1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the operating system Host concept.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/Host.h"
14 #include "llvm/Support/TargetParser.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/FileSystem.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <assert.h>
26 #include <string.h>
27 
28 // Include the platform-specific parts of this class.
29 #ifdef LLVM_ON_UNIX
30 #include "Unix/Host.inc"
31 #endif
32 #ifdef _WIN32
33 #include "Windows/Host.inc"
34 #endif
35 #ifdef _MSC_VER
36 #include <intrin.h>
37 #endif
38 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
39 #include <mach/host_info.h>
40 #include <mach/mach.h>
41 #include <mach/mach_host.h>
42 #include <mach/machine.h>
43 #endif
44 
45 #define DEBUG_TYPE "host-detection"
46 
47 //===----------------------------------------------------------------------===//
48 //
49 //  Implementations of the CPU detection routines
50 //
51 //===----------------------------------------------------------------------===//
52 
53 using namespace llvm;
54 
55 static std::unique_ptr<llvm::MemoryBuffer>
56     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
57   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
58       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
59   if (std::error_code EC = Text.getError()) {
60     llvm::errs() << "Can't read "
61                  << "/proc/cpuinfo: " << EC.message() << "\n";
62     return nullptr;
63   }
64   return std::move(*Text);
65 }
66 
67 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
68   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
69   // and so we must use an operating-system interface to determine the current
70   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
71   const char *generic = "generic";
72 
73   // The cpu line is second (after the 'processor: 0' line), so if this
74   // buffer is too small then something has changed (or is wrong).
75   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
76   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
77 
78   StringRef::const_iterator CIP = CPUInfoStart;
79 
80   StringRef::const_iterator CPUStart = 0;
81   size_t CPULen = 0;
82 
83   // We need to find the first line which starts with cpu, spaces, and a colon.
84   // After the colon, there may be some additional spaces and then the cpu type.
85   while (CIP < CPUInfoEnd && CPUStart == 0) {
86     if (CIP < CPUInfoEnd && *CIP == '\n')
87       ++CIP;
88 
89     if (CIP < CPUInfoEnd && *CIP == 'c') {
90       ++CIP;
91       if (CIP < CPUInfoEnd && *CIP == 'p') {
92         ++CIP;
93         if (CIP < CPUInfoEnd && *CIP == 'u') {
94           ++CIP;
95           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
96             ++CIP;
97 
98           if (CIP < CPUInfoEnd && *CIP == ':') {
99             ++CIP;
100             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
101               ++CIP;
102 
103             if (CIP < CPUInfoEnd) {
104               CPUStart = CIP;
105               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
106                                           *CIP != ',' && *CIP != '\n'))
107                 ++CIP;
108               CPULen = CIP - CPUStart;
109             }
110           }
111         }
112       }
113     }
114 
115     if (CPUStart == 0)
116       while (CIP < CPUInfoEnd && *CIP != '\n')
117         ++CIP;
118   }
119 
120   if (CPUStart == 0)
121     return generic;
122 
123   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
124       .Case("604e", "604e")
125       .Case("604", "604")
126       .Case("7400", "7400")
127       .Case("7410", "7400")
128       .Case("7447", "7400")
129       .Case("7455", "7450")
130       .Case("G4", "g4")
131       .Case("POWER4", "970")
132       .Case("PPC970FX", "970")
133       .Case("PPC970MP", "970")
134       .Case("G5", "g5")
135       .Case("POWER5", "g5")
136       .Case("A2", "a2")
137       .Case("POWER6", "pwr6")
138       .Case("POWER7", "pwr7")
139       .Case("POWER8", "pwr8")
140       .Case("POWER8E", "pwr8")
141       .Case("POWER8NVL", "pwr8")
142       .Case("POWER9", "pwr9")
143       .Default(generic);
144 }
145 
146 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
147   // The cpuid register on arm is not accessible from user space. On Linux,
148   // it is exposed through the /proc/cpuinfo file.
149 
150   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
151   // in all cases.
152   SmallVector<StringRef, 32> Lines;
153   ProcCpuinfoContent.split(Lines, "\n");
154 
155   // Look for the CPU implementer line.
156   StringRef Implementer;
157   StringRef Hardware;
158   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
159     if (Lines[I].startswith("CPU implementer"))
160       Implementer = Lines[I].substr(15).ltrim("\t :");
161     if (Lines[I].startswith("Hardware"))
162       Hardware = Lines[I].substr(8).ltrim("\t :");
163   }
164 
165   if (Implementer == "0x41") { // ARM Ltd.
166     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
167     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
168     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
169       return "cortex-a53";
170 
171 
172     // Look for the CPU part line.
173     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
174       if (Lines[I].startswith("CPU part"))
175         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
176         // values correspond to the "Part number" in the CP15/c0 register. The
177         // contents are specified in the various processor manuals.
178         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
179             .Case("0x926", "arm926ej-s")
180             .Case("0xb02", "mpcore")
181             .Case("0xb36", "arm1136j-s")
182             .Case("0xb56", "arm1156t2-s")
183             .Case("0xb76", "arm1176jz-s")
184             .Case("0xc08", "cortex-a8")
185             .Case("0xc09", "cortex-a9")
186             .Case("0xc0f", "cortex-a15")
187             .Case("0xc20", "cortex-m0")
188             .Case("0xc23", "cortex-m3")
189             .Case("0xc24", "cortex-m4")
190             .Case("0xd04", "cortex-a35")
191             .Case("0xd03", "cortex-a53")
192             .Case("0xd07", "cortex-a57")
193             .Case("0xd08", "cortex-a72")
194             .Case("0xd09", "cortex-a73")
195             .Default("generic");
196   }
197 
198   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
199     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
200       if (Lines[I].startswith("CPU part")) {
201         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
202           .Case("0x516", "thunderx2t99")
203           .Case("0x0516", "thunderx2t99")
204           .Case("0xaf", "thunderx2t99")
205           .Case("0x0af", "thunderx2t99")
206           .Case("0xa1", "thunderxt88")
207           .Case("0x0a1", "thunderxt88")
208           .Default("generic");
209       }
210     }
211   }
212 
213   if (Implementer == "0x48") // HiSilicon Technologies, Inc.
214     // Look for the CPU part line.
215     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
216       if (Lines[I].startswith("CPU part"))
217         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
218         // values correspond to the "Part number" in the CP15/c0 register. The
219         // contents are specified in the various processor manuals.
220         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
221           .Case("0xd01", "tsv110")
222           .Default("generic");
223 
224   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
225     // Look for the CPU part line.
226     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
227       if (Lines[I].startswith("CPU part"))
228         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
229         // values correspond to the "Part number" in the CP15/c0 register. The
230         // contents are specified in the various processor manuals.
231         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
232             .Case("0x06f", "krait") // APQ8064
233             .Case("0x201", "kryo")
234             .Case("0x205", "kryo")
235             .Case("0x211", "kryo")
236             .Case("0x800", "cortex-a73")
237             .Case("0x801", "cortex-a73")
238             .Case("0xc00", "falkor")
239             .Case("0xc01", "saphira")
240             .Default("generic");
241 
242   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
243     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
244     // any predictive pattern across variants and parts.
245     unsigned Variant = 0, Part = 0;
246 
247     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
248     // number, corresponding to the Variant bits in the CP15/C0 register.
249     for (auto I : Lines)
250       if (I.consume_front("CPU variant"))
251         I.ltrim("\t :").getAsInteger(0, Variant);
252 
253     // Look for the CPU part line, whose value is a 3 digit hexadecimal
254     // number, corresponding to the PartNum bits in the CP15/C0 register.
255     for (auto I : Lines)
256       if (I.consume_front("CPU part"))
257         I.ltrim("\t :").getAsInteger(0, Part);
258 
259     unsigned Exynos = (Variant << 12) | Part;
260     switch (Exynos) {
261     default:
262       // Default by falling through to Exynos M1.
263       LLVM_FALLTHROUGH;
264 
265     case 0x1001:
266       return "exynos-m1";
267 
268     case 0x4001:
269       return "exynos-m2";
270     }
271   }
272 
273   return "generic";
274 }
275 
276 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
277   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
278 
279   // The "processor 0:" line comes after a fair amount of other information,
280   // including a cache breakdown, but this should be plenty.
281   SmallVector<StringRef, 32> Lines;
282   ProcCpuinfoContent.split(Lines, "\n");
283 
284   // Look for the CPU features.
285   SmallVector<StringRef, 32> CPUFeatures;
286   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
287     if (Lines[I].startswith("features")) {
288       size_t Pos = Lines[I].find(":");
289       if (Pos != StringRef::npos) {
290         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
291         break;
292       }
293     }
294 
295   // We need to check for the presence of vector support independently of
296   // the machine type, since we may only use the vector register set when
297   // supported by the kernel (and hypervisor).
298   bool HaveVectorSupport = false;
299   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
300     if (CPUFeatures[I] == "vx")
301       HaveVectorSupport = true;
302   }
303 
304   // Now check the processor machine type.
305   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
306     if (Lines[I].startswith("processor ")) {
307       size_t Pos = Lines[I].find("machine = ");
308       if (Pos != StringRef::npos) {
309         Pos += sizeof("machine = ") - 1;
310         unsigned int Id;
311         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
312           if (Id >= 3906 && HaveVectorSupport)
313             return "z14";
314           if (Id >= 2964 && HaveVectorSupport)
315             return "z13";
316           if (Id >= 2827)
317             return "zEC12";
318           if (Id >= 2817)
319             return "z196";
320         }
321       }
322       break;
323     }
324   }
325 
326   return "generic";
327 }
328 
329 StringRef sys::detail::getHostCPUNameForBPF() {
330 #if !defined(__linux__) || !defined(__x86_64__)
331   return "generic";
332 #else
333   uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
334       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
335     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
336       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
337       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
338       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
339       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
340       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
341       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
342       /* BPF_EXIT_INSN() */
343       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
344 
345   uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
346       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
347     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
348       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
349       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
350       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
351       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
352       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
353       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
354       /* BPF_EXIT_INSN() */
355       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
356 
357   struct bpf_prog_load_attr {
358     uint32_t prog_type;
359     uint32_t insn_cnt;
360     uint64_t insns;
361     uint64_t license;
362     uint32_t log_level;
363     uint32_t log_size;
364     uint64_t log_buf;
365     uint32_t kern_version;
366     uint32_t prog_flags;
367   } attr = {};
368   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
369   attr.insn_cnt = 5;
370   attr.insns = (uint64_t)v3_insns;
371   attr.license = (uint64_t)"DUMMY";
372 
373   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
374                    sizeof(attr));
375   if (fd >= 0) {
376     close(fd);
377     return "v3";
378   }
379 
380   /* Clear the whole attr in case its content changed by syscall. */
381   memset(&attr, 0, sizeof(attr));
382   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
383   attr.insn_cnt = 5;
384   attr.insns = (uint64_t)v2_insns;
385   attr.license = (uint64_t)"DUMMY";
386   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
387   if (fd >= 0) {
388     close(fd);
389     return "v2";
390   }
391   return "v1";
392 #endif
393 }
394 
395 #if defined(__i386__) || defined(_M_IX86) || \
396     defined(__x86_64__) || defined(_M_X64)
397 
398 enum VendorSignatures {
399   SIG_INTEL = 0x756e6547 /* Genu */,
400   SIG_AMD = 0x68747541 /* Auth */
401 };
402 
403 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
404 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
405 // support. Consequently, for i386, the presence of CPUID is checked first
406 // via the corresponding eflags bit.
407 // Removal of cpuid.h header motivated by PR30384
408 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
409 // or test-suite, but are used in external projects e.g. libstdcxx
410 static bool isCpuIdSupported() {
411 #if defined(__GNUC__) || defined(__clang__)
412 #if defined(__i386__)
413   int __cpuid_supported;
414   __asm__("  pushfl\n"
415           "  popl   %%eax\n"
416           "  movl   %%eax,%%ecx\n"
417           "  xorl   $0x00200000,%%eax\n"
418           "  pushl  %%eax\n"
419           "  popfl\n"
420           "  pushfl\n"
421           "  popl   %%eax\n"
422           "  movl   $0,%0\n"
423           "  cmpl   %%eax,%%ecx\n"
424           "  je     1f\n"
425           "  movl   $1,%0\n"
426           "1:"
427           : "=r"(__cpuid_supported)
428           :
429           : "eax", "ecx");
430   if (!__cpuid_supported)
431     return false;
432 #endif
433   return true;
434 #endif
435   return true;
436 }
437 
438 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
439 /// the specified arguments.  If we can't run cpuid on the host, return true.
440 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
441                                unsigned *rECX, unsigned *rEDX) {
442 #if defined(__GNUC__) || defined(__clang__)
443 #if defined(__x86_64__)
444   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
445   // FIXME: should we save this for Clang?
446   __asm__("movq\t%%rbx, %%rsi\n\t"
447           "cpuid\n\t"
448           "xchgq\t%%rbx, %%rsi\n\t"
449           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
450           : "a"(value));
451   return false;
452 #elif defined(__i386__)
453   __asm__("movl\t%%ebx, %%esi\n\t"
454           "cpuid\n\t"
455           "xchgl\t%%ebx, %%esi\n\t"
456           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
457           : "a"(value));
458   return false;
459 #else
460   return true;
461 #endif
462 #elif defined(_MSC_VER)
463   // The MSVC intrinsic is portable across x86 and x64.
464   int registers[4];
465   __cpuid(registers, value);
466   *rEAX = registers[0];
467   *rEBX = registers[1];
468   *rECX = registers[2];
469   *rEDX = registers[3];
470   return false;
471 #else
472   return true;
473 #endif
474 }
475 
476 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
477 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
478 /// return true.
479 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
480                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
481                                  unsigned *rEDX) {
482 #if defined(__GNUC__) || defined(__clang__)
483 #if defined(__x86_64__)
484   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
485   // FIXME: should we save this for Clang?
486   __asm__("movq\t%%rbx, %%rsi\n\t"
487           "cpuid\n\t"
488           "xchgq\t%%rbx, %%rsi\n\t"
489           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
490           : "a"(value), "c"(subleaf));
491   return false;
492 #elif defined(__i386__)
493   __asm__("movl\t%%ebx, %%esi\n\t"
494           "cpuid\n\t"
495           "xchgl\t%%ebx, %%esi\n\t"
496           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
497           : "a"(value), "c"(subleaf));
498   return false;
499 #else
500   return true;
501 #endif
502 #elif defined(_MSC_VER)
503   int registers[4];
504   __cpuidex(registers, value, subleaf);
505   *rEAX = registers[0];
506   *rEBX = registers[1];
507   *rECX = registers[2];
508   *rEDX = registers[3];
509   return false;
510 #else
511   return true;
512 #endif
513 }
514 
515 // Read control register 0 (XCR0). Used to detect features such as AVX.
516 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
517 #if defined(__GNUC__) || defined(__clang__)
518   // Check xgetbv; this uses a .byte sequence instead of the instruction
519   // directly because older assemblers do not include support for xgetbv and
520   // there is no easy way to conditionally compile based on the assembler used.
521   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
522   return false;
523 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
524   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
525   *rEAX = Result;
526   *rEDX = Result >> 32;
527   return false;
528 #else
529   return true;
530 #endif
531 }
532 
533 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
534                                  unsigned *Model) {
535   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
536   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
537   if (*Family == 6 || *Family == 0xf) {
538     if (*Family == 0xf)
539       // Examine extended family ID if family ID is F.
540       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
541     // Examine extended model ID if family ID is 6 or F.
542     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
543   }
544 }
545 
546 static void
547 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
548                                 unsigned Brand_id, unsigned Features,
549                                 unsigned Features2, unsigned Features3,
550                                 unsigned *Type, unsigned *Subtype) {
551   if (Brand_id != 0)
552     return;
553   switch (Family) {
554   case 3:
555     *Type = X86::INTEL_i386;
556     break;
557   case 4:
558     *Type = X86::INTEL_i486;
559     break;
560   case 5:
561     if (Features & (1 << X86::FEATURE_MMX)) {
562       *Type = X86::INTEL_PENTIUM_MMX;
563       break;
564     }
565     *Type = X86::INTEL_PENTIUM;
566     break;
567   case 6:
568     switch (Model) {
569     case 0x01: // Pentium Pro processor
570       *Type = X86::INTEL_PENTIUM_PRO;
571       break;
572     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
573                // model 03
574     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
575                // model 05, and Intel Celeron processor, model 05
576     case 0x06: // Celeron processor, model 06
577       *Type = X86::INTEL_PENTIUM_II;
578       break;
579     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
580                // processor, model 07
581     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
582                // model 08, and Celeron processor, model 08
583     case 0x0a: // Pentium III Xeon processor, model 0Ah
584     case 0x0b: // Pentium III processor, model 0Bh
585       *Type = X86::INTEL_PENTIUM_III;
586       break;
587     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
588     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
589                // 0Dh. All processors are manufactured using the 90 nm process.
590     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
591                // Integrated Processor with Intel QuickAssist Technology
592       *Type = X86::INTEL_PENTIUM_M;
593       break;
594     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
595                // 0Eh. All processors are manufactured using the 65 nm process.
596       *Type = X86::INTEL_CORE_DUO;
597       break;   // yonah
598     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
599                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
600                // mobile processor, Intel Core 2 Extreme processor, Intel
601                // Pentium Dual-Core processor, Intel Xeon processor, model
602                // 0Fh. All processors are manufactured using the 65 nm process.
603     case 0x16: // Intel Celeron processor model 16h. All processors are
604                // manufactured using the 65 nm process
605       *Type = X86::INTEL_CORE2; // "core2"
606       *Subtype = X86::INTEL_CORE2_65;
607       break;
608     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
609                // 17h. All processors are manufactured using the 45 nm process.
610                //
611                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
612     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
613                // the 45 nm process.
614       *Type = X86::INTEL_CORE2; // "penryn"
615       *Subtype = X86::INTEL_CORE2_45;
616       break;
617     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
618                // processors are manufactured using the 45 nm process.
619     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
620                // As found in a Summer 2010 model iMac.
621     case 0x1f:
622     case 0x2e:             // Nehalem EX
623       *Type = X86::INTEL_COREI7; // "nehalem"
624       *Subtype = X86::INTEL_COREI7_NEHALEM;
625       break;
626     case 0x25: // Intel Core i7, laptop version.
627     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
628                // processors are manufactured using the 32 nm process.
629     case 0x2f: // Westmere EX
630       *Type = X86::INTEL_COREI7; // "westmere"
631       *Subtype = X86::INTEL_COREI7_WESTMERE;
632       break;
633     case 0x2a: // Intel Core i7 processor. All processors are manufactured
634                // using the 32 nm process.
635     case 0x2d:
636       *Type = X86::INTEL_COREI7; //"sandybridge"
637       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
638       break;
639     case 0x3a:
640     case 0x3e:             // Ivy Bridge EP
641       *Type = X86::INTEL_COREI7; // "ivybridge"
642       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
643       break;
644 
645     // Haswell:
646     case 0x3c:
647     case 0x3f:
648     case 0x45:
649     case 0x46:
650       *Type = X86::INTEL_COREI7; // "haswell"
651       *Subtype = X86::INTEL_COREI7_HASWELL;
652       break;
653 
654     // Broadwell:
655     case 0x3d:
656     case 0x47:
657     case 0x4f:
658     case 0x56:
659       *Type = X86::INTEL_COREI7; // "broadwell"
660       *Subtype = X86::INTEL_COREI7_BROADWELL;
661       break;
662 
663     // Skylake:
664     case 0x4e: // Skylake mobile
665     case 0x5e: // Skylake desktop
666     case 0x8e: // Kaby Lake mobile
667     case 0x9e: // Kaby Lake desktop
668       *Type = X86::INTEL_COREI7; // "skylake"
669       *Subtype = X86::INTEL_COREI7_SKYLAKE;
670       break;
671 
672     // Skylake Xeon:
673     case 0x55:
674       *Type = X86::INTEL_COREI7;
675       *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
676       break;
677 
678     // Cannonlake:
679     case 0x66:
680       *Type = X86::INTEL_COREI7;
681       *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
682       break;
683 
684     // Icelake:
685     case 0x7d:
686     case 0x7e:
687       *Type = X86::INTEL_COREI7;
688       *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client"
689       break;
690 
691     // Icelake Xeon:
692     case 0x6a:
693     case 0x6c:
694       *Type = X86::INTEL_COREI7;
695       *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server"
696       break;
697 
698     case 0x1c: // Most 45 nm Intel Atom processors
699     case 0x26: // 45 nm Atom Lincroft
700     case 0x27: // 32 nm Atom Medfield
701     case 0x35: // 32 nm Atom Midview
702     case 0x36: // 32 nm Atom Midview
703       *Type = X86::INTEL_BONNELL;
704       break; // "bonnell"
705 
706     // Atom Silvermont codes from the Intel software optimization guide.
707     case 0x37:
708     case 0x4a:
709     case 0x4d:
710     case 0x5a:
711     case 0x5d:
712     case 0x4c: // really airmont
713       *Type = X86::INTEL_SILVERMONT;
714       break; // "silvermont"
715     // Goldmont:
716     case 0x5c: // Apollo Lake
717     case 0x5f: // Denverton
718       *Type = X86::INTEL_GOLDMONT;
719       break; // "goldmont"
720     case 0x7a:
721       *Type = X86::INTEL_GOLDMONT_PLUS;
722       break;
723     case 0x86:
724       *Type = X86::INTEL_TREMONT;
725       break;
726     case 0x57:
727       *Type = X86::INTEL_KNL; // knl
728       break;
729     case 0x85:
730       *Type = X86::INTEL_KNM; // knm
731       break;
732 
733     default: // Unknown family 6 CPU, try to guess.
734       if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
735         *Type = X86::INTEL_COREI7;
736         *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
737         break;
738       }
739 
740       if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
741         *Type = X86::INTEL_COREI7;
742         *Subtype = X86::INTEL_COREI7_CANNONLAKE;
743         break;
744       }
745 
746       if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
747         *Type = X86::INTEL_COREI7;
748         *Subtype = X86::INTEL_COREI7_CASCADELAKE;
749         break;
750       }
751 
752       if (Features & (1 << X86::FEATURE_AVX512VL)) {
753         *Type = X86::INTEL_COREI7;
754         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
755         break;
756       }
757 
758       if (Features & (1 << X86::FEATURE_AVX512ER)) {
759         *Type = X86::INTEL_KNL; // knl
760         break;
761       }
762 
763       if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
764         if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
765           *Type = X86::INTEL_GOLDMONT;
766         } else {
767           *Type = X86::INTEL_COREI7;
768           *Subtype = X86::INTEL_COREI7_SKYLAKE;
769         }
770         break;
771       }
772       if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
773         *Type = X86::INTEL_COREI7;
774         *Subtype = X86::INTEL_COREI7_BROADWELL;
775         break;
776       }
777       if (Features & (1 << X86::FEATURE_AVX2)) {
778         *Type = X86::INTEL_COREI7;
779         *Subtype = X86::INTEL_COREI7_HASWELL;
780         break;
781       }
782       if (Features & (1 << X86::FEATURE_AVX)) {
783         *Type = X86::INTEL_COREI7;
784         *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
785         break;
786       }
787       if (Features & (1 << X86::FEATURE_SSE4_2)) {
788         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
789           *Type = X86::INTEL_SILVERMONT;
790         } else {
791           *Type = X86::INTEL_COREI7;
792           *Subtype = X86::INTEL_COREI7_NEHALEM;
793         }
794         break;
795       }
796       if (Features & (1 << X86::FEATURE_SSE4_1)) {
797         *Type = X86::INTEL_CORE2; // "penryn"
798         *Subtype = X86::INTEL_CORE2_45;
799         break;
800       }
801       if (Features & (1 << X86::FEATURE_SSSE3)) {
802         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
803           *Type = X86::INTEL_BONNELL; // "bonnell"
804         } else {
805           *Type = X86::INTEL_CORE2; // "core2"
806           *Subtype = X86::INTEL_CORE2_65;
807         }
808         break;
809       }
810       if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
811         *Type = X86::INTEL_CORE2; // "core2"
812         *Subtype = X86::INTEL_CORE2_65;
813         break;
814       }
815       if (Features & (1 << X86::FEATURE_SSE3)) {
816         *Type = X86::INTEL_CORE_DUO;
817         break;
818       }
819       if (Features & (1 << X86::FEATURE_SSE2)) {
820         *Type = X86::INTEL_PENTIUM_M;
821         break;
822       }
823       if (Features & (1 << X86::FEATURE_SSE)) {
824         *Type = X86::INTEL_PENTIUM_III;
825         break;
826       }
827       if (Features & (1 << X86::FEATURE_MMX)) {
828         *Type = X86::INTEL_PENTIUM_II;
829         break;
830       }
831       *Type = X86::INTEL_PENTIUM_PRO;
832       break;
833     }
834     break;
835   case 15: {
836     if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
837       *Type = X86::INTEL_NOCONA;
838       break;
839     }
840     if (Features & (1 << X86::FEATURE_SSE3)) {
841       *Type = X86::INTEL_PRESCOTT;
842       break;
843     }
844     *Type = X86::INTEL_PENTIUM_IV;
845     break;
846   }
847   default:
848     break; /*"generic"*/
849   }
850 }
851 
852 static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
853                                           unsigned Features, unsigned *Type,
854                                           unsigned *Subtype) {
855   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
856   // appears to be no way to generate the wide variety of AMD-specific targets
857   // from the information returned from CPUID.
858   switch (Family) {
859   case 4:
860     *Type = X86::AMD_i486;
861     break;
862   case 5:
863     *Type = X86::AMDPENTIUM;
864     switch (Model) {
865     case 6:
866     case 7:
867       *Subtype = X86::AMDPENTIUM_K6;
868       break; // "k6"
869     case 8:
870       *Subtype = X86::AMDPENTIUM_K62;
871       break; // "k6-2"
872     case 9:
873     case 13:
874       *Subtype = X86::AMDPENTIUM_K63;
875       break; // "k6-3"
876     case 10:
877       *Subtype = X86::AMDPENTIUM_GEODE;
878       break; // "geode"
879     }
880     break;
881   case 6:
882     if (Features & (1 << X86::FEATURE_SSE)) {
883       *Type = X86::AMD_ATHLON_XP;
884       break; // "athlon-xp"
885     }
886     *Type = X86::AMD_ATHLON;
887     break; // "athlon"
888   case 15:
889     if (Features & (1 << X86::FEATURE_SSE3)) {
890       *Type = X86::AMD_K8SSE3;
891       break; // "k8-sse3"
892     }
893     *Type = X86::AMD_K8;
894     break; // "k8"
895   case 16:
896     *Type = X86::AMDFAM10H; // "amdfam10"
897     switch (Model) {
898     case 2:
899       *Subtype = X86::AMDFAM10H_BARCELONA;
900       break;
901     case 4:
902       *Subtype = X86::AMDFAM10H_SHANGHAI;
903       break;
904     case 8:
905       *Subtype = X86::AMDFAM10H_ISTANBUL;
906       break;
907     }
908     break;
909   case 20:
910     *Type = X86::AMD_BTVER1;
911     break; // "btver1";
912   case 21:
913     *Type = X86::AMDFAM15H;
914     if (Model >= 0x60 && Model <= 0x7f) {
915       *Subtype = X86::AMDFAM15H_BDVER4;
916       break; // "bdver4"; 60h-7Fh: Excavator
917     }
918     if (Model >= 0x30 && Model <= 0x3f) {
919       *Subtype = X86::AMDFAM15H_BDVER3;
920       break; // "bdver3"; 30h-3Fh: Steamroller
921     }
922     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
923       *Subtype = X86::AMDFAM15H_BDVER2;
924       break; // "bdver2"; 02h, 10h-1Fh: Piledriver
925     }
926     if (Model <= 0x0f) {
927       *Subtype = X86::AMDFAM15H_BDVER1;
928       break; // "bdver1"; 00h-0Fh: Bulldozer
929     }
930     break;
931   case 22:
932     *Type = X86::AMD_BTVER2;
933     break; // "btver2"
934   case 23:
935     *Type = X86::AMDFAM17H;
936     if (Model >= 0x30 && Model <= 0x3f) {
937       *Subtype = X86::AMDFAM17H_ZNVER2;
938       break; // "znver2"; 30h-3fh: Zen2
939     }
940     if (Model <= 0x0f) {
941       *Subtype = X86::AMDFAM17H_ZNVER1;
942       break; // "znver1"; 00h-0Fh: Zen1
943     }
944     break;
945   default:
946     break; // "generic"
947   }
948 }
949 
950 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
951                                  unsigned *FeaturesOut, unsigned *Features2Out,
952                                  unsigned *Features3Out) {
953   unsigned Features = 0;
954   unsigned Features2 = 0;
955   unsigned Features3 = 0;
956   unsigned EAX, EBX;
957 
958   auto setFeature = [&](unsigned F) {
959     if (F < 32)
960       Features |= 1U << (F & 0x1f);
961     else if (F < 64)
962       Features2 |= 1U << ((F - 32) & 0x1f);
963     else if (F < 96)
964       Features3 |= 1U << ((F - 64) & 0x1f);
965     else
966       llvm_unreachable("Unexpected FeatureBit");
967   };
968 
969   if ((EDX >> 15) & 1)
970     setFeature(X86::FEATURE_CMOV);
971   if ((EDX >> 23) & 1)
972     setFeature(X86::FEATURE_MMX);
973   if ((EDX >> 25) & 1)
974     setFeature(X86::FEATURE_SSE);
975   if ((EDX >> 26) & 1)
976     setFeature(X86::FEATURE_SSE2);
977 
978   if ((ECX >> 0) & 1)
979     setFeature(X86::FEATURE_SSE3);
980   if ((ECX >> 1) & 1)
981     setFeature(X86::FEATURE_PCLMUL);
982   if ((ECX >> 9) & 1)
983     setFeature(X86::FEATURE_SSSE3);
984   if ((ECX >> 12) & 1)
985     setFeature(X86::FEATURE_FMA);
986   if ((ECX >> 19) & 1)
987     setFeature(X86::FEATURE_SSE4_1);
988   if ((ECX >> 20) & 1)
989     setFeature(X86::FEATURE_SSE4_2);
990   if ((ECX >> 23) & 1)
991     setFeature(X86::FEATURE_POPCNT);
992   if ((ECX >> 25) & 1)
993     setFeature(X86::FEATURE_AES);
994 
995   if ((ECX >> 22) & 1)
996     setFeature(X86::FEATURE_MOVBE);
997 
998   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
999   // indicates that the AVX registers will be saved and restored on context
1000   // switch, then we have full AVX support.
1001   const unsigned AVXBits = (1 << 27) | (1 << 28);
1002   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
1003                 ((EAX & 0x6) == 0x6);
1004   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
1005 
1006   if (HasAVX)
1007     setFeature(X86::FEATURE_AVX);
1008 
1009   bool HasLeaf7 =
1010       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1011 
1012   if (HasLeaf7 && ((EBX >> 3) & 1))
1013     setFeature(X86::FEATURE_BMI);
1014   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
1015     setFeature(X86::FEATURE_AVX2);
1016   if (HasLeaf7 && ((EBX >> 9) & 1))
1017     setFeature(X86::FEATURE_BMI2);
1018   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
1019     setFeature(X86::FEATURE_AVX512F);
1020   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1021     setFeature(X86::FEATURE_AVX512DQ);
1022   if (HasLeaf7 && ((EBX >> 19) & 1))
1023     setFeature(X86::FEATURE_ADX);
1024   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1025     setFeature(X86::FEATURE_AVX512IFMA);
1026   if (HasLeaf7 && ((EBX >> 23) & 1))
1027     setFeature(X86::FEATURE_CLFLUSHOPT);
1028   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
1029     setFeature(X86::FEATURE_AVX512PF);
1030   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
1031     setFeature(X86::FEATURE_AVX512ER);
1032   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1033     setFeature(X86::FEATURE_AVX512CD);
1034   if (HasLeaf7 && ((EBX >> 29) & 1))
1035     setFeature(X86::FEATURE_SHA);
1036   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1037     setFeature(X86::FEATURE_AVX512BW);
1038   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1039     setFeature(X86::FEATURE_AVX512VL);
1040 
1041   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1042     setFeature(X86::FEATURE_AVX512VBMI);
1043   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1044     setFeature(X86::FEATURE_AVX512VBMI2);
1045   if (HasLeaf7 && ((ECX >> 8) & 1))
1046     setFeature(X86::FEATURE_GFNI);
1047   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1048     setFeature(X86::FEATURE_VPCLMULQDQ);
1049   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1050     setFeature(X86::FEATURE_AVX512VNNI);
1051   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1052     setFeature(X86::FEATURE_AVX512BITALG);
1053   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1054     setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1055 
1056   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1057     setFeature(X86::FEATURE_AVX5124VNNIW);
1058   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1059     setFeature(X86::FEATURE_AVX5124FMAPS);
1060 
1061   unsigned MaxExtLevel;
1062   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1063 
1064   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1065                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1066   if (HasExtLeaf1 && ((ECX >> 6) & 1))
1067     setFeature(X86::FEATURE_SSE4_A);
1068   if (HasExtLeaf1 && ((ECX >> 11) & 1))
1069     setFeature(X86::FEATURE_XOP);
1070   if (HasExtLeaf1 && ((ECX >> 16) & 1))
1071     setFeature(X86::FEATURE_FMA4);
1072 
1073   if (HasExtLeaf1 && ((EDX >> 29) & 1))
1074     setFeature(X86::FEATURE_EM64T);
1075 
1076   *FeaturesOut  = Features;
1077   *Features2Out = Features2;
1078   *Features3Out = Features3;
1079 }
1080 
1081 StringRef sys::getHostCPUName() {
1082   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1083   unsigned MaxLeaf, Vendor;
1084 
1085 #if defined(__GNUC__) || defined(__clang__)
1086   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
1087   // and simplify it to not invoke __cpuid (like cpu_model.c in
1088   // compiler-rt/lib/builtins/cpu_model.c?
1089   // Opting for the second option.
1090   if(!isCpuIdSupported())
1091     return "generic";
1092 #endif
1093   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
1094     return "generic";
1095   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1096 
1097   unsigned Brand_id = EBX & 0xff;
1098   unsigned Family = 0, Model = 0;
1099   unsigned Features = 0, Features2 = 0, Features3 = 0;
1100   detectX86FamilyModel(EAX, &Family, &Model);
1101   getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);
1102 
1103   unsigned Type = 0;
1104   unsigned Subtype = 0;
1105 
1106   if (Vendor == SIG_INTEL) {
1107     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
1108                                     Features2, Features3, &Type, &Subtype);
1109   } else if (Vendor == SIG_AMD) {
1110     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
1111   }
1112 
1113   // Check subtypes first since those are more specific.
1114 #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
1115   if (Subtype == X86::ENUM) \
1116     return ARCHNAME;
1117 #include "llvm/Support/X86TargetParser.def"
1118 
1119   // Now check types.
1120 #define X86_CPU_TYPE(ARCHNAME, ENUM) \
1121   if (Type == X86::ENUM) \
1122     return ARCHNAME;
1123 #include "llvm/Support/X86TargetParser.def"
1124 
1125   return "generic";
1126 }
1127 
1128 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1129 StringRef sys::getHostCPUName() {
1130   host_basic_info_data_t hostInfo;
1131   mach_msg_type_number_t infoCount;
1132 
1133   infoCount = HOST_BASIC_INFO_COUNT;
1134   mach_port_t hostPort = mach_host_self();
1135   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1136             &infoCount);
1137   mach_port_deallocate(mach_task_self(), hostPort);
1138 
1139   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1140     return "generic";
1141 
1142   switch (hostInfo.cpu_subtype) {
1143   case CPU_SUBTYPE_POWERPC_601:
1144     return "601";
1145   case CPU_SUBTYPE_POWERPC_602:
1146     return "602";
1147   case CPU_SUBTYPE_POWERPC_603:
1148     return "603";
1149   case CPU_SUBTYPE_POWERPC_603e:
1150     return "603e";
1151   case CPU_SUBTYPE_POWERPC_603ev:
1152     return "603ev";
1153   case CPU_SUBTYPE_POWERPC_604:
1154     return "604";
1155   case CPU_SUBTYPE_POWERPC_604e:
1156     return "604e";
1157   case CPU_SUBTYPE_POWERPC_620:
1158     return "620";
1159   case CPU_SUBTYPE_POWERPC_750:
1160     return "750";
1161   case CPU_SUBTYPE_POWERPC_7400:
1162     return "7400";
1163   case CPU_SUBTYPE_POWERPC_7450:
1164     return "7450";
1165   case CPU_SUBTYPE_POWERPC_970:
1166     return "970";
1167   default:;
1168   }
1169 
1170   return "generic";
1171 }
1172 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
1173 StringRef sys::getHostCPUName() {
1174   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1175   StringRef Content = P ? P->getBuffer() : "";
1176   return detail::getHostCPUNameForPowerPC(Content);
1177 }
1178 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1179 StringRef sys::getHostCPUName() {
1180   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1181   StringRef Content = P ? P->getBuffer() : "";
1182   return detail::getHostCPUNameForARM(Content);
1183 }
1184 #elif defined(__linux__) && defined(__s390x__)
1185 StringRef sys::getHostCPUName() {
1186   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1187   StringRef Content = P ? P->getBuffer() : "";
1188   return detail::getHostCPUNameForS390x(Content);
1189 }
1190 #else
1191 StringRef sys::getHostCPUName() { return "generic"; }
1192 #endif
1193 
1194 #if defined(__linux__) && defined(__x86_64__)
1195 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1196 // using the number of unique physical/core id pairs. The following
1197 // implementation reads the /proc/cpuinfo format on an x86_64 system.
1198 static int computeHostNumPhysicalCores() {
1199   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1200   // mmapped because it appears to have 0 size.
1201   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1202       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1203   if (std::error_code EC = Text.getError()) {
1204     llvm::errs() << "Can't read "
1205                  << "/proc/cpuinfo: " << EC.message() << "\n";
1206     return -1;
1207   }
1208   SmallVector<StringRef, 8> strs;
1209   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1210                              /*KeepEmpty=*/false);
1211   int CurPhysicalId = -1;
1212   int CurCoreId = -1;
1213   SmallSet<std::pair<int, int>, 32> UniqueItems;
1214   for (auto &Line : strs) {
1215     Line = Line.trim();
1216     if (!Line.startswith("physical id") && !Line.startswith("core id"))
1217       continue;
1218     std::pair<StringRef, StringRef> Data = Line.split(':');
1219     auto Name = Data.first.trim();
1220     auto Val = Data.second.trim();
1221     if (Name == "physical id") {
1222       assert(CurPhysicalId == -1 &&
1223              "Expected a core id before seeing another physical id");
1224       Val.getAsInteger(10, CurPhysicalId);
1225     }
1226     if (Name == "core id") {
1227       assert(CurCoreId == -1 &&
1228              "Expected a physical id before seeing another core id");
1229       Val.getAsInteger(10, CurCoreId);
1230     }
1231     if (CurPhysicalId != -1 && CurCoreId != -1) {
1232       UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
1233       CurPhysicalId = -1;
1234       CurCoreId = -1;
1235     }
1236   }
1237   return UniqueItems.size();
1238 }
1239 #elif defined(__APPLE__) && defined(__x86_64__)
1240 #include <sys/param.h>
1241 #include <sys/sysctl.h>
1242 
1243 // Gets the number of *physical cores* on the machine.
1244 static int computeHostNumPhysicalCores() {
1245   uint32_t count;
1246   size_t len = sizeof(count);
1247   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1248   if (count < 1) {
1249     int nm[2];
1250     nm[0] = CTL_HW;
1251     nm[1] = HW_AVAILCPU;
1252     sysctl(nm, 2, &count, &len, NULL, 0);
1253     if (count < 1)
1254       return -1;
1255   }
1256   return count;
1257 }
1258 #else
1259 // On other systems, return -1 to indicate unknown.
1260 static int computeHostNumPhysicalCores() { return -1; }
1261 #endif
1262 
1263 int sys::getHostNumPhysicalCores() {
1264   static int NumCores = computeHostNumPhysicalCores();
1265   return NumCores;
1266 }
1267 
1268 #if defined(__i386__) || defined(_M_IX86) || \
1269     defined(__x86_64__) || defined(_M_X64)
1270 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1271   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1272   unsigned MaxLevel;
1273   union {
1274     unsigned u[3];
1275     char c[12];
1276   } text;
1277 
1278   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1279       MaxLevel < 1)
1280     return false;
1281 
1282   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1283 
1284   Features["cx8"]    = (EDX >>  8) & 1;
1285   Features["cmov"]   = (EDX >> 15) & 1;
1286   Features["mmx"]    = (EDX >> 23) & 1;
1287   Features["fxsr"]   = (EDX >> 24) & 1;
1288   Features["sse"]    = (EDX >> 25) & 1;
1289   Features["sse2"]   = (EDX >> 26) & 1;
1290 
1291   Features["sse3"]   = (ECX >>  0) & 1;
1292   Features["pclmul"] = (ECX >>  1) & 1;
1293   Features["ssse3"]  = (ECX >>  9) & 1;
1294   Features["cx16"]   = (ECX >> 13) & 1;
1295   Features["sse4.1"] = (ECX >> 19) & 1;
1296   Features["sse4.2"] = (ECX >> 20) & 1;
1297   Features["movbe"]  = (ECX >> 22) & 1;
1298   Features["popcnt"] = (ECX >> 23) & 1;
1299   Features["aes"]    = (ECX >> 25) & 1;
1300   Features["rdrnd"]  = (ECX >> 30) & 1;
1301 
1302   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1303   // indicates that the AVX registers will be saved and restored on context
1304   // switch, then we have full AVX support.
1305   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1306                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1307   // AVX512 requires additional context to be saved by the OS.
1308   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1309 
1310   Features["avx"]   = HasAVXSave;
1311   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
1312   // Only enable XSAVE if OS has enabled support for saving YMM state.
1313   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1314   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
1315 
1316   unsigned MaxExtLevel;
1317   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1318 
1319   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1320                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1321   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
1322   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
1323   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
1324   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
1325   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1326   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
1327   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1328   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
1329   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1330 
1331   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);
1332 
1333   // Miscellaneous memory related features, detected by
1334   // using the 0x80000008 leaf of the CPUID instruction
1335   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1336                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1337   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
1338   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1339 
1340   bool HasLeaf7 =
1341       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1342 
1343   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
1344   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
1345   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
1346   // AVX2 is only supported if we have the OS save support from AVX.
1347   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
1348   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
1349   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
1350   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
1351   Features["mpx"]        = HasLeaf7 && ((EBX >> 14) & 1);
1352   // AVX512 is only supported if the OS supports the context save for it.
1353   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1354   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1355   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
1356   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
1357   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1358   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1359   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
1360   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1361   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1362   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1363   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
1364   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1365   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1366 
1367   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
1368   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
1369   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
1370   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
1371   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
1372   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
1373   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
1374   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
1375   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1376   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1377   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1378   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1379   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
1380   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
1381   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
1382   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
1383 
1384   // There are two CPUID leafs which information associated with the pconfig
1385   // instruction:
1386   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
1387   // bit of EDX), while the EAX=0x1b leaf returns information on the
1388   // availability of specific pconfig leafs.
1389   // The target feature here only refers to the the first of these two.
1390   // Users might need to check for the availability of specific pconfig
1391   // leaves using cpuid, since that information is ignored while
1392   // detecting features using the "-march=native" flag.
1393   // For more info, see X86 ISA docs.
1394   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
1395   bool HasLeaf7Subleaf1 =
1396       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1397   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
1398 
1399   bool HasLeafD = MaxLevel >= 0xd &&
1400                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1401 
1402   // Only enable XSAVE if OS has enabled support for saving YMM state.
1403   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1404   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1405   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1406 
1407   bool HasLeaf14 = MaxLevel >= 0x14 &&
1408                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
1409 
1410   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
1411 
1412   return true;
1413 }
1414 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1415 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1416   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1417   if (!P)
1418     return false;
1419 
1420   SmallVector<StringRef, 32> Lines;
1421   P->getBuffer().split(Lines, "\n");
1422 
1423   SmallVector<StringRef, 32> CPUFeatures;
1424 
1425   // Look for the CPU features.
1426   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1427     if (Lines[I].startswith("Features")) {
1428       Lines[I].split(CPUFeatures, ' ');
1429       break;
1430     }
1431 
1432 #if defined(__aarch64__)
1433   // Keep track of which crypto features we have seen
1434   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1435   uint32_t crypto = 0;
1436 #endif
1437 
1438   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1439     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1440 #if defined(__aarch64__)
1441                                    .Case("asimd", "neon")
1442                                    .Case("fp", "fp-armv8")
1443                                    .Case("crc32", "crc")
1444 #else
1445                                    .Case("half", "fp16")
1446                                    .Case("neon", "neon")
1447                                    .Case("vfpv3", "vfp3")
1448                                    .Case("vfpv3d16", "d16")
1449                                    .Case("vfpv4", "vfp4")
1450                                    .Case("idiva", "hwdiv-arm")
1451                                    .Case("idivt", "hwdiv")
1452 #endif
1453                                    .Default("");
1454 
1455 #if defined(__aarch64__)
1456     // We need to check crypto separately since we need all of the crypto
1457     // extensions to enable the subtarget feature
1458     if (CPUFeatures[I] == "aes")
1459       crypto |= CAP_AES;
1460     else if (CPUFeatures[I] == "pmull")
1461       crypto |= CAP_PMULL;
1462     else if (CPUFeatures[I] == "sha1")
1463       crypto |= CAP_SHA1;
1464     else if (CPUFeatures[I] == "sha2")
1465       crypto |= CAP_SHA2;
1466 #endif
1467 
1468     if (LLVMFeatureStr != "")
1469       Features[LLVMFeatureStr] = true;
1470   }
1471 
1472 #if defined(__aarch64__)
1473   // If we have all crypto bits we can add the feature
1474   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1475     Features["crypto"] = true;
1476 #endif
1477 
1478   return true;
1479 }
1480 #else
1481 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1482 #endif
1483 
1484 std::string sys::getProcessTriple() {
1485   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
1486   Triple PT(Triple::normalize(TargetTripleString));
1487 
1488   if (sizeof(void *) == 8 && PT.isArch32Bit())
1489     PT = PT.get64BitArchVariant();
1490   if (sizeof(void *) == 4 && PT.isArch64Bit())
1491     PT = PT.get32BitArchVariant();
1492 
1493   return PT.str();
1494 }
1495