1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "TargetInfo/AArch64TargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 27 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 28 #include "llvm/CodeGen/GlobalISel/Localizer.h" 29 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 30 #include "llvm/CodeGen/MIRParser/MIParser.h" 31 #include "llvm/CodeGen/MachineScheduler.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCTargetOptions.h" 39 #include "llvm/MC/TargetRegistry.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/CodeGen.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Target/TargetLoweringObjectFile.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include "llvm/Transforms/CFGuard.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include <memory> 48 #include <string> 49 50 using namespace llvm; 51 52 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 53 cl::desc("Enable the CCMP formation pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> 57 EnableCondBrTuning("aarch64-enable-cond-br-tune", 58 cl::desc("Enable the conditional branch tuning pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 62 cl::desc("Enable the machine combiner pass"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 66 cl::desc("Suppress STP for AArch64"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> EnableAdvSIMDScalar( 70 "aarch64-enable-simd-scalar", 71 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 72 cl::init(false), cl::Hidden); 73 74 static cl::opt<bool> 75 EnablePromoteConstant("aarch64-enable-promote-const", 76 cl::desc("Enable the promote constant pass"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> EnableCollectLOH( 80 "aarch64-enable-collect-loh", 81 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<bool> 85 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 86 cl::desc("Enable the pass that removes dead" 87 " definitons and replaces stores to" 88 " them with stores to the zero" 89 " register"), 90 cl::init(true)); 91 92 static cl::opt<bool> EnableRedundantCopyElimination( 93 "aarch64-enable-copyelim", 94 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 95 cl::Hidden); 96 97 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 98 cl::desc("Enable the load/store pair" 99 " optimization pass"), 100 cl::init(true), cl::Hidden); 101 102 static cl::opt<bool> EnableAtomicTidy( 103 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 104 cl::desc("Run SimplifyCFG after expanding atomic operations" 105 " to make use of cmpxchg flow-based information"), 106 cl::init(true)); 107 108 static cl::opt<bool> 109 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 110 cl::desc("Run early if-conversion"), 111 cl::init(true)); 112 113 static cl::opt<bool> 114 EnableCondOpt("aarch64-enable-condopt", 115 cl::desc("Enable the condition optimizer pass"), 116 cl::init(true), cl::Hidden); 117 118 static cl::opt<bool> 119 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 120 cl::desc("Work around Cortex-A53 erratum 835769"), 121 cl::init(false)); 122 123 static cl::opt<bool> 124 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 125 cl::desc("Enable optimizations on complex GEPs"), 126 cl::init(false)); 127 128 static cl::opt<bool> 129 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 130 cl::desc("Relax out of range conditional branches")); 131 132 static cl::opt<bool> EnableCompressJumpTables( 133 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 134 cl::desc("Use smallest entry possible for jump tables")); 135 136 // FIXME: Unify control over GlobalMerge. 137 static cl::opt<cl::boolOrDefault> 138 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 139 cl::desc("Enable the global merge pass")); 140 141 static cl::opt<bool> 142 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 143 cl::desc("Enable the loop data prefetch pass"), 144 cl::init(true)); 145 146 static cl::opt<int> EnableGlobalISelAtO( 147 "aarch64-enable-global-isel-at-O", cl::Hidden, 148 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 149 cl::init(0)); 150 151 static cl::opt<bool> 152 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 153 cl::desc("Enable SVE intrinsic opts"), 154 cl::init(true)); 155 156 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 157 cl::init(true), cl::Hidden); 158 159 static cl::opt<bool> 160 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 161 cl::desc("Enable the AArch64 branch target pass"), 162 cl::init(true)); 163 164 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 165 "aarch64-sve-vector-bits-max", 166 cl::desc("Assume SVE vector registers are at most this big, " 167 "with zero meaning no maximum size is assumed."), 168 cl::init(0), cl::Hidden); 169 170 static cl::opt<unsigned> SVEVectorBitsMinOpt( 171 "aarch64-sve-vector-bits-min", 172 cl::desc("Assume SVE vector registers are at least this big, " 173 "with zero meaning no minimum size is assumed."), 174 cl::init(0), cl::Hidden); 175 176 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 177 178 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 179 // Register the target. 180 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 181 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 182 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 183 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 184 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 185 auto PR = PassRegistry::getPassRegistry(); 186 initializeGlobalISel(*PR); 187 initializeAArch64A53Fix835769Pass(*PR); 188 initializeAArch64A57FPLoadBalancingPass(*PR); 189 initializeAArch64AdvSIMDScalarPass(*PR); 190 initializeAArch64BranchTargetsPass(*PR); 191 initializeAArch64CollectLOHPass(*PR); 192 initializeAArch64CompressJumpTablesPass(*PR); 193 initializeAArch64ConditionalComparesPass(*PR); 194 initializeAArch64ConditionOptimizerPass(*PR); 195 initializeAArch64DeadRegisterDefinitionsPass(*PR); 196 initializeAArch64ExpandPseudoPass(*PR); 197 initializeAArch64LoadStoreOptPass(*PR); 198 initializeAArch64MIPeepholeOptPass(*PR); 199 initializeAArch64SIMDInstrOptPass(*PR); 200 initializeAArch64O0PreLegalizerCombinerPass(*PR); 201 initializeAArch64PreLegalizerCombinerPass(*PR); 202 initializeAArch64PostLegalizerCombinerPass(*PR); 203 initializeAArch64PostLegalizerLoweringPass(*PR); 204 initializeAArch64PostSelectOptimizePass(*PR); 205 initializeAArch64PromoteConstantPass(*PR); 206 initializeAArch64RedundantCopyEliminationPass(*PR); 207 initializeAArch64StorePairSuppressPass(*PR); 208 initializeFalkorHWPFFixPass(*PR); 209 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 210 initializeLDTLSCleanupPass(*PR); 211 initializeSVEIntrinsicOptsPass(*PR); 212 initializeAArch64SpeculationHardeningPass(*PR); 213 initializeAArch64SLSHardeningPass(*PR); 214 initializeAArch64StackTaggingPass(*PR); 215 initializeAArch64StackTaggingPreRAPass(*PR); 216 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 217 } 218 219 //===----------------------------------------------------------------------===// 220 // AArch64 Lowering public interface. 221 //===----------------------------------------------------------------------===// 222 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 223 if (TT.isOSBinFormatMachO()) 224 return std::make_unique<AArch64_MachoTargetObjectFile>(); 225 if (TT.isOSBinFormatCOFF()) 226 return std::make_unique<AArch64_COFFTargetObjectFile>(); 227 228 return std::make_unique<AArch64_ELFTargetObjectFile>(); 229 } 230 231 // Helper function to build a DataLayout string 232 static std::string computeDataLayout(const Triple &TT, 233 const MCTargetOptions &Options, 234 bool LittleEndian) { 235 if (TT.isOSBinFormatMachO()) { 236 if (TT.getArch() == Triple::aarch64_32) 237 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 238 return "e-m:o-i64:64-i128:128-n32:64-S128"; 239 } 240 if (TT.isOSBinFormatCOFF()) 241 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 242 std::string Endian = LittleEndian ? "e" : "E"; 243 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 244 return Endian + "-m:e" + Ptr32 + 245 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 246 } 247 248 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 249 if (CPU.empty() && TT.isArm64e()) 250 return "apple-a12"; 251 return CPU; 252 } 253 254 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 255 Optional<Reloc::Model> RM) { 256 // AArch64 Darwin and Windows are always PIC. 257 if (TT.isOSDarwin() || TT.isOSWindows()) 258 return Reloc::PIC_; 259 // On ELF platforms the default static relocation model has a smart enough 260 // linker to cope with referencing external symbols defined in a shared 261 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 262 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 263 return Reloc::Static; 264 return *RM; 265 } 266 267 static CodeModel::Model 268 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 269 bool JIT) { 270 if (CM) { 271 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 272 *CM != CodeModel::Large) { 273 report_fatal_error( 274 "Only small, tiny and large code models are allowed on AArch64"); 275 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 276 report_fatal_error("tiny code model is only supported on ELF"); 277 return *CM; 278 } 279 // The default MCJIT memory managers make no guarantees about where they can 280 // find an executable page; JITed code needs to be able to refer to globals 281 // no matter how far away they are. 282 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 283 // since with large code model LLVM generating 4 MOV instructions, and 284 // Windows doesn't support relocating these long branch (4 MOVs). 285 if (JIT && !TT.isOSWindows()) 286 return CodeModel::Large; 287 return CodeModel::Small; 288 } 289 290 /// Create an AArch64 architecture model. 291 /// 292 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 293 StringRef CPU, StringRef FS, 294 const TargetOptions &Options, 295 Optional<Reloc::Model> RM, 296 Optional<CodeModel::Model> CM, 297 CodeGenOpt::Level OL, bool JIT, 298 bool LittleEndian) 299 : LLVMTargetMachine(T, 300 computeDataLayout(TT, Options.MCOptions, LittleEndian), 301 TT, computeDefaultCPU(TT, CPU), FS, Options, 302 getEffectiveRelocModel(TT, RM), 303 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 304 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 305 initAsmInfo(); 306 307 if (TT.isOSBinFormatMachO()) { 308 this->Options.TrapUnreachable = true; 309 this->Options.NoTrapAfterNoreturn = true; 310 } 311 312 if (getMCAsmInfo()->usesWindowsCFI()) { 313 // Unwinding can get confused if the last instruction in an 314 // exception-handling region (function, funclet, try block, etc.) 315 // is a call. 316 // 317 // FIXME: We could elide the trap if the next instruction would be in 318 // the same region anyway. 319 this->Options.TrapUnreachable = true; 320 } 321 322 if (this->Options.TLSSize == 0) // default 323 this->Options.TLSSize = 24; 324 if ((getCodeModel() == CodeModel::Small || 325 getCodeModel() == CodeModel::Kernel) && 326 this->Options.TLSSize > 32) 327 // for the small (and kernel) code model, the maximum TLS size is 4GiB 328 this->Options.TLSSize = 32; 329 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 330 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 331 this->Options.TLSSize = 24; 332 333 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 334 // MachO/CodeModel::Large, which GlobalISel does not support. 335 if (getOptLevel() <= EnableGlobalISelAtO && 336 TT.getArch() != Triple::aarch64_32 && 337 TT.getEnvironment() != Triple::GNUILP32 && 338 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 339 setGlobalISel(true); 340 setGlobalISelAbort(GlobalISelAbortMode::Disable); 341 } 342 343 // AArch64 supports the MachineOutliner. 344 setMachineOutliner(true); 345 346 // AArch64 supports default outlining behaviour. 347 setSupportsDefaultOutlining(true); 348 349 // AArch64 supports the debug entry values. 350 setSupportsDebugEntryValues(true); 351 } 352 353 AArch64TargetMachine::~AArch64TargetMachine() = default; 354 355 const AArch64Subtarget * 356 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 357 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 358 Attribute FSAttr = F.getFnAttribute("target-features"); 359 360 std::string CPU = 361 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 362 std::string FS = 363 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 364 365 SmallString<512> Key; 366 367 unsigned MinSVEVectorSize = 0; 368 unsigned MaxSVEVectorSize = 0; 369 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 370 if (VScaleRangeAttr.isValid()) { 371 std::tie(MinSVEVectorSize, MaxSVEVectorSize) = 372 VScaleRangeAttr.getVScaleRangeArgs(); 373 MinSVEVectorSize *= 128; 374 MaxSVEVectorSize *= 128; 375 } else { 376 MinSVEVectorSize = SVEVectorBitsMinOpt; 377 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 378 } 379 380 assert(MinSVEVectorSize % 128 == 0 && 381 "SVE requires vector length in multiples of 128!"); 382 assert(MaxSVEVectorSize % 128 == 0 && 383 "SVE requires vector length in multiples of 128!"); 384 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 385 "Minimum SVE vector size should not be larger than its maximum!"); 386 387 // Sanitize user input in case of no asserts 388 if (MaxSVEVectorSize == 0) 389 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 390 else { 391 MinSVEVectorSize = 392 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 393 MaxSVEVectorSize = 394 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 395 } 396 397 Key += "SVEMin"; 398 Key += std::to_string(MinSVEVectorSize); 399 Key += "SVEMax"; 400 Key += std::to_string(MaxSVEVectorSize); 401 Key += CPU; 402 Key += FS; 403 404 auto &I = SubtargetMap[Key]; 405 if (!I) { 406 // This needs to be done before we create a new subtarget since any 407 // creation will depend on the TM and the code generation flags on the 408 // function that reside in TargetOptions. 409 resetTargetOptions(F); 410 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 411 isLittle, MinSVEVectorSize, 412 MaxSVEVectorSize); 413 } 414 return I.get(); 415 } 416 417 void AArch64leTargetMachine::anchor() { } 418 419 AArch64leTargetMachine::AArch64leTargetMachine( 420 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 421 const TargetOptions &Options, Optional<Reloc::Model> RM, 422 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 423 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 424 425 void AArch64beTargetMachine::anchor() { } 426 427 AArch64beTargetMachine::AArch64beTargetMachine( 428 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 429 const TargetOptions &Options, Optional<Reloc::Model> RM, 430 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 431 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 432 433 namespace { 434 435 /// AArch64 Code Generator Pass Configuration Options. 436 class AArch64PassConfig : public TargetPassConfig { 437 public: 438 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 439 : TargetPassConfig(TM, PM) { 440 if (TM.getOptLevel() != CodeGenOpt::None) 441 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 442 } 443 444 AArch64TargetMachine &getAArch64TargetMachine() const { 445 return getTM<AArch64TargetMachine>(); 446 } 447 448 ScheduleDAGInstrs * 449 createMachineScheduler(MachineSchedContext *C) const override { 450 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 451 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 452 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 453 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 454 if (ST.hasFusion()) 455 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 456 return DAG; 457 } 458 459 ScheduleDAGInstrs * 460 createPostMachineScheduler(MachineSchedContext *C) const override { 461 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 462 if (ST.hasFusion()) { 463 // Run the Macro Fusion after RA again since literals are expanded from 464 // pseudos then (v. addPreSched2()). 465 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 466 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 467 return DAG; 468 } 469 470 return nullptr; 471 } 472 473 void addIRPasses() override; 474 bool addPreISel() override; 475 void addCodeGenPrepare() override; 476 bool addInstSelector() override; 477 bool addIRTranslator() override; 478 void addPreLegalizeMachineIR() override; 479 bool addLegalizeMachineIR() override; 480 void addPreRegBankSelect() override; 481 bool addRegBankSelect() override; 482 void addPreGlobalInstructionSelect() override; 483 bool addGlobalInstructionSelect() override; 484 void addMachineSSAOptimization() override; 485 bool addILPOpts() override; 486 void addPreRegAlloc() override; 487 void addPostRegAlloc() override; 488 void addPreSched2() override; 489 void addPreEmitPass() override; 490 void addPreEmitPass2() override; 491 492 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 493 }; 494 495 } // end anonymous namespace 496 497 TargetTransformInfo 498 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 499 return TargetTransformInfo(AArch64TTIImpl(this, F)); 500 } 501 502 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 503 return new AArch64PassConfig(*this, PM); 504 } 505 506 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 507 return getStandardCSEConfigForOpt(TM->getOptLevel()); 508 } 509 510 void AArch64PassConfig::addIRPasses() { 511 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 512 // ourselves. 513 addPass(createAtomicExpandPass()); 514 515 // Expand any SVE vector library calls that we can't code generate directly. 516 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 517 addPass(createSVEIntrinsicOptsPass()); 518 519 // Cmpxchg instructions are often used with a subsequent comparison to 520 // determine whether it succeeded. We can exploit existing control-flow in 521 // ldrex/strex loops to simplify this, but it needs tidying up. 522 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 523 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 524 .forwardSwitchCondToPhi(true) 525 .convertSwitchToLookupTable(true) 526 .needCanonicalLoops(false) 527 .hoistCommonInsts(true) 528 .sinkCommonInsts(true))); 529 530 // Run LoopDataPrefetch 531 // 532 // Run this before LSR to remove the multiplies involved in computing the 533 // pointer values N iterations ahead. 534 if (TM->getOptLevel() != CodeGenOpt::None) { 535 if (EnableLoopDataPrefetch) 536 addPass(createLoopDataPrefetchPass()); 537 if (EnableFalkorHWPFFix) 538 addPass(createFalkorMarkStridedAccessesPass()); 539 } 540 541 TargetPassConfig::addIRPasses(); 542 543 addPass(createAArch64StackTaggingPass( 544 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 545 546 // Match interleaved memory accesses to ldN/stN intrinsics. 547 if (TM->getOptLevel() != CodeGenOpt::None) { 548 addPass(createInterleavedLoadCombinePass()); 549 addPass(createInterleavedAccessPass()); 550 } 551 552 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 553 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 554 // and lower a GEP with multiple indices to either arithmetic operations or 555 // multiple GEPs with single index. 556 addPass(createSeparateConstOffsetFromGEPPass(true)); 557 // Call EarlyCSE pass to find and remove subexpressions in the lowered 558 // result. 559 addPass(createEarlyCSEPass()); 560 // Do loop invariant code motion in case part of the lowered result is 561 // invariant. 562 addPass(createLICMPass()); 563 } 564 565 // Add Control Flow Guard checks. 566 if (TM->getTargetTriple().isOSWindows()) 567 addPass(createCFGuardCheckPass()); 568 } 569 570 // Pass Pipeline Configuration 571 bool AArch64PassConfig::addPreISel() { 572 // Run promote constant before global merge, so that the promoted constants 573 // get a chance to be merged 574 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 575 addPass(createAArch64PromoteConstantPass()); 576 // FIXME: On AArch64, this depends on the type. 577 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 578 // and the offset has to be a multiple of the related size in bytes. 579 if ((TM->getOptLevel() != CodeGenOpt::None && 580 EnableGlobalMerge == cl::BOU_UNSET) || 581 EnableGlobalMerge == cl::BOU_TRUE) { 582 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 583 (EnableGlobalMerge == cl::BOU_UNSET); 584 585 // Merging of extern globals is enabled by default on non-Mach-O as we 586 // expect it to be generally either beneficial or harmless. On Mach-O it 587 // is disabled as we emit the .subsections_via_symbols directive which 588 // means that merging extern globals is not safe. 589 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 590 591 // FIXME: extern global merging is only enabled when we optimise for size 592 // because there are some regressions with it also enabled for performance. 593 if (!OnlyOptimizeForSize) 594 MergeExternalByDefault = false; 595 596 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 597 MergeExternalByDefault)); 598 } 599 600 return false; 601 } 602 603 void AArch64PassConfig::addCodeGenPrepare() { 604 if (getOptLevel() != CodeGenOpt::None) 605 addPass(createTypePromotionPass()); 606 TargetPassConfig::addCodeGenPrepare(); 607 } 608 609 bool AArch64PassConfig::addInstSelector() { 610 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 611 612 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 613 // references to _TLS_MODULE_BASE_ as possible. 614 if (TM->getTargetTriple().isOSBinFormatELF() && 615 getOptLevel() != CodeGenOpt::None) 616 addPass(createAArch64CleanupLocalDynamicTLSPass()); 617 618 return false; 619 } 620 621 bool AArch64PassConfig::addIRTranslator() { 622 addPass(new IRTranslator(getOptLevel())); 623 return false; 624 } 625 626 void AArch64PassConfig::addPreLegalizeMachineIR() { 627 if (getOptLevel() == CodeGenOpt::None) 628 addPass(createAArch64O0PreLegalizerCombiner()); 629 else 630 addPass(createAArch64PreLegalizerCombiner()); 631 } 632 633 bool AArch64PassConfig::addLegalizeMachineIR() { 634 addPass(new Legalizer()); 635 return false; 636 } 637 638 void AArch64PassConfig::addPreRegBankSelect() { 639 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 640 if (!IsOptNone) 641 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 642 addPass(createAArch64PostLegalizerLowering()); 643 } 644 645 bool AArch64PassConfig::addRegBankSelect() { 646 addPass(new RegBankSelect()); 647 return false; 648 } 649 650 void AArch64PassConfig::addPreGlobalInstructionSelect() { 651 addPass(new Localizer()); 652 } 653 654 bool AArch64PassConfig::addGlobalInstructionSelect() { 655 addPass(new InstructionSelect(getOptLevel())); 656 if (getOptLevel() != CodeGenOpt::None) 657 addPass(createAArch64PostSelectOptimize()); 658 return false; 659 } 660 661 void AArch64PassConfig::addMachineSSAOptimization() { 662 // Run default MachineSSAOptimization first. 663 TargetPassConfig::addMachineSSAOptimization(); 664 665 if (TM->getOptLevel() != CodeGenOpt::None) 666 addPass(createAArch64MIPeepholeOptPass()); 667 } 668 669 bool AArch64PassConfig::addILPOpts() { 670 if (EnableCondOpt) 671 addPass(createAArch64ConditionOptimizerPass()); 672 if (EnableCCMP) 673 addPass(createAArch64ConditionalCompares()); 674 if (EnableMCR) 675 addPass(&MachineCombinerID); 676 if (EnableCondBrTuning) 677 addPass(createAArch64CondBrTuning()); 678 if (EnableEarlyIfConversion) 679 addPass(&EarlyIfConverterID); 680 if (EnableStPairSuppress) 681 addPass(createAArch64StorePairSuppressPass()); 682 addPass(createAArch64SIMDInstrOptPass()); 683 if (TM->getOptLevel() != CodeGenOpt::None) 684 addPass(createAArch64StackTaggingPreRAPass()); 685 return true; 686 } 687 688 void AArch64PassConfig::addPreRegAlloc() { 689 // Change dead register definitions to refer to the zero register. 690 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 691 addPass(createAArch64DeadRegisterDefinitions()); 692 693 // Use AdvSIMD scalar instructions whenever profitable. 694 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 695 addPass(createAArch64AdvSIMDScalar()); 696 // The AdvSIMD pass may produce copies that can be rewritten to 697 // be register coalescer friendly. 698 addPass(&PeepholeOptimizerID); 699 } 700 } 701 702 void AArch64PassConfig::addPostRegAlloc() { 703 // Remove redundant copy instructions. 704 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 705 addPass(createAArch64RedundantCopyEliminationPass()); 706 707 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 708 // Improve performance for some FP/SIMD code for A57. 709 addPass(createAArch64A57FPLoadBalancing()); 710 } 711 712 void AArch64PassConfig::addPreSched2() { 713 // Lower homogeneous frame instructions 714 if (EnableHomogeneousPrologEpilog) 715 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 716 // Expand some pseudo instructions to allow proper scheduling. 717 addPass(createAArch64ExpandPseudoPass()); 718 // Use load/store pair instructions when possible. 719 if (TM->getOptLevel() != CodeGenOpt::None) { 720 if (EnableLoadStoreOpt) 721 addPass(createAArch64LoadStoreOptimizationPass()); 722 } 723 724 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 725 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 726 // Therefore, run the AArch64SpeculationHardeningPass before the 727 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 728 // info. 729 addPass(createAArch64SpeculationHardeningPass()); 730 731 addPass(createAArch64IndirectThunks()); 732 addPass(createAArch64SLSHardeningPass()); 733 734 if (TM->getOptLevel() != CodeGenOpt::None) { 735 if (EnableFalkorHWPFFix) 736 addPass(createFalkorHWPFFixPass()); 737 } 738 } 739 740 void AArch64PassConfig::addPreEmitPass() { 741 // Machine Block Placement might have created new opportunities when run 742 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 743 // Run the load/store optimizer once more. 744 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 745 addPass(createAArch64LoadStoreOptimizationPass()); 746 747 if (EnableA53Fix835769) 748 addPass(createAArch64A53Fix835769()); 749 750 if (EnableBranchTargets) 751 addPass(createAArch64BranchTargetsPass()); 752 753 // Relax conditional branch instructions if they're otherwise out of 754 // range of their destination. 755 if (BranchRelaxation) 756 addPass(&BranchRelaxationPassID); 757 758 if (TM->getTargetTriple().isOSWindows()) { 759 // Identify valid longjmp targets for Windows Control Flow Guard. 760 addPass(createCFGuardLongjmpPass()); 761 // Identify valid eh continuation targets for Windows EHCont Guard. 762 addPass(createEHContGuardCatchretPass()); 763 } 764 765 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 766 addPass(createAArch64CompressJumpTablesPass()); 767 768 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 769 TM->getTargetTriple().isOSBinFormatMachO()) 770 addPass(createAArch64CollectLOHPass()); 771 } 772 773 void AArch64PassConfig::addPreEmitPass2() { 774 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 775 // instructions are lowered to bundles as well. 776 addPass(createUnpackMachineBundles(nullptr)); 777 } 778 779 yaml::MachineFunctionInfo * 780 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 781 return new yaml::AArch64FunctionInfo(); 782 } 783 784 yaml::MachineFunctionInfo * 785 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 786 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 787 return new yaml::AArch64FunctionInfo(*MFI); 788 } 789 790 bool AArch64TargetMachine::parseMachineFunctionInfo( 791 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 792 SMDiagnostic &Error, SMRange &SourceRange) const { 793 const auto &YamlMFI = 794 reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); 795 MachineFunction &MF = PFS.MF; 796 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 797 return false; 798 } 799