1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MachineFunctionInfo.h" 15 #include "AArch64MacroFusion.h" 16 #include "AArch64Subtarget.h" 17 #include "AArch64TargetObjectFile.h" 18 #include "AArch64TargetTransformInfo.h" 19 #include "MCTargetDesc/AArch64MCTargetDesc.h" 20 #include "TargetInfo/AArch64TargetInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/CodeGen/CSEConfigBase.h" 25 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 26 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 27 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 28 #include "llvm/CodeGen/GlobalISel/Localizer.h" 29 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 30 #include "llvm/CodeGen/MIRParser/MIParser.h" 31 #include "llvm/CodeGen/MachineScheduler.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCTargetOptions.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CodeGen.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Target/TargetLoweringObjectFile.h" 44 #include "llvm/Target/TargetOptions.h" 45 #include "llvm/Transforms/CFGuard.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include <memory> 48 #include <string> 49 50 using namespace llvm; 51 52 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 53 cl::desc("Enable the CCMP formation pass"), 54 cl::init(true), cl::Hidden); 55 56 static cl::opt<bool> 57 EnableCondBrTuning("aarch64-enable-cond-br-tune", 58 cl::desc("Enable the conditional branch tuning pass"), 59 cl::init(true), cl::Hidden); 60 61 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 62 cl::desc("Enable the machine combiner pass"), 63 cl::init(true), cl::Hidden); 64 65 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 66 cl::desc("Suppress STP for AArch64"), 67 cl::init(true), cl::Hidden); 68 69 static cl::opt<bool> EnableAdvSIMDScalar( 70 "aarch64-enable-simd-scalar", 71 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 72 cl::init(false), cl::Hidden); 73 74 static cl::opt<bool> 75 EnablePromoteConstant("aarch64-enable-promote-const", 76 cl::desc("Enable the promote constant pass"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> EnableCollectLOH( 80 "aarch64-enable-collect-loh", 81 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 82 cl::init(true), cl::Hidden); 83 84 static cl::opt<bool> 85 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 86 cl::desc("Enable the pass that removes dead" 87 " definitons and replaces stores to" 88 " them with stores to the zero" 89 " register"), 90 cl::init(true)); 91 92 static cl::opt<bool> EnableRedundantCopyElimination( 93 "aarch64-enable-copyelim", 94 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 95 cl::Hidden); 96 97 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 98 cl::desc("Enable the load/store pair" 99 " optimization pass"), 100 cl::init(true), cl::Hidden); 101 102 static cl::opt<bool> EnableAtomicTidy( 103 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 104 cl::desc("Run SimplifyCFG after expanding atomic operations" 105 " to make use of cmpxchg flow-based information"), 106 cl::init(true)); 107 108 static cl::opt<bool> 109 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 110 cl::desc("Run early if-conversion"), 111 cl::init(true)); 112 113 static cl::opt<bool> 114 EnableCondOpt("aarch64-enable-condopt", 115 cl::desc("Enable the condition optimizer pass"), 116 cl::init(true), cl::Hidden); 117 118 static cl::opt<bool> 119 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 120 cl::desc("Work around Cortex-A53 erratum 835769"), 121 cl::init(false)); 122 123 static cl::opt<bool> 124 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 125 cl::desc("Enable optimizations on complex GEPs"), 126 cl::init(false)); 127 128 static cl::opt<bool> 129 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 130 cl::desc("Relax out of range conditional branches")); 131 132 static cl::opt<bool> EnableCompressJumpTables( 133 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 134 cl::desc("Use smallest entry possible for jump tables")); 135 136 // FIXME: Unify control over GlobalMerge. 137 static cl::opt<cl::boolOrDefault> 138 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 139 cl::desc("Enable the global merge pass")); 140 141 static cl::opt<bool> 142 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 143 cl::desc("Enable the loop data prefetch pass"), 144 cl::init(true)); 145 146 static cl::opt<int> EnableGlobalISelAtO( 147 "aarch64-enable-global-isel-at-O", cl::Hidden, 148 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 149 cl::init(0)); 150 151 static cl::opt<bool> 152 EnableSVEIntrinsicOpts("aarch64-enable-sve-intrinsic-opts", cl::Hidden, 153 cl::desc("Enable SVE intrinsic opts"), 154 cl::init(true)); 155 156 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 157 cl::init(true), cl::Hidden); 158 159 static cl::opt<bool> 160 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 161 cl::desc("Enable the AAcrh64 branch target pass"), 162 cl::init(true)); 163 164 extern cl::opt<bool> EnableHomogeneousPrologEpilog; 165 166 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() { 167 // Register the target. 168 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 169 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 170 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 171 RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target()); 172 RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target()); 173 auto PR = PassRegistry::getPassRegistry(); 174 initializeGlobalISel(*PR); 175 initializeAArch64A53Fix835769Pass(*PR); 176 initializeAArch64A57FPLoadBalancingPass(*PR); 177 initializeAArch64AdvSIMDScalarPass(*PR); 178 initializeAArch64BranchTargetsPass(*PR); 179 initializeAArch64CollectLOHPass(*PR); 180 initializeAArch64CompressJumpTablesPass(*PR); 181 initializeAArch64ConditionalComparesPass(*PR); 182 initializeAArch64ConditionOptimizerPass(*PR); 183 initializeAArch64DeadRegisterDefinitionsPass(*PR); 184 initializeAArch64ExpandPseudoPass(*PR); 185 initializeAArch64LoadStoreOptPass(*PR); 186 initializeAArch64SIMDInstrOptPass(*PR); 187 initializeAArch64PreLegalizerCombinerPass(*PR); 188 initializeAArch64PostLegalizerCombinerPass(*PR); 189 initializeAArch64PostLegalizerLoweringPass(*PR); 190 initializeAArch64PostSelectOptimizePass(*PR); 191 initializeAArch64PromoteConstantPass(*PR); 192 initializeAArch64RedundantCopyEliminationPass(*PR); 193 initializeAArch64StorePairSuppressPass(*PR); 194 initializeFalkorHWPFFixPass(*PR); 195 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 196 initializeLDTLSCleanupPass(*PR); 197 initializeSVEIntrinsicOptsPass(*PR); 198 initializeAArch64SpeculationHardeningPass(*PR); 199 initializeAArch64SLSHardeningPass(*PR); 200 initializeAArch64StackTaggingPass(*PR); 201 initializeAArch64StackTaggingPreRAPass(*PR); 202 initializeAArch64LowerHomogeneousPrologEpilogPass(*PR); 203 } 204 205 //===----------------------------------------------------------------------===// 206 // AArch64 Lowering public interface. 207 //===----------------------------------------------------------------------===// 208 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 209 if (TT.isOSBinFormatMachO()) 210 return std::make_unique<AArch64_MachoTargetObjectFile>(); 211 if (TT.isOSBinFormatCOFF()) 212 return std::make_unique<AArch64_COFFTargetObjectFile>(); 213 214 return std::make_unique<AArch64_ELFTargetObjectFile>(); 215 } 216 217 // Helper function to build a DataLayout string 218 static std::string computeDataLayout(const Triple &TT, 219 const MCTargetOptions &Options, 220 bool LittleEndian) { 221 if (TT.isOSBinFormatMachO()) { 222 if (TT.getArch() == Triple::aarch64_32) 223 return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128"; 224 return "e-m:o-i64:64-i128:128-n32:64-S128"; 225 } 226 if (TT.isOSBinFormatCOFF()) 227 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 228 std::string Endian = LittleEndian ? "e" : "E"; 229 std::string Ptr32 = TT.getEnvironment() == Triple::GNUILP32 ? "-p:32:32" : ""; 230 return Endian + "-m:e" + Ptr32 + 231 "-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 232 } 233 234 static StringRef computeDefaultCPU(const Triple &TT, StringRef CPU) { 235 if (CPU.empty() && TT.isArm64e()) 236 return "apple-a12"; 237 return CPU; 238 } 239 240 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 241 Optional<Reloc::Model> RM) { 242 // AArch64 Darwin and Windows are always PIC. 243 if (TT.isOSDarwin() || TT.isOSWindows()) 244 return Reloc::PIC_; 245 // On ELF platforms the default static relocation model has a smart enough 246 // linker to cope with referencing external symbols defined in a shared 247 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 248 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 249 return Reloc::Static; 250 return *RM; 251 } 252 253 static CodeModel::Model 254 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 255 bool JIT) { 256 if (CM) { 257 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 258 *CM != CodeModel::Large) { 259 report_fatal_error( 260 "Only small, tiny and large code models are allowed on AArch64"); 261 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 262 report_fatal_error("tiny code model is only supported on ELF"); 263 return *CM; 264 } 265 // The default MCJIT memory managers make no guarantees about where they can 266 // find an executable page; JITed code needs to be able to refer to globals 267 // no matter how far away they are. 268 // We should set the CodeModel::Small for Windows ARM64 in JIT mode, 269 // since with large code model LLVM generating 4 MOV instructions, and 270 // Windows doesn't support relocating these long branch (4 MOVs). 271 if (JIT && !TT.isOSWindows()) 272 return CodeModel::Large; 273 return CodeModel::Small; 274 } 275 276 /// Create an AArch64 architecture model. 277 /// 278 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 279 StringRef CPU, StringRef FS, 280 const TargetOptions &Options, 281 Optional<Reloc::Model> RM, 282 Optional<CodeModel::Model> CM, 283 CodeGenOpt::Level OL, bool JIT, 284 bool LittleEndian) 285 : LLVMTargetMachine(T, 286 computeDataLayout(TT, Options.MCOptions, LittleEndian), 287 TT, computeDefaultCPU(TT, CPU), FS, Options, 288 getEffectiveRelocModel(TT, RM), 289 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 290 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 291 initAsmInfo(); 292 293 if (TT.isOSBinFormatMachO()) { 294 this->Options.TrapUnreachable = true; 295 this->Options.NoTrapAfterNoreturn = true; 296 } 297 298 if (getMCAsmInfo()->usesWindowsCFI()) { 299 // Unwinding can get confused if the last instruction in an 300 // exception-handling region (function, funclet, try block, etc.) 301 // is a call. 302 // 303 // FIXME: We could elide the trap if the next instruction would be in 304 // the same region anyway. 305 this->Options.TrapUnreachable = true; 306 } 307 308 if (this->Options.TLSSize == 0) // default 309 this->Options.TLSSize = 24; 310 if ((getCodeModel() == CodeModel::Small || 311 getCodeModel() == CodeModel::Kernel) && 312 this->Options.TLSSize > 32) 313 // for the small (and kernel) code model, the maximum TLS size is 4GiB 314 this->Options.TLSSize = 32; 315 else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24) 316 // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB) 317 this->Options.TLSSize = 24; 318 319 // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is 320 // MachO/CodeModel::Large, which GlobalISel does not support. 321 if (getOptLevel() <= EnableGlobalISelAtO && 322 TT.getArch() != Triple::aarch64_32 && 323 TT.getEnvironment() != Triple::GNUILP32 && 324 !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) { 325 setGlobalISel(true); 326 setGlobalISelAbort(GlobalISelAbortMode::Disable); 327 } 328 329 // AArch64 supports the MachineOutliner. 330 setMachineOutliner(true); 331 332 // AArch64 supports default outlining behaviour. 333 setSupportsDefaultOutlining(true); 334 335 // AArch64 supports the debug entry values. 336 setSupportsDebugEntryValues(true); 337 } 338 339 AArch64TargetMachine::~AArch64TargetMachine() = default; 340 341 const AArch64Subtarget * 342 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 343 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 344 Attribute FSAttr = F.getFnAttribute("target-features"); 345 346 std::string CPU = 347 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU; 348 std::string FS = 349 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS; 350 351 auto &I = SubtargetMap[CPU + FS]; 352 if (!I) { 353 // This needs to be done before we create a new subtarget since any 354 // creation will depend on the TM and the code generation flags on the 355 // function that reside in TargetOptions. 356 resetTargetOptions(F); 357 I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 358 isLittle); 359 } 360 return I.get(); 361 } 362 363 void AArch64leTargetMachine::anchor() { } 364 365 AArch64leTargetMachine::AArch64leTargetMachine( 366 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 367 const TargetOptions &Options, Optional<Reloc::Model> RM, 368 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 369 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 370 371 void AArch64beTargetMachine::anchor() { } 372 373 AArch64beTargetMachine::AArch64beTargetMachine( 374 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 375 const TargetOptions &Options, Optional<Reloc::Model> RM, 376 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 377 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 378 379 namespace { 380 381 /// AArch64 Code Generator Pass Configuration Options. 382 class AArch64PassConfig : public TargetPassConfig { 383 public: 384 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 385 : TargetPassConfig(TM, PM) { 386 if (TM.getOptLevel() != CodeGenOpt::None) 387 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 388 } 389 390 AArch64TargetMachine &getAArch64TargetMachine() const { 391 return getTM<AArch64TargetMachine>(); 392 } 393 394 ScheduleDAGInstrs * 395 createMachineScheduler(MachineSchedContext *C) const override { 396 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 397 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 398 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 399 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 400 if (ST.hasFusion()) 401 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 402 return DAG; 403 } 404 405 ScheduleDAGInstrs * 406 createPostMachineScheduler(MachineSchedContext *C) const override { 407 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 408 if (ST.hasFusion()) { 409 // Run the Macro Fusion after RA again since literals are expanded from 410 // pseudos then (v. addPreSched2()). 411 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 412 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 413 return DAG; 414 } 415 416 return nullptr; 417 } 418 419 void addIRPasses() override; 420 bool addPreISel() override; 421 bool addInstSelector() override; 422 bool addIRTranslator() override; 423 void addPreLegalizeMachineIR() override; 424 bool addLegalizeMachineIR() override; 425 void addPreRegBankSelect() override; 426 bool addRegBankSelect() override; 427 void addPreGlobalInstructionSelect() override; 428 bool addGlobalInstructionSelect() override; 429 bool addILPOpts() override; 430 void addPreRegAlloc() override; 431 void addPostRegAlloc() override; 432 void addPreSched2() override; 433 void addPreEmitPass() override; 434 void addPreEmitPass2() override; 435 436 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 437 }; 438 439 } // end anonymous namespace 440 441 TargetTransformInfo 442 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 443 return TargetTransformInfo(AArch64TTIImpl(this, F)); 444 } 445 446 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 447 return new AArch64PassConfig(*this, PM); 448 } 449 450 std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const { 451 return getStandardCSEConfigForOpt(TM->getOptLevel()); 452 } 453 454 void AArch64PassConfig::addIRPasses() { 455 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 456 // ourselves. 457 addPass(createAtomicExpandPass()); 458 459 // Expand any SVE vector library calls that we can't code generate directly. 460 if (EnableSVEIntrinsicOpts && TM->getOptLevel() == CodeGenOpt::Aggressive) 461 addPass(createSVEIntrinsicOptsPass()); 462 463 // Cmpxchg instructions are often used with a subsequent comparison to 464 // determine whether it succeeded. We can exploit existing control-flow in 465 // ldrex/strex loops to simplify this, but it needs tidying up. 466 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 467 addPass(createCFGSimplificationPass(SimplifyCFGOptions() 468 .forwardSwitchCondToPhi(true) 469 .convertSwitchToLookupTable(true) 470 .needCanonicalLoops(false) 471 .hoistCommonInsts(true) 472 .sinkCommonInsts(true))); 473 474 // Run LoopDataPrefetch 475 // 476 // Run this before LSR to remove the multiplies involved in computing the 477 // pointer values N iterations ahead. 478 if (TM->getOptLevel() != CodeGenOpt::None) { 479 if (EnableLoopDataPrefetch) 480 addPass(createLoopDataPrefetchPass()); 481 if (EnableFalkorHWPFFix) 482 addPass(createFalkorMarkStridedAccessesPass()); 483 } 484 485 TargetPassConfig::addIRPasses(); 486 487 addPass(createAArch64StackTaggingPass( 488 /*IsOptNone=*/TM->getOptLevel() == CodeGenOpt::None)); 489 490 // Match interleaved memory accesses to ldN/stN intrinsics. 491 if (TM->getOptLevel() != CodeGenOpt::None) { 492 addPass(createInterleavedLoadCombinePass()); 493 addPass(createInterleavedAccessPass()); 494 } 495 496 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 497 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 498 // and lower a GEP with multiple indices to either arithmetic operations or 499 // multiple GEPs with single index. 500 addPass(createSeparateConstOffsetFromGEPPass(true)); 501 // Call EarlyCSE pass to find and remove subexpressions in the lowered 502 // result. 503 addPass(createEarlyCSEPass()); 504 // Do loop invariant code motion in case part of the lowered result is 505 // invariant. 506 addPass(createLICMPass()); 507 } 508 509 // Add Control Flow Guard checks. 510 if (TM->getTargetTriple().isOSWindows()) 511 addPass(createCFGuardCheckPass()); 512 } 513 514 // Pass Pipeline Configuration 515 bool AArch64PassConfig::addPreISel() { 516 // Run promote constant before global merge, so that the promoted constants 517 // get a chance to be merged 518 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 519 addPass(createAArch64PromoteConstantPass()); 520 // FIXME: On AArch64, this depends on the type. 521 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 522 // and the offset has to be a multiple of the related size in bytes. 523 if ((TM->getOptLevel() != CodeGenOpt::None && 524 EnableGlobalMerge == cl::BOU_UNSET) || 525 EnableGlobalMerge == cl::BOU_TRUE) { 526 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 527 (EnableGlobalMerge == cl::BOU_UNSET); 528 529 // Merging of extern globals is enabled by default on non-Mach-O as we 530 // expect it to be generally either beneficial or harmless. On Mach-O it 531 // is disabled as we emit the .subsections_via_symbols directive which 532 // means that merging extern globals is not safe. 533 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO(); 534 535 // FIXME: extern global merging is only enabled when we optimise for size 536 // because there are some regressions with it also enabled for performance. 537 if (!OnlyOptimizeForSize) 538 MergeExternalByDefault = false; 539 540 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize, 541 MergeExternalByDefault)); 542 } 543 544 return false; 545 } 546 547 bool AArch64PassConfig::addInstSelector() { 548 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 549 550 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 551 // references to _TLS_MODULE_BASE_ as possible. 552 if (TM->getTargetTriple().isOSBinFormatELF() && 553 getOptLevel() != CodeGenOpt::None) 554 addPass(createAArch64CleanupLocalDynamicTLSPass()); 555 556 return false; 557 } 558 559 bool AArch64PassConfig::addIRTranslator() { 560 addPass(new IRTranslator(getOptLevel())); 561 return false; 562 } 563 564 void AArch64PassConfig::addPreLegalizeMachineIR() { 565 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 566 addPass(createAArch64PreLegalizerCombiner(IsOptNone)); 567 } 568 569 bool AArch64PassConfig::addLegalizeMachineIR() { 570 addPass(new Legalizer()); 571 return false; 572 } 573 574 void AArch64PassConfig::addPreRegBankSelect() { 575 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 576 if (!IsOptNone) 577 addPass(createAArch64PostLegalizerCombiner(IsOptNone)); 578 addPass(createAArch64PostLegalizerLowering()); 579 } 580 581 bool AArch64PassConfig::addRegBankSelect() { 582 addPass(new RegBankSelect()); 583 return false; 584 } 585 586 void AArch64PassConfig::addPreGlobalInstructionSelect() { 587 addPass(new Localizer()); 588 } 589 590 bool AArch64PassConfig::addGlobalInstructionSelect() { 591 addPass(new InstructionSelect(getOptLevel())); 592 if (getOptLevel() != CodeGenOpt::None) 593 addPass(createAArch64PostSelectOptimize()); 594 return false; 595 } 596 597 bool AArch64PassConfig::addILPOpts() { 598 if (EnableCondOpt) 599 addPass(createAArch64ConditionOptimizerPass()); 600 if (EnableCCMP) 601 addPass(createAArch64ConditionalCompares()); 602 if (EnableMCR) 603 addPass(&MachineCombinerID); 604 if (EnableCondBrTuning) 605 addPass(createAArch64CondBrTuning()); 606 if (EnableEarlyIfConversion) 607 addPass(&EarlyIfConverterID); 608 if (EnableStPairSuppress) 609 addPass(createAArch64StorePairSuppressPass()); 610 addPass(createAArch64SIMDInstrOptPass()); 611 if (TM->getOptLevel() != CodeGenOpt::None) 612 addPass(createAArch64StackTaggingPreRAPass()); 613 return true; 614 } 615 616 void AArch64PassConfig::addPreRegAlloc() { 617 // Change dead register definitions to refer to the zero register. 618 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 619 addPass(createAArch64DeadRegisterDefinitions()); 620 621 // Use AdvSIMD scalar instructions whenever profitable. 622 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 623 addPass(createAArch64AdvSIMDScalar()); 624 // The AdvSIMD pass may produce copies that can be rewritten to 625 // be register coalescer friendly. 626 addPass(&PeepholeOptimizerID); 627 } 628 } 629 630 void AArch64PassConfig::addPostRegAlloc() { 631 // Remove redundant copy instructions. 632 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 633 addPass(createAArch64RedundantCopyEliminationPass()); 634 635 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 636 // Improve performance for some FP/SIMD code for A57. 637 addPass(createAArch64A57FPLoadBalancing()); 638 } 639 640 void AArch64PassConfig::addPreSched2() { 641 // Lower homogeneous frame instructions 642 if (EnableHomogeneousPrologEpilog) 643 addPass(createAArch64LowerHomogeneousPrologEpilogPass()); 644 // Expand some pseudo instructions to allow proper scheduling. 645 addPass(createAArch64ExpandPseudoPass()); 646 // Use load/store pair instructions when possible. 647 if (TM->getOptLevel() != CodeGenOpt::None) { 648 if (EnableLoadStoreOpt) 649 addPass(createAArch64LoadStoreOptimizationPass()); 650 } 651 652 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 653 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 654 // Therefore, run the AArch64SpeculationHardeningPass before the 655 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 656 // info. 657 addPass(createAArch64SpeculationHardeningPass()); 658 659 addPass(createAArch64IndirectThunks()); 660 addPass(createAArch64SLSHardeningPass()); 661 662 if (TM->getOptLevel() != CodeGenOpt::None) { 663 if (EnableFalkorHWPFFix) 664 addPass(createFalkorHWPFFixPass()); 665 } 666 } 667 668 void AArch64PassConfig::addPreEmitPass() { 669 // Machine Block Placement might have created new opportunities when run 670 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 671 // Run the load/store optimizer once more. 672 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 673 addPass(createAArch64LoadStoreOptimizationPass()); 674 675 if (EnableA53Fix835769) 676 addPass(createAArch64A53Fix835769()); 677 678 if (EnableBranchTargets) 679 addPass(createAArch64BranchTargetsPass()); 680 681 // Relax conditional branch instructions if they're otherwise out of 682 // range of their destination. 683 if (BranchRelaxation) 684 addPass(&BranchRelaxationPassID); 685 686 if (TM->getTargetTriple().isOSWindows()) { 687 // Identify valid longjmp targets for Windows Control Flow Guard. 688 addPass(createCFGuardLongjmpPass()); 689 // Identify valid eh continuation targets for Windows EHCont Guard. 690 addPass(createEHContGuardCatchretPass()); 691 } 692 693 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 694 addPass(createAArch64CompressJumpTablesPass()); 695 696 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 697 TM->getTargetTriple().isOSBinFormatMachO()) 698 addPass(createAArch64CollectLOHPass()); 699 } 700 701 void AArch64PassConfig::addPreEmitPass2() { 702 // SVE bundles move prefixes with destructive operations. BLR_RVMARKER pseudo 703 // instructions are lowered to bundles as well. 704 addPass(createUnpackMachineBundles(nullptr)); 705 } 706 707 yaml::MachineFunctionInfo * 708 AArch64TargetMachine::createDefaultFuncInfoYAML() const { 709 return new yaml::AArch64FunctionInfo(); 710 } 711 712 yaml::MachineFunctionInfo * 713 AArch64TargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 714 const auto *MFI = MF.getInfo<AArch64FunctionInfo>(); 715 return new yaml::AArch64FunctionInfo(*MFI); 716 } 717 718 bool AArch64TargetMachine::parseMachineFunctionInfo( 719 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS, 720 SMDiagnostic &Error, SMRange &SourceRange) const { 721 const auto &YamlMFI = 722 reinterpret_cast<const yaml::AArch64FunctionInfo &>(MFI); 723 MachineFunction &MF = PFS.MF; 724 MF.getInfo<AArch64FunctionInfo>()->initializeBaseYamlFields(YamlMFI); 725 return false; 726 } 727