1 //===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "AArch64TargetMachine.h" 13 #include "AArch64.h" 14 #include "AArch64MacroFusion.h" 15 #include "AArch64Subtarget.h" 16 #include "AArch64TargetObjectFile.h" 17 #include "AArch64TargetTransformInfo.h" 18 #include "MCTargetDesc/AArch64MCTargetDesc.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 23 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 24 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 25 #include "llvm/CodeGen/GlobalISel/Localizer.h" 26 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 27 #include "llvm/CodeGen/MachineScheduler.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/TargetPassConfig.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/MC/MCAsmInfo.h" 33 #include "llvm/MC/MCTargetOptions.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CodeGen.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Target/TargetLoweringObjectFile.h" 39 #include "llvm/Target/TargetOptions.h" 40 #include "llvm/Transforms/Scalar.h" 41 #include <memory> 42 #include <string> 43 44 using namespace llvm; 45 46 static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp", 47 cl::desc("Enable the CCMP formation pass"), 48 cl::init(true), cl::Hidden); 49 50 static cl::opt<bool> 51 EnableCondBrTuning("aarch64-enable-cond-br-tune", 52 cl::desc("Enable the conditional branch tuning pass"), 53 cl::init(true), cl::Hidden); 54 55 static cl::opt<bool> EnableMCR("aarch64-enable-mcr", 56 cl::desc("Enable the machine combiner pass"), 57 cl::init(true), cl::Hidden); 58 59 static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress", 60 cl::desc("Suppress STP for AArch64"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> EnableAdvSIMDScalar( 64 "aarch64-enable-simd-scalar", 65 cl::desc("Enable use of AdvSIMD scalar integer instructions"), 66 cl::init(false), cl::Hidden); 67 68 static cl::opt<bool> 69 EnablePromoteConstant("aarch64-enable-promote-const", 70 cl::desc("Enable the promote constant pass"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<bool> EnableCollectLOH( 74 "aarch64-enable-collect-loh", 75 cl::desc("Enable the pass that emits the linker optimization hints (LOH)"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<bool> 79 EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden, 80 cl::desc("Enable the pass that removes dead" 81 " definitons and replaces stores to" 82 " them with stores to the zero" 83 " register"), 84 cl::init(true)); 85 86 static cl::opt<bool> EnableRedundantCopyElimination( 87 "aarch64-enable-copyelim", 88 cl::desc("Enable the redundant copy elimination pass"), cl::init(true), 89 cl::Hidden); 90 91 static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt", 92 cl::desc("Enable the load/store pair" 93 " optimization pass"), 94 cl::init(true), cl::Hidden); 95 96 static cl::opt<bool> EnableAtomicTidy( 97 "aarch64-enable-atomic-cfg-tidy", cl::Hidden, 98 cl::desc("Run SimplifyCFG after expanding atomic operations" 99 " to make use of cmpxchg flow-based information"), 100 cl::init(true)); 101 102 static cl::opt<bool> 103 EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden, 104 cl::desc("Run early if-conversion"), 105 cl::init(true)); 106 107 static cl::opt<bool> 108 EnableCondOpt("aarch64-enable-condopt", 109 cl::desc("Enable the condition optimizer pass"), 110 cl::init(true), cl::Hidden); 111 112 static cl::opt<bool> 113 EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden, 114 cl::desc("Work around Cortex-A53 erratum 835769"), 115 cl::init(false)); 116 117 static cl::opt<bool> 118 EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden, 119 cl::desc("Enable optimizations on complex GEPs"), 120 cl::init(false)); 121 122 static cl::opt<bool> 123 BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true), 124 cl::desc("Relax out of range conditional branches")); 125 126 static cl::opt<bool> EnableCompressJumpTables( 127 "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true), 128 cl::desc("Use smallest entry possible for jump tables")); 129 130 // FIXME: Unify control over GlobalMerge. 131 static cl::opt<cl::boolOrDefault> 132 EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden, 133 cl::desc("Enable the global merge pass")); 134 135 static cl::opt<bool> 136 EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden, 137 cl::desc("Enable the loop data prefetch pass"), 138 cl::init(true)); 139 140 static cl::opt<int> EnableGlobalISelAtO( 141 "aarch64-enable-global-isel-at-O", cl::Hidden, 142 cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"), 143 cl::init(0)); 144 145 static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix", 146 cl::init(true), cl::Hidden); 147 148 static cl::opt<bool> 149 EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden, 150 cl::desc("Enable the AAcrh64 branch target pass"), 151 cl::init(true)); 152 153 extern "C" void LLVMInitializeAArch64Target() { 154 // Register the target. 155 RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget()); 156 RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget()); 157 RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target()); 158 auto PR = PassRegistry::getPassRegistry(); 159 initializeGlobalISel(*PR); 160 initializeAArch64A53Fix835769Pass(*PR); 161 initializeAArch64A57FPLoadBalancingPass(*PR); 162 initializeAArch64AdvSIMDScalarPass(*PR); 163 initializeAArch64BranchTargetsPass(*PR); 164 initializeAArch64CollectLOHPass(*PR); 165 initializeAArch64CompressJumpTablesPass(*PR); 166 initializeAArch64ConditionalComparesPass(*PR); 167 initializeAArch64ConditionOptimizerPass(*PR); 168 initializeAArch64DeadRegisterDefinitionsPass(*PR); 169 initializeAArch64ExpandPseudoPass(*PR); 170 initializeAArch64LoadStoreOptPass(*PR); 171 initializeAArch64SIMDInstrOptPass(*PR); 172 initializeAArch64PreLegalizerCombinerPass(*PR); 173 initializeAArch64PromoteConstantPass(*PR); 174 initializeAArch64RedundantCopyEliminationPass(*PR); 175 initializeAArch64StorePairSuppressPass(*PR); 176 initializeFalkorHWPFFixPass(*PR); 177 initializeFalkorMarkStridedAccessesLegacyPass(*PR); 178 initializeLDTLSCleanupPass(*PR); 179 initializeAArch64SpeculationHardeningPass(*PR); 180 } 181 182 //===----------------------------------------------------------------------===// 183 // AArch64 Lowering public interface. 184 //===----------------------------------------------------------------------===// 185 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 186 if (TT.isOSBinFormatMachO()) 187 return llvm::make_unique<AArch64_MachoTargetObjectFile>(); 188 if (TT.isOSBinFormatCOFF()) 189 return llvm::make_unique<AArch64_COFFTargetObjectFile>(); 190 191 return llvm::make_unique<AArch64_ELFTargetObjectFile>(); 192 } 193 194 // Helper function to build a DataLayout string 195 static std::string computeDataLayout(const Triple &TT, 196 const MCTargetOptions &Options, 197 bool LittleEndian) { 198 if (Options.getABIName() == "ilp32") 199 return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128"; 200 if (TT.isOSBinFormatMachO()) 201 return "e-m:o-i64:64-i128:128-n32:64-S128"; 202 if (TT.isOSBinFormatCOFF()) 203 return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128"; 204 if (LittleEndian) 205 return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 206 return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128"; 207 } 208 209 static Reloc::Model getEffectiveRelocModel(const Triple &TT, 210 Optional<Reloc::Model> RM) { 211 // AArch64 Darwin and Windows are always PIC. 212 if (TT.isOSDarwin() || TT.isOSWindows()) 213 return Reloc::PIC_; 214 // On ELF platforms the default static relocation model has a smart enough 215 // linker to cope with referencing external symbols defined in a shared 216 // library. Hence DynamicNoPIC doesn't need to be promoted to PIC. 217 if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC) 218 return Reloc::Static; 219 return *RM; 220 } 221 222 static CodeModel::Model 223 getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM, 224 bool JIT) { 225 if (CM) { 226 if (*CM != CodeModel::Small && *CM != CodeModel::Tiny && 227 *CM != CodeModel::Large) { 228 if (!TT.isOSFuchsia()) 229 report_fatal_error( 230 "Only small, tiny and large code models are allowed on AArch64"); 231 else if (*CM != CodeModel::Kernel) 232 report_fatal_error("Only small, tiny, kernel, and large code models " 233 "are allowed on AArch64"); 234 } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF()) 235 report_fatal_error("tiny code model is only supported on ELF"); 236 return *CM; 237 } 238 // The default MCJIT memory managers make no guarantees about where they can 239 // find an executable page; JITed code needs to be able to refer to globals 240 // no matter how far away they are. 241 if (JIT) 242 return CodeModel::Large; 243 return CodeModel::Small; 244 } 245 246 /// Create an AArch64 architecture model. 247 /// 248 AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT, 249 StringRef CPU, StringRef FS, 250 const TargetOptions &Options, 251 Optional<Reloc::Model> RM, 252 Optional<CodeModel::Model> CM, 253 CodeGenOpt::Level OL, bool JIT, 254 bool LittleEndian) 255 : LLVMTargetMachine(T, 256 computeDataLayout(TT, Options.MCOptions, LittleEndian), 257 TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM), 258 getEffectiveAArch64CodeModel(TT, CM, JIT), OL), 259 TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) { 260 initAsmInfo(); 261 262 if (TT.isOSBinFormatMachO()) { 263 this->Options.TrapUnreachable = true; 264 this->Options.NoTrapAfterNoreturn = true; 265 } 266 267 if (getMCAsmInfo()->usesWindowsCFI()) { 268 // Unwinding can get confused if the last instruction in an 269 // exception-handling region (function, funclet, try block, etc.) 270 // is a call. 271 // 272 // FIXME: We could elide the trap if the next instruction would be in 273 // the same region anyway. 274 this->Options.TrapUnreachable = true; 275 } 276 277 // Enable GlobalISel at or below EnableGlobalISelAt0. 278 if (getOptLevel() <= EnableGlobalISelAtO) { 279 setGlobalISel(true); 280 setGlobalISelAbort(GlobalISelAbortMode::Disable); 281 } 282 283 // AArch64 supports the MachineOutliner. 284 setMachineOutliner(true); 285 286 // AArch64 supports default outlining behaviour. 287 setSupportsDefaultOutlining(true); 288 } 289 290 AArch64TargetMachine::~AArch64TargetMachine() = default; 291 292 const AArch64Subtarget * 293 AArch64TargetMachine::getSubtargetImpl(const Function &F) const { 294 Attribute CPUAttr = F.getFnAttribute("target-cpu"); 295 Attribute FSAttr = F.getFnAttribute("target-features"); 296 297 std::string CPU = !CPUAttr.hasAttribute(Attribute::None) 298 ? CPUAttr.getValueAsString().str() 299 : TargetCPU; 300 std::string FS = !FSAttr.hasAttribute(Attribute::None) 301 ? FSAttr.getValueAsString().str() 302 : TargetFS; 303 304 auto &I = SubtargetMap[CPU + FS]; 305 if (!I) { 306 // This needs to be done before we create a new subtarget since any 307 // creation will depend on the TM and the code generation flags on the 308 // function that reside in TargetOptions. 309 resetTargetOptions(F); 310 I = llvm::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this, 311 isLittle); 312 } 313 return I.get(); 314 } 315 316 void AArch64leTargetMachine::anchor() { } 317 318 AArch64leTargetMachine::AArch64leTargetMachine( 319 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 320 const TargetOptions &Options, Optional<Reloc::Model> RM, 321 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 322 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {} 323 324 void AArch64beTargetMachine::anchor() { } 325 326 AArch64beTargetMachine::AArch64beTargetMachine( 327 const Target &T, const Triple &TT, StringRef CPU, StringRef FS, 328 const TargetOptions &Options, Optional<Reloc::Model> RM, 329 Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT) 330 : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {} 331 332 namespace { 333 334 /// AArch64 Code Generator Pass Configuration Options. 335 class AArch64PassConfig : public TargetPassConfig { 336 public: 337 AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM) 338 : TargetPassConfig(TM, PM) { 339 if (TM.getOptLevel() != CodeGenOpt::None) 340 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 341 } 342 343 AArch64TargetMachine &getAArch64TargetMachine() const { 344 return getTM<AArch64TargetMachine>(); 345 } 346 347 ScheduleDAGInstrs * 348 createMachineScheduler(MachineSchedContext *C) const override { 349 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 350 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 351 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 352 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 353 if (ST.hasFusion()) 354 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 355 return DAG; 356 } 357 358 ScheduleDAGInstrs * 359 createPostMachineScheduler(MachineSchedContext *C) const override { 360 const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>(); 361 if (ST.hasFusion()) { 362 // Run the Macro Fusion after RA again since literals are expanded from 363 // pseudos then (v. addPreSched2()). 364 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 365 DAG->addMutation(createAArch64MacroFusionDAGMutation()); 366 return DAG; 367 } 368 369 return nullptr; 370 } 371 372 void addIRPasses() override; 373 bool addPreISel() override; 374 bool addInstSelector() override; 375 bool addIRTranslator() override; 376 void addPreLegalizeMachineIR() override; 377 bool addLegalizeMachineIR() override; 378 bool addRegBankSelect() override; 379 void addPreGlobalInstructionSelect() override; 380 bool addGlobalInstructionSelect() override; 381 bool addILPOpts() override; 382 void addPreRegAlloc() override; 383 void addPostRegAlloc() override; 384 void addPreSched2() override; 385 void addPreEmitPass() override; 386 }; 387 388 } // end anonymous namespace 389 390 TargetTransformInfo 391 AArch64TargetMachine::getTargetTransformInfo(const Function &F) { 392 return TargetTransformInfo(AArch64TTIImpl(this, F)); 393 } 394 395 TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) { 396 return new AArch64PassConfig(*this, PM); 397 } 398 399 void AArch64PassConfig::addIRPasses() { 400 // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg 401 // ourselves. 402 addPass(createAtomicExpandPass()); 403 404 // Cmpxchg instructions are often used with a subsequent comparison to 405 // determine whether it succeeded. We can exploit existing control-flow in 406 // ldrex/strex loops to simplify this, but it needs tidying up. 407 if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy) 408 addPass(createCFGSimplificationPass(1, true, true, false, true)); 409 410 // Run LoopDataPrefetch 411 // 412 // Run this before LSR to remove the multiplies involved in computing the 413 // pointer values N iterations ahead. 414 if (TM->getOptLevel() != CodeGenOpt::None) { 415 if (EnableLoopDataPrefetch) 416 addPass(createLoopDataPrefetchPass()); 417 if (EnableFalkorHWPFFix) 418 addPass(createFalkorMarkStridedAccessesPass()); 419 } 420 421 TargetPassConfig::addIRPasses(); 422 423 // Match interleaved memory accesses to ldN/stN intrinsics. 424 if (TM->getOptLevel() != CodeGenOpt::None) { 425 addPass(createInterleavedLoadCombinePass()); 426 addPass(createInterleavedAccessPass()); 427 } 428 429 if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) { 430 // Call SeparateConstOffsetFromGEP pass to extract constants within indices 431 // and lower a GEP with multiple indices to either arithmetic operations or 432 // multiple GEPs with single index. 433 addPass(createSeparateConstOffsetFromGEPPass(true)); 434 // Call EarlyCSE pass to find and remove subexpressions in the lowered 435 // result. 436 addPass(createEarlyCSEPass()); 437 // Do loop invariant code motion in case part of the lowered result is 438 // invariant. 439 addPass(createLICMPass()); 440 } 441 } 442 443 // Pass Pipeline Configuration 444 bool AArch64PassConfig::addPreISel() { 445 // Run promote constant before global merge, so that the promoted constants 446 // get a chance to be merged 447 if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant) 448 addPass(createAArch64PromoteConstantPass()); 449 // FIXME: On AArch64, this depends on the type. 450 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 451 // and the offset has to be a multiple of the related size in bytes. 452 if ((TM->getOptLevel() != CodeGenOpt::None && 453 EnableGlobalMerge == cl::BOU_UNSET) || 454 EnableGlobalMerge == cl::BOU_TRUE) { 455 bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) && 456 (EnableGlobalMerge == cl::BOU_UNSET); 457 addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize)); 458 } 459 460 return false; 461 } 462 463 bool AArch64PassConfig::addInstSelector() { 464 addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel())); 465 466 // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many 467 // references to _TLS_MODULE_BASE_ as possible. 468 if (TM->getTargetTriple().isOSBinFormatELF() && 469 getOptLevel() != CodeGenOpt::None) 470 addPass(createAArch64CleanupLocalDynamicTLSPass()); 471 472 return false; 473 } 474 475 bool AArch64PassConfig::addIRTranslator() { 476 addPass(new IRTranslator()); 477 return false; 478 } 479 480 void AArch64PassConfig::addPreLegalizeMachineIR() { 481 addPass(createAArch64PreLegalizeCombiner()); 482 } 483 484 bool AArch64PassConfig::addLegalizeMachineIR() { 485 addPass(new Legalizer()); 486 return false; 487 } 488 489 bool AArch64PassConfig::addRegBankSelect() { 490 addPass(new RegBankSelect()); 491 return false; 492 } 493 494 void AArch64PassConfig::addPreGlobalInstructionSelect() { 495 // Workaround the deficiency of the fast register allocator. 496 if (TM->getOptLevel() == CodeGenOpt::None) 497 addPass(new Localizer()); 498 } 499 500 bool AArch64PassConfig::addGlobalInstructionSelect() { 501 addPass(new InstructionSelect()); 502 return false; 503 } 504 505 bool AArch64PassConfig::addILPOpts() { 506 if (EnableCondOpt) 507 addPass(createAArch64ConditionOptimizerPass()); 508 if (EnableCCMP) 509 addPass(createAArch64ConditionalCompares()); 510 if (EnableMCR) 511 addPass(&MachineCombinerID); 512 if (EnableCondBrTuning) 513 addPass(createAArch64CondBrTuning()); 514 if (EnableEarlyIfConversion) 515 addPass(&EarlyIfConverterID); 516 if (EnableStPairSuppress) 517 addPass(createAArch64StorePairSuppressPass()); 518 addPass(createAArch64SIMDInstrOptPass()); 519 return true; 520 } 521 522 void AArch64PassConfig::addPreRegAlloc() { 523 // Change dead register definitions to refer to the zero register. 524 if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination) 525 addPass(createAArch64DeadRegisterDefinitions()); 526 527 // Use AdvSIMD scalar instructions whenever profitable. 528 if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) { 529 addPass(createAArch64AdvSIMDScalar()); 530 // The AdvSIMD pass may produce copies that can be rewritten to 531 // be register coaleascer friendly. 532 addPass(&PeepholeOptimizerID); 533 } 534 } 535 536 void AArch64PassConfig::addPostRegAlloc() { 537 // Remove redundant copy instructions. 538 if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination) 539 addPass(createAArch64RedundantCopyEliminationPass()); 540 541 if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc()) 542 // Improve performance for some FP/SIMD code for A57. 543 addPass(createAArch64A57FPLoadBalancing()); 544 } 545 546 void AArch64PassConfig::addPreSched2() { 547 // Expand some pseudo instructions to allow proper scheduling. 548 addPass(createAArch64ExpandPseudoPass()); 549 // Use load/store pair instructions when possible. 550 if (TM->getOptLevel() != CodeGenOpt::None) { 551 if (EnableLoadStoreOpt) 552 addPass(createAArch64LoadStoreOptimizationPass()); 553 } 554 555 // The AArch64SpeculationHardeningPass destroys dominator tree and natural 556 // loop info, which is needed for the FalkorHWPFFixPass and also later on. 557 // Therefore, run the AArch64SpeculationHardeningPass before the 558 // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop 559 // info. 560 addPass(createAArch64SpeculationHardeningPass()); 561 562 if (TM->getOptLevel() != CodeGenOpt::None) { 563 if (EnableFalkorHWPFFix) 564 addPass(createFalkorHWPFFixPass()); 565 } 566 } 567 568 void AArch64PassConfig::addPreEmitPass() { 569 // Machine Block Placement might have created new opportunities when run 570 // at O3, where the Tail Duplication Threshold is set to 4 instructions. 571 // Run the load/store optimizer once more. 572 if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt) 573 addPass(createAArch64LoadStoreOptimizationPass()); 574 575 if (EnableA53Fix835769) 576 addPass(createAArch64A53Fix835769()); 577 // Relax conditional branch instructions if they're otherwise out of 578 // range of their destination. 579 if (BranchRelaxation) 580 addPass(&BranchRelaxationPassID); 581 582 if (EnableBranchTargets) 583 addPass(createAArch64BranchTargetsPass()); 584 585 if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables) 586 addPass(createAArch64CompressJumpTablesPass()); 587 588 if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH && 589 TM->getTargetTriple().isOSBinFormatMachO()) 590 addPass(createAArch64CollectLOHPass()); 591 } 592