1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MachineScheduler.h" 16 #include "AArch64MacroFusion.h" 17 #include "AArch64Subtarget.h" 18 #include "AArch64TargetObjectFile.h" 19 #include "AArch64TargetTransformInfo.h" 20 #include "MCTargetDesc/AArch64MCTargetDesc.h" 21 #include "TargetInfo/AArch64TargetInfo.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/Analysis/TargetTransformInfo.h" 25 #include "llvm/CodeGen/CFIFixup.h" 26 #include "llvm/CodeGen/CSEConfigBase.h" 27 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/MachineScheduler.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCTargetOptions.h" 43 #include "llvm/MC/TargetRegistry.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CodeGen.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetLoweringObjectFile.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/CFGuard.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include <memory> 52 #include <string> 53 54 using namespace llvm; 55 56 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 57 cl::desc("Enable the CCMP formation pass"), 58 cl::init(true), cl::Hidden); 59 60 static cl::opt<bool> 61 EnableCondBrTuning("aarch64-enable-cond-br-tune", 62 cl::desc("Enable the conditional branch tuning pass"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 66 cl::desc("Enable the machine combiner pass"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 70 cl::desc("Suppress STP for AArch64"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<bool> EnableAdvSIMDScalar( 74 "aarch64-enable-simd-scalar", 75 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 76 cl::init(false), cl::Hidden); 77 78 static cl::opt<bool> 79 EnablePromoteConstant("aarch64-enable-promote-const", 80 cl::desc("Enable the promote constant pass"), 81 cl::init(true), cl::Hidden); 82 83 static cl::opt<bool> EnableCollectLOH( 84 "aarch64-enable-collect-loh", 85 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 86 cl::init(true), cl::Hidden); 87 88 static cl::opt<bool> 89 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 90 cl::desc("Enable the pass that removes dead" 91 " definitons and replaces stores to" 92 " them with stores to the zero" 93 " register"), 94 cl::init(true)); 95 96 static cl::opt<bool> EnableRedundantCopyElimination( 97 "aarch64-enable-copyelim", 98 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 99 cl::Hidden); 100 101 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 102 cl::desc("Enable the load/store pair" 103 " optimization pass"), 104 cl::init(true), cl::Hidden); 105 106 static cl::opt<bool> EnableAtomicTidy( 107 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 108 cl::desc("Run SimplifyCFG after expanding atomic operations" 109 " to make use of cmpxchg flow-based information"), 110 cl::init(true)); 111 112 static cl::opt<bool> 113 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 114 cl::desc("Run early if-conversion"), 115 cl::init(true)); 116 117 static cl::opt<bool> 118 EnableCondOpt("aarch64-enable-condopt", 119 cl::desc("Enable the condition optimizer pass"), 120 cl::init(true), cl::Hidden); 121 122 static cl::opt<bool> 123 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 124 cl::desc("Enable optimizations on complex GEPs"), 125 cl::init(false)); 126 127 static cl::opt<bool> 128 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 129 cl::desc("Relax out of range conditional branches")); 130 131 static cl::opt<bool> EnableCompressJumpTables( 132 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 133 cl::desc("Use smallest entry possible for jump tables")); 134 135 // FIXME: Unify control over GlobalMerge. 136 static cl::opt<cl::boolOrDefault> 137 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 138 cl::desc("Enable the global merge pass")); 139 140 static cl::opt<bool> 141 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 142 cl::desc("Enable the loop data prefetch pass"), 143 cl::init(true)); 144 145 static cl::opt<int> EnableGlobalISelAtO( 146 "aarch64-enable-global-isel-at-O", cl::Hidden, 147 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 148 cl::init(0)); 149 150 static cl::opt<bool> 151 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 152 cl::desc("Enable SVE intrinsic opts"), 153 cl::init(true)); 154 155 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 156 cl::init(true), cl::Hidden); 157 158 static cl::opt<bool> 159 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 160 cl::desc("Enable the AArch64 branch target pass"), 161 cl::init(true)); 162 163 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 164 "aarch64-sve-vector-bits-max", 165 cl::desc("Assume SVE vector registers are at most this big, " 166 "with zero meaning no maximum size is assumed."), 167 cl::init(0), cl::Hidden); 168 169 static cl::opt<unsigned> SVEVectorBitsMinOpt( 170 "aarch64-sve-vector-bits-min", 171 cl::desc("Assume SVE vector registers are at least this big, " 172 "with zero meaning no minimum size is assumed."), 173 cl::init(0), cl::Hidden); 174 175 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 176 177 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 178 "aarch64-enable-gisel-ldst-prelegal", 179 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 180 cl::init(true), cl::Hidden); 181 182 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 183 "aarch64-enable-gisel-ldst-postlegal", 184 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 185 cl::init(false), cl::Hidden); 186 187 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 188 // Register the target. 189 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 190 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 191 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 192 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 193 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 194 auto PR = PassRegistry::getPassRegistry(); 195 initializeGlobalISel(*PR); 196 initializeAArch64A53Fix835769Pass(*PR); 197 initializeAArch64A57FPLoadBalancingPass(*PR); 198 initializeAArch64AdvSIMDScalarPass(*PR); 199 initializeAArch64BranchTargetsPass(*PR); 200 initializeAArch64CollectLOHPass(*PR); 201 initializeAArch64CompressJumpTablesPass(*PR); 202 initializeAArch64ConditionalComparesPass(*PR); 203 initializeAArch64ConditionOptimizerPass(*PR); 204 initializeAArch64DeadRegisterDefinitionsPass(*PR); 205 initializeAArch64ExpandPseudoPass(*PR); 206 initializeAArch64LoadStoreOptPass(*PR); 207 initializeAArch64MIPeepholeOptPass(*PR); 208 initializeAArch64SIMDInstrOptPass(*PR); 209 initializeAArch64O0PreLegalizerCombinerPass(*PR); 210 initializeAArch64PreLegalizerCombinerPass(*PR); 211 initializeAArch64PostLegalizerCombinerPass(*PR); 212 initializeAArch64PostLegalizerLoweringPass(*PR); 213 initializeAArch64PostSelectOptimizePass(*PR); 214 initializeAArch64PromoteConstantPass(*PR); 215 initializeAArch64RedundantCopyEliminationPass(*PR); 216 initializeAArch64StorePairSuppressPass(*PR); 217 initializeFalkorHWPFFixPass(*PR); 218 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 219 initializeLDTLSCleanupPass(*PR); 220 initializeSVEIntrinsicOptsPass(*PR); 221 initializeAArch64SpeculationHardeningPass(*PR); 222 initializeAArch64SLSHardeningPass(*PR); 223 initializeAArch64StackTaggingPass(*PR); 224 initializeAArch64StackTaggingPreRAPass(*PR); 225 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 226 } 227 228 //===----------------------------------------------------------------------===// 229 // AArch64 Lowering public interface. 230 //===----------------------------------------------------------------------===// 231 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 232 if (TT.isOSBinFormatMachO()) 233 return std::make_unique<AArch64_MachoTargetObjectFile>(); 234 if (TT.isOSBinFormatCOFF()) 235 return std::make_unique<AArch64_COFFTargetObjectFile>(); 236 237 return std::make_unique<AArch64_ELFTargetObjectFile>(); 238 } 239 240 // Helper function to build a DataLayout string 241 static std::string computeDataLayout(const Triple &TT, 242 const MCTargetOptions &Options, 243 bool LittleEndian) { 244 if (TT.isOSBinFormatMachO()) { 245 if (TT.getArch() == Triple::aarch64_32) 246 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 247 return "e-m:o-i64:64-i128:128-n32:64-S128"; 248 } 249 if (TT.isOSBinFormatCOFF()) 250 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 251 std::string Endian = LittleEndian ? "e" : "E"; 252 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 253 return Endian + "-m:e" + Ptr32 + 254 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 255 } 256 257 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 258 if (CPU.empty() && TT.isArm64e()) 259 return "apple-a12"; 260 return CPU; 261 } 262 263 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 264 Optional<Reloc::Model> RM) { 265 // AArch64 Darwin and Windows are always PIC. 266 if (TT.isOSDarwin() || TT.isOSWindows()) 267 return Reloc::PIC_; 268 // On ELF platforms the default static relocation model has a smart enough 269 // linker to cope with referencing external symbols defined in a shared 270 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 271 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 272 return Reloc::Static; 273 return *RM; 274 } 275 276 static CodeModel::Model 277 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 278 bool JIT) { 279 if (CM) { 280 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 281 *CM != CodeModel::Large) { 282 report_fatal_error( 283 "Only small, tiny and large code models are allowed on AArch64"); 284 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 285 report_fatal_error("tiny code model is only supported on ELF"); 286 return *CM; 287 } 288 // The default MCJIT memory managers make no guarantees about where they can 289 // find an executable page; JITed code needs to be able to refer to globals 290 // no matter how far away they are. 291 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 292 // since with large code model LLVM generating 4 MOV instructions, and 293 // Windows doesn't support relocating these long branch (4 MOVs). 294 if (JIT && !TT.isOSWindows()) 295 return CodeModel::Large; 296 return CodeModel::Small; 297 } 298 299 /// Create an AArch64 architecture model. 300 /// 301 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 302 StringRef CPU, StringRef FS, 303 const TargetOptions &Options, 304 Optional<Reloc::Model> RM, 305 Optional<CodeModel::Model> CM, 306 CodeGenOpt::Level OL, bool JIT, 307 bool LittleEndian) 308 : LLVMTargetMachine(T, 309 computeDataLayout(TT, Options.MCOptions, LittleEndian), 310 TT, computeDefaultCPU(TT, CPU), FS, Options, 311 getEffectiveRelocModel(TT, RM), 312 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 313 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 314 initAsmInfo(); 315 316 if (TT.isOSBinFormatMachO()) { 317 this->Options.TrapUnreachable = true; 318 this->Options.NoTrapAfterNoreturn = true; 319 } 320 321 if (getMCAsmInfo()->usesWindowsCFI()) { 322 // Unwinding can get confused if the last instruction in an 323 // exception-handling region (function, funclet, try block, etc.) 324 // is a call. 325 // 326 // FIXME: We could elide the trap if the next instruction would be in 327 // the same region anyway. 328 this->Options.TrapUnreachable = true; 329 } 330 331 if (this->Options.TLSSize == 0) // default 332 this->Options.TLSSize = 24; 333 if ((getCodeModel() == CodeModel::Small || 334 getCodeModel() == CodeModel::Kernel) && 335 this->Options.TLSSize > 32) 336 // for the small (and kernel) code model, the maximum TLS size is 4GiB 337 this->Options.TLSSize = 32; 338 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 339 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 340 this->Options.TLSSize = 24; 341 342 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 343 // MachO/CodeModel::Large, which GlobalISel does not support. 344 if (getOptLevel() <= EnableGlobalISelAtO && 345 TT.getArch() != Triple::aarch64_32 && 346 TT.getEnvironment() != Triple::GNUILP32 && 347 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 348 setGlobalISel(true); 349 setGlobalISelAbort(GlobalISelAbortMode::Disable); 350 } 351 352 // AArch64 supports the MachineOutliner. 353 setMachineOutliner(true); 354 355 // AArch64 supports default outlining behaviour. 356 setSupportsDefaultOutlining(true); 357 358 // AArch64 supports the debug entry values. 359 setSupportsDebugEntryValues(true); 360 361 // AArch64 supports fixing up the DWARF unwind information. 362 if (!getMCAsmInfo()->usesWindowsCFI()) 363 setCFIFixup(true); 364 } 365 366 AArch64TargetMachine::~AArch64TargetMachine() = default; 367 368 const AArch64Subtarget * 369 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 370 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 371 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 372 Attribute FSAttr = F.getFnAttribute("target-features"); 373 374 std::string CPU = 375 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 376 std::string TuneCPU = 377 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; 378 std::string FS = 379 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 380 381 SmallString<512> Key; 382 383 unsigned MinSVEVectorSize = 0; 384 unsigned MaxSVEVectorSize = 0; 385 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 386 if (VScaleRangeAttr.isValid()) { 387 Optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax(); 388 MinSVEVectorSize = VScaleRangeAttr.getVScaleRangeMin() * 128; 389 MaxSVEVectorSize = VScaleMax ? VScaleMax.getValue() * 128 : 0; 390 } else { 391 MinSVEVectorSize = SVEVectorBitsMinOpt; 392 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 393 } 394 395 assert(MinSVEVectorSize % 128 == 0 && 396 "SVE requires vector length in multiples of 128!"); 397 assert(MaxSVEVectorSize % 128 == 0 && 398 "SVE requires vector length in multiples of 128!"); 399 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 400 "Minimum SVE vector size should not be larger than its maximum!"); 401 402 // Sanitize user input in case of no asserts 403 if (MaxSVEVectorSize == 0) 404 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 405 else { 406 MinSVEVectorSize = 407 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 408 MaxSVEVectorSize = 409 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 410 } 411 412 Key += "SVEMin"; 413 Key += std::to_string(MinSVEVectorSize); 414 Key += "SVEMax"; 415 Key += std::to_string(MaxSVEVectorSize); 416 Key += CPU; 417 Key += TuneCPU; 418 Key += FS; 419 420 auto &I = SubtargetMap[Key]; 421 if (!I) { 422 // This needs to be done before we create a new subtarget since any 423 // creation will depend on the TM and the code generation flags on the 424 // function that reside in TargetOptions. 425 resetTargetOptions(F); 426 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, TuneCPU, FS, 427 *this, isLittle, MinSVEVectorSize, 428 MaxSVEVectorSize); 429 } 430 return I.get(); 431 } 432 433 void AArch64leTargetMachine::anchor() { } 434 435 AArch64leTargetMachine::AArch64leTargetMachine( 436 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 437 const TargetOptions &Options, Optional<Reloc::Model> RM, 438 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 439 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 440 441 void AArch64beTargetMachine::anchor() { } 442 443 AArch64beTargetMachine::AArch64beTargetMachine( 444 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 445 const TargetOptions &Options, Optional<Reloc::Model> RM, 446 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 447 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 448 449 namespace { 450 451 /// AArch64 Code Generator Pass Configuration Options. 452 class AArch64PassConfig : public TargetPassConfig { 453 public: 454 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 455 : TargetPassConfig(TM, PM) { 456 if (TM.getOptLevel() != CodeGenOpt::None) 457 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 458 } 459 460 AArch64TargetMachine &getAArch64TargetMachine() const { 461 return getTM<AArch64TargetMachine>(); 462 } 463 464 ScheduleDAGInstrs * 465 createMachineScheduler(MachineSchedContext *C) const override { 466 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 467 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 468 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 469 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 470 if (ST.hasFusion()) 471 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 472 return DAG; 473 } 474 475 ScheduleDAGInstrs * 476 createPostMachineScheduler(MachineSchedContext *C) const override { 477 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 478 ScheduleDAGMI *DAG = 479 new ScheduleDAGMI(C, std::make_unique<AArch64PostRASchedStrategy>(C), 480 /* RemoveKillFlags=*/true); 481 if (ST.hasFusion()) { 482 // Run the Macro Fusion after RA again since literals are expanded from 483 // pseudos then (v. addPreSched2()). 484 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 485 return DAG; 486 } 487 488 return DAG; 489 } 490 491 void addIRPasses() override; 492 bool addPreISel() override; 493 void addCodeGenPrepare() override; 494 bool addInstSelector() override; 495 bool addIRTranslator() override; 496 void addPreLegalizeMachineIR() override; 497 bool addLegalizeMachineIR() override; 498 void addPreRegBankSelect() override; 499 bool addRegBankSelect() override; 500 void addPreGlobalInstructionSelect() override; 501 bool addGlobalInstructionSelect() override; 502 void addMachineSSAOptimization() override; 503 bool addILPOpts() override; 504 void addPreRegAlloc() override; 505 void addPostRegAlloc() override; 506 void addPreSched2() override; 507 void addPreEmitPass() override; 508 void addPreEmitPass2() override; 509 510 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 511 }; 512 513 } // end anonymous namespace 514 515 TargetTransformInfo 516 AArch64TargetMachine::getTargetTransformInfo(const Function &F) const { 517 return TargetTransformInfo(AArch64TTIImpl(this, F)); 518 } 519 520 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 521 return new AArch64PassConfig(*this, PM); 522 } 523 524 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 525 return getStandardCSEConfigForOpt(TM->getOptLevel()); 526 } 527 528 void AArch64PassConfig::addIRPasses() { 529 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 530 // ourselves. 531 addPass(createAtomicExpandPass()); 532 533 // Expand any SVE vector library calls that we can't code generate directly. 534 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 535 addPass(createSVEIntrinsicOptsPass()); 536 537 // Cmpxchg instructions are often used with a subsequent comparison to 538 // determine whether it succeeded. We can exploit existing control-flow in 539 // ldrex/strex loops to simplify this, but it needs tidying up. 540 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 541 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 542 .forwardSwitchCondToPhi(true) 543 .convertSwitchRangeToICmp(true) 544 .convertSwitchToLookupTable(true) 545 .needCanonicalLoops(false) 546 .hoistCommonInsts(true) 547 .sinkCommonInsts(true))); 548 549 // Run LoopDataPrefetch 550 // 551 // Run this before LSR to remove the multiplies involved in computing the 552 // pointer values N iterations ahead. 553 if (TM->getOptLevel() != CodeGenOpt::None) { 554 if (EnableLoopDataPrefetch) 555 addPass(createLoopDataPrefetchPass()); 556 if (EnableFalkorHWPFFix) 557 addPass(createFalkorMarkStridedAccessesPass()); 558 } 559 560 TargetPassConfig::addIRPasses(); 561 562 addPass(createAArch64StackTaggingPass( 563 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 564 565 // Match interleaved memory accesses to ldN/stN intrinsics. 566 if (TM->getOptLevel() != CodeGenOpt::None) { 567 addPass(createInterleavedLoadCombinePass()); 568 addPass(createInterleavedAccessPass()); 569 } 570 571 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 572 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 573 // and lower a GEP with multiple indices to either arithmetic operations or 574 // multiple GEPs with single index. 575 addPass(createSeparateConstOffsetFromGEPPass(true)); 576 // Call EarlyCSE pass to find and remove subexpressions in the lowered 577 // result. 578 addPass(createEarlyCSEPass()); 579 // Do loop invariant code motion in case part of the lowered result is 580 // invariant. 581 addPass(createLICMPass()); 582 } 583 584 // Add Control Flow Guard checks. 585 if (TM->getTargetTriple().isOSWindows()) 586 addPass(createCFGuardCheckPass()); 587 588 if (TM->Options.JMCInstrument) 589 addPass(createJMCInstrumenterPass()); 590 } 591 592 // Pass Pipeline Configuration 593 bool AArch64PassConfig::addPreISel() { 594 // Run promote constant before global merge, so that the promoted constants 595 // get a chance to be merged 596 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 597 addPass(createAArch64PromoteConstantPass()); 598 // FIXME: On AArch64, this depends on the type. 599 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 600 // and the offset has to be a multiple of the related size in bytes. 601 if ((TM->getOptLevel() != CodeGenOpt::None && 602 EnableGlobalMerge == cl::BOU_UNSET) || 603 EnableGlobalMerge == cl::BOU_TRUE) { 604 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 605 (EnableGlobalMerge == cl::BOU_UNSET); 606 607 // Merging of extern globals is enabled by default on non-Mach-O as we 608 // expect it to be generally either beneficial or harmless. On Mach-O it 609 // is disabled as we emit the .subsections_via_symbols directive which 610 // means that merging extern globals is not safe. 611 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 612 613 // FIXME: extern global merging is only enabled when we optimise for size 614 // because there are some regressions with it also enabled for performance. 615 if (!OnlyOptimizeForSize) 616 MergeExternalByDefault = false; 617 618 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 619 MergeExternalByDefault)); 620 } 621 622 return false; 623 } 624 625 void AArch64PassConfig::addCodeGenPrepare() { 626 if (getOptLevel() != CodeGenOpt::None) 627 addPass(createTypePromotionPass()); 628 TargetPassConfig::addCodeGenPrepare(); 629 } 630 631 bool AArch64PassConfig::addInstSelector() { 632 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 633 634 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 635 // references to _TLS_MODULE_BASE_ as possible. 636 if (TM->getTargetTriple().isOSBinFormatELF() && 637 getOptLevel() != CodeGenOpt::None) 638 addPass(createAArch64CleanupLocalDynamicTLSPass()); 639 640 return false; 641 } 642 643 bool AArch64PassConfig::addIRTranslator() { 644 addPass(new IRTranslator(getOptLevel())); 645 return false; 646 } 647 648 void AArch64PassConfig::addPreLegalizeMachineIR() { 649 if (getOptLevel() == CodeGenOpt::None) 650 addPass(createAArch64O0PreLegalizerCombiner()); 651 else { 652 addPass(createAArch64PreLegalizerCombiner()); 653 if (EnableGISelLoadStoreOptPreLegal) 654 addPass(new LoadStoreOpt()); 655 } 656 } 657 658 bool AArch64PassConfig::addLegalizeMachineIR() { 659 addPass(new Legalizer()); 660 return false; 661 } 662 663 void AArch64PassConfig::addPreRegBankSelect() { 664 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 665 if (!IsOptNone) { 666 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 667 if (EnableGISelLoadStoreOptPostLegal) 668 addPass(new LoadStoreOpt()); 669 } 670 addPass(createAArch64PostLegalizerLowering()); 671 } 672 673 bool AArch64PassConfig::addRegBankSelect() { 674 addPass(new RegBankSelect()); 675 return false; 676 } 677 678 void AArch64PassConfig::addPreGlobalInstructionSelect() { 679 addPass(new Localizer()); 680 } 681 682 bool AArch64PassConfig::addGlobalInstructionSelect() { 683 addPass(new InstructionSelect(getOptLevel())); 684 if (getOptLevel() != CodeGenOpt::None) 685 addPass(createAArch64PostSelectOptimize()); 686 return false; 687 } 688 689 void AArch64PassConfig::addMachineSSAOptimization() { 690 // Run default MachineSSAOptimization first. 691 TargetPassConfig::addMachineSSAOptimization(); 692 693 if (TM->getOptLevel() != CodeGenOpt::None) 694 addPass(createAArch64MIPeepholeOptPass()); 695 } 696 697 bool AArch64PassConfig::addILPOpts() { 698 if (EnableCondOpt) 699 addPass(createAArch64ConditionOptimizerPass()); 700 if (EnableCCMP) 701 addPass(createAArch64ConditionalCompares()); 702 if (EnableMCR) 703 addPass(&MachineCombinerID); 704 if (EnableCondBrTuning) 705 addPass(createAArch64CondBrTuning()); 706 if (EnableEarlyIfConversion) 707 addPass(&EarlyIfConverterID); 708 if (EnableStPairSuppress) 709 addPass(createAArch64StorePairSuppressPass()); 710 addPass(createAArch64SIMDInstrOptPass()); 711 if (TM->getOptLevel() != CodeGenOpt::None) 712 addPass(createAArch64StackTaggingPreRAPass()); 713 return true; 714 } 715 716 void AArch64PassConfig::addPreRegAlloc() { 717 // Change dead register definitions to refer to the zero register. 718 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 719 addPass(createAArch64DeadRegisterDefinitions()); 720 721 // Use AdvSIMD scalar instructions whenever profitable. 722 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 723 addPass(createAArch64AdvSIMDScalar()); 724 // The AdvSIMD pass may produce copies that can be rewritten to 725 // be register coalescer friendly. 726 addPass(&PeepholeOptimizerID); 727 } 728 } 729 730 void AArch64PassConfig::addPostRegAlloc() { 731 // Remove redundant copy instructions. 732 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 733 addPass(createAArch64RedundantCopyEliminationPass()); 734 735 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 736 // Improve performance for some FP/SIMD code for A57. 737 addPass(createAArch64A57FPLoadBalancing()); 738 } 739 740 void AArch64PassConfig::addPreSched2() { 741 // Lower homogeneous frame instructions 742 if (EnableHomogeneousPrologEpilog) 743 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 744 // Expand some pseudo instructions to allow proper scheduling. 745 addPass(createAArch64ExpandPseudoPass()); 746 // Use load/store pair instructions when possible. 747 if (TM->getOptLevel() != CodeGenOpt::None) { 748 if (EnableLoadStoreOpt) 749 addPass(createAArch64LoadStoreOptimizationPass()); 750 } 751 752 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 753 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 754 // Therefore, run the AArch64SpeculationHardeningPass before the 755 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 756 // info. 757 addPass(createAArch64SpeculationHardeningPass()); 758 759 addPass(createAArch64IndirectThunks()); 760 addPass(createAArch64SLSHardeningPass()); 761 762 if (TM->getOptLevel() != CodeGenOpt::None) { 763 if (EnableFalkorHWPFFix) 764 addPass(createFalkorHWPFFixPass()); 765 } 766 } 767 768 void AArch64PassConfig::addPreEmitPass() { 769 // Machine Block Placement might have created new opportunities when run 770 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 771 // Run the load/store optimizer once more. 772 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 773 addPass(createAArch64LoadStoreOptimizationPass()); 774 775 addPass(createAArch64A53Fix835769()); 776 777 if (EnableBranchTargets) 778 addPass(createAArch64BranchTargetsPass()); 779 780 // Relax conditional branch instructions if they're otherwise out of 781 // range of their destination. 782 if (BranchRelaxation) 783 addPass(&BranchRelaxationPassID); 784 785 if (TM->getTargetTriple().isOSWindows()) { 786 // Identify valid longjmp targets for Windows Control Flow Guard. 787 addPass(createCFGuardLongjmpPass()); 788 // Identify valid eh continuation targets for Windows EHCont Guard. 789 addPass(createEHContGuardCatchretPass()); 790 } 791 792 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 793 addPass(createAArch64CompressJumpTablesPass()); 794 795 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 796 TM->getTargetTriple().isOSBinFormatMachO()) 797 addPass(createAArch64CollectLOHPass()); 798 } 799 800 void AArch64PassConfig::addPreEmitPass2() { 801 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 802 // instructions are lowered to bundles as well. 803 addPass(createUnpackMachineBundles(nullptr)); 804 } 805 806 yaml::MachineFunctionInfo * 807 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 808 return new yaml::AArch64FunctionInfo(); 809 } 810 811 yaml::MachineFunctionInfo * 812 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 813 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 814 return new yaml::AArch64FunctionInfo(*MFI); 815 } 816 817 bool AArch64TargetMachine::parseMachineFunctionInfo( 818 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 819 SMDiagnostic &Error, SMRange &SourceRange) const { 820 const auto &YamlMFI = static_cast<const yaml::AArch64FunctionInfo &>(MFI); 821 MachineFunction &MF = PFS.MF; 822 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 823 return false; 824 } 825