1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "TargetInfo/AArch64TargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 27 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 28 #include "llvm/CodeGen/GlobalISel/Localizer.h" 29 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 30 #include "llvm/CodeGen/MIRParser/MIParser.h" 31 #include "llvm/CodeGen/MachineScheduler.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCTargetOptions.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CodeGen.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Target/TargetLoweringObjectFile.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include "llvm/Transforms/CFGuard.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include <memory> 48 #include <string> 49 50 using namespace llvm; 51 52 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 53 cl::desc("Enable the CCMP formation pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> 57 EnableCondBrTuning("aarch64-enable-cond-br-tune", 58 cl::desc("Enable the conditional branch tuning pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 62 cl::desc("Enable the machine combiner pass"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 66 cl::desc("Suppress STP for AArch64"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> EnableAdvSIMDScalar( 70 "aarch64-enable-simd-scalar", 71 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 72 cl::init(false), cl::Hidden); 73 74 static cl::opt<bool> 75 EnablePromoteConstant("aarch64-enable-promote-const", 76 cl::desc("Enable the promote constant pass"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> EnableCollectLOH( 80 "aarch64-enable-collect-loh", 81 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<bool> 85 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 86 cl::desc("Enable the pass that removes dead" 87 " definitons and replaces stores to" 88 " them with stores to the zero" 89 " register"), 90 cl::init(true)); 91 92 static cl::opt<bool> EnableRedundantCopyElimination( 93 "aarch64-enable-copyelim", 94 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 95 cl::Hidden); 96 97 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 98 cl::desc("Enable the load/store pair" 99 " optimization pass"), 100 cl::init(true), cl::Hidden); 101 102 static cl::opt<bool> EnableAtomicTidy( 103 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 104 cl::desc("Run SimplifyCFG after expanding atomic operations" 105 " to make use of cmpxchg flow-based information"), 106 cl::init(true)); 107 108 static cl::opt<bool> 109 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 110 cl::desc("Run early if-conversion"), 111 cl::init(true)); 112 113 static cl::opt<bool> 114 EnableCondOpt("aarch64-enable-condopt", 115 cl::desc("Enable the condition optimizer pass"), 116 cl::init(true), cl::Hidden); 117 118 static cl::opt<bool> 119 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 120 cl::desc("Work around Cortex-A53 erratum 835769"), 121 cl::init(false)); 122 123 static cl::opt<bool> 124 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 125 cl::desc("Enable optimizations on complex GEPs"), 126 cl::init(false)); 127 128 static cl::opt<bool> 129 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 130 cl::desc("Relax out of range conditional branches")); 131 132 static cl::opt<bool> EnableCompressJumpTables( 133 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 134 cl::desc("Use smallest entry possible for jump tables")); 135 136 // FIXME: Unify control over GlobalMerge. 137 static cl::opt<cl::boolOrDefault> 138 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 139 cl::desc("Enable the global merge pass")); 140 141 static cl::opt<bool> 142 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 143 cl::desc("Enable the loop data prefetch pass"), 144 cl::init(true)); 145 146 static cl::opt<int> EnableGlobalISelAtO( 147 "aarch64-enable-global-isel-at-O", cl::Hidden, 148 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 149 cl::init(0)); 150 151 static cl::opt<bool> 152 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 153 cl::desc("Enable SVE intrinsic opts"), 154 cl::init(true)); 155 156 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 157 cl::init(true), cl::Hidden); 158 159 static cl::opt<bool> 160 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 161 cl::desc("Enable the AArch64 branch target pass"), 162 cl::init(true)); 163 164 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 165 "aarch64-sve-vector-bits-max", 166 cl::desc("Assume SVE vector registers are at most this big, " 167 "with zero meaning no maximum size is assumed."), 168 cl::init(0), cl::Hidden); 169 170 static cl::opt<unsigned> SVEVectorBitsMinOpt( 171 "aarch64-sve-vector-bits-min", 172 cl::desc("Assume SVE vector registers are at least this big, " 173 "with zero meaning no minimum size is assumed."), 174 cl::init(0), cl::Hidden); 175 176 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 177 178 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 179 // Register the target. 180 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 181 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 182 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 183 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 184 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 185 auto PR = PassRegistry::getPassRegistry(); 186 initializeGlobalISel(*PR); 187 initializeAArch64A53Fix835769Pass(*PR); 188 initializeAArch64A57FPLoadBalancingPass(*PR); 189 initializeAArch64AdvSIMDScalarPass(*PR); 190 initializeAArch64BranchTargetsPass(*PR); 191 initializeAArch64CollectLOHPass(*PR); 192 initializeAArch64CompressJumpTablesPass(*PR); 193 initializeAArch64ConditionalComparesPass(*PR); 194 initializeAArch64ConditionOptimizerPass(*PR); 195 initializeAArch64DeadRegisterDefinitionsPass(*PR); 196 initializeAArch64ExpandPseudoPass(*PR); 197 initializeAArch64LoadStoreOptPass(*PR); 198 initializeAArch64SIMDInstrOptPass(*PR); 199 initializeAArch64O0PreLegalizerCombinerPass(*PR); 200 initializeAArch64PreLegalizerCombinerPass(*PR); 201 initializeAArch64PostLegalizerCombinerPass(*PR); 202 initializeAArch64PostLegalizerLoweringPass(*PR); 203 initializeAArch64PostSelectOptimizePass(*PR); 204 initializeAArch64PromoteConstantPass(*PR); 205 initializeAArch64RedundantCopyEliminationPass(*PR); 206 initializeAArch64StorePairSuppressPass(*PR); 207 initializeFalkorHWPFFixPass(*PR); 208 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 209 initializeLDTLSCleanupPass(*PR); 210 initializeSVEIntrinsicOptsPass(*PR); 211 initializeAArch64SpeculationHardeningPass(*PR); 212 initializeAArch64SLSHardeningPass(*PR); 213 initializeAArch64StackTaggingPass(*PR); 214 initializeAArch64StackTaggingPreRAPass(*PR); 215 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // AArch64 Lowering public interface. 220 //===----------------------------------------------------------------------===// 221 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 222 if (TT.isOSBinFormatMachO()) 223 return std::make_unique<AArch64_MachoTargetObjectFile>(); 224 if (TT.isOSBinFormatCOFF()) 225 return std::make_unique<AArch64_COFFTargetObjectFile>(); 226 227 return std::make_unique<AArch64_ELFTargetObjectFile>(); 228 } 229 230 // Helper function to build a DataLayout string 231 static std::string computeDataLayout(const Triple &TT, 232 const MCTargetOptions &Options, 233 bool LittleEndian) { 234 if (TT.isOSBinFormatMachO()) { 235 if (TT.getArch() == Triple::aarch64_32) 236 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 237 return "e-m:o-i64:64-i128:128-n32:64-S128"; 238 } 239 if (TT.isOSBinFormatCOFF()) 240 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 241 std::string Endian = LittleEndian ? "e" : "E"; 242 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 243 return Endian + "-m:e" + Ptr32 + 244 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 245 } 246 247 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 248 if (CPU.empty() && TT.isArm64e()) 249 return "apple-a12"; 250 return CPU; 251 } 252 253 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 254 Optional<Reloc::Model> RM) { 255 // AArch64 Darwin and Windows are always PIC. 256 if (TT.isOSDarwin() || TT.isOSWindows()) 257 return Reloc::PIC_; 258 // On ELF platforms the default static relocation model has a smart enough 259 // linker to cope with referencing external symbols defined in a shared 260 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 261 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 262 return Reloc::Static; 263 return *RM; 264 } 265 266 static CodeModel::Model 267 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 268 bool JIT) { 269 if (CM) { 270 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 271 *CM != CodeModel::Large) { 272 report_fatal_error( 273 "Only small, tiny and large code models are allowed on AArch64"); 274 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 275 report_fatal_error("tiny code model is only supported on ELF"); 276 return *CM; 277 } 278 // The default MCJIT memory managers make no guarantees about where they can 279 // find an executable page; JITed code needs to be able to refer to globals 280 // no matter how far away they are. 281 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 282 // since with large code model LLVM generating 4 MOV instructions, and 283 // Windows doesn't support relocating these long branch (4 MOVs). 284 if (JIT && !TT.isOSWindows()) 285 return CodeModel::Large; 286 return CodeModel::Small; 287 } 288 289 /// Create an AArch64 architecture model. 290 /// 291 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 292 StringRef CPU, StringRef FS, 293 const TargetOptions &Options, 294 Optional<Reloc::Model> RM, 295 Optional<CodeModel::Model> CM, 296 CodeGenOpt::Level OL, bool JIT, 297 bool LittleEndian) 298 : LLVMTargetMachine(T, 299 computeDataLayout(TT, Options.MCOptions, LittleEndian), 300 TT, computeDefaultCPU(TT, CPU), FS, Options, 301 getEffectiveRelocModel(TT, RM), 302 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 303 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 304 initAsmInfo(); 305 306 if (TT.isOSBinFormatMachO()) { 307 this->Options.TrapUnreachable = true; 308 this->Options.NoTrapAfterNoreturn = true; 309 } 310 311 if (getMCAsmInfo()->usesWindowsCFI()) { 312 // Unwinding can get confused if the last instruction in an 313 // exception-handling region (function, funclet, try block, etc.) 314 // is a call. 315 // 316 // FIXME: We could elide the trap if the next instruction would be in 317 // the same region anyway. 318 this->Options.TrapUnreachable = true; 319 } 320 321 if (this->Options.TLSSize == 0) // default 322 this->Options.TLSSize = 24; 323 if ((getCodeModel() == CodeModel::Small || 324 getCodeModel() == CodeModel::Kernel) && 325 this->Options.TLSSize > 32) 326 // for the small (and kernel) code model, the maximum TLS size is 4GiB 327 this->Options.TLSSize = 32; 328 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 329 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 330 this->Options.TLSSize = 24; 331 332 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 333 // MachO/CodeModel::Large, which GlobalISel does not support. 334 if (getOptLevel() <= EnableGlobalISelAtO && 335 TT.getArch() != Triple::aarch64_32 && 336 TT.getEnvironment() != Triple::GNUILP32 && 337 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 338 setGlobalISel(true); 339 setGlobalISelAbort(GlobalISelAbortMode::Disable); 340 } 341 342 // AArch64 supports the MachineOutliner. 343 setMachineOutliner(true); 344 345 // AArch64 supports default outlining behaviour. 346 setSupportsDefaultOutlining(true); 347 348 // AArch64 supports the debug entry values. 349 setSupportsDebugEntryValues(true); 350 } 351 352 AArch64TargetMachine::~AArch64TargetMachine() = default; 353 354 const AArch64Subtarget * 355 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 356 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 357 Attribute FSAttr = F.getFnAttribute("target-features"); 358 359 std::string CPU = 360 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 361 std::string FS = 362 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 363 364 SmallString<512> Key; 365 366 unsigned MinSVEVectorSize = 0; 367 unsigned MaxSVEVectorSize = 0; 368 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 369 if (VScaleRangeAttr.isValid()) { 370 std::tie(MinSVEVectorSize, MaxSVEVectorSize) = 371 VScaleRangeAttr.getVScaleRangeArgs(); 372 MinSVEVectorSize *= 128; 373 MaxSVEVectorSize *= 128; 374 } else { 375 MinSVEVectorSize = SVEVectorBitsMinOpt; 376 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 377 } 378 379 assert(MinSVEVectorSize % 128 == 0 && 380 "SVE requires vector length in multiples of 128!"); 381 assert(MaxSVEVectorSize % 128 == 0 && 382 "SVE requires vector length in multiples of 128!"); 383 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 384 "Minimum SVE vector size should not be larger than its maximum!"); 385 386 // Sanitize user input in case of no asserts 387 if (MaxSVEVectorSize == 0) 388 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 389 else { 390 MinSVEVectorSize = 391 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 392 MaxSVEVectorSize = 393 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 394 } 395 396 Key += "SVEMin"; 397 Key += std::to_string(MinSVEVectorSize); 398 Key += "SVEMax"; 399 Key += std::to_string(MaxSVEVectorSize); 400 Key += CPU; 401 Key += FS; 402 403 auto &I = SubtargetMap[Key]; 404 if (!I) { 405 // This needs to be done before we create a new subtarget since any 406 // creation will depend on the TM and the code generation flags on the 407 // function that reside in TargetOptions. 408 resetTargetOptions(F); 409 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 410 isLittle, MinSVEVectorSize, 411 MaxSVEVectorSize); 412 } 413 return I.get(); 414 } 415 416 void AArch64leTargetMachine::anchor() { } 417 418 AArch64leTargetMachine::AArch64leTargetMachine( 419 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 420 const TargetOptions &Options, Optional<Reloc::Model> RM, 421 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 422 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 423 424 void AArch64beTargetMachine::anchor() { } 425 426 AArch64beTargetMachine::AArch64beTargetMachine( 427 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 428 const TargetOptions &Options, Optional<Reloc::Model> RM, 429 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 430 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 431 432 namespace { 433 434 /// AArch64 Code Generator Pass Configuration Options. 435 class AArch64PassConfig : public TargetPassConfig { 436 public: 437 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 438 : TargetPassConfig(TM, PM) { 439 if (TM.getOptLevel() != CodeGenOpt::None) 440 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 441 } 442 443 AArch64TargetMachine &getAArch64TargetMachine() const { 444 return getTM<AArch64TargetMachine>(); 445 } 446 447 ScheduleDAGInstrs * 448 createMachineScheduler(MachineSchedContext *C) const override { 449 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 450 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 451 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 452 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 453 if (ST.hasFusion()) 454 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 455 return DAG; 456 } 457 458 ScheduleDAGInstrs * 459 createPostMachineScheduler(MachineSchedContext *C) const override { 460 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 461 if (ST.hasFusion()) { 462 // Run the Macro Fusion after RA again since literals are expanded from 463 // pseudos then (v. addPreSched2()). 464 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 465 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 466 return DAG; 467 } 468 469 return nullptr; 470 } 471 472 void addIRPasses() override; 473 bool addPreISel() override; 474 void addCodeGenPrepare() override; 475 bool addInstSelector() override; 476 bool addIRTranslator() override; 477 void addPreLegalizeMachineIR() override; 478 bool addLegalizeMachineIR() override; 479 void addPreRegBankSelect() override; 480 bool addRegBankSelect() override; 481 void addPreGlobalInstructionSelect() override; 482 bool addGlobalInstructionSelect() override; 483 bool addILPOpts() override; 484 void addPreRegAlloc() override; 485 void addPostRegAlloc() override; 486 void addPreSched2() override; 487 void addPreEmitPass() override; 488 void addPreEmitPass2() override; 489 490 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 491 }; 492 493 } // end anonymous namespace 494 495 TargetTransformInfo 496 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 497 return TargetTransformInfo(AArch64TTIImpl(this, F)); 498 } 499 500 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 501 return new AArch64PassConfig(*this, PM); 502 } 503 504 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 505 return getStandardCSEConfigForOpt(TM->getOptLevel()); 506 } 507 508 void AArch64PassConfig::addIRPasses() { 509 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 510 // ourselves. 511 addPass(createAtomicExpandPass()); 512 513 // Expand any SVE vector library calls that we can't code generate directly. 514 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 515 addPass(createSVEIntrinsicOptsPass()); 516 517 // Cmpxchg instructions are often used with a subsequent comparison to 518 // determine whether it succeeded. We can exploit existing control-flow in 519 // ldrex/strex loops to simplify this, but it needs tidying up. 520 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 521 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 522 .forwardSwitchCondToPhi(true) 523 .convertSwitchToLookupTable(true) 524 .needCanonicalLoops(false) 525 .hoistCommonInsts(true) 526 .sinkCommonInsts(true))); 527 528 // Run LoopDataPrefetch 529 // 530 // Run this before LSR to remove the multiplies involved in computing the 531 // pointer values N iterations ahead. 532 if (TM->getOptLevel() != CodeGenOpt::None) { 533 if (EnableLoopDataPrefetch) 534 addPass(createLoopDataPrefetchPass()); 535 if (EnableFalkorHWPFFix) 536 addPass(createFalkorMarkStridedAccessesPass()); 537 } 538 539 TargetPassConfig::addIRPasses(); 540 541 addPass(createAArch64StackTaggingPass( 542 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 543 544 // Match interleaved memory accesses to ldN/stN intrinsics. 545 if (TM->getOptLevel() != CodeGenOpt::None) { 546 addPass(createInterleavedLoadCombinePass()); 547 addPass(createInterleavedAccessPass()); 548 } 549 550 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 551 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 552 // and lower a GEP with multiple indices to either arithmetic operations or 553 // multiple GEPs with single index. 554 addPass(createSeparateConstOffsetFromGEPPass(true)); 555 // Call EarlyCSE pass to find and remove subexpressions in the lowered 556 // result. 557 addPass(createEarlyCSEPass()); 558 // Do loop invariant code motion in case part of the lowered result is 559 // invariant. 560 addPass(createLICMPass()); 561 } 562 563 // Add Control Flow Guard checks. 564 if (TM->getTargetTriple().isOSWindows()) 565 addPass(createCFGuardCheckPass()); 566 } 567 568 // Pass Pipeline Configuration 569 bool AArch64PassConfig::addPreISel() { 570 // Run promote constant before global merge, so that the promoted constants 571 // get a chance to be merged 572 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 573 addPass(createAArch64PromoteConstantPass()); 574 // FIXME: On AArch64, this depends on the type. 575 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 576 // and the offset has to be a multiple of the related size in bytes. 577 if ((TM->getOptLevel() != CodeGenOpt::None && 578 EnableGlobalMerge == cl::BOU_UNSET) || 579 EnableGlobalMerge == cl::BOU_TRUE) { 580 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 581 (EnableGlobalMerge == cl::BOU_UNSET); 582 583 // Merging of extern globals is enabled by default on non-Mach-O as we 584 // expect it to be generally either beneficial or harmless. On Mach-O it 585 // is disabled as we emit the .subsections_via_symbols directive which 586 // means that merging extern globals is not safe. 587 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 588 589 // FIXME: extern global merging is only enabled when we optimise for size 590 // because there are some regressions with it also enabled for performance. 591 if (!OnlyOptimizeForSize) 592 MergeExternalByDefault = false; 593 594 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 595 MergeExternalByDefault)); 596 } 597 598 return false; 599 } 600 601 void AArch64PassConfig::addCodeGenPrepare() { 602 if (getOptLevel() != CodeGenOpt::None) 603 addPass(createTypePromotionPass()); 604 TargetPassConfig::addCodeGenPrepare(); 605 } 606 607 bool AArch64PassConfig::addInstSelector() { 608 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 609 610 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 611 // references to _TLS_MODULE_BASE_ as possible. 612 if (TM->getTargetTriple().isOSBinFormatELF() && 613 getOptLevel() != CodeGenOpt::None) 614 addPass(createAArch64CleanupLocalDynamicTLSPass()); 615 616 return false; 617 } 618 619 bool AArch64PassConfig::addIRTranslator() { 620 addPass(new IRTranslator(getOptLevel())); 621 return false; 622 } 623 624 void AArch64PassConfig::addPreLegalizeMachineIR() { 625 if (getOptLevel() == CodeGenOpt::None) 626 addPass(createAArch64O0PreLegalizerCombiner()); 627 else 628 addPass(createAArch64PreLegalizerCombiner()); 629 } 630 631 bool AArch64PassConfig::addLegalizeMachineIR() { 632 addPass(new Legalizer()); 633 return false; 634 } 635 636 void AArch64PassConfig::addPreRegBankSelect() { 637 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 638 if (!IsOptNone) 639 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 640 addPass(createAArch64PostLegalizerLowering()); 641 } 642 643 bool AArch64PassConfig::addRegBankSelect() { 644 addPass(new RegBankSelect()); 645 return false; 646 } 647 648 void AArch64PassConfig::addPreGlobalInstructionSelect() { 649 addPass(new Localizer()); 650 } 651 652 bool AArch64PassConfig::addGlobalInstructionSelect() { 653 addPass(new InstructionSelect(getOptLevel())); 654 if (getOptLevel() != CodeGenOpt::None) 655 addPass(createAArch64PostSelectOptimize()); 656 return false; 657 } 658 659 bool AArch64PassConfig::addILPOpts() { 660 if (EnableCondOpt) 661 addPass(createAArch64ConditionOptimizerPass()); 662 if (EnableCCMP) 663 addPass(createAArch64ConditionalCompares()); 664 if (EnableMCR) 665 addPass(&MachineCombinerID); 666 if (EnableCondBrTuning) 667 addPass(createAArch64CondBrTuning()); 668 if (EnableEarlyIfConversion) 669 addPass(&EarlyIfConverterID); 670 if (EnableStPairSuppress) 671 addPass(createAArch64StorePairSuppressPass()); 672 addPass(createAArch64SIMDInstrOptPass()); 673 if (TM->getOptLevel() != CodeGenOpt::None) 674 addPass(createAArch64StackTaggingPreRAPass()); 675 return true; 676 } 677 678 void AArch64PassConfig::addPreRegAlloc() { 679 // Change dead register definitions to refer to the zero register. 680 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 681 addPass(createAArch64DeadRegisterDefinitions()); 682 683 // Use AdvSIMD scalar instructions whenever profitable. 684 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 685 addPass(createAArch64AdvSIMDScalar()); 686 // The AdvSIMD pass may produce copies that can be rewritten to 687 // be register coalescer friendly. 688 addPass(&PeepholeOptimizerID); 689 } 690 } 691 692 void AArch64PassConfig::addPostRegAlloc() { 693 // Remove redundant copy instructions. 694 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 695 addPass(createAArch64RedundantCopyEliminationPass()); 696 697 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 698 // Improve performance for some FP/SIMD code for A57. 699 addPass(createAArch64A57FPLoadBalancing()); 700 } 701 702 void AArch64PassConfig::addPreSched2() { 703 // Lower homogeneous frame instructions 704 if (EnableHomogeneousPrologEpilog) 705 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 706 // Expand some pseudo instructions to allow proper scheduling. 707 addPass(createAArch64ExpandPseudoPass()); 708 // Use load/store pair instructions when possible. 709 if (TM->getOptLevel() != CodeGenOpt::None) { 710 if (EnableLoadStoreOpt) 711 addPass(createAArch64LoadStoreOptimizationPass()); 712 } 713 714 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 715 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 716 // Therefore, run the AArch64SpeculationHardeningPass before the 717 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 718 // info. 719 addPass(createAArch64SpeculationHardeningPass()); 720 721 addPass(createAArch64IndirectThunks()); 722 addPass(createAArch64SLSHardeningPass()); 723 724 if (TM->getOptLevel() != CodeGenOpt::None) { 725 if (EnableFalkorHWPFFix) 726 addPass(createFalkorHWPFFixPass()); 727 } 728 } 729 730 void AArch64PassConfig::addPreEmitPass() { 731 // Machine Block Placement might have created new opportunities when run 732 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 733 // Run the load/store optimizer once more. 734 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 735 addPass(createAArch64LoadStoreOptimizationPass()); 736 737 if (EnableA53Fix835769) 738 addPass(createAArch64A53Fix835769()); 739 740 if (EnableBranchTargets) 741 addPass(createAArch64BranchTargetsPass()); 742 743 // Relax conditional branch instructions if they're otherwise out of 744 // range of their destination. 745 if (BranchRelaxation) 746 addPass(&BranchRelaxationPassID); 747 748 if (TM->getTargetTriple().isOSWindows()) { 749 // Identify valid longjmp targets for Windows Control Flow Guard. 750 addPass(createCFGuardLongjmpPass()); 751 // Identify valid eh continuation targets for Windows EHCont Guard. 752 addPass(createEHContGuardCatchretPass()); 753 } 754 755 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 756 addPass(createAArch64CompressJumpTablesPass()); 757 758 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 759 TM->getTargetTriple().isOSBinFormatMachO()) 760 addPass(createAArch64CollectLOHPass()); 761 } 762 763 void AArch64PassConfig::addPreEmitPass2() { 764 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 765 // instructions are lowered to bundles as well. 766 addPass(createUnpackMachineBundles(nullptr)); 767 } 768 769 yaml::MachineFunctionInfo * 770 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 771 return new yaml::AArch64FunctionInfo(); 772 } 773 774 yaml::MachineFunctionInfo * 775 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 776 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 777 return new yaml::AArch64FunctionInfo(*MFI); 778 } 779 780 bool AArch64TargetMachine::parseMachineFunctionInfo( 781 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 782 SMDiagnostic &Error, SMRange &SourceRange) const { 783 const auto &YamlMFI = 784 reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); 785 MachineFunction &MF = PFS.MF; 786 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 787 return false; 788 } 789