1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "TargetInfo/AArch64TargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 27 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 28 #include "llvm/CodeGen/GlobalISel/Localizer.h" 29 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 30 #include "llvm/CodeGen/MIRParser/MIParser.h" 31 #include "llvm/CodeGen/MachineScheduler.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCTargetOptions.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CodeGen.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Target/TargetLoweringObjectFile.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include "llvm/Transforms/CFGuard.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include <memory> 48 #include <string> 49 50 using namespace llvm; 51 52 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 53 cl::desc("Enable the CCMP formation pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> 57 EnableCondBrTuning("aarch64-enable-cond-br-tune", 58 cl::desc("Enable the conditional branch tuning pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 62 cl::desc("Enable the machine combiner pass"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 66 cl::desc("Suppress STP for AArch64"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> EnableAdvSIMDScalar( 70 "aarch64-enable-simd-scalar", 71 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 72 cl::init(false), cl::Hidden); 73 74 static cl::opt<bool> 75 EnablePromoteConstant("aarch64-enable-promote-const", 76 cl::desc("Enable the promote constant pass"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> EnableCollectLOH( 80 "aarch64-enable-collect-loh", 81 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<bool> 85 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 86 cl::desc("Enable the pass that removes dead" 87 " definitons and replaces stores to" 88 " them with stores to the zero" 89 " register"), 90 cl::init(true)); 91 92 static cl::opt<bool> EnableRedundantCopyElimination( 93 "aarch64-enable-copyelim", 94 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 95 cl::Hidden); 96 97 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 98 cl::desc("Enable the load/store pair" 99 " optimization pass"), 100 cl::init(true), cl::Hidden); 101 102 static cl::opt<bool> EnableAtomicTidy( 103 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 104 cl::desc("Run SimplifyCFG after expanding atomic operations" 105 " to make use of cmpxchg flow-based information"), 106 cl::init(true)); 107 108 static cl::opt<bool> 109 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 110 cl::desc("Run early if-conversion"), 111 cl::init(true)); 112 113 static cl::opt<bool> 114 EnableCondOpt("aarch64-enable-condopt", 115 cl::desc("Enable the condition optimizer pass"), 116 cl::init(true), cl::Hidden); 117 118 static cl::opt<bool> 119 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 120 cl::desc("Work around Cortex-A53 erratum 835769"), 121 cl::init(false)); 122 123 static cl::opt<bool> 124 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 125 cl::desc("Enable optimizations on complex GEPs"), 126 cl::init(false)); 127 128 static cl::opt<bool> 129 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 130 cl::desc("Relax out of range conditional branches")); 131 132 static cl::opt<bool> EnableCompressJumpTables( 133 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 134 cl::desc("Use smallest entry possible for jump tables")); 135 136 // FIXME: Unify control over GlobalMerge. 137 static cl::opt<cl::boolOrDefault> 138 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 139 cl::desc("Enable the global merge pass")); 140 141 static cl::opt<bool> 142 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 143 cl::desc("Enable the loop data prefetch pass"), 144 cl::init(true)); 145 146 static cl::opt<int> EnableGlobalISelAtO( 147 "aarch64-enable-global-isel-at-O", cl::Hidden, 148 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 149 cl::init(0)); 150 151 static cl::opt<bool> 152 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 153 cl::desc("Enable SVE intrinsic opts"), 154 cl::init(true)); 155 156 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 157 cl::init(true), cl::Hidden); 158 159 static cl::opt<bool> 160 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 161 cl::desc("Enable the AAcrh64 branch target pass"), 162 cl::init(true)); 163 164 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 165 // Register the target. 166 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 167 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 168 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 169 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 170 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 171 auto PR = PassRegistry::getPassRegistry(); 172 initializeGlobalISel(*PR); 173 initializeAArch64A53Fix835769Pass(*PR); 174 initializeAArch64A57FPLoadBalancingPass(*PR); 175 initializeAArch64AdvSIMDScalarPass(*PR); 176 initializeAArch64BranchTargetsPass(*PR); 177 initializeAArch64CollectLOHPass(*PR); 178 initializeAArch64CompressJumpTablesPass(*PR); 179 initializeAArch64ConditionalComparesPass(*PR); 180 initializeAArch64ConditionOptimizerPass(*PR); 181 initializeAArch64DeadRegisterDefinitionsPass(*PR); 182 initializeAArch64ExpandPseudoPass(*PR); 183 initializeAArch64LoadStoreOptPass(*PR); 184 initializeAArch64SIMDInstrOptPass(*PR); 185 initializeAArch64PreLegalizerCombinerPass(*PR); 186 initializeAArch64PostLegalizerCombinerPass(*PR); 187 initializeAArch64PromoteConstantPass(*PR); 188 initializeAArch64RedundantCopyEliminationPass(*PR); 189 initializeAArch64StorePairSuppressPass(*PR); 190 initializeFalkorHWPFFixPass(*PR); 191 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 192 initializeLDTLSCleanupPass(*PR); 193 initializeSVEIntrinsicOptsPass(*PR); 194 initializeAArch64SpeculationHardeningPass(*PR); 195 initializeAArch64SLSHardeningPass(*PR); 196 initializeAArch64StackTaggingPass(*PR); 197 initializeAArch64StackTaggingPreRAPass(*PR); 198 } 199 200 //===----------------------------------------------------------------------===// 201 // AArch64 Lowering public interface. 202 //===----------------------------------------------------------------------===// 203 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 204 if (TT.isOSBinFormatMachO()) 205 return std::make_unique<AArch64_MachoTargetObjectFile>(); 206 if (TT.isOSBinFormatCOFF()) 207 return std::make_unique<AArch64_COFFTargetObjectFile>(); 208 209 return std::make_unique<AArch64_ELFTargetObjectFile>(); 210 } 211 212 // Helper function to build a DataLayout string 213 static std::string computeDataLayout(const Triple &TT, 214 const MCTargetOptions &Options, 215 bool LittleEndian) { 216 if (Options.getABIName() == "ilp32") 217 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128"; 218 if (TT.isOSBinFormatMachO()) { 219 if (TT.getArch() == Triple::aarch64_32) 220 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 221 return "e-m:o-i64:64-i128:128-n32:64-S128"; 222 } 223 if (TT.isOSBinFormatCOFF()) 224 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 225 if (LittleEndian) 226 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 227 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 228 } 229 230 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 231 Optional<Reloc::Model> RM) { 232 // AArch64 Darwin and Windows are always PIC. 233 if (TT.isOSDarwin() || TT.isOSWindows()) 234 return Reloc::PIC_; 235 // On ELF platforms the default static relocation model has a smart enough 236 // linker to cope with referencing external symbols defined in a shared 237 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 238 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 239 return Reloc::Static; 240 return *RM; 241 } 242 243 static CodeModel::Model 244 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 245 bool JIT) { 246 if (CM) { 247 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 248 *CM != CodeModel::Large) { 249 report_fatal_error( 250 "Only small, tiny and large code models are allowed on AArch64"); 251 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 252 report_fatal_error("tiny code model is only supported on ELF"); 253 return *CM; 254 } 255 // The default MCJIT memory managers make no guarantees about where they can 256 // find an executable page; JITed code needs to be able to refer to globals 257 // no matter how far away they are. 258 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 259 // since with large code model LLVM generating 4 MOV instructions, and 260 // Windows doesn't support relocating these long branch (4 MOVs). 261 if (JIT && !TT.isOSWindows()) 262 return CodeModel::Large; 263 return CodeModel::Small; 264 } 265 266 /// Create an AArch64 architecture model. 267 /// 268 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 269 StringRef CPU, StringRef FS, 270 const TargetOptions &Options, 271 Optional<Reloc::Model> RM, 272 Optional<CodeModel::Model> CM, 273 CodeGenOpt::Level OL, bool JIT, 274 bool LittleEndian) 275 : LLVMTargetMachine(T, 276 computeDataLayout(TT, Options.MCOptions, LittleEndian), 277 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), 278 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 279 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 280 initAsmInfo(); 281 282 if (TT.isOSBinFormatMachO()) { 283 this->Options.TrapUnreachable = true; 284 this->Options.NoTrapAfterNoreturn = true; 285 } 286 287 if (getMCAsmInfo()->usesWindowsCFI()) { 288 // Unwinding can get confused if the last instruction in an 289 // exception-handling region (function, funclet, try block, etc.) 290 // is a call. 291 // 292 // FIXME: We could elide the trap if the next instruction would be in 293 // the same region anyway. 294 this->Options.TrapUnreachable = true; 295 } 296 297 if (this->Options.TLSSize == 0) // default 298 this->Options.TLSSize = 24; 299 if ((getCodeModel() == CodeModel::Small || 300 getCodeModel() == CodeModel::Kernel) && 301 this->Options.TLSSize > 32) 302 // for the small (and kernel) code model, the maximum TLS size is 4GiB 303 this->Options.TLSSize = 32; 304 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 305 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 306 this->Options.TLSSize = 24; 307 308 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 309 // MachO/CodeModel::Large, which GlobalISel does not support. 310 if (getOptLevel() <= EnableGlobalISelAtO && 311 TT.getArch() != Triple::aarch64_32 && 312 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 313 setGlobalISel(true); 314 setGlobalISelAbort(GlobalISelAbortMode::Disable); 315 } 316 317 // AArch64 supports the MachineOutliner. 318 setMachineOutliner(true); 319 320 // AArch64 supports default outlining behaviour. 321 setSupportsDefaultOutlining(true); 322 323 // AArch64 supports the debug entry values. 324 setSupportsDebugEntryValues(true); 325 } 326 327 AArch64TargetMachine::~AArch64TargetMachine() = default; 328 329 const AArch64Subtarget * 330 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 331 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 332 Attribute FSAttr = F.getFnAttribute("target-features"); 333 334 std::string CPU = 335 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 336 std::string FS = 337 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 338 339 auto &I = SubtargetMap[CPU + FS]; 340 if (!I) { 341 // This needs to be done before we create a new subtarget since any 342 // creation will depend on the TM and the code generation flags on the 343 // function that reside in TargetOptions. 344 resetTargetOptions(F); 345 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 346 isLittle); 347 } 348 return I.get(); 349 } 350 351 void AArch64leTargetMachine::anchor() { } 352 353 AArch64leTargetMachine::AArch64leTargetMachine( 354 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 355 const TargetOptions &Options, Optional<Reloc::Model> RM, 356 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 357 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 358 359 void AArch64beTargetMachine::anchor() { } 360 361 AArch64beTargetMachine::AArch64beTargetMachine( 362 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 363 const TargetOptions &Options, Optional<Reloc::Model> RM, 364 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 365 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 366 367 namespace { 368 369 /// AArch64 Code Generator Pass Configuration Options. 370 class AArch64PassConfig : public TargetPassConfig { 371 public: 372 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 373 : TargetPassConfig(TM, PM) { 374 if (TM.getOptLevel() != CodeGenOpt::None) 375 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 376 } 377 378 AArch64TargetMachine &getAArch64TargetMachine() const { 379 return getTM<AArch64TargetMachine>(); 380 } 381 382 ScheduleDAGInstrs * 383 createMachineScheduler(MachineSchedContext *C) const override { 384 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 385 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 386 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 387 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 388 if (ST.hasFusion()) 389 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 390 return DAG; 391 } 392 393 ScheduleDAGInstrs * 394 createPostMachineScheduler(MachineSchedContext *C) const override { 395 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 396 if (ST.hasFusion()) { 397 // Run the Macro Fusion after RA again since literals are expanded from 398 // pseudos then (v. addPreSched2()). 399 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 400 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 401 return DAG; 402 } 403 404 return nullptr; 405 } 406 407 void addIRPasses() override; 408 bool addPreISel() override; 409 bool addInstSelector() override; 410 bool addIRTranslator() override; 411 void addPreLegalizeMachineIR() override; 412 bool addLegalizeMachineIR() override; 413 void addPreRegBankSelect() override; 414 bool addRegBankSelect() override; 415 void addPreGlobalInstructionSelect() override; 416 bool addGlobalInstructionSelect() override; 417 bool addILPOpts() override; 418 void addPreRegAlloc() override; 419 void addPostRegAlloc() override; 420 void addPreSched2() override; 421 void addPreEmitPass() override; 422 423 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 424 }; 425 426 } // end anonymous namespace 427 428 TargetTransformInfo 429 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 430 return TargetTransformInfo(AArch64TTIImpl(this, F)); 431 } 432 433 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 434 return new AArch64PassConfig(*this, PM); 435 } 436 437 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 438 return getStandardCSEConfigForOpt(TM->getOptLevel()); 439 } 440 441 void AArch64PassConfig::addIRPasses() { 442 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 443 // ourselves. 444 addPass(createAtomicExpandPass()); 445 446 // Expand any SVE vector library calls that we can't code generate directly. 447 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 448 addPass(createSVEIntrinsicOptsPass()); 449 450 // Cmpxchg instructions are often used with a subsequent comparison to 451 // determine whether it succeeded. We can exploit existing control-flow in 452 // ldrex/strex loops to simplify this, but it needs tidying up. 453 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 454 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 455 .forwardSwitchCondToPhi(true) 456 .convertSwitchToLookupTable(true) 457 .needCanonicalLoops(false) 458 .hoistCommonInsts(true) 459 .sinkCommonInsts(true))); 460 461 // Run LoopDataPrefetch 462 // 463 // Run this before LSR to remove the multiplies involved in computing the 464 // pointer values N iterations ahead. 465 if (TM->getOptLevel() != CodeGenOpt::None) { 466 if (EnableLoopDataPrefetch) 467 addPass(createLoopDataPrefetchPass()); 468 if (EnableFalkorHWPFFix) 469 addPass(createFalkorMarkStridedAccessesPass()); 470 } 471 472 TargetPassConfig::addIRPasses(); 473 474 addPass(createAArch64StackTaggingPass( 475 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 476 477 // Match interleaved memory accesses to ldN/stN intrinsics. 478 if (TM->getOptLevel() != CodeGenOpt::None) { 479 addPass(createInterleavedLoadCombinePass()); 480 addPass(createInterleavedAccessPass()); 481 } 482 483 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 484 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 485 // and lower a GEP with multiple indices to either arithmetic operations or 486 // multiple GEPs with single index. 487 addPass(createSeparateConstOffsetFromGEPPass(true)); 488 // Call EarlyCSE pass to find and remove subexpressions in the lowered 489 // result. 490 addPass(createEarlyCSEPass()); 491 // Do loop invariant code motion in case part of the lowered result is 492 // invariant. 493 addPass(createLICMPass()); 494 } 495 496 // Add Control Flow Guard checks. 497 if (TM->getTargetTriple().isOSWindows()) 498 addPass(createCFGuardCheckPass()); 499 } 500 501 // Pass Pipeline Configuration 502 bool AArch64PassConfig::addPreISel() { 503 // Run promote constant before global merge, so that the promoted constants 504 // get a chance to be merged 505 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 506 addPass(createAArch64PromoteConstantPass()); 507 // FIXME: On AArch64, this depends on the type. 508 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 509 // and the offset has to be a multiple of the related size in bytes. 510 if ((TM->getOptLevel() != CodeGenOpt::None && 511 EnableGlobalMerge == cl::BOU_UNSET) || 512 EnableGlobalMerge == cl::BOU_TRUE) { 513 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 514 (EnableGlobalMerge == cl::BOU_UNSET); 515 516 // Merging of extern globals is enabled by default on non-Mach-O as we 517 // expect it to be generally either beneficial or harmless. On Mach-O it 518 // is disabled as we emit the .subsections_via_symbols directive which 519 // means that merging extern globals is not safe. 520 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 521 522 // FIXME: extern global merging is only enabled when we optimise for size 523 // because there are some regressions with it also enabled for performance. 524 if (!OnlyOptimizeForSize) 525 MergeExternalByDefault = false; 526 527 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 528 MergeExternalByDefault)); 529 } 530 531 return false; 532 } 533 534 bool AArch64PassConfig::addInstSelector() { 535 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 536 537 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 538 // references to _TLS_MODULE_BASE_ as possible. 539 if (TM->getTargetTriple().isOSBinFormatELF() && 540 getOptLevel() != CodeGenOpt::None) 541 addPass(createAArch64CleanupLocalDynamicTLSPass()); 542 543 return false; 544 } 545 546 bool AArch64PassConfig::addIRTranslator() { 547 addPass(new IRTranslator(getOptLevel())); 548 return false; 549 } 550 551 void AArch64PassConfig::addPreLegalizeMachineIR() { 552 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 553 addPass(createAArch64PreLegalizeCombiner(IsOptNone)); 554 } 555 556 bool AArch64PassConfig::addLegalizeMachineIR() { 557 addPass(new Legalizer()); 558 return false; 559 } 560 561 void AArch64PassConfig::addPreRegBankSelect() { 562 // For now we don't add this to the pipeline for -O0. We could do in future 563 // if we split the combines into separate O0/opt groupings. 564 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 565 if (!IsOptNone) 566 addPass(createAArch64PostLegalizeCombiner(IsOptNone)); 567 } 568 569 bool AArch64PassConfig::addRegBankSelect() { 570 addPass(new RegBankSelect()); 571 return false; 572 } 573 574 void AArch64PassConfig::addPreGlobalInstructionSelect() { 575 addPass(new Localizer()); 576 } 577 578 bool AArch64PassConfig::addGlobalInstructionSelect() { 579 addPass(new InstructionSelect()); 580 return false; 581 } 582 583 bool AArch64PassConfig::addILPOpts() { 584 if (EnableCondOpt) 585 addPass(createAArch64ConditionOptimizerPass()); 586 if (EnableCCMP) 587 addPass(createAArch64ConditionalCompares()); 588 if (EnableMCR) 589 addPass(&MachineCombinerID); 590 if (EnableCondBrTuning) 591 addPass(createAArch64CondBrTuning()); 592 if (EnableEarlyIfConversion) 593 addPass(&EarlyIfConverterID); 594 if (EnableStPairSuppress) 595 addPass(createAArch64StorePairSuppressPass()); 596 addPass(createAArch64SIMDInstrOptPass()); 597 if (TM->getOptLevel() != CodeGenOpt::None) 598 addPass(createAArch64StackTaggingPreRAPass()); 599 return true; 600 } 601 602 void AArch64PassConfig::addPreRegAlloc() { 603 // Change dead register definitions to refer to the zero register. 604 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 605 addPass(createAArch64DeadRegisterDefinitions()); 606 607 // Use AdvSIMD scalar instructions whenever profitable. 608 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 609 addPass(createAArch64AdvSIMDScalar()); 610 // The AdvSIMD pass may produce copies that can be rewritten to 611 // be register coalescer friendly. 612 addPass(&PeepholeOptimizerID); 613 } 614 } 615 616 void AArch64PassConfig::addPostRegAlloc() { 617 // Remove redundant copy instructions. 618 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 619 addPass(createAArch64RedundantCopyEliminationPass()); 620 621 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 622 // Improve performance for some FP/SIMD code for A57. 623 addPass(createAArch64A57FPLoadBalancing()); 624 } 625 626 void AArch64PassConfig::addPreSched2() { 627 // Expand some pseudo instructions to allow proper scheduling. 628 addPass(createAArch64ExpandPseudoPass()); 629 // Use load/store pair instructions when possible. 630 if (TM->getOptLevel() != CodeGenOpt::None) { 631 if (EnableLoadStoreOpt) 632 addPass(createAArch64LoadStoreOptimizationPass()); 633 } 634 635 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 636 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 637 // Therefore, run the AArch64SpeculationHardeningPass before the 638 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 639 // info. 640 addPass(createAArch64SpeculationHardeningPass()); 641 642 addPass(createAArch64IndirectThunks()); 643 addPass(createAArch64SLSHardeningPass()); 644 645 if (TM->getOptLevel() != CodeGenOpt::None) { 646 if (EnableFalkorHWPFFix) 647 addPass(createFalkorHWPFFixPass()); 648 } 649 } 650 651 void AArch64PassConfig::addPreEmitPass() { 652 // Machine Block Placement might have created new opportunities when run 653 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 654 // Run the load/store optimizer once more. 655 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 656 addPass(createAArch64LoadStoreOptimizationPass()); 657 658 if (EnableA53Fix835769) 659 addPass(createAArch64A53Fix835769()); 660 661 if (EnableBranchTargets) 662 addPass(createAArch64BranchTargetsPass()); 663 664 // Relax conditional branch instructions if they're otherwise out of 665 // range of their destination. 666 if (BranchRelaxation) 667 addPass(&BranchRelaxationPassID); 668 669 // Identify valid longjmp targets for Windows Control Flow Guard. 670 if (TM->getTargetTriple().isOSWindows()) 671 addPass(createCFGuardLongjmpPass()); 672 673 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 674 addPass(createAArch64CompressJumpTablesPass()); 675 676 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 677 TM->getTargetTriple().isOSBinFormatMachO()) 678 addPass(createAArch64CollectLOHPass()); 679 680 // SVE bundles move prefixes with destructive operations. 681 addPass(createUnpackMachineBundles(nullptr)); 682 } 683 684 yaml::MachineFunctionInfo * 685 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 686 return new yaml::AArch64FunctionInfo(); 687 } 688 689 yaml::MachineFunctionInfo * 690 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 691 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 692 return new yaml::AArch64FunctionInfo(*MFI); 693 } 694 695 bool AArch64TargetMachine::parseMachineFunctionInfo( 696 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 697 SMDiagnostic &Error, SMRange &SourceRange) const { 698 const auto &YamlMFI = 699 reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); 700 MachineFunction &MF = PFS.MF; 701 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 702 return false; 703 } 704