1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MacroFusion.h" 15 #include "AArch64Subtarget.h" 16 #include "AArch64TargetObjectFile.h" 17 #include "AArch64TargetTransformInfo.h" 18 #include "MCTargetDesc/AArch64MCTargetDesc.h" 19 #include "TargetInfo/AArch64TargetInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/CodeGen/CSEConfigBase.h" 24 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 25 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 26 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 27 #include "llvm/CodeGen/GlobalISel/Localizer.h" 28 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 29 #include "llvm/CodeGen/MachineScheduler.h" 30 #include "llvm/CodeGen/Passes.h" 31 #include "llvm/CodeGen/TargetPassConfig.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/InitializePasses.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCTargetOptions.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CodeGen.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Target/TargetLoweringObjectFile.h" 42 #include "llvm/Target/TargetOptions.h" 43 #include "llvm/Transforms/CFGuard.h" 44 #include "llvm/Transforms/Scalar.h" 45 #include <memory> 46 #include <string> 47 48 using namespace llvm; 49 50 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 51 cl::desc("Enable the CCMP formation pass"), 52 cl::init(true), cl::Hidden); 53 54 static cl::opt<bool> 55 EnableCondBrTuning("aarch64-enable-cond-br-tune", 56 cl::desc("Enable the conditional branch tuning pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 60 cl::desc("Enable the machine combiner pass"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 64 cl::desc("Suppress STP for AArch64"), 65 cl::init(true), cl::Hidden); 66 67 static cl::opt<bool> EnableAdvSIMDScalar( 68 "aarch64-enable-simd-scalar", 69 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 70 cl::init(false), cl::Hidden); 71 72 static cl::opt<bool> 73 EnablePromoteConstant("aarch64-enable-promote-const", 74 cl::desc("Enable the promote constant pass"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<bool> EnableCollectLOH( 78 "aarch64-enable-collect-loh", 79 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 80 cl::init(true), cl::Hidden); 81 82 static cl::opt<bool> 83 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 84 cl::desc("Enable the pass that removes dead" 85 " definitons and replaces stores to" 86 " them with stores to the zero" 87 " register"), 88 cl::init(true)); 89 90 static cl::opt<bool> EnableRedundantCopyElimination( 91 "aarch64-enable-copyelim", 92 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 93 cl::Hidden); 94 95 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 96 cl::desc("Enable the load/store pair" 97 " optimization pass"), 98 cl::init(true), cl::Hidden); 99 100 static cl::opt<bool> EnableAtomicTidy( 101 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 102 cl::desc("Run SimplifyCFG after expanding atomic operations" 103 " to make use of cmpxchg flow-based information"), 104 cl::init(true)); 105 106 static cl::opt<bool> 107 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 108 cl::desc("Run early if-conversion"), 109 cl::init(true)); 110 111 static cl::opt<bool> 112 EnableCondOpt("aarch64-enable-condopt", 113 cl::desc("Enable the condition optimizer pass"), 114 cl::init(true), cl::Hidden); 115 116 static cl::opt<bool> 117 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 118 cl::desc("Work around Cortex-A53 erratum 835769"), 119 cl::init(false)); 120 121 static cl::opt<bool> 122 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 123 cl::desc("Enable optimizations on complex GEPs"), 124 cl::init(false)); 125 126 static cl::opt<bool> 127 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 128 cl::desc("Relax out of range conditional branches")); 129 130 static cl::opt<bool> EnableCompressJumpTables( 131 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 132 cl::desc("Use smallest entry possible for jump tables")); 133 134 // FIXME: Unify control over GlobalMerge. 135 static cl::opt<cl::boolOrDefault> 136 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 137 cl::desc("Enable the global merge pass")); 138 139 static cl::opt<bool> 140 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 141 cl::desc("Enable the loop data prefetch pass"), 142 cl::init(true)); 143 144 static cl::opt<int> EnableGlobalISelAtO( 145 "aarch64-enable-global-isel-at-O", cl::Hidden, 146 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 147 cl::init(0)); 148 149 static cl::opt<bool> EnableSVEIntrinsicOpts( 150 "aarch64-sve-intrinsic-opts", cl::Hidden, 151 cl::desc("Enable SVE intrinsic opts"), 152 cl::init(true)); 153 154 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 155 cl::init(true), cl::Hidden); 156 157 static cl::opt<bool> 158 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 159 cl::desc("Enable the AAcrh64 branch target pass"), 160 cl::init(true)); 161 162 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 163 // Register the target. 164 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 165 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 166 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 167 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 168 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 169 auto PR = PassRegistry::getPassRegistry(); 170 initializeGlobalISel(*PR); 171 initializeAArch64A53Fix835769Pass(*PR); 172 initializeAArch64A57FPLoadBalancingPass(*PR); 173 initializeAArch64AdvSIMDScalarPass(*PR); 174 initializeAArch64BranchTargetsPass(*PR); 175 initializeAArch64CollectLOHPass(*PR); 176 initializeAArch64CompressJumpTablesPass(*PR); 177 initializeAArch64ConditionalComparesPass(*PR); 178 initializeAArch64ConditionOptimizerPass(*PR); 179 initializeAArch64DeadRegisterDefinitionsPass(*PR); 180 initializeAArch64ExpandPseudoPass(*PR); 181 initializeAArch64LoadStoreOptPass(*PR); 182 initializeAArch64SIMDInstrOptPass(*PR); 183 initializeAArch64PreLegalizerCombinerPass(*PR); 184 initializeAArch64PromoteConstantPass(*PR); 185 initializeAArch64RedundantCopyEliminationPass(*PR); 186 initializeAArch64StorePairSuppressPass(*PR); 187 initializeFalkorHWPFFixPass(*PR); 188 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 189 initializeLDTLSCleanupPass(*PR); 190 initializeSVEIntrinsicOptsPass(*PR); 191 initializeAArch64SpeculationHardeningPass(*PR); 192 initializeAArch64StackTaggingPass(*PR); 193 initializeAArch64StackTaggingPreRAPass(*PR); 194 } 195 196 //===----------------------------------------------------------------------===// 197 // AArch64 Lowering public interface. 198 //===----------------------------------------------------------------------===// 199 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 200 if (TT.isOSBinFormatMachO()) 201 return std::make_unique<AArch64_MachoTargetObjectFile>(); 202 if (TT.isOSBinFormatCOFF()) 203 return std::make_unique<AArch64_COFFTargetObjectFile>(); 204 205 return std::make_unique<AArch64_ELFTargetObjectFile>(); 206 } 207 208 // Helper function to build a DataLayout string 209 static std::string computeDataLayout(const Triple &TT, 210 const MCTargetOptions &Options, 211 bool LittleEndian) { 212 if (Options.getABIName() == "ilp32") 213 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128"; 214 if (TT.isOSBinFormatMachO()) { 215 if (TT.getArch() == Triple::aarch64_32) 216 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 217 return "e-m:o-i64:64-i128:128-n32:64-S128"; 218 } 219 if (TT.isOSBinFormatCOFF()) 220 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 221 if (LittleEndian) 222 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 223 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 224 } 225 226 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 227 Optional<Reloc::Model> RM) { 228 // AArch64 Darwin and Windows are always PIC. 229 if (TT.isOSDarwin() || TT.isOSWindows()) 230 return Reloc::PIC_; 231 // On ELF platforms the default static relocation model has a smart enough 232 // linker to cope with referencing external symbols defined in a shared 233 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 234 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 235 return Reloc::Static; 236 return *RM; 237 } 238 239 static CodeModel::Model 240 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 241 bool JIT) { 242 if (CM) { 243 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 244 *CM != CodeModel::Large) { 245 report_fatal_error( 246 "Only small, tiny and large code models are allowed on AArch64"); 247 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 248 report_fatal_error("tiny code model is only supported on ELF"); 249 return *CM; 250 } 251 // The default MCJIT memory managers make no guarantees about where they can 252 // find an executable page; JITed code needs to be able to refer to globals 253 // no matter how far away they are. 254 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 255 // since with large code model LLVM generating 4 MOV instructions, and 256 // Windows doesn't support relocating these long branch (4 MOVs). 257 if (JIT && !TT.isOSWindows()) 258 return CodeModel::Large; 259 return CodeModel::Small; 260 } 261 262 /// Create an AArch64 architecture model. 263 /// 264 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 265 StringRef CPU, StringRef FS, 266 const TargetOptions &Options, 267 Optional<Reloc::Model> RM, 268 Optional<CodeModel::Model> CM, 269 CodeGenOpt::Level OL, bool JIT, 270 bool LittleEndian) 271 : LLVMTargetMachine(T, 272 computeDataLayout(TT, Options.MCOptions, LittleEndian), 273 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), 274 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 275 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 276 initAsmInfo(); 277 278 if (TT.isOSBinFormatMachO()) { 279 this->Options.TrapUnreachable = true; 280 this->Options.NoTrapAfterNoreturn = true; 281 } 282 283 if (getMCAsmInfo()->usesWindowsCFI()) { 284 // Unwinding can get confused if the last instruction in an 285 // exception-handling region (function, funclet, try block, etc.) 286 // is a call. 287 // 288 // FIXME: We could elide the trap if the next instruction would be in 289 // the same region anyway. 290 this->Options.TrapUnreachable = true; 291 } 292 293 if (this->Options.TLSSize == 0) // default 294 this->Options.TLSSize = 24; 295 if ((getCodeModel() == CodeModel::Small || 296 getCodeModel() == CodeModel::Kernel) && 297 this->Options.TLSSize > 32) 298 // for the small (and kernel) code model, the maximum TLS size is 4GiB 299 this->Options.TLSSize = 32; 300 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 301 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 302 this->Options.TLSSize = 24; 303 304 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 305 // MachO/CodeModel::Large, which GlobalISel does not support. 306 if (getOptLevel() <= EnableGlobalISelAtO && 307 TT.getArch() != Triple::aarch64_32 && 308 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 309 setGlobalISel(true); 310 setGlobalISelAbort(GlobalISelAbortMode::Disable); 311 } 312 313 // AArch64 supports the MachineOutliner. 314 setMachineOutliner(true); 315 316 // AArch64 supports default outlining behaviour. 317 setSupportsDefaultOutlining(true); 318 319 // AArch64 supports the debug entry values. 320 setSupportsDebugEntryValues(true); 321 } 322 323 AArch64TargetMachine::~AArch64TargetMachine() = default; 324 325 const AArch64Subtarget * 326 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 327 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 328 Attribute FSAttr = F.getFnAttribute("target-features"); 329 330 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 331 ? CPUAttr.getValueAsString().str() 332 : TargetCPU; 333 std::string FS = !FSAttr.hasAttribute(Attribute::None) 334 ? FSAttr.getValueAsString().str() 335 : TargetFS; 336 337 auto &I = SubtargetMap[CPU + FS]; 338 if (!I) { 339 // This needs to be done before we create a new subtarget since any 340 // creation will depend on the TM and the code generation flags on the 341 // function that reside in TargetOptions. 342 resetTargetOptions(F); 343 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 344 isLittle); 345 } 346 return I.get(); 347 } 348 349 void AArch64leTargetMachine::anchor() { } 350 351 AArch64leTargetMachine::AArch64leTargetMachine( 352 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 353 const TargetOptions &Options, Optional<Reloc::Model> RM, 354 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 355 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 356 357 void AArch64beTargetMachine::anchor() { } 358 359 AArch64beTargetMachine::AArch64beTargetMachine( 360 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 361 const TargetOptions &Options, Optional<Reloc::Model> RM, 362 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 363 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 364 365 namespace { 366 367 /// AArch64 Code Generator Pass Configuration Options. 368 class AArch64PassConfig : public TargetPassConfig { 369 public: 370 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 371 : TargetPassConfig(TM, PM) { 372 if (TM.getOptLevel() != CodeGenOpt::None) 373 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 374 } 375 376 AArch64TargetMachine &getAArch64TargetMachine() const { 377 return getTM<AArch64TargetMachine>(); 378 } 379 380 ScheduleDAGInstrs * 381 createMachineScheduler(MachineSchedContext *C) const override { 382 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 383 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 384 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 385 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 386 if (ST.hasFusion()) 387 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 388 return DAG; 389 } 390 391 ScheduleDAGInstrs * 392 createPostMachineScheduler(MachineSchedContext *C) const override { 393 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 394 if (ST.hasFusion()) { 395 // Run the Macro Fusion after RA again since literals are expanded from 396 // pseudos then (v. addPreSched2()). 397 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 398 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 399 return DAG; 400 } 401 402 return nullptr; 403 } 404 405 void addIRPasses() override; 406 bool addPreISel() override; 407 bool addInstSelector() override; 408 bool addIRTranslator() override; 409 void addPreLegalizeMachineIR() override; 410 bool addLegalizeMachineIR() override; 411 bool addRegBankSelect() override; 412 void addPreGlobalInstructionSelect() override; 413 bool addGlobalInstructionSelect() override; 414 bool addILPOpts() override; 415 void addPreRegAlloc() override; 416 void addPostRegAlloc() override; 417 void addPreSched2() override; 418 void addPreEmitPass() override; 419 420 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 421 }; 422 423 } // end anonymous namespace 424 425 TargetTransformInfo 426 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 427 return TargetTransformInfo(AArch64TTIImpl(this, F)); 428 } 429 430 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 431 return new AArch64PassConfig(*this, PM); 432 } 433 434 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 435 return getStandardCSEConfigForOpt(TM->getOptLevel()); 436 } 437 438 void AArch64PassConfig::addIRPasses() { 439 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 440 // ourselves. 441 addPass(createAtomicExpandPass()); 442 443 // Expand any SVE vector library calls that we can't code generate directly. 444 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 445 addPass(createSVEIntrinsicOptsPass()); 446 447 // Cmpxchg instructions are often used with a subsequent comparison to 448 // determine whether it succeeded. We can exploit existing control-flow in 449 // ldrex/strex loops to simplify this, but it needs tidying up. 450 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 451 addPass(createCFGSimplificationPass(1, true, true, false, true)); 452 453 // Run LoopDataPrefetch 454 // 455 // Run this before LSR to remove the multiplies involved in computing the 456 // pointer values N iterations ahead. 457 if (TM->getOptLevel() != CodeGenOpt::None) { 458 if (EnableLoopDataPrefetch) 459 addPass(createLoopDataPrefetchPass()); 460 if (EnableFalkorHWPFFix) 461 addPass(createFalkorMarkStridedAccessesPass()); 462 } 463 464 TargetPassConfig::addIRPasses(); 465 466 // Match interleaved memory accesses to ldN/stN intrinsics. 467 if (TM->getOptLevel() != CodeGenOpt::None) { 468 addPass(createInterleavedLoadCombinePass()); 469 addPass(createInterleavedAccessPass()); 470 } 471 472 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 473 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 474 // and lower a GEP with multiple indices to either arithmetic operations or 475 // multiple GEPs with single index. 476 addPass(createSeparateConstOffsetFromGEPPass(true)); 477 // Call EarlyCSE pass to find and remove subexpressions in the lowered 478 // result. 479 addPass(createEarlyCSEPass()); 480 // Do loop invariant code motion in case part of the lowered result is 481 // invariant. 482 addPass(createLICMPass()); 483 } 484 485 addPass(createAArch64StackTaggingPass(/* MergeInit = */ TM->getOptLevel() != 486 CodeGenOpt::None)); 487 488 // Add Control Flow Guard checks. 489 if (TM->getTargetTriple().isOSWindows()) 490 addPass(createCFGuardCheckPass()); 491 } 492 493 // Pass Pipeline Configuration 494 bool AArch64PassConfig::addPreISel() { 495 // Run promote constant before global merge, so that the promoted constants 496 // get a chance to be merged 497 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 498 addPass(createAArch64PromoteConstantPass()); 499 // FIXME: On AArch64, this depends on the type. 500 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 501 // and the offset has to be a multiple of the related size in bytes. 502 if ((TM->getOptLevel() != CodeGenOpt::None && 503 EnableGlobalMerge == cl::BOU_UNSET) || 504 EnableGlobalMerge == cl::BOU_TRUE) { 505 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 506 (EnableGlobalMerge == cl::BOU_UNSET); 507 508 // Merging of extern globals is enabled by default on non-Mach-O as we 509 // expect it to be generally either beneficial or harmless. On Mach-O it 510 // is disabled as we emit the .subsections_via_symbols directive which 511 // means that merging extern globals is not safe. 512 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 513 514 // FIXME: extern global merging is only enabled when we optimise for size 515 // because there are some regressions with it also enabled for performance. 516 if (!OnlyOptimizeForSize) 517 MergeExternalByDefault = false; 518 519 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 520 MergeExternalByDefault)); 521 } 522 523 return false; 524 } 525 526 bool AArch64PassConfig::addInstSelector() { 527 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 528 529 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 530 // references to _TLS_MODULE_BASE_ as possible. 531 if (TM->getTargetTriple().isOSBinFormatELF() && 532 getOptLevel() != CodeGenOpt::None) 533 addPass(createAArch64CleanupLocalDynamicTLSPass()); 534 535 return false; 536 } 537 538 bool AArch64PassConfig::addIRTranslator() { 539 addPass(new IRTranslator()); 540 return false; 541 } 542 543 void AArch64PassConfig::addPreLegalizeMachineIR() { 544 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 545 addPass(createAArch64PreLegalizeCombiner(IsOptNone)); 546 } 547 548 bool AArch64PassConfig::addLegalizeMachineIR() { 549 addPass(new Legalizer()); 550 return false; 551 } 552 553 bool AArch64PassConfig::addRegBankSelect() { 554 addPass(new RegBankSelect()); 555 return false; 556 } 557 558 void AArch64PassConfig::addPreGlobalInstructionSelect() { 559 addPass(new Localizer()); 560 } 561 562 bool AArch64PassConfig::addGlobalInstructionSelect() { 563 addPass(new InstructionSelect()); 564 return false; 565 } 566 567 bool AArch64PassConfig::addILPOpts() { 568 if (EnableCondOpt) 569 addPass(createAArch64ConditionOptimizerPass()); 570 if (EnableCCMP) 571 addPass(createAArch64ConditionalCompares()); 572 if (EnableMCR) 573 addPass(&MachineCombinerID); 574 if (EnableCondBrTuning) 575 addPass(createAArch64CondBrTuning()); 576 if (EnableEarlyIfConversion) 577 addPass(&EarlyIfConverterID); 578 if (EnableStPairSuppress) 579 addPass(createAArch64StorePairSuppressPass()); 580 addPass(createAArch64SIMDInstrOptPass()); 581 if (TM->getOptLevel() != CodeGenOpt::None) 582 addPass(createAArch64StackTaggingPreRAPass()); 583 return true; 584 } 585 586 void AArch64PassConfig::addPreRegAlloc() { 587 // Change dead register definitions to refer to the zero register. 588 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 589 addPass(createAArch64DeadRegisterDefinitions()); 590 591 // Use AdvSIMD scalar instructions whenever profitable. 592 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 593 addPass(createAArch64AdvSIMDScalar()); 594 // The AdvSIMD pass may produce copies that can be rewritten to 595 // be register coalescer friendly. 596 addPass(&PeepholeOptimizerID); 597 } 598 } 599 600 void AArch64PassConfig::addPostRegAlloc() { 601 // Remove redundant copy instructions. 602 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 603 addPass(createAArch64RedundantCopyEliminationPass()); 604 605 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 606 // Improve performance for some FP/SIMD code for A57. 607 addPass(createAArch64A57FPLoadBalancing()); 608 } 609 610 void AArch64PassConfig::addPreSched2() { 611 // Expand some pseudo instructions to allow proper scheduling. 612 addPass(createAArch64ExpandPseudoPass()); 613 // Use load/store pair instructions when possible. 614 if (TM->getOptLevel() != CodeGenOpt::None) { 615 if (EnableLoadStoreOpt) 616 addPass(createAArch64LoadStoreOptimizationPass()); 617 } 618 619 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 620 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 621 // Therefore, run the AArch64SpeculationHardeningPass before the 622 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 623 // info. 624 addPass(createAArch64SpeculationHardeningPass()); 625 626 if (TM->getOptLevel() != CodeGenOpt::None) { 627 if (EnableFalkorHWPFFix) 628 addPass(createFalkorHWPFFixPass()); 629 } 630 } 631 632 void AArch64PassConfig::addPreEmitPass() { 633 // Machine Block Placement might have created new opportunities when run 634 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 635 // Run the load/store optimizer once more. 636 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 637 addPass(createAArch64LoadStoreOptimizationPass()); 638 639 if (EnableA53Fix835769) 640 addPass(createAArch64A53Fix835769()); 641 642 if (EnableBranchTargets) 643 addPass(createAArch64BranchTargetsPass()); 644 645 // Relax conditional branch instructions if they're otherwise out of 646 // range of their destination. 647 if (BranchRelaxation) 648 addPass(&BranchRelaxationPassID); 649 650 // Identify valid longjmp targets for Windows Control Flow Guard. 651 if (TM->getTargetTriple().isOSWindows()) 652 addPass(createCFGuardLongjmpPass()); 653 654 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 655 addPass(createAArch64CompressJumpTablesPass()); 656 657 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 658 TM->getTargetTriple().isOSBinFormatMachO()) 659 addPass(createAArch64CollectLOHPass()); 660 661 // SVE bundles move prefixes with destructive operations. 662 addPass(createUnpackMachineBundles(nullptr)); 663 } 664