1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "TargetInfo/AArch64TargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 27 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 28 #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" 29 #include "llvm/CodeGen/GlobalISel/Localizer.h" 30 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 31 #include "llvm/CodeGen/MIRParser/MIParser.h" 32 #include "llvm/CodeGen/MachineScheduler.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCTargetOptions.h" 40 #include "llvm/MC/TargetRegistry.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CodeGen.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Target/TargetLoweringObjectFile.h" 45 #include "llvm/Target/TargetOptions.h" 46 #include "llvm/Transforms/CFGuard.h" 47 #include "llvm/Transforms/Scalar.h" 48 #include <memory> 49 #include <string> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 54 cl::desc("Enable the CCMP formation pass"), 55 cl::init(true), cl::Hidden); 56 57 static cl::opt<bool> 58 EnableCondBrTuning("aarch64-enable-cond-br-tune", 59 cl::desc("Enable the conditional branch tuning pass"), 60 cl::init(true), cl::Hidden); 61 62 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 63 cl::desc("Enable the machine combiner pass"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 67 cl::desc("Suppress STP for AArch64"), 68 cl::init(true), cl::Hidden); 69 70 static cl::opt<bool> EnableAdvSIMDScalar( 71 "aarch64-enable-simd-scalar", 72 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 73 cl::init(false), cl::Hidden); 74 75 static cl::opt<bool> 76 EnablePromoteConstant("aarch64-enable-promote-const", 77 cl::desc("Enable the promote constant pass"), 78 cl::init(true), cl::Hidden); 79 80 static cl::opt<bool> EnableCollectLOH( 81 "aarch64-enable-collect-loh", 82 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 83 cl::init(true), cl::Hidden); 84 85 static cl::opt<bool> 86 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 87 cl::desc("Enable the pass that removes dead" 88 " definitons and replaces stores to" 89 " them with stores to the zero" 90 " register"), 91 cl::init(true)); 92 93 static cl::opt<bool> EnableRedundantCopyElimination( 94 "aarch64-enable-copyelim", 95 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 96 cl::Hidden); 97 98 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 99 cl::desc("Enable the load/store pair" 100 " optimization pass"), 101 cl::init(true), cl::Hidden); 102 103 static cl::opt<bool> EnableAtomicTidy( 104 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 105 cl::desc("Run SimplifyCFG after expanding atomic operations" 106 " to make use of cmpxchg flow-based information"), 107 cl::init(true)); 108 109 static cl::opt<bool> 110 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 111 cl::desc("Run early if-conversion"), 112 cl::init(true)); 113 114 static cl::opt<bool> 115 EnableCondOpt("aarch64-enable-condopt", 116 cl::desc("Enable the condition optimizer pass"), 117 cl::init(true), cl::Hidden); 118 119 static cl::opt<bool> 120 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 121 cl::desc("Work around Cortex-A53 erratum 835769"), 122 cl::init(false)); 123 124 static cl::opt<bool> 125 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 126 cl::desc("Enable optimizations on complex GEPs"), 127 cl::init(false)); 128 129 static cl::opt<bool> 130 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 131 cl::desc("Relax out of range conditional branches")); 132 133 static cl::opt<bool> EnableCompressJumpTables( 134 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 135 cl::desc("Use smallest entry possible for jump tables")); 136 137 // FIXME: Unify control over GlobalMerge. 138 static cl::opt<cl::boolOrDefault> 139 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 140 cl::desc("Enable the global merge pass")); 141 142 static cl::opt<bool> 143 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 144 cl::desc("Enable the loop data prefetch pass"), 145 cl::init(true)); 146 147 static cl::opt<int> EnableGlobalISelAtO( 148 "aarch64-enable-global-isel-at-O", cl::Hidden, 149 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 150 cl::init(0)); 151 152 static cl::opt<bool> 153 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 154 cl::desc("Enable SVE intrinsic opts"), 155 cl::init(true)); 156 157 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 158 cl::init(true), cl::Hidden); 159 160 static cl::opt<bool> 161 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 162 cl::desc("Enable the AArch64 branch target pass"), 163 cl::init(true)); 164 165 static cl::opt<unsigned> SVEVectorBitsMaxOpt( 166 "aarch64-sve-vector-bits-max", 167 cl::desc("Assume SVE vector registers are at most this big, " 168 "with zero meaning no maximum size is assumed."), 169 cl::init(0), cl::Hidden); 170 171 static cl::opt<unsigned> SVEVectorBitsMinOpt( 172 "aarch64-sve-vector-bits-min", 173 cl::desc("Assume SVE vector registers are at least this big, " 174 "with zero meaning no minimum size is assumed."), 175 cl::init(0), cl::Hidden); 176 177 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 178 179 static cl::opt<bool> EnableGISelLoadStoreOptPreLegal( 180 "aarch64-enable-gisel-ldst-prelegal", 181 cl::desc("Enable GlobalISel's pre-legalizer load/store optimization pass"), 182 cl::init(true), cl::Hidden); 183 184 static cl::opt<bool> EnableGISelLoadStoreOptPostLegal( 185 "aarch64-enable-gisel-ldst-postlegal", 186 cl::desc("Enable GlobalISel's post-legalizer load/store optimization pass"), 187 cl::init(false), cl::Hidden); 188 189 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 190 // Register the target. 191 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 192 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 193 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 194 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 195 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 196 auto PR = PassRegistry::getPassRegistry(); 197 initializeGlobalISel(*PR); 198 initializeAArch64A53Fix835769Pass(*PR); 199 initializeAArch64A57FPLoadBalancingPass(*PR); 200 initializeAArch64AdvSIMDScalarPass(*PR); 201 initializeAArch64BranchTargetsPass(*PR); 202 initializeAArch64CollectLOHPass(*PR); 203 initializeAArch64CompressJumpTablesPass(*PR); 204 initializeAArch64ConditionalComparesPass(*PR); 205 initializeAArch64ConditionOptimizerPass(*PR); 206 initializeAArch64DeadRegisterDefinitionsPass(*PR); 207 initializeAArch64ExpandPseudoPass(*PR); 208 initializeAArch64LoadStoreOptPass(*PR); 209 initializeAArch64MIPeepholeOptPass(*PR); 210 initializeAArch64SIMDInstrOptPass(*PR); 211 initializeAArch64O0PreLegalizerCombinerPass(*PR); 212 initializeAArch64PreLegalizerCombinerPass(*PR); 213 initializeAArch64PostLegalizerCombinerPass(*PR); 214 initializeAArch64PostLegalizerLoweringPass(*PR); 215 initializeAArch64PostSelectOptimizePass(*PR); 216 initializeAArch64PromoteConstantPass(*PR); 217 initializeAArch64RedundantCopyEliminationPass(*PR); 218 initializeAArch64StorePairSuppressPass(*PR); 219 initializeFalkorHWPFFixPass(*PR); 220 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 221 initializeLDTLSCleanupPass(*PR); 222 initializeSVEIntrinsicOptsPass(*PR); 223 initializeAArch64SpeculationHardeningPass(*PR); 224 initializeAArch64SLSHardeningPass(*PR); 225 initializeAArch64StackTaggingPass(*PR); 226 initializeAArch64StackTaggingPreRAPass(*PR); 227 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // AArch64 Lowering public interface. 232 //===----------------------------------------------------------------------===// 233 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 234 if (TT.isOSBinFormatMachO()) 235 return std::make_unique<AArch64_MachoTargetObjectFile>(); 236 if (TT.isOSBinFormatCOFF()) 237 return std::make_unique<AArch64_COFFTargetObjectFile>(); 238 239 return std::make_unique<AArch64_ELFTargetObjectFile>(); 240 } 241 242 // Helper function to build a DataLayout string 243 static std::string computeDataLayout(const Triple &TT, 244 const MCTargetOptions &Options, 245 bool LittleEndian) { 246 if (TT.isOSBinFormatMachO()) { 247 if (TT.getArch() == Triple::aarch64_32) 248 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 249 return "e-m:o-i64:64-i128:128-n32:64-S128"; 250 } 251 if (TT.isOSBinFormatCOFF()) 252 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 253 std::string Endian = LittleEndian ? "e" : "E"; 254 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 255 return Endian + "-m:e" + Ptr32 + 256 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 257 } 258 259 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 260 if (CPU.empty() && TT.isArm64e()) 261 return "apple-a12"; 262 return CPU; 263 } 264 265 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 266 Optional<Reloc::Model> RM) { 267 // AArch64 Darwin and Windows are always PIC. 268 if (TT.isOSDarwin() || TT.isOSWindows()) 269 return Reloc::PIC_; 270 // On ELF platforms the default static relocation model has a smart enough 271 // linker to cope with referencing external symbols defined in a shared 272 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 273 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 274 return Reloc::Static; 275 return *RM; 276 } 277 278 static CodeModel::Model 279 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 280 bool JIT) { 281 if (CM) { 282 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 283 *CM != CodeModel::Large) { 284 report_fatal_error( 285 "Only small, tiny and large code models are allowed on AArch64"); 286 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 287 report_fatal_error("tiny code model is only supported on ELF"); 288 return *CM; 289 } 290 // The default MCJIT memory managers make no guarantees about where they can 291 // find an executable page; JITed code needs to be able to refer to globals 292 // no matter how far away they are. 293 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 294 // since with large code model LLVM generating 4 MOV instructions, and 295 // Windows doesn't support relocating these long branch (4 MOVs). 296 if (JIT && !TT.isOSWindows()) 297 return CodeModel::Large; 298 return CodeModel::Small; 299 } 300 301 /// Create an AArch64 architecture model. 302 /// 303 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 304 StringRef CPU, StringRef FS, 305 const TargetOptions &Options, 306 Optional<Reloc::Model> RM, 307 Optional<CodeModel::Model> CM, 308 CodeGenOpt::Level OL, bool JIT, 309 bool LittleEndian) 310 : LLVMTargetMachine(T, 311 computeDataLayout(TT, Options.MCOptions, LittleEndian), 312 TT, computeDefaultCPU(TT, CPU), FS, Options, 313 getEffectiveRelocModel(TT, RM), 314 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 315 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 316 initAsmInfo(); 317 318 if (TT.isOSBinFormatMachO()) { 319 this->Options.TrapUnreachable = true; 320 this->Options.NoTrapAfterNoreturn = true; 321 } 322 323 if (getMCAsmInfo()->usesWindowsCFI()) { 324 // Unwinding can get confused if the last instruction in an 325 // exception-handling region (function, funclet, try block, etc.) 326 // is a call. 327 // 328 // FIXME: We could elide the trap if the next instruction would be in 329 // the same region anyway. 330 this->Options.TrapUnreachable = true; 331 } 332 333 if (this->Options.TLSSize == 0) // default 334 this->Options.TLSSize = 24; 335 if ((getCodeModel() == CodeModel::Small || 336 getCodeModel() == CodeModel::Kernel) && 337 this->Options.TLSSize > 32) 338 // for the small (and kernel) code model, the maximum TLS size is 4GiB 339 this->Options.TLSSize = 32; 340 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 341 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 342 this->Options.TLSSize = 24; 343 344 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 345 // MachO/CodeModel::Large, which GlobalISel does not support. 346 if (getOptLevel() <= EnableGlobalISelAtO && 347 TT.getArch() != Triple::aarch64_32 && 348 TT.getEnvironment() != Triple::GNUILP32 && 349 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 350 setGlobalISel(true); 351 setGlobalISelAbort(GlobalISelAbortMode::Disable); 352 } 353 354 // AArch64 supports the MachineOutliner. 355 setMachineOutliner(true); 356 357 // AArch64 supports default outlining behaviour. 358 setSupportsDefaultOutlining(true); 359 360 // AArch64 supports the debug entry values. 361 setSupportsDebugEntryValues(true); 362 } 363 364 AArch64TargetMachine::~AArch64TargetMachine() = default; 365 366 const AArch64Subtarget * 367 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 368 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 369 Attribute TuneAttr = F.getFnAttribute("tune-cpu"); 370 Attribute FSAttr = F.getFnAttribute("target-features"); 371 372 std::string CPU = 373 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 374 std::string TuneCPU = 375 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU; 376 std::string FS = 377 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 378 379 SmallString<512> Key; 380 381 unsigned MinSVEVectorSize = 0; 382 unsigned MaxSVEVectorSize = 0; 383 Attribute VScaleRangeAttr = F.getFnAttribute(Attribute::VScaleRange); 384 if (VScaleRangeAttr.isValid()) { 385 Optional<unsigned> VScaleMax = VScaleRangeAttr.getVScaleRangeMax(); 386 MinSVEVectorSize = VScaleRangeAttr.getVScaleRangeMin() * 128; 387 MaxSVEVectorSize = VScaleMax ? VScaleMax.getValue() * 128 : 0; 388 } else { 389 MinSVEVectorSize = SVEVectorBitsMinOpt; 390 MaxSVEVectorSize = SVEVectorBitsMaxOpt; 391 } 392 393 assert(MinSVEVectorSize % 128 == 0 && 394 "SVE requires vector length in multiples of 128!"); 395 assert(MaxSVEVectorSize % 128 == 0 && 396 "SVE requires vector length in multiples of 128!"); 397 assert((MaxSVEVectorSize >= MinSVEVectorSize || MaxSVEVectorSize == 0) && 398 "Minimum SVE vector size should not be larger than its maximum!"); 399 400 // Sanitize user input in case of no asserts 401 if (MaxSVEVectorSize == 0) 402 MinSVEVectorSize = (MinSVEVectorSize / 128) * 128; 403 else { 404 MinSVEVectorSize = 405 (std::min(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 406 MaxSVEVectorSize = 407 (std::max(MinSVEVectorSize, MaxSVEVectorSize) / 128) * 128; 408 } 409 410 Key += "SVEMin"; 411 Key += std::to_string(MinSVEVectorSize); 412 Key += "SVEMax"; 413 Key += std::to_string(MaxSVEVectorSize); 414 Key += CPU; 415 Key += TuneCPU; 416 Key += FS; 417 418 auto &I = SubtargetMap[Key]; 419 if (!I) { 420 // This needs to be done before we create a new subtarget since any 421 // creation will depend on the TM and the code generation flags on the 422 // function that reside in TargetOptions. 423 resetTargetOptions(F); 424 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, TuneCPU, FS, 425 *this, isLittle, MinSVEVectorSize, 426 MaxSVEVectorSize); 427 } 428 return I.get(); 429 } 430 431 void AArch64leTargetMachine::anchor() { } 432 433 AArch64leTargetMachine::AArch64leTargetMachine( 434 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 435 const TargetOptions &Options, Optional<Reloc::Model> RM, 436 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 437 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 438 439 void AArch64beTargetMachine::anchor() { } 440 441 AArch64beTargetMachine::AArch64beTargetMachine( 442 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 443 const TargetOptions &Options, Optional<Reloc::Model> RM, 444 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 445 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 446 447 namespace { 448 449 /// AArch64 Code Generator Pass Configuration Options. 450 class AArch64PassConfig : public TargetPassConfig { 451 public: 452 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 453 : TargetPassConfig(TM, PM) { 454 if (TM.getOptLevel() != CodeGenOpt::None) 455 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 456 } 457 458 AArch64TargetMachine &getAArch64TargetMachine() const { 459 return getTM<AArch64TargetMachine>(); 460 } 461 462 ScheduleDAGInstrs * 463 createMachineScheduler(MachineSchedContext *C) const override { 464 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 465 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 466 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 467 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 468 if (ST.hasFusion()) 469 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 470 return DAG; 471 } 472 473 ScheduleDAGInstrs * 474 createPostMachineScheduler(MachineSchedContext *C) const override { 475 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 476 if (ST.hasFusion()) { 477 // Run the Macro Fusion after RA again since literals are expanded from 478 // pseudos then (v. addPreSched2()). 479 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 480 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 481 return DAG; 482 } 483 484 return nullptr; 485 } 486 487 void addIRPasses() override; 488 bool addPreISel() override; 489 void addCodeGenPrepare() override; 490 bool addInstSelector() override; 491 bool addIRTranslator() override; 492 void addPreLegalizeMachineIR() override; 493 bool addLegalizeMachineIR() override; 494 void addPreRegBankSelect() override; 495 bool addRegBankSelect() override; 496 void addPreGlobalInstructionSelect() override; 497 bool addGlobalInstructionSelect() override; 498 void addMachineSSAOptimization() override; 499 bool addILPOpts() override; 500 void addPreRegAlloc() override; 501 void addPostRegAlloc() override; 502 void addPreSched2() override; 503 void addPreEmitPass() override; 504 void addPreEmitPass2() override; 505 506 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 507 }; 508 509 } // end anonymous namespace 510 511 TargetTransformInfo 512 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 513 return TargetTransformInfo(AArch64TTIImpl(this, F)); 514 } 515 516 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 517 return new AArch64PassConfig(*this, PM); 518 } 519 520 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 521 return getStandardCSEConfigForOpt(TM->getOptLevel()); 522 } 523 524 void AArch64PassConfig::addIRPasses() { 525 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 526 // ourselves. 527 addPass(createAtomicExpandPass()); 528 529 // Expand any SVE vector library calls that we can't code generate directly. 530 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 531 addPass(createSVEIntrinsicOptsPass()); 532 533 // Cmpxchg instructions are often used with a subsequent comparison to 534 // determine whether it succeeded. We can exploit existing control-flow in 535 // ldrex/strex loops to simplify this, but it needs tidying up. 536 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 537 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 538 .forwardSwitchCondToPhi(true) 539 .convertSwitchToLookupTable(true) 540 .needCanonicalLoops(false) 541 .hoistCommonInsts(true) 542 .sinkCommonInsts(true))); 543 544 // Run LoopDataPrefetch 545 // 546 // Run this before LSR to remove the multiplies involved in computing the 547 // pointer values N iterations ahead. 548 if (TM->getOptLevel() != CodeGenOpt::None) { 549 if (EnableLoopDataPrefetch) 550 addPass(createLoopDataPrefetchPass()); 551 if (EnableFalkorHWPFFix) 552 addPass(createFalkorMarkStridedAccessesPass()); 553 } 554 555 TargetPassConfig::addIRPasses(); 556 557 addPass(createAArch64StackTaggingPass( 558 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 559 560 // Match interleaved memory accesses to ldN/stN intrinsics. 561 if (TM->getOptLevel() != CodeGenOpt::None) { 562 addPass(createInterleavedLoadCombinePass()); 563 addPass(createInterleavedAccessPass()); 564 } 565 566 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 567 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 568 // and lower a GEP with multiple indices to either arithmetic operations or 569 // multiple GEPs with single index. 570 addPass(createSeparateConstOffsetFromGEPPass(true)); 571 // Call EarlyCSE pass to find and remove subexpressions in the lowered 572 // result. 573 addPass(createEarlyCSEPass()); 574 // Do loop invariant code motion in case part of the lowered result is 575 // invariant. 576 addPass(createLICMPass()); 577 } 578 579 // Add Control Flow Guard checks. 580 if (TM->getTargetTriple().isOSWindows()) 581 addPass(createCFGuardCheckPass()); 582 } 583 584 // Pass Pipeline Configuration 585 bool AArch64PassConfig::addPreISel() { 586 // Run promote constant before global merge, so that the promoted constants 587 // get a chance to be merged 588 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 589 addPass(createAArch64PromoteConstantPass()); 590 // FIXME: On AArch64, this depends on the type. 591 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 592 // and the offset has to be a multiple of the related size in bytes. 593 if ((TM->getOptLevel() != CodeGenOpt::None && 594 EnableGlobalMerge == cl::BOU_UNSET) || 595 EnableGlobalMerge == cl::BOU_TRUE) { 596 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 597 (EnableGlobalMerge == cl::BOU_UNSET); 598 599 // Merging of extern globals is enabled by default on non-Mach-O as we 600 // expect it to be generally either beneficial or harmless. On Mach-O it 601 // is disabled as we emit the .subsections_via_symbols directive which 602 // means that merging extern globals is not safe. 603 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 604 605 // FIXME: extern global merging is only enabled when we optimise for size 606 // because there are some regressions with it also enabled for performance. 607 if (!OnlyOptimizeForSize) 608 MergeExternalByDefault = false; 609 610 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 611 MergeExternalByDefault)); 612 } 613 614 return false; 615 } 616 617 void AArch64PassConfig::addCodeGenPrepare() { 618 if (getOptLevel() != CodeGenOpt::None) 619 addPass(createTypePromotionPass()); 620 TargetPassConfig::addCodeGenPrepare(); 621 } 622 623 bool AArch64PassConfig::addInstSelector() { 624 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 625 626 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 627 // references to _TLS_MODULE_BASE_ as possible. 628 if (TM->getTargetTriple().isOSBinFormatELF() && 629 getOptLevel() != CodeGenOpt::None) 630 addPass(createAArch64CleanupLocalDynamicTLSPass()); 631 632 return false; 633 } 634 635 bool AArch64PassConfig::addIRTranslator() { 636 addPass(new IRTranslator(getOptLevel())); 637 return false; 638 } 639 640 void AArch64PassConfig::addPreLegalizeMachineIR() { 641 if (getOptLevel() == CodeGenOpt::None) 642 addPass(createAArch64O0PreLegalizerCombiner()); 643 else { 644 addPass(createAArch64PreLegalizerCombiner()); 645 if (EnableGISelLoadStoreOptPreLegal) 646 addPass(new LoadStoreOpt()); 647 } 648 } 649 650 bool AArch64PassConfig::addLegalizeMachineIR() { 651 addPass(new Legalizer()); 652 return false; 653 } 654 655 void AArch64PassConfig::addPreRegBankSelect() { 656 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 657 if (!IsOptNone) { 658 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 659 if (EnableGISelLoadStoreOptPostLegal) 660 addPass(new LoadStoreOpt()); 661 } 662 addPass(createAArch64PostLegalizerLowering()); 663 } 664 665 bool AArch64PassConfig::addRegBankSelect() { 666 addPass(new RegBankSelect()); 667 return false; 668 } 669 670 void AArch64PassConfig::addPreGlobalInstructionSelect() { 671 addPass(new Localizer()); 672 } 673 674 bool AArch64PassConfig::addGlobalInstructionSelect() { 675 addPass(new InstructionSelect(getOptLevel())); 676 if (getOptLevel() != CodeGenOpt::None) 677 addPass(createAArch64PostSelectOptimize()); 678 return false; 679 } 680 681 void AArch64PassConfig::addMachineSSAOptimization() { 682 // Run default MachineSSAOptimization first. 683 TargetPassConfig::addMachineSSAOptimization(); 684 685 if (TM->getOptLevel() != CodeGenOpt::None) 686 addPass(createAArch64MIPeepholeOptPass()); 687 } 688 689 bool AArch64PassConfig::addILPOpts() { 690 if (EnableCondOpt) 691 addPass(createAArch64ConditionOptimizerPass()); 692 if (EnableCCMP) 693 addPass(createAArch64ConditionalCompares()); 694 if (EnableMCR) 695 addPass(&MachineCombinerID); 696 if (EnableCondBrTuning) 697 addPass(createAArch64CondBrTuning()); 698 if (EnableEarlyIfConversion) 699 addPass(&EarlyIfConverterID); 700 if (EnableStPairSuppress) 701 addPass(createAArch64StorePairSuppressPass()); 702 addPass(createAArch64SIMDInstrOptPass()); 703 if (TM->getOptLevel() != CodeGenOpt::None) 704 addPass(createAArch64StackTaggingPreRAPass()); 705 return true; 706 } 707 708 void AArch64PassConfig::addPreRegAlloc() { 709 // Change dead register definitions to refer to the zero register. 710 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 711 addPass(createAArch64DeadRegisterDefinitions()); 712 713 // Use AdvSIMD scalar instructions whenever profitable. 714 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 715 addPass(createAArch64AdvSIMDScalar()); 716 // The AdvSIMD pass may produce copies that can be rewritten to 717 // be register coalescer friendly. 718 addPass(&PeepholeOptimizerID); 719 } 720 } 721 722 void AArch64PassConfig::addPostRegAlloc() { 723 // Remove redundant copy instructions. 724 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 725 addPass(createAArch64RedundantCopyEliminationPass()); 726 727 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 728 // Improve performance for some FP/SIMD code for A57. 729 addPass(createAArch64A57FPLoadBalancing()); 730 } 731 732 void AArch64PassConfig::addPreSched2() { 733 // Lower homogeneous frame instructions 734 if (EnableHomogeneousPrologEpilog) 735 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 736 // Expand some pseudo instructions to allow proper scheduling. 737 addPass(createAArch64ExpandPseudoPass()); 738 // Use load/store pair instructions when possible. 739 if (TM->getOptLevel() != CodeGenOpt::None) { 740 if (EnableLoadStoreOpt) 741 addPass(createAArch64LoadStoreOptimizationPass()); 742 } 743 744 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 745 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 746 // Therefore, run the AArch64SpeculationHardeningPass before the 747 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 748 // info. 749 addPass(createAArch64SpeculationHardeningPass()); 750 751 addPass(createAArch64IndirectThunks()); 752 addPass(createAArch64SLSHardeningPass()); 753 754 if (TM->getOptLevel() != CodeGenOpt::None) { 755 if (EnableFalkorHWPFFix) 756 addPass(createFalkorHWPFFixPass()); 757 } 758 } 759 760 void AArch64PassConfig::addPreEmitPass() { 761 // Machine Block Placement might have created new opportunities when run 762 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 763 // Run the load/store optimizer once more. 764 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 765 addPass(createAArch64LoadStoreOptimizationPass()); 766 767 if (EnableA53Fix835769) 768 addPass(createAArch64A53Fix835769()); 769 770 if (EnableBranchTargets) 771 addPass(createAArch64BranchTargetsPass()); 772 773 // Relax conditional branch instructions if they're otherwise out of 774 // range of their destination. 775 if (BranchRelaxation) 776 addPass(&BranchRelaxationPassID); 777 778 if (TM->getTargetTriple().isOSWindows()) { 779 // Identify valid longjmp targets for Windows Control Flow Guard. 780 addPass(createCFGuardLongjmpPass()); 781 // Identify valid eh continuation targets for Windows EHCont Guard. 782 addPass(createEHContGuardCatchretPass()); 783 } 784 785 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 786 addPass(createAArch64CompressJumpTablesPass()); 787 788 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 789 TM->getTargetTriple().isOSBinFormatMachO()) 790 addPass(createAArch64CollectLOHPass()); 791 } 792 793 void AArch64PassConfig::addPreEmitPass2() { 794 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 795 // instructions are lowered to bundles as well. 796 addPass(createUnpackMachineBundles(nullptr)); 797 } 798 799 yaml::MachineFunctionInfo * 800 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 801 return new yaml::AArch64FunctionInfo(); 802 } 803 804 yaml::MachineFunctionInfo * 805 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 806 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 807 return new yaml::AArch64FunctionInfo(*MFI); 808 } 809 810 bool AArch64TargetMachine::parseMachineFunctionInfo( 811 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 812 SMDiagnostic &Error, SMRange &SourceRange) const { 813 const auto &YamlMFI = 814 reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); 815 MachineFunction &MF = PFS.MF; 816 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 817 return false; 818 } 819