(AddOp, DL, MVT::i32, Opnds), 0); 1574 } else { 1575 // TODO: Should this try to use a scalar add pseudo if the base address 1576 // is uniform and saddr is usable? 1577 SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32); 1578 SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32); 1579 1580 SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1581 DL, MVT::i32, N0, Sub0); 1582 SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, 1583 DL, MVT::i32, N0, Sub1); 1584 1585 SDValue AddOffsetHi = 1586 getMaterializedScalarImm32(Hi_32(RemainderOffset), DL); 1587 1588 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1); 1589 1590 SDNode *Add = 1591 CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs, 1592 {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); 1593 1594 SDNode *Addc = CurDAG->getMachineNode( 1595 AMDGPU::V_ADDC_U32_e64, DL, VTs, 1596 {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); 1597 1598 SDValue RegSequenceArgs[] = { 1599 CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32), 1600 SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; 1601 1602 Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL, 1603 MVT::i64, RegSequenceArgs), 1604 0); 1605 } 1606 } 1607 } 1608 } 1609 1610 VAddr = Addr; 1611 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16); 1612 return true; 1613 } 1614 1615 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, 1616 SDValue &VAddr, 1617 SDValue &Offset) const { 1618 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FLAT); 1619 } 1620 1621 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, 1622 SDValue &VAddr, 1623 SDValue &Offset) const { 1624 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, SIInstrFlags::FlatGlobal); 1625 } 1626 1627 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, 1628 SDValue &VAddr, 1629 SDValue &Offset) const { 1630 return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, 1631 SIInstrFlags::FlatScratch); 1632 } 1633 1634 // If this matches zero_extend i32:x, return x 1635 static SDValue matchZExtFromI32(SDValue Op) { 1636 if (Op.getOpcode() != ISD::ZERO_EXTEND) 1637 return SDValue(); 1638 1639 SDValue ExtSrc = Op.getOperand(0); 1640 return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); 1641 } 1642 1643 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) 1644 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, 1645 SDValue Addr, 1646 SDValue &SAddr, 1647 SDValue &VOffset, 1648 SDValue &Offset) const { 1649 int64_t ImmOffset = 0; 1650 1651 // Match the immediate offset first, which canonically is moved as low as 1652 // possible. 1653 1654 SDValue LHS, RHS; 1655 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1656 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1657 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1658 1659 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, 1660 SIInstrFlags::FlatGlobal)) { 1661 Addr = LHS; 1662 ImmOffset = COffsetVal; 1663 } else if (!LHS->isDivergent()) { 1664 if (COffsetVal > 0) { 1665 SDLoc SL(N); 1666 // saddr + large_offset -> saddr + 1667 // (voffset = large_offset & ~MaxOffset) + 1668 // (large_offset & MaxOffset); 1669 int64_t SplitImmOffset, RemainderOffset; 1670 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1671 COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, SIInstrFlags::FlatGlobal); 1672 1673 if (isUInt<32>(RemainderOffset)) { 1674 SDNode *VMov = CurDAG->getMachineNode( 1675 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1676 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1677 VOffset = SDValue(VMov, 0); 1678 SAddr = LHS; 1679 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1680 return true; 1681 } 1682 } 1683 1684 // We are adding a 64 bit SGPR and a constant. If constant bus limit 1685 // is 1 we would need to perform 1 or 2 extra moves for each half of 1686 // the constant and it is better to do a scalar add and then issue a 1687 // single VALU instruction to materialize zero. Otherwise it is less 1688 // instructions to perform VALU adds with immediates or inline literals. 1689 unsigned NumLiterals = 1690 !TII->isInlineConstant(APInt(32, COffsetVal & 0xffffffff)) + 1691 !TII->isInlineConstant(APInt(32, COffsetVal >> 32)); 1692 if (Subtarget->getConstantBusLimit(AMDGPU::V_ADD_U32_e64) > NumLiterals) 1693 return false; 1694 } 1695 } 1696 1697 // Match the variable offset. 1698 if (Addr.getOpcode() == ISD::ADD) { 1699 LHS = Addr.getOperand(0); 1700 RHS = Addr.getOperand(1); 1701 1702 if (!LHS->isDivergent()) { 1703 // add (i64 sgpr), (zero_extend (i32 vgpr)) 1704 if (SDValue ZextRHS = matchZExtFromI32(RHS)) { 1705 SAddr = LHS; 1706 VOffset = ZextRHS; 1707 } 1708 } 1709 1710 if (!SAddr && !RHS->isDivergent()) { 1711 // add (zero_extend (i32 vgpr)), (i64 sgpr) 1712 if (SDValue ZextLHS = matchZExtFromI32(LHS)) { 1713 SAddr = RHS; 1714 VOffset = ZextLHS; 1715 } 1716 } 1717 1718 if (SAddr) { 1719 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1720 return true; 1721 } 1722 } 1723 1724 if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || 1725 isa<ConstantSDNode>(Addr)) 1726 return false; 1727 1728 // It's cheaper to materialize a single 32-bit zero for vaddr than the two 1729 // moves required to copy a 64-bit SGPR to VGPR. 1730 SAddr = Addr; 1731 SDNode *VMov = 1732 CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(Addr), MVT::i32, 1733 CurDAG->getTargetConstant(0, SDLoc(), MVT::i32)); 1734 VOffset = SDValue(VMov, 0); 1735 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1736 return true; 1737 } 1738 1739 static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { 1740 if (auto FI = dyn_cast<FrameIndexSDNode>(SAddr)) { 1741 SAddr = CurDAG->getTargetFrameIndex(FI->getIndex(), FI->getValueType(0)); 1742 } else if (SAddr.getOpcode() == ISD::ADD && 1743 isa<FrameIndexSDNode>(SAddr.getOperand(0))) { 1744 // Materialize this into a scalar move for scalar address to avoid 1745 // readfirstlane. 1746 auto FI = cast<FrameIndexSDNode>(SAddr.getOperand(0)); 1747 SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(), 1748 FI->getValueType(0)); 1749 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, SDLoc(SAddr), 1750 MVT::i32, TFI, SAddr.getOperand(1)), 1751 0); 1752 } 1753 1754 return SAddr; 1755 } 1756 1757 // Match (32-bit SGPR base) + sext(imm offset) 1758 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, 1759 SDValue &SAddr, 1760 SDValue &Offset) const { 1761 if (Addr->isDivergent()) 1762 return false; 1763 1764 SDLoc DL(Addr); 1765 1766 int64_t COffsetVal = 0; 1767 1768 if (CurDAG->isBaseWithConstantOffset(Addr)) { 1769 COffsetVal = cast<ConstantSDNode>(Addr.getOperand(1))->getSExtValue(); 1770 SAddr = Addr.getOperand(0); 1771 } else { 1772 SAddr = Addr; 1773 } 1774 1775 SAddr = SelectSAddrFI(CurDAG, SAddr); 1776 1777 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1778 1779 if (!TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, 1780 SIInstrFlags::FlatScratch)) { 1781 int64_t SplitImmOffset, RemainderOffset; 1782 std::tie(SplitImmOffset, RemainderOffset) = TII->splitFlatOffset( 1783 COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, SIInstrFlags::FlatScratch); 1784 1785 COffsetVal = SplitImmOffset; 1786 1787 SDValue AddOffset = 1788 SAddr.getOpcode() == ISD::TargetFrameIndex 1789 ? getMaterializedScalarImm32(Lo_32(RemainderOffset), DL) 1790 : CurDAG->getTargetConstant(RemainderOffset, DL, MVT::i32); 1791 SAddr = SDValue(CurDAG->getMachineNode(AMDGPU::S_ADD_I32, DL, MVT::i32, 1792 SAddr, AddOffset), 1793 0); 1794 } 1795 1796 Offset = CurDAG->getTargetConstant(COffsetVal, DL, MVT::i16); 1797 1798 return true; 1799 } 1800 1801 bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, 1802 SDValue &VAddr, SDValue &SAddr, 1803 SDValue &Offset) const { 1804 int64_t ImmOffset = 0; 1805 1806 SDValue LHS, RHS; 1807 if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { 1808 int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue(); 1809 const SIInstrInfo *TII = Subtarget->getInstrInfo(); 1810 1811 if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true)) { 1812 Addr = LHS; 1813 ImmOffset = COffsetVal; 1814 } else if (!LHS->isDivergent() && COffsetVal > 0) { 1815 SDLoc SL(N); 1816 // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + 1817 // (large_offset & MaxOffset); 1818 int64_t SplitImmOffset, RemainderOffset; 1819 std::tie(SplitImmOffset, RemainderOffset) 1820 = TII->splitFlatOffset(COffsetVal, AMDGPUAS::PRIVATE_ADDRESS, true); 1821 1822 if (isUInt<32>(RemainderOffset)) { 1823 SDNode *VMov = CurDAG->getMachineNode( 1824 AMDGPU::V_MOV_B32_e32, SL, MVT::i32, 1825 CurDAG->getTargetConstant(RemainderOffset, SDLoc(), MVT::i32)); 1826 VAddr = SDValue(VMov, 0); 1827 SAddr = LHS; 1828 Offset = CurDAG->getTargetConstant(SplitImmOffset, SDLoc(), MVT::i16); 1829 return true; 1830 } 1831 } 1832 } 1833 1834 if (Addr.getOpcode() != ISD::ADD) 1835 return false; 1836 1837 LHS = Addr.getOperand(0); 1838 RHS = Addr.getOperand(1); 1839 1840 if (!LHS->isDivergent() && RHS->isDivergent()) { 1841 SAddr = LHS; 1842 VAddr = RHS; 1843 } else if (!RHS->isDivergent() && LHS->isDivergent()) { 1844 SAddr = RHS; 1845 VAddr = LHS; 1846 } else { 1847 return false; 1848 } 1849 1850 SAddr = SelectSAddrFI(CurDAG, SAddr); 1851 Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16); 1852 return true; 1853 } 1854 1855 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, 1856 SDValue &Offset, bool &Imm) const { 1857 ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode); 1858 if (!C) { 1859 if (ByteOffsetNode.getValueType().isScalarInteger() && 1860 ByteOffsetNode.getValueType().getSizeInBits() == 32) { 1861 Offset = ByteOffsetNode; 1862 Imm = false; 1863 return true; 1864 } 1865 if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { 1866 if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) { 1867 Offset = ByteOffsetNode.getOperand(0); 1868 Imm = false; 1869 return true; 1870 } 1871 } 1872 return false; 1873 } 1874 1875 SDLoc SL(ByteOffsetNode); 1876 // GFX9 and GFX10 have signed byte immediate offsets. 1877 int64_t ByteOffset = C->getSExtValue(); 1878 Optional<int64_t> EncodedOffset = 1879 AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false); 1880 if (EncodedOffset) { 1881 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1882 Imm = true; 1883 return true; 1884 } 1885 1886 // SGPR and literal offsets are unsigned. 1887 if (ByteOffset < 0) 1888 return false; 1889 1890 EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset); 1891 if (EncodedOffset) { 1892 Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32); 1893 return true; 1894 } 1895 1896 if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset)) 1897 return false; 1898 1899 SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32); 1900 Offset = SDValue( 1901 CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0); 1902 1903 return true; 1904 } 1905 1906 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { 1907 if (Addr.getValueType() != MVT::i32) 1908 return Addr; 1909 1910 // Zero-extend a 32-bit address. 1911 SDLoc SL(Addr); 1912 1913 const MachineFunction &MF = CurDAG->getMachineFunction(); 1914 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); 1915 unsigned AddrHiVal = Info->get32BitAddressHighBits(); 1916 SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32); 1917 1918 const SDValue Ops[] = { 1919 CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32), 1920 Addr, 1921 CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 1922 SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi), 1923 0), 1924 CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32), 1925 }; 1926 1927 return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64, 1928 Ops), 0); 1929 } 1930 1931 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, 1932 SDValue &Offset, bool &Imm) const { 1933 SDLoc SL(Addr); 1934 1935 // A 32-bit (address + offset) should not cause unsigned 32-bit integer 1936 // wraparound, because s_load instructions perform the addition in 64 bits. 1937 if ((Addr.getValueType() != MVT::i32 || 1938 Addr->getFlags().hasNoUnsignedWrap())) { 1939 SDValue N0, N1; 1940 // Extract the base and offset if possible. 1941 if (CurDAG->isBaseWithConstantOffset(Addr) || 1942 Addr.getOpcode() == ISD::ADD) { 1943 N0 = Addr.getOperand(0); 1944 N1 = Addr.getOperand(1); 1945 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) { 1946 assert(N0 && N1 && isa<ConstantSDNode>(N1)); 1947 } 1948 if (N0 && N1) { 1949 if (SelectSMRDOffset(N1, Offset, Imm)) { 1950 SBase = Expand32BitAddress(N0); 1951 return true; 1952 } 1953 } 1954 } 1955 SBase = Expand32BitAddress(Addr); 1956 Offset = CurDAG->getTargetConstant(0, SL, MVT::i32); 1957 Imm = true; 1958 return true; 1959 } 1960 1961 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, 1962 SDValue &Offset) const { 1963 bool Imm = false; 1964 return SelectSMRD(Addr, SBase, Offset, Imm) && Imm; 1965 } 1966 1967 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, 1968 SDValue &Offset) const { 1969 1970 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 1971 1972 bool Imm = false; 1973 if (!SelectSMRD(Addr, SBase, Offset, Imm)) 1974 return false; 1975 1976 return !Imm && isa<ConstantSDNode>(Offset); 1977 } 1978 1979 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, 1980 SDValue &Offset) const { 1981 bool Imm = false; 1982 return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm && 1983 !isa<ConstantSDNode>(Offset); 1984 } 1985 1986 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr, 1987 SDValue &Offset) const { 1988 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 1989 // The immediate offset for S_BUFFER instructions is unsigned. 1990 if (auto Imm = 1991 AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) { 1992 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 1993 return true; 1994 } 1995 } 1996 1997 return false; 1998 } 1999 2000 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr, 2001 SDValue &Offset) const { 2002 assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); 2003 2004 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) { 2005 if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, 2006 C->getZExtValue())) { 2007 Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32); 2008 return true; 2009 } 2010 } 2011 2012 return false; 2013 } 2014 2015 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, 2016 SDValue &Base, 2017 SDValue &Offset) const { 2018 SDLoc DL(Index); 2019 2020 if (CurDAG->isBaseWithConstantOffset(Index)) { 2021 SDValue N0 = Index.getOperand(0); 2022 SDValue N1 = Index.getOperand(1); 2023 ConstantSDNode *C1 = cast<ConstantSDNode>(N1); 2024 2025 // (add n0, c0) 2026 // Don't peel off the offset (c0) if doing so could possibly lead 2027 // the base (n0) to be negative. 2028 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. 2029 if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) || 2030 (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { 2031 Base = N0; 2032 Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32); 2033 return true; 2034 } 2035 } 2036 2037 if (isa<ConstantSDNode>(Index)) 2038 return false; 2039 2040 Base = Index; 2041 Offset = CurDAG->getTargetConstant(0, DL, MVT::i32); 2042 return true; 2043 } 2044 2045 SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, 2046 SDValue Val, uint32_t Offset, 2047 uint32_t Width) { 2048 if (Val->isDivergent()) { 2049 unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; 2050 SDValue Off = CurDAG->getTargetConstant(Offset, DL, MVT::i32); 2051 SDValue W = CurDAG->getTargetConstant(Width, DL, MVT::i32); 2052 2053 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, Off, W); 2054 } 2055 unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; 2056 // Transformation function, pack the offset and width of a BFE into 2057 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second 2058 // source, bits [5:0] contain the offset and bits [22:16] the width. 2059 uint32_t PackedVal = Offset | (Width << 16); 2060 SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32); 2061 2062 return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst); 2063 } 2064 2065 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { 2066 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) 2067 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) 2068 // Predicate: 0 < b <= c < 32 2069 2070 const SDValue &Shl = N->getOperand(0); 2071 ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1)); 2072 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2073 2074 if (B && C) { 2075 uint32_t BVal = B->getZExtValue(); 2076 uint32_t CVal = C->getZExtValue(); 2077 2078 if (0 < BVal && BVal <= CVal && CVal < 32) { 2079 bool Signed = N->getOpcode() == ISD::SRA; 2080 ReplaceNode(N, getBFE32(Signed, SDLoc(N), Shl.getOperand(0), CVal - BVal, 2081 32 - CVal)); 2082 return; 2083 } 2084 } 2085 SelectCode(N); 2086 } 2087 2088 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { 2089 switch (N->getOpcode()) { 2090 case ISD::AND: 2091 if (N->getOperand(0).getOpcode() == ISD::SRL) { 2092 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" 2093 // Predicate: isMask(mask) 2094 const SDValue &Srl = N->getOperand(0); 2095 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1)); 2096 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2097 2098 if (Shift && Mask) { 2099 uint32_t ShiftVal = Shift->getZExtValue(); 2100 uint32_t MaskVal = Mask->getZExtValue(); 2101 2102 if (isMask_32(MaskVal)) { 2103 uint32_t WidthVal = countPopulation(MaskVal); 2104 ReplaceNode(N, getBFE32(false, SDLoc(N), Srl.getOperand(0), ShiftVal, 2105 WidthVal)); 2106 return; 2107 } 2108 } 2109 } 2110 break; 2111 case ISD::SRL: 2112 if (N->getOperand(0).getOpcode() == ISD::AND) { 2113 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" 2114 // Predicate: isMask(mask >> b) 2115 const SDValue &And = N->getOperand(0); 2116 ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2117 ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1)); 2118 2119 if (Shift && Mask) { 2120 uint32_t ShiftVal = Shift->getZExtValue(); 2121 uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; 2122 2123 if (isMask_32(MaskVal)) { 2124 uint32_t WidthVal = countPopulation(MaskVal); 2125 ReplaceNode(N, getBFE32(false, SDLoc(N), And.getOperand(0), ShiftVal, 2126 WidthVal)); 2127 return; 2128 } 2129 } 2130 } else if (N->getOperand(0).getOpcode() == ISD::SHL) { 2131 SelectS_BFEFromShifts(N); 2132 return; 2133 } 2134 break; 2135 case ISD::SRA: 2136 if (N->getOperand(0).getOpcode() == ISD::SHL) { 2137 SelectS_BFEFromShifts(N); 2138 return; 2139 } 2140 break; 2141 2142 case ISD::SIGN_EXTEND_INREG: { 2143 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 2144 SDValue Src = N->getOperand(0); 2145 if (Src.getOpcode() != ISD::SRL) 2146 break; 2147 2148 const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 2149 if (!Amt) 2150 break; 2151 2152 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits(); 2153 ReplaceNode(N, getBFE32(true, SDLoc(N), Src.getOperand(0), 2154 Amt->getZExtValue(), Width)); 2155 return; 2156 } 2157 } 2158 2159 SelectCode(N); 2160 } 2161 2162 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { 2163 assert(N->getOpcode() == ISD::BRCOND); 2164 if (!N->hasOneUse()) 2165 return false; 2166 2167 SDValue Cond = N->getOperand(1); 2168 if (Cond.getOpcode() == ISD::CopyToReg) 2169 Cond = Cond.getOperand(2); 2170 2171 if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) 2172 return false; 2173 2174 MVT VT = Cond.getOperand(0).getSimpleValueType(); 2175 if (VT == MVT::i32) 2176 return true; 2177 2178 if (VT == MVT::i64) { 2179 auto ST = static_cast<const GCNSubtarget *>(Subtarget); 2180 2181 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 2182 return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); 2183 } 2184 2185 return false; 2186 } 2187 2188 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { 2189 SDValue Cond = N->getOperand(1); 2190 2191 if (Cond.isUndef()) { 2192 CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other, 2193 N->getOperand(2), N->getOperand(0)); 2194 return; 2195 } 2196 2197 const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); 2198 const SIRegisterInfo *TRI = ST->getRegisterInfo(); 2199 2200 bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); 2201 unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ; 2202 Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); 2203 SDLoc SL(N); 2204 2205 if (!UseSCCBr) { 2206 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not 2207 // analyzed what generates the vcc value, so we do not know whether vcc 2208 // bits for disabled lanes are 0. Thus we need to mask out bits for 2209 // disabled lanes. 2210 // 2211 // For the case that we select S_CBRANCH_SCC1 and it gets 2212 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls 2213 // SIInstrInfo::moveToVALU which inserts the S_AND). 2214 // 2215 // We could add an analysis of what generates the vcc value here and omit 2216 // the S_AND when is unnecessary. But it would be better to add a separate 2217 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it 2218 // catches both cases. 2219 Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32 2220 : AMDGPU::S_AND_B64, 2221 SL, MVT::i1, 2222 CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO 2223 : AMDGPU::EXEC, 2224 MVT::i1), 2225 Cond), 2226 0); 2227 } 2228 2229 SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond); 2230 CurDAG->SelectNodeTo(N, BrOp, MVT::Other, 2231 N->getOperand(2), // Basic Block 2232 VCC.getValue(0)); 2233 } 2234 2235 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) { 2236 MVT VT = N->getSimpleValueType(0); 2237 bool IsFMA = N->getOpcode() == ISD::FMA; 2238 if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() && 2239 !Subtarget->hasFmaMixInsts()) || 2240 ((IsFMA && Subtarget->hasMadMixInsts()) || 2241 (!IsFMA && Subtarget->hasFmaMixInsts()))) { 2242 SelectCode(N); 2243 return; 2244 } 2245 2246 SDValue Src0 = N->getOperand(0); 2247 SDValue Src1 = N->getOperand(1); 2248 SDValue Src2 = N->getOperand(2); 2249 unsigned Src0Mods, Src1Mods, Src2Mods; 2250 2251 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand 2252 // using the conversion from f16. 2253 bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods); 2254 bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods); 2255 bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods); 2256 2257 assert((IsFMA || !Mode.allFP32Denormals()) && 2258 "fmad selected with denormals enabled"); 2259 // TODO: We can select this with f32 denormals enabled if all the sources are 2260 // converted from f16 (in which case fmad isn't legal). 2261 2262 if (Sel0 || Sel1 || Sel2) { 2263 // For dummy operands. 2264 SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2265 SDValue Ops[] = { 2266 CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0, 2267 CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1, 2268 CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2, 2269 CurDAG->getTargetConstant(0, SDLoc(), MVT::i1), 2270 Zero, Zero 2271 }; 2272 2273 CurDAG->SelectNodeTo(N, 2274 IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32, 2275 MVT::f32, Ops); 2276 } else { 2277 SelectCode(N); 2278 } 2279 } 2280 2281 // This is here because there isn't a way to use the generated sub0_sub1 as the 2282 // subreg index to EXTRACT_SUBREG in tablegen. 2283 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) { 2284 MemSDNode *Mem = cast<MemSDNode>(N); 2285 unsigned AS = Mem->getAddressSpace(); 2286 if (AS == AMDGPUAS::FLAT_ADDRESS) { 2287 SelectCode(N); 2288 return; 2289 } 2290 2291 MVT VT = N->getSimpleValueType(0); 2292 bool Is32 = (VT == MVT::i32); 2293 SDLoc SL(N); 2294 2295 MachineSDNode *CmpSwap = nullptr; 2296 if (Subtarget->hasAddr64()) { 2297 SDValue SRsrc, VAddr, SOffset, Offset; 2298 2299 if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset)) { 2300 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN : 2301 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN; 2302 SDValue CmpVal = Mem->getOperand(2); 2303 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2304 2305 // XXX - Do we care about glue operands? 2306 2307 SDValue Ops[] = {CmpVal, VAddr, SRsrc, SOffset, Offset, CPol, 2308 Mem->getChain()}; 2309 2310 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2311 } 2312 } 2313 2314 if (!CmpSwap) { 2315 SDValue SRsrc, SOffset, Offset; 2316 if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset)) { 2317 unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN : 2318 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN; 2319 2320 SDValue CmpVal = Mem->getOperand(2); 2321 SDValue CPol = CurDAG->getTargetConstant(AMDGPU::CPol::GLC, SL, MVT::i32); 2322 SDValue Ops[] = {CmpVal, SRsrc, SOffset, Offset, CPol, Mem->getChain()}; 2323 2324 CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops); 2325 } 2326 } 2327 2328 if (!CmpSwap) { 2329 SelectCode(N); 2330 return; 2331 } 2332 2333 MachineMemOperand *MMO = Mem->getMemOperand(); 2334 CurDAG->setNodeMemRefs(CmpSwap, {MMO}); 2335 2336 unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1; 2337 SDValue Extract 2338 = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0)); 2339 2340 ReplaceUses(SDValue(N, 0), Extract); 2341 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1)); 2342 CurDAG->RemoveDeadNode(N); 2343 } 2344 2345 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { 2346 // The address is assumed to be uniform, so if it ends up in a VGPR, it will 2347 // be copied to an SGPR with readfirstlane. 2348 unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? 2349 AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; 2350 2351 SDValue Chain = N->getOperand(0); 2352 SDValue Ptr = N->getOperand(2); 2353 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2354 MachineMemOperand *MMO = M->getMemOperand(); 2355 bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; 2356 2357 SDValue Offset; 2358 if (CurDAG->isBaseWithConstantOffset(Ptr)) { 2359 SDValue PtrBase = Ptr.getOperand(0); 2360 SDValue PtrOffset = Ptr.getOperand(1); 2361 2362 const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue(); 2363 if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue())) { 2364 N = glueCopyToM0(N, PtrBase); 2365 Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32); 2366 } 2367 } 2368 2369 if (!Offset) { 2370 N = glueCopyToM0(N, Ptr); 2371 Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32); 2372 } 2373 2374 SDValue Ops[] = { 2375 Offset, 2376 CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32), 2377 Chain, 2378 N->getOperand(N->getNumOperands() - 1) // New glue 2379 }; 2380 2381 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2382 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2383 } 2384 2385 static unsigned gwsIntrinToOpcode(unsigned IntrID) { 2386 switch (IntrID) { 2387 case Intrinsic::amdgcn_ds_gws_init: 2388 return AMDGPU::DS_GWS_INIT; 2389 case Intrinsic::amdgcn_ds_gws_barrier: 2390 return AMDGPU::DS_GWS_BARRIER; 2391 case Intrinsic::amdgcn_ds_gws_sema_v: 2392 return AMDGPU::DS_GWS_SEMA_V; 2393 case Intrinsic::amdgcn_ds_gws_sema_br: 2394 return AMDGPU::DS_GWS_SEMA_BR; 2395 case Intrinsic::amdgcn_ds_gws_sema_p: 2396 return AMDGPU::DS_GWS_SEMA_P; 2397 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2398 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; 2399 default: 2400 llvm_unreachable("not a gws intrinsic"); 2401 } 2402 } 2403 2404 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { 2405 if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && 2406 !Subtarget->hasGWSSemaReleaseAll()) { 2407 // Let this error. 2408 SelectCode(N); 2409 return; 2410 } 2411 2412 // Chain, intrinsic ID, vsrc, offset 2413 const bool HasVSrc = N->getNumOperands() == 4; 2414 assert(HasVSrc || N->getNumOperands() == 3); 2415 2416 SDLoc SL(N); 2417 SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2); 2418 int ImmOffset = 0; 2419 MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N); 2420 MachineMemOperand *MMO = M->getMemOperand(); 2421 2422 // Don't worry if the offset ends up in a VGPR. Only one lane will have 2423 // effect, so SIFixSGPRCopies will validly insert readfirstlane. 2424 2425 // The resource id offset is computed as (<isa opaque base> + M0[21:16] + 2426 // offset field) % 64. Some versions of the programming guide omit the m0 2427 // part, or claim it's from offset 0. 2428 if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) { 2429 // If we have a constant offset, try to use the 0 in m0 as the base. 2430 // TODO: Look into changing the default m0 initialization value. If the 2431 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to 2432 // the immediate offset. 2433 glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32)); 2434 ImmOffset = ConstOffset->getZExtValue(); 2435 } else { 2436 if (CurDAG->isBaseWithConstantOffset(BaseOffset)) { 2437 ImmOffset = BaseOffset.getConstantOperandVal(1); 2438 BaseOffset = BaseOffset.getOperand(0); 2439 } 2440 2441 // Prefer to do the shift in an SGPR since it should be possible to use m0 2442 // as the result directly. If it's already an SGPR, it will be eliminated 2443 // later. 2444 SDNode *SGPROffset 2445 = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32, 2446 BaseOffset); 2447 // Shift to offset in m0 2448 SDNode *M0Base 2449 = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32, 2450 SDValue(SGPROffset, 0), 2451 CurDAG->getTargetConstant(16, SL, MVT::i32)); 2452 glueCopyToM0(N, SDValue(M0Base, 0)); 2453 } 2454 2455 SDValue Chain = N->getOperand(0); 2456 SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32); 2457 2458 const unsigned Opc = gwsIntrinToOpcode(IntrID); 2459 SmallVector<SDValue, 5> Ops; 2460 if (HasVSrc) 2461 Ops.push_back(N->getOperand(2)); 2462 Ops.push_back(OffsetField); 2463 Ops.push_back(Chain); 2464 2465 SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops); 2466 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO}); 2467 } 2468 2469 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { 2470 if (Subtarget->getLDSBankCount() != 16) { 2471 // This is a single instruction with a pattern. 2472 SelectCode(N); 2473 return; 2474 } 2475 2476 SDLoc DL(N); 2477 2478 // This requires 2 instructions. It is possible to write a pattern to support 2479 // this, but the generated isel emitter doesn't correctly deal with multiple 2480 // output instructions using the same physical register input. The copy to m0 2481 // is incorrectly placed before the second instruction. 2482 // 2483 // TODO: Match source modifiers. 2484 // 2485 // def : Pat < 2486 // (int_amdgcn_interp_p1_f16 2487 // (VOP3Mods f32:$src0, i32:$src0_modifiers), 2488 // (i32 timm:$attrchan), (i32 timm:$attr), 2489 // (i1 timm:$high), M0), 2490 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, 2491 // timm:$attrchan, 0, 2492 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { 2493 // let Predicates = [has16BankLDS]; 2494 // } 2495 2496 // 16 bank LDS 2497 SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0, 2498 N->getOperand(5), SDValue()); 2499 2500 SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other); 2501 2502 SDNode *InterpMov = 2503 CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, { 2504 CurDAG->getTargetConstant(2, DL, MVT::i32), // P0 2505 N->getOperand(3), // Attr 2506 N->getOperand(2), // Attrchan 2507 ToM0.getValue(1) // In glue 2508 }); 2509 2510 SDNode *InterpP1LV = 2511 CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, { 2512 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers 2513 N->getOperand(1), // Src0 2514 N->getOperand(3), // Attr 2515 N->getOperand(2), // Attrchan 2516 CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers 2517 SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high 2518 N->getOperand(4), // high 2519 CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp 2520 CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod 2521 SDValue(InterpMov, 1) 2522 }); 2523 2524 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0)); 2525 } 2526 2527 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { 2528 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2529 switch (IntrID) { 2530 case Intrinsic::amdgcn_ds_append: 2531 case Intrinsic::amdgcn_ds_consume: { 2532 if (N->getValueType(0) != MVT::i32) 2533 break; 2534 SelectDSAppendConsume(N, IntrID); 2535 return; 2536 } 2537 } 2538 2539 SelectCode(N); 2540 } 2541 2542 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { 2543 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 2544 unsigned Opcode; 2545 switch (IntrID) { 2546 case Intrinsic::amdgcn_wqm: 2547 Opcode = AMDGPU::WQM; 2548 break; 2549 case Intrinsic::amdgcn_softwqm: 2550 Opcode = AMDGPU::SOFT_WQM; 2551 break; 2552 case Intrinsic::amdgcn_wwm: 2553 case Intrinsic::amdgcn_strict_wwm: 2554 Opcode = AMDGPU::STRICT_WWM; 2555 break; 2556 case Intrinsic::amdgcn_strict_wqm: 2557 Opcode = AMDGPU::STRICT_WQM; 2558 break; 2559 case Intrinsic::amdgcn_interp_p1_f16: 2560 SelectInterpP1F16(N); 2561 return; 2562 default: 2563 SelectCode(N); 2564 return; 2565 } 2566 2567 SDValue Src = N->getOperand(1); 2568 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src}); 2569 } 2570 2571 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { 2572 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 2573 switch (IntrID) { 2574 case Intrinsic::amdgcn_ds_gws_init: 2575 case Intrinsic::amdgcn_ds_gws_barrier: 2576 case Intrinsic::amdgcn_ds_gws_sema_v: 2577 case Intrinsic::amdgcn_ds_gws_sema_br: 2578 case Intrinsic::amdgcn_ds_gws_sema_p: 2579 case Intrinsic::amdgcn_ds_gws_sema_release_all: 2580 SelectDS_GWS(N, IntrID); 2581 return; 2582 default: 2583 break; 2584 } 2585 2586 SelectCode(N); 2587 } 2588 2589 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, 2590 unsigned &Mods, 2591 bool AllowAbs) const { 2592 Mods = 0; 2593 Src = In; 2594 2595 if (Src.getOpcode() == ISD::FNEG) { 2596 Mods |= SISrcMods::NEG; 2597 Src = Src.getOperand(0); 2598 } 2599 2600 if (AllowAbs && Src.getOpcode() == ISD::FABS) { 2601 Mods |= SISrcMods::ABS; 2602 Src = Src.getOperand(0); 2603 } 2604 2605 return true; 2606 } 2607 2608 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, 2609 SDValue &SrcMods) const { 2610 unsigned Mods; 2611 if (SelectVOP3ModsImpl(In, Src, Mods)) { 2612 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2613 return true; 2614 } 2615 2616 return false; 2617 } 2618 2619 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, 2620 SDValue &SrcMods) const { 2621 unsigned Mods; 2622 if (SelectVOP3ModsImpl(In, Src, Mods, /* AllowAbs */ false)) { 2623 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2624 return true; 2625 } 2626 2627 return false; 2628 } 2629 2630 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, 2631 SDValue &SrcMods) const { 2632 SelectVOP3Mods(In, Src, SrcMods); 2633 return isNoNanSrc(Src); 2634 } 2635 2636 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { 2637 if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) 2638 return false; 2639 2640 Src = In; 2641 return true; 2642 } 2643 2644 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, 2645 SDValue &SrcMods, SDValue &Clamp, 2646 SDValue &Omod) const { 2647 SDLoc DL(In); 2648 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2649 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2650 2651 return SelectVOP3Mods(In, Src, SrcMods); 2652 } 2653 2654 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, 2655 SDValue &SrcMods, SDValue &Clamp, 2656 SDValue &Omod) const { 2657 SDLoc DL(In); 2658 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2659 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2660 2661 return SelectVOP3BMods(In, Src, SrcMods); 2662 } 2663 2664 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, 2665 SDValue &Clamp, SDValue &Omod) const { 2666 Src = In; 2667 2668 SDLoc DL(In); 2669 Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1); 2670 Omod = CurDAG->getTargetConstant(0, DL, MVT::i1); 2671 2672 return true; 2673 } 2674 2675 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, 2676 SDValue &SrcMods, bool IsDOT) const { 2677 unsigned Mods = 0; 2678 Src = In; 2679 2680 if (Src.getOpcode() == ISD::FNEG) { 2681 Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); 2682 Src = Src.getOperand(0); 2683 } 2684 2685 if (Src.getOpcode() == ISD::BUILD_VECTOR && 2686 (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { 2687 unsigned VecMods = Mods; 2688 2689 SDValue Lo = stripBitcast(Src.getOperand(0)); 2690 SDValue Hi = stripBitcast(Src.getOperand(1)); 2691 2692 if (Lo.getOpcode() == ISD::FNEG) { 2693 Lo = stripBitcast(Lo.getOperand(0)); 2694 Mods ^= SISrcMods::NEG; 2695 } 2696 2697 if (Hi.getOpcode() == ISD::FNEG) { 2698 Hi = stripBitcast(Hi.getOperand(0)); 2699 Mods ^= SISrcMods::NEG_HI; 2700 } 2701 2702 if (isExtractHiElt(Lo, Lo)) 2703 Mods |= SISrcMods::OP_SEL_0; 2704 2705 if (isExtractHiElt(Hi, Hi)) 2706 Mods |= SISrcMods::OP_SEL_1; 2707 2708 unsigned VecSize = Src.getValueSizeInBits(); 2709 Lo = stripExtractLoElt(Lo); 2710 Hi = stripExtractLoElt(Hi); 2711 2712 if (Lo.getValueSizeInBits() > VecSize) { 2713 Lo = CurDAG->getTargetExtractSubreg( 2714 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2715 MVT::getIntegerVT(VecSize), Lo); 2716 } 2717 2718 if (Hi.getValueSizeInBits() > VecSize) { 2719 Hi = CurDAG->getTargetExtractSubreg( 2720 (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, SDLoc(In), 2721 MVT::getIntegerVT(VecSize), Hi); 2722 } 2723 2724 assert(Lo.getValueSizeInBits() <= VecSize && 2725 Hi.getValueSizeInBits() <= VecSize); 2726 2727 if (Lo == Hi && !isInlineImmediate(Lo.getNode())) { 2728 // Really a scalar input. Just select from the low half of the register to 2729 // avoid packing. 2730 2731 if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { 2732 Src = Lo; 2733 } else { 2734 assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); 2735 2736 SDLoc SL(In); 2737 SDValue Undef = SDValue( 2738 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, SL, 2739 Lo.getValueType()), 0); 2740 auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID 2741 : AMDGPU::SReg_64RegClassID; 2742 const SDValue Ops[] = { 2743 CurDAG->getTargetConstant(RC, SL, MVT::i32), 2744 Lo, CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32), 2745 Undef, CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32) }; 2746 2747 Src = SDValue(CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, SL, 2748 Src.getValueType(), Ops), 0); 2749 } 2750 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2751 return true; 2752 } 2753 2754 if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Lo)) { 2755 uint64_t Lit = cast<ConstantFPSDNode>(Lo)->getValueAPF() 2756 .bitcastToAPInt().getZExtValue(); 2757 if (AMDGPU::isInlinableLiteral32(Lit, Subtarget->hasInv2PiInlineImm())) { 2758 Src = CurDAG->getTargetConstant(Lit, SDLoc(In), MVT::i64);; 2759 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2760 return true; 2761 } 2762 } 2763 2764 Mods = VecMods; 2765 } 2766 2767 // Packed instructions do not have abs modifiers. 2768 Mods |= SISrcMods::OP_SEL_1; 2769 2770 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2771 return true; 2772 } 2773 2774 bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, 2775 SDValue &SrcMods) const { 2776 return SelectVOP3PMods(In, Src, SrcMods, true); 2777 } 2778 2779 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, 2780 SDValue &SrcMods) const { 2781 Src = In; 2782 // FIXME: Handle op_sel 2783 SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32); 2784 return true; 2785 } 2786 2787 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, 2788 SDValue &SrcMods) const { 2789 // FIXME: Handle op_sel 2790 return SelectVOP3Mods(In, Src, SrcMods); 2791 } 2792 2793 // The return value is not whether the match is possible (which it always is), 2794 // but whether or not it a conversion is really used. 2795 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, 2796 unsigned &Mods) const { 2797 Mods = 0; 2798 SelectVOP3ModsImpl(In, Src, Mods); 2799 2800 if (Src.getOpcode() == ISD::FP_EXTEND) { 2801 Src = Src.getOperand(0); 2802 assert(Src.getValueType() == MVT::f16); 2803 Src = stripBitcast(Src); 2804 2805 // Be careful about folding modifiers if we already have an abs. fneg is 2806 // applied last, so we don't want to apply an earlier fneg. 2807 if ((Mods & SISrcMods::ABS) == 0) { 2808 unsigned ModsTmp; 2809 SelectVOP3ModsImpl(Src, Src, ModsTmp); 2810 2811 if ((ModsTmp & SISrcMods::NEG) != 0) 2812 Mods ^= SISrcMods::NEG; 2813 2814 if ((ModsTmp & SISrcMods::ABS) != 0) 2815 Mods |= SISrcMods::ABS; 2816 } 2817 2818 // op_sel/op_sel_hi decide the source type and source. 2819 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. 2820 // If the sources's op_sel is set, it picks the high half of the source 2821 // register. 2822 2823 Mods |= SISrcMods::OP_SEL_1; 2824 if (isExtractHiElt(Src, Src)) { 2825 Mods |= SISrcMods::OP_SEL_0; 2826 2827 // TODO: Should we try to look for neg/abs here? 2828 } 2829 2830 return true; 2831 } 2832 2833 return false; 2834 } 2835 2836 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, 2837 SDValue &SrcMods) const { 2838 unsigned Mods = 0; 2839 SelectVOP3PMadMixModsImpl(In, Src, Mods); 2840 SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32); 2841 return true; 2842 } 2843 2844 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { 2845 if (In.isUndef()) 2846 return CurDAG->getUNDEF(MVT::i32); 2847 2848 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) { 2849 SDLoc SL(In); 2850 return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32); 2851 } 2852 2853 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) { 2854 SDLoc SL(In); 2855 return CurDAG->getConstant( 2856 C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32); 2857 } 2858 2859 SDValue Src; 2860 if (isExtractHiElt(In, Src)) 2861 return Src; 2862 2863 return SDValue(); 2864 } 2865 2866 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { 2867 assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); 2868 2869 const SIRegisterInfo *SIRI = 2870 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); 2871 const SIInstrInfo * SII = 2872 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); 2873 2874 unsigned Limit = 0; 2875 bool AllUsesAcceptSReg = true; 2876 for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); 2877 Limit < 10 && U != E; ++U, ++Limit) { 2878 const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo()); 2879 2880 // If the register class is unknown, it could be an unknown 2881 // register class that needs to be an SGPR, e.g. an inline asm 2882 // constraint 2883 if (!RC || SIRI->isSGPRClass(RC)) 2884 return false; 2885 2886 if (RC != &AMDGPU::VS_32RegClass) { 2887 AllUsesAcceptSReg = false; 2888 SDNode * User = *U; 2889 if (User->isMachineOpcode()) { 2890 unsigned Opc = User->getMachineOpcode(); 2891 MCInstrDesc Desc = SII->get(Opc); 2892 if (Desc.isCommutable()) { 2893 unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); 2894 unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; 2895 if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) { 2896 unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); 2897 const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo); 2898 if (CommutedRC == &AMDGPU::VS_32RegClass) 2899 AllUsesAcceptSReg = true; 2900 } 2901 } 2902 } 2903 // If "AllUsesAcceptSReg == false" so far we haven't succeeded 2904 // commuting current user. This means have at least one use 2905 // that strictly require VGPR. Thus, we will not attempt to commute 2906 // other user instructions. 2907 if (!AllUsesAcceptSReg) 2908 break; 2909 } 2910 } 2911 return !AllUsesAcceptSReg && (Limit < 10); 2912 } 2913 2914 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const { 2915 auto Ld = cast<LoadSDNode>(N); 2916 2917 return Ld->getAlignment() >= 4 && 2918 ( 2919 ( 2920 ( 2921 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || 2922 Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT 2923 ) 2924 && 2925 !N->isDivergent() 2926 ) 2927 || 2928 ( 2929 Subtarget->getScalarizeGlobalBehavior() && 2930 Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && 2931 Ld->isSimple() && 2932 !N->isDivergent() && 2933 static_cast<const SITargetLowering *>( 2934 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N) 2935 ) 2936 ); 2937 } 2938 2939 void AMDGPUDAGToDAGISel::PostprocessISelDAG() { 2940 const AMDGPUTargetLowering& Lowering = 2941 *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); 2942 bool IsModified = false; 2943 do { 2944 IsModified = false; 2945 2946 // Go over all selected nodes and try to fold them a bit more 2947 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); 2948 while (Position != CurDAG->allnodes_end()) { 2949 SDNode *Node = &*Position++; 2950 MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node); 2951 if (!MachineNode) 2952 continue; 2953 2954 SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG); 2955 if (ResNode != Node) { 2956 if (ResNode) 2957 ReplaceUses(Node, ResNode); 2958 IsModified = true; 2959 } 2960 } 2961 CurDAG->RemoveDeadNodes(); 2962 } while (IsModified); 2963 } 2964