1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the operating system Host concept.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/Host.h"
14 #include "llvm/ADT/SmallSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/FileSystem.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/TargetParser.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <assert.h>
27 #include <string.h>
28 
29 // Include the platform-specific parts of this class.
30 #ifdef LLVM_ON_UNIX
31 #include "Unix/Host.inc"
32 #include <sched.h>
33 #endif
34 #ifdef _WIN32
35 #include "Windows/Host.inc"
36 #endif
37 #ifdef _MSC_VER
38 #include <intrin.h>
39 #endif
40 #if defined(__APPLE__) && (!defined(__x86_64__))
41 #include <mach/host_info.h>
42 #include <mach/mach.h>
43 #include <mach/mach_host.h>
44 #include <mach/machine.h>
45 #endif
46 
47 #define DEBUG_TYPE "host-detection"
48 
49 //===----------------------------------------------------------------------===//
50 //
51 //  Implementations of the CPU detection routines
52 //
53 //===----------------------------------------------------------------------===//
54 
55 using namespace llvm;
56 
57 static std::unique_ptr<llvm::MemoryBuffer>
58     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
59   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
60       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
61   if (std::error_code EC = Text.getError()) {
62     llvm::errs() << "Can't read "
63                  << "/proc/cpuinfo: " << EC.message() << "\n";
64     return nullptr;
65   }
66   return std::move(*Text);
67 }
68 
69 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
70   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
71   // and so we must use an operating-system interface to determine the current
72   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
73   const char *generic = "generic";
74 
75   // The cpu line is second (after the 'processor: 0' line), so if this
76   // buffer is too small then something has changed (or is wrong).
77   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
78   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
79 
80   StringRef::const_iterator CIP = CPUInfoStart;
81 
82   StringRef::const_iterator CPUStart = 0;
83   size_t CPULen = 0;
84 
85   // We need to find the first line which starts with cpu, spaces, and a colon.
86   // After the colon, there may be some additional spaces and then the cpu type.
87   while (CIP < CPUInfoEnd && CPUStart == 0) {
88     if (CIP < CPUInfoEnd && *CIP == '\n')
89       ++CIP;
90 
91     if (CIP < CPUInfoEnd && *CIP == 'c') {
92       ++CIP;
93       if (CIP < CPUInfoEnd && *CIP == 'p') {
94         ++CIP;
95         if (CIP < CPUInfoEnd && *CIP == 'u') {
96           ++CIP;
97           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
98             ++CIP;
99 
100           if (CIP < CPUInfoEnd && *CIP == ':') {
101             ++CIP;
102             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
103               ++CIP;
104 
105             if (CIP < CPUInfoEnd) {
106               CPUStart = CIP;
107               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
108                                           *CIP != ',' && *CIP != '\n'))
109                 ++CIP;
110               CPULen = CIP - CPUStart;
111             }
112           }
113         }
114       }
115     }
116 
117     if (CPUStart == 0)
118       while (CIP < CPUInfoEnd && *CIP != '\n')
119         ++CIP;
120   }
121 
122   if (CPUStart == 0)
123     return generic;
124 
125   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
126       .Case("604e", "604e")
127       .Case("604", "604")
128       .Case("7400", "7400")
129       .Case("7410", "7400")
130       .Case("7447", "7400")
131       .Case("7455", "7450")
132       .Case("G4", "g4")
133       .Case("POWER4", "970")
134       .Case("PPC970FX", "970")
135       .Case("PPC970MP", "970")
136       .Case("G5", "g5")
137       .Case("POWER5", "g5")
138       .Case("A2", "a2")
139       .Case("POWER6", "pwr6")
140       .Case("POWER7", "pwr7")
141       .Case("POWER8", "pwr8")
142       .Case("POWER8E", "pwr8")
143       .Case("POWER8NVL", "pwr8")
144       .Case("POWER9", "pwr9")
145       .Case("POWER10", "pwr10")
146       // FIXME: If we get a simulator or machine with the capabilities of
147       // mcpu=future, we should revisit this and add the name reported by the
148       // simulator/machine.
149       .Default(generic);
150 }
151 
152 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
153   // The cpuid register on arm is not accessible from user space. On Linux,
154   // it is exposed through the /proc/cpuinfo file.
155 
156   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
157   // in all cases.
158   SmallVector<StringRef, 32> Lines;
159   ProcCpuinfoContent.split(Lines, "\n");
160 
161   // Look for the CPU implementer line.
162   StringRef Implementer;
163   StringRef Hardware;
164   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
165     if (Lines[I].startswith("CPU implementer"))
166       Implementer = Lines[I].substr(15).ltrim("\t :");
167     if (Lines[I].startswith("Hardware"))
168       Hardware = Lines[I].substr(8).ltrim("\t :");
169   }
170 
171   if (Implementer == "0x41") { // ARM Ltd.
172     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
173     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
174     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
175       return "cortex-a53";
176 
177 
178     // Look for the CPU part line.
179     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
180       if (Lines[I].startswith("CPU part"))
181         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
182         // values correspond to the "Part number" in the CP15/c0 register. The
183         // contents are specified in the various processor manuals.
184         // This corresponds to the Main ID Register in Technical Reference Manuals.
185         // and is used in programs like sys-utils
186         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
187             .Case("0x926", "arm926ej-s")
188             .Case("0xb02", "mpcore")
189             .Case("0xb36", "arm1136j-s")
190             .Case("0xb56", "arm1156t2-s")
191             .Case("0xb76", "arm1176jz-s")
192             .Case("0xc08", "cortex-a8")
193             .Case("0xc09", "cortex-a9")
194             .Case("0xc0f", "cortex-a15")
195             .Case("0xc20", "cortex-m0")
196             .Case("0xc23", "cortex-m3")
197             .Case("0xc24", "cortex-m4")
198             .Case("0xd22", "cortex-m55")
199             .Case("0xd02", "cortex-a34")
200             .Case("0xd04", "cortex-a35")
201             .Case("0xd03", "cortex-a53")
202             .Case("0xd07", "cortex-a57")
203             .Case("0xd08", "cortex-a72")
204             .Case("0xd09", "cortex-a73")
205             .Case("0xd0a", "cortex-a75")
206             .Case("0xd0b", "cortex-a76")
207             .Case("0xd0c", "neoverse-n1")
208             .Default("generic");
209   }
210 
211   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
212     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
213       if (Lines[I].startswith("CPU part")) {
214         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
215           .Case("0x516", "thunderx2t99")
216           .Case("0x0516", "thunderx2t99")
217           .Case("0xaf", "thunderx2t99")
218           .Case("0x0af", "thunderx2t99")
219           .Case("0xa1", "thunderxt88")
220           .Case("0x0a1", "thunderxt88")
221           .Default("generic");
222       }
223     }
224   }
225 
226   if (Implementer == "0x46") { // Fujitsu Ltd.
227     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
228       if (Lines[I].startswith("CPU part")) {
229         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
230           .Case("0x001", "a64fx")
231           .Default("generic");
232       }
233     }
234   }
235 
236   if (Implementer == "0x4e") { // NVIDIA Corporation
237     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
238       if (Lines[I].startswith("CPU part")) {
239         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
240             .Case("0x004", "carmel")
241             .Default("generic");
242       }
243     }
244   }
245 
246   if (Implementer == "0x48") // HiSilicon Technologies, Inc.
247     // Look for the CPU part line.
248     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
249       if (Lines[I].startswith("CPU part"))
250         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
251         // values correspond to the "Part number" in the CP15/c0 register. The
252         // contents are specified in the various processor manuals.
253         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
254           .Case("0xd01", "tsv110")
255           .Default("generic");
256 
257   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
258     // Look for the CPU part line.
259     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
260       if (Lines[I].startswith("CPU part"))
261         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
262         // values correspond to the "Part number" in the CP15/c0 register. The
263         // contents are specified in the various processor manuals.
264         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
265             .Case("0x06f", "krait") // APQ8064
266             .Case("0x201", "kryo")
267             .Case("0x205", "kryo")
268             .Case("0x211", "kryo")
269             .Case("0x800", "cortex-a73")
270             .Case("0x801", "cortex-a73")
271             .Case("0x802", "cortex-a73")
272             .Case("0x803", "cortex-a73")
273             .Case("0x804", "cortex-a73")
274             .Case("0x805", "cortex-a73")
275             .Case("0xc00", "falkor")
276             .Case("0xc01", "saphira")
277             .Default("generic");
278 
279   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
280     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
281     // any predictive pattern across variants and parts.
282     unsigned Variant = 0, Part = 0;
283 
284     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
285     // number, corresponding to the Variant bits in the CP15/C0 register.
286     for (auto I : Lines)
287       if (I.consume_front("CPU variant"))
288         I.ltrim("\t :").getAsInteger(0, Variant);
289 
290     // Look for the CPU part line, whose value is a 3 digit hexadecimal
291     // number, corresponding to the PartNum bits in the CP15/C0 register.
292     for (auto I : Lines)
293       if (I.consume_front("CPU part"))
294         I.ltrim("\t :").getAsInteger(0, Part);
295 
296     unsigned Exynos = (Variant << 12) | Part;
297     switch (Exynos) {
298     default:
299       // Default by falling through to Exynos M3.
300       LLVM_FALLTHROUGH;
301     case 0x1002:
302       return "exynos-m3";
303     case 0x1003:
304       return "exynos-m4";
305     }
306   }
307 
308   return "generic";
309 }
310 
311 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
312   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
313 
314   // The "processor 0:" line comes after a fair amount of other information,
315   // including a cache breakdown, but this should be plenty.
316   SmallVector<StringRef, 32> Lines;
317   ProcCpuinfoContent.split(Lines, "\n");
318 
319   // Look for the CPU features.
320   SmallVector<StringRef, 32> CPUFeatures;
321   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
322     if (Lines[I].startswith("features")) {
323       size_t Pos = Lines[I].find(":");
324       if (Pos != StringRef::npos) {
325         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
326         break;
327       }
328     }
329 
330   // We need to check for the presence of vector support independently of
331   // the machine type, since we may only use the vector register set when
332   // supported by the kernel (and hypervisor).
333   bool HaveVectorSupport = false;
334   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
335     if (CPUFeatures[I] == "vx")
336       HaveVectorSupport = true;
337   }
338 
339   // Now check the processor machine type.
340   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
341     if (Lines[I].startswith("processor ")) {
342       size_t Pos = Lines[I].find("machine = ");
343       if (Pos != StringRef::npos) {
344         Pos += sizeof("machine = ") - 1;
345         unsigned int Id;
346         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
347           if (Id >= 8561 && HaveVectorSupport)
348             return "z15";
349           if (Id >= 3906 && HaveVectorSupport)
350             return "z14";
351           if (Id >= 2964 && HaveVectorSupport)
352             return "z13";
353           if (Id >= 2827)
354             return "zEC12";
355           if (Id >= 2817)
356             return "z196";
357         }
358       }
359       break;
360     }
361   }
362 
363   return "generic";
364 }
365 
366 StringRef sys::detail::getHostCPUNameForBPF() {
367 #if !defined(__linux__) || !defined(__x86_64__)
368   return "generic";
369 #else
370   uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
371       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
372     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
373       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
374       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
375       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
376       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
377       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
378       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
379       /* BPF_EXIT_INSN() */
380       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
381 
382   uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
383       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
384     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
385       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
386       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
387       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
388       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
389       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
390       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
391       /* BPF_EXIT_INSN() */
392       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
393 
394   struct bpf_prog_load_attr {
395     uint32_t prog_type;
396     uint32_t insn_cnt;
397     uint64_t insns;
398     uint64_t license;
399     uint32_t log_level;
400     uint32_t log_size;
401     uint64_t log_buf;
402     uint32_t kern_version;
403     uint32_t prog_flags;
404   } attr = {};
405   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
406   attr.insn_cnt = 5;
407   attr.insns = (uint64_t)v3_insns;
408   attr.license = (uint64_t)"DUMMY";
409 
410   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
411                    sizeof(attr));
412   if (fd >= 0) {
413     close(fd);
414     return "v3";
415   }
416 
417   /* Clear the whole attr in case its content changed by syscall. */
418   memset(&attr, 0, sizeof(attr));
419   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
420   attr.insn_cnt = 5;
421   attr.insns = (uint64_t)v2_insns;
422   attr.license = (uint64_t)"DUMMY";
423   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
424   if (fd >= 0) {
425     close(fd);
426     return "v2";
427   }
428   return "v1";
429 #endif
430 }
431 
432 #if defined(__i386__) || defined(_M_IX86) || \
433     defined(__x86_64__) || defined(_M_X64)
434 
435 enum VendorSignatures {
436   SIG_INTEL = 0x756e6547 /* Genu */,
437   SIG_AMD = 0x68747541 /* Auth */
438 };
439 
440 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
441 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
442 // support. Consequently, for i386, the presence of CPUID is checked first
443 // via the corresponding eflags bit.
444 // Removal of cpuid.h header motivated by PR30384
445 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
446 // or test-suite, but are used in external projects e.g. libstdcxx
447 static bool isCpuIdSupported() {
448 #if defined(__GNUC__) || defined(__clang__)
449 #if defined(__i386__)
450   int __cpuid_supported;
451   __asm__("  pushfl\n"
452           "  popl   %%eax\n"
453           "  movl   %%eax,%%ecx\n"
454           "  xorl   $0x00200000,%%eax\n"
455           "  pushl  %%eax\n"
456           "  popfl\n"
457           "  pushfl\n"
458           "  popl   %%eax\n"
459           "  movl   $0,%0\n"
460           "  cmpl   %%eax,%%ecx\n"
461           "  je     1f\n"
462           "  movl   $1,%0\n"
463           "1:"
464           : "=r"(__cpuid_supported)
465           :
466           : "eax", "ecx");
467   if (!__cpuid_supported)
468     return false;
469 #endif
470   return true;
471 #endif
472   return true;
473 }
474 
475 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
476 /// the specified arguments.  If we can't run cpuid on the host, return true.
477 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
478                                unsigned *rECX, unsigned *rEDX) {
479 #if defined(__GNUC__) || defined(__clang__)
480 #if defined(__x86_64__)
481   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
482   // FIXME: should we save this for Clang?
483   __asm__("movq\t%%rbx, %%rsi\n\t"
484           "cpuid\n\t"
485           "xchgq\t%%rbx, %%rsi\n\t"
486           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
487           : "a"(value));
488   return false;
489 #elif defined(__i386__)
490   __asm__("movl\t%%ebx, %%esi\n\t"
491           "cpuid\n\t"
492           "xchgl\t%%ebx, %%esi\n\t"
493           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
494           : "a"(value));
495   return false;
496 #else
497   return true;
498 #endif
499 #elif defined(_MSC_VER)
500   // The MSVC intrinsic is portable across x86 and x64.
501   int registers[4];
502   __cpuid(registers, value);
503   *rEAX = registers[0];
504   *rEBX = registers[1];
505   *rECX = registers[2];
506   *rEDX = registers[3];
507   return false;
508 #else
509   return true;
510 #endif
511 }
512 
513 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
514 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
515 /// return true.
516 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
517                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
518                                  unsigned *rEDX) {
519 #if defined(__GNUC__) || defined(__clang__)
520 #if defined(__x86_64__)
521   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
522   // FIXME: should we save this for Clang?
523   __asm__("movq\t%%rbx, %%rsi\n\t"
524           "cpuid\n\t"
525           "xchgq\t%%rbx, %%rsi\n\t"
526           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
527           : "a"(value), "c"(subleaf));
528   return false;
529 #elif defined(__i386__)
530   __asm__("movl\t%%ebx, %%esi\n\t"
531           "cpuid\n\t"
532           "xchgl\t%%ebx, %%esi\n\t"
533           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
534           : "a"(value), "c"(subleaf));
535   return false;
536 #else
537   return true;
538 #endif
539 #elif defined(_MSC_VER)
540   int registers[4];
541   __cpuidex(registers, value, subleaf);
542   *rEAX = registers[0];
543   *rEBX = registers[1];
544   *rECX = registers[2];
545   *rEDX = registers[3];
546   return false;
547 #else
548   return true;
549 #endif
550 }
551 
552 // Read control register 0 (XCR0). Used to detect features such as AVX.
553 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
554 #if defined(__GNUC__) || defined(__clang__)
555   // Check xgetbv; this uses a .byte sequence instead of the instruction
556   // directly because older assemblers do not include support for xgetbv and
557   // there is no easy way to conditionally compile based on the assembler used.
558   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
559   return false;
560 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
561   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
562   *rEAX = Result;
563   *rEDX = Result >> 32;
564   return false;
565 #else
566   return true;
567 #endif
568 }
569 
570 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
571                                  unsigned *Model) {
572   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
573   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
574   if (*Family == 6 || *Family == 0xf) {
575     if (*Family == 0xf)
576       // Examine extended family ID if family ID is F.
577       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
578     // Examine extended model ID if family ID is 6 or F.
579     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
580   }
581 }
582 
583 static void
584 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
585                                 unsigned Brand_id, unsigned Features,
586                                 unsigned Features2, unsigned Features3,
587                                 unsigned *Type, unsigned *Subtype) {
588   if (Brand_id != 0)
589     return;
590   switch (Family) {
591   case 3:
592     *Type = X86::INTEL_i386;
593     break;
594   case 4:
595     *Type = X86::INTEL_i486;
596     break;
597   case 5:
598     if (Features & (1 << X86::FEATURE_MMX)) {
599       *Type = X86::INTEL_PENTIUM_MMX;
600       break;
601     }
602     *Type = X86::INTEL_PENTIUM;
603     break;
604   case 6:
605     switch (Model) {
606     case 0x01: // Pentium Pro processor
607       *Type = X86::INTEL_PENTIUM_PRO;
608       break;
609     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
610                // model 03
611     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
612                // model 05, and Intel Celeron processor, model 05
613     case 0x06: // Celeron processor, model 06
614       *Type = X86::INTEL_PENTIUM_II;
615       break;
616     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
617                // processor, model 07
618     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
619                // model 08, and Celeron processor, model 08
620     case 0x0a: // Pentium III Xeon processor, model 0Ah
621     case 0x0b: // Pentium III processor, model 0Bh
622       *Type = X86::INTEL_PENTIUM_III;
623       break;
624     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
625     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
626                // 0Dh. All processors are manufactured using the 90 nm process.
627     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
628                // Integrated Processor with Intel QuickAssist Technology
629       *Type = X86::INTEL_PENTIUM_M;
630       break;
631     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
632                // 0Eh. All processors are manufactured using the 65 nm process.
633       *Type = X86::INTEL_CORE_DUO;
634       break;   // yonah
635     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
636                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
637                // mobile processor, Intel Core 2 Extreme processor, Intel
638                // Pentium Dual-Core processor, Intel Xeon processor, model
639                // 0Fh. All processors are manufactured using the 65 nm process.
640     case 0x16: // Intel Celeron processor model 16h. All processors are
641                // manufactured using the 65 nm process
642       *Type = X86::INTEL_CORE2; // "core2"
643       *Subtype = X86::INTEL_CORE2_65;
644       break;
645     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
646                // 17h. All processors are manufactured using the 45 nm process.
647                //
648                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
649     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
650                // the 45 nm process.
651       *Type = X86::INTEL_CORE2; // "penryn"
652       *Subtype = X86::INTEL_CORE2_45;
653       break;
654     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
655                // processors are manufactured using the 45 nm process.
656     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
657                // As found in a Summer 2010 model iMac.
658     case 0x1f:
659     case 0x2e:             // Nehalem EX
660       *Type = X86::INTEL_COREI7; // "nehalem"
661       *Subtype = X86::INTEL_COREI7_NEHALEM;
662       break;
663     case 0x25: // Intel Core i7, laptop version.
664     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
665                // processors are manufactured using the 32 nm process.
666     case 0x2f: // Westmere EX
667       *Type = X86::INTEL_COREI7; // "westmere"
668       *Subtype = X86::INTEL_COREI7_WESTMERE;
669       break;
670     case 0x2a: // Intel Core i7 processor. All processors are manufactured
671                // using the 32 nm process.
672     case 0x2d:
673       *Type = X86::INTEL_COREI7; //"sandybridge"
674       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
675       break;
676     case 0x3a:
677     case 0x3e:             // Ivy Bridge EP
678       *Type = X86::INTEL_COREI7; // "ivybridge"
679       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
680       break;
681 
682     // Haswell:
683     case 0x3c:
684     case 0x3f:
685     case 0x45:
686     case 0x46:
687       *Type = X86::INTEL_COREI7; // "haswell"
688       *Subtype = X86::INTEL_COREI7_HASWELL;
689       break;
690 
691     // Broadwell:
692     case 0x3d:
693     case 0x47:
694     case 0x4f:
695     case 0x56:
696       *Type = X86::INTEL_COREI7; // "broadwell"
697       *Subtype = X86::INTEL_COREI7_BROADWELL;
698       break;
699 
700     // Skylake:
701     case 0x4e:              // Skylake mobile
702     case 0x5e:              // Skylake desktop
703     case 0x8e:              // Kaby Lake mobile
704     case 0x9e:              // Kaby Lake desktop
705     case 0xa5:              // Comet Lake-H/S
706     case 0xa6:              // Comet Lake-U
707       *Type = X86::INTEL_COREI7; // "skylake"
708       *Subtype = X86::INTEL_COREI7_SKYLAKE;
709       break;
710 
711     // Skylake Xeon:
712     case 0x55:
713       *Type = X86::INTEL_COREI7;
714       if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32)))
715         *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake"
716       else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32)))
717         *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake"
718       else
719         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
720       break;
721 
722     // Cannonlake:
723     case 0x66:
724       *Type = X86::INTEL_COREI7;
725       *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
726       break;
727 
728     // Icelake:
729     case 0x7d:
730     case 0x7e:
731       *Type = X86::INTEL_COREI7;
732       *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client"
733       break;
734 
735     // Icelake Xeon:
736     case 0x6a:
737     case 0x6c:
738       *Type = X86::INTEL_COREI7;
739       *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server"
740       break;
741 
742     case 0x1c: // Most 45 nm Intel Atom processors
743     case 0x26: // 45 nm Atom Lincroft
744     case 0x27: // 32 nm Atom Medfield
745     case 0x35: // 32 nm Atom Midview
746     case 0x36: // 32 nm Atom Midview
747       *Type = X86::INTEL_BONNELL;
748       break; // "bonnell"
749 
750     // Atom Silvermont codes from the Intel software optimization guide.
751     case 0x37:
752     case 0x4a:
753     case 0x4d:
754     case 0x5a:
755     case 0x5d:
756     case 0x4c: // really airmont
757       *Type = X86::INTEL_SILVERMONT;
758       break; // "silvermont"
759     // Goldmont:
760     case 0x5c: // Apollo Lake
761     case 0x5f: // Denverton
762       *Type = X86::INTEL_GOLDMONT;
763       break; // "goldmont"
764     case 0x7a:
765       *Type = X86::INTEL_GOLDMONT_PLUS;
766       break;
767     case 0x86:
768       *Type = X86::INTEL_TREMONT;
769       break;
770 
771     case 0x57:
772       *Type = X86::INTEL_KNL; // knl
773       break;
774 
775     case 0x85:
776       *Type = X86::INTEL_KNM; // knm
777       break;
778 
779     default: // Unknown family 6 CPU, try to guess.
780       // TODO detect tigerlake host
781       if (Features2 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 32))) {
782         *Type = X86::INTEL_COREI7;
783         *Subtype = X86::INTEL_COREI7_TIGERLAKE;
784         break;
785       }
786 
787       if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
788         *Type = X86::INTEL_COREI7;
789         *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
790         break;
791       }
792 
793       if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
794         *Type = X86::INTEL_COREI7;
795         *Subtype = X86::INTEL_COREI7_CANNONLAKE;
796         break;
797       }
798 
799       if (Features2 & (1 << (X86::FEATURE_AVX512BF16 - 32))) {
800         *Type = X86::INTEL_COREI7;
801         *Subtype = X86::INTEL_COREI7_COOPERLAKE;
802         break;
803       }
804 
805       if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
806         *Type = X86::INTEL_COREI7;
807         *Subtype = X86::INTEL_COREI7_CASCADELAKE;
808         break;
809       }
810 
811       if (Features & (1 << X86::FEATURE_AVX512VL)) {
812         *Type = X86::INTEL_COREI7;
813         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
814         break;
815       }
816 
817       if (Features & (1 << X86::FEATURE_AVX512ER)) {
818         *Type = X86::INTEL_KNL; // knl
819         break;
820       }
821 
822       if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
823         if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
824           *Type = X86::INTEL_GOLDMONT;
825         } else {
826           *Type = X86::INTEL_COREI7;
827           *Subtype = X86::INTEL_COREI7_SKYLAKE;
828         }
829         break;
830       }
831       if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
832         *Type = X86::INTEL_COREI7;
833         *Subtype = X86::INTEL_COREI7_BROADWELL;
834         break;
835       }
836       if (Features & (1 << X86::FEATURE_AVX2)) {
837         *Type = X86::INTEL_COREI7;
838         *Subtype = X86::INTEL_COREI7_HASWELL;
839         break;
840       }
841       if (Features & (1 << X86::FEATURE_AVX)) {
842         *Type = X86::INTEL_COREI7;
843         *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
844         break;
845       }
846       if (Features & (1 << X86::FEATURE_SSE4_2)) {
847         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
848           *Type = X86::INTEL_SILVERMONT;
849         } else {
850           *Type = X86::INTEL_COREI7;
851           *Subtype = X86::INTEL_COREI7_NEHALEM;
852         }
853         break;
854       }
855       if (Features & (1 << X86::FEATURE_SSE4_1)) {
856         *Type = X86::INTEL_CORE2; // "penryn"
857         *Subtype = X86::INTEL_CORE2_45;
858         break;
859       }
860       if (Features & (1 << X86::FEATURE_SSSE3)) {
861         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
862           *Type = X86::INTEL_BONNELL; // "bonnell"
863         } else {
864           *Type = X86::INTEL_CORE2; // "core2"
865           *Subtype = X86::INTEL_CORE2_65;
866         }
867         break;
868       }
869       if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
870         *Type = X86::INTEL_CORE2; // "core2"
871         *Subtype = X86::INTEL_CORE2_65;
872         break;
873       }
874       if (Features & (1 << X86::FEATURE_SSE3)) {
875         *Type = X86::INTEL_CORE_DUO;
876         break;
877       }
878       if (Features & (1 << X86::FEATURE_SSE2)) {
879         *Type = X86::INTEL_PENTIUM_M;
880         break;
881       }
882       if (Features & (1 << X86::FEATURE_SSE)) {
883         *Type = X86::INTEL_PENTIUM_III;
884         break;
885       }
886       if (Features & (1 << X86::FEATURE_MMX)) {
887         *Type = X86::INTEL_PENTIUM_II;
888         break;
889       }
890       *Type = X86::INTEL_PENTIUM_PRO;
891       break;
892     }
893     break;
894   case 15: {
895     if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
896       *Type = X86::INTEL_NOCONA;
897       break;
898     }
899     if (Features & (1 << X86::FEATURE_SSE3)) {
900       *Type = X86::INTEL_PRESCOTT;
901       break;
902     }
903     *Type = X86::INTEL_PENTIUM_IV;
904     break;
905   }
906   default:
907     break; /*"generic"*/
908   }
909 }
910 
911 static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
912                                           unsigned Features, unsigned *Type,
913                                           unsigned *Subtype) {
914   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
915   // appears to be no way to generate the wide variety of AMD-specific targets
916   // from the information returned from CPUID.
917   switch (Family) {
918   case 4:
919     *Type = X86::AMD_i486;
920     break;
921   case 5:
922     *Type = X86::AMDPENTIUM;
923     switch (Model) {
924     case 6:
925     case 7:
926       *Subtype = X86::AMDPENTIUM_K6;
927       break; // "k6"
928     case 8:
929       *Subtype = X86::AMDPENTIUM_K62;
930       break; // "k6-2"
931     case 9:
932     case 13:
933       *Subtype = X86::AMDPENTIUM_K63;
934       break; // "k6-3"
935     case 10:
936       *Subtype = X86::AMDPENTIUM_GEODE;
937       break; // "geode"
938     }
939     break;
940   case 6:
941     if (Features & (1 << X86::FEATURE_SSE)) {
942       *Type = X86::AMD_ATHLON_XP;
943       break; // "athlon-xp"
944     }
945     *Type = X86::AMD_ATHLON;
946     break; // "athlon"
947   case 15:
948     if (Features & (1 << X86::FEATURE_SSE3)) {
949       *Type = X86::AMD_K8SSE3;
950       break; // "k8-sse3"
951     }
952     *Type = X86::AMD_K8;
953     break; // "k8"
954   case 16:
955     *Type = X86::AMDFAM10H; // "amdfam10"
956     switch (Model) {
957     case 2:
958       *Subtype = X86::AMDFAM10H_BARCELONA;
959       break;
960     case 4:
961       *Subtype = X86::AMDFAM10H_SHANGHAI;
962       break;
963     case 8:
964       *Subtype = X86::AMDFAM10H_ISTANBUL;
965       break;
966     }
967     break;
968   case 20:
969     *Type = X86::AMD_BTVER1;
970     break; // "btver1";
971   case 21:
972     *Type = X86::AMDFAM15H;
973     if (Model >= 0x60 && Model <= 0x7f) {
974       *Subtype = X86::AMDFAM15H_BDVER4;
975       break; // "bdver4"; 60h-7Fh: Excavator
976     }
977     if (Model >= 0x30 && Model <= 0x3f) {
978       *Subtype = X86::AMDFAM15H_BDVER3;
979       break; // "bdver3"; 30h-3Fh: Steamroller
980     }
981     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
982       *Subtype = X86::AMDFAM15H_BDVER2;
983       break; // "bdver2"; 02h, 10h-1Fh: Piledriver
984     }
985     if (Model <= 0x0f) {
986       *Subtype = X86::AMDFAM15H_BDVER1;
987       break; // "bdver1"; 00h-0Fh: Bulldozer
988     }
989     break;
990   case 22:
991     *Type = X86::AMD_BTVER2;
992     break; // "btver2"
993   case 23:
994     *Type = X86::AMDFAM17H;
995     if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
996       *Subtype = X86::AMDFAM17H_ZNVER2;
997       break; // "znver2"; 30h-3fh, 71h: Zen2
998     }
999     if (Model <= 0x0f) {
1000       *Subtype = X86::AMDFAM17H_ZNVER1;
1001       break; // "znver1"; 00h-0Fh: Zen1
1002     }
1003     break;
1004   default:
1005     break; // "generic"
1006   }
1007 }
1008 
1009 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
1010                                  unsigned *FeaturesOut, unsigned *Features2Out,
1011                                  unsigned *Features3Out) {
1012   unsigned Features = 0;
1013   unsigned Features2 = 0;
1014   unsigned Features3 = 0;
1015   unsigned EAX, EBX;
1016 
1017   auto setFeature = [&](unsigned F) {
1018     if (F < 32)
1019       Features |= 1U << (F & 0x1f);
1020     else if (F < 64)
1021       Features2 |= 1U << ((F - 32) & 0x1f);
1022     else if (F < 96)
1023       Features3 |= 1U << ((F - 64) & 0x1f);
1024     else
1025       llvm_unreachable("Unexpected FeatureBit");
1026   };
1027 
1028   if ((EDX >> 15) & 1)
1029     setFeature(X86::FEATURE_CMOV);
1030   if ((EDX >> 23) & 1)
1031     setFeature(X86::FEATURE_MMX);
1032   if ((EDX >> 25) & 1)
1033     setFeature(X86::FEATURE_SSE);
1034   if ((EDX >> 26) & 1)
1035     setFeature(X86::FEATURE_SSE2);
1036 
1037   if ((ECX >> 0) & 1)
1038     setFeature(X86::FEATURE_SSE3);
1039   if ((ECX >> 1) & 1)
1040     setFeature(X86::FEATURE_PCLMUL);
1041   if ((ECX >> 9) & 1)
1042     setFeature(X86::FEATURE_SSSE3);
1043   if ((ECX >> 12) & 1)
1044     setFeature(X86::FEATURE_FMA);
1045   if ((ECX >> 19) & 1)
1046     setFeature(X86::FEATURE_SSE4_1);
1047   if ((ECX >> 20) & 1)
1048     setFeature(X86::FEATURE_SSE4_2);
1049   if ((ECX >> 23) & 1)
1050     setFeature(X86::FEATURE_POPCNT);
1051   if ((ECX >> 25) & 1)
1052     setFeature(X86::FEATURE_AES);
1053 
1054   if ((ECX >> 22) & 1)
1055     setFeature(X86::FEATURE_MOVBE);
1056 
1057   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1058   // indicates that the AVX registers will be saved and restored on context
1059   // switch, then we have full AVX support.
1060   const unsigned AVXBits = (1 << 27) | (1 << 28);
1061   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
1062                 ((EAX & 0x6) == 0x6);
1063 #if defined(__APPLE__)
1064   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1065   // save the AVX512 context if we use AVX512 instructions, even the bit is not
1066   // set right now.
1067   bool HasAVX512Save = true;
1068 #else
1069   // AVX512 requires additional context to be saved by the OS.
1070   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
1071 #endif
1072 
1073   if (HasAVX)
1074     setFeature(X86::FEATURE_AVX);
1075 
1076   bool HasLeaf7 =
1077       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1078 
1079   if (HasLeaf7 && ((EBX >> 3) & 1))
1080     setFeature(X86::FEATURE_BMI);
1081   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
1082     setFeature(X86::FEATURE_AVX2);
1083   if (HasLeaf7 && ((EBX >> 8) & 1))
1084     setFeature(X86::FEATURE_BMI2);
1085   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
1086     setFeature(X86::FEATURE_AVX512F);
1087   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1088     setFeature(X86::FEATURE_AVX512DQ);
1089   if (HasLeaf7 && ((EBX >> 19) & 1))
1090     setFeature(X86::FEATURE_ADX);
1091   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1092     setFeature(X86::FEATURE_AVX512IFMA);
1093   if (HasLeaf7 && ((EBX >> 23) & 1))
1094     setFeature(X86::FEATURE_CLFLUSHOPT);
1095   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
1096     setFeature(X86::FEATURE_AVX512PF);
1097   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
1098     setFeature(X86::FEATURE_AVX512ER);
1099   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1100     setFeature(X86::FEATURE_AVX512CD);
1101   if (HasLeaf7 && ((EBX >> 29) & 1))
1102     setFeature(X86::FEATURE_SHA);
1103   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1104     setFeature(X86::FEATURE_AVX512BW);
1105   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1106     setFeature(X86::FEATURE_AVX512VL);
1107 
1108   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1109     setFeature(X86::FEATURE_AVX512VBMI);
1110   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1111     setFeature(X86::FEATURE_AVX512VBMI2);
1112   if (HasLeaf7 && ((ECX >> 8) & 1))
1113     setFeature(X86::FEATURE_GFNI);
1114   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1115     setFeature(X86::FEATURE_VPCLMULQDQ);
1116   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1117     setFeature(X86::FEATURE_AVX512VNNI);
1118   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1119     setFeature(X86::FEATURE_AVX512BITALG);
1120   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1121     setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1122 
1123   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1124     setFeature(X86::FEATURE_AVX5124VNNIW);
1125   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1126     setFeature(X86::FEATURE_AVX5124FMAPS);
1127   if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
1128     setFeature(X86::FEATURE_AVX512VP2INTERSECT);
1129 
1130   bool HasLeaf7Subleaf1 =
1131       MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1132   if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
1133     setFeature(X86::FEATURE_AVX512BF16);
1134 
1135   unsigned MaxExtLevel;
1136   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1137 
1138   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1139                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1140   if (HasExtLeaf1 && ((ECX >> 6) & 1))
1141     setFeature(X86::FEATURE_SSE4_A);
1142   if (HasExtLeaf1 && ((ECX >> 11) & 1))
1143     setFeature(X86::FEATURE_XOP);
1144   if (HasExtLeaf1 && ((ECX >> 16) & 1))
1145     setFeature(X86::FEATURE_FMA4);
1146 
1147   if (HasExtLeaf1 && ((EDX >> 29) & 1))
1148     setFeature(X86::FEATURE_EM64T);
1149 
1150   *FeaturesOut  = Features;
1151   *Features2Out = Features2;
1152   *Features3Out = Features3;
1153 }
1154 
1155 StringRef sys::getHostCPUName() {
1156   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1157   unsigned MaxLeaf, Vendor;
1158 
1159 #if defined(__GNUC__) || defined(__clang__)
1160   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
1161   // and simplify it to not invoke __cpuid (like cpu_model.c in
1162   // compiler-rt/lib/builtins/cpu_model.c?
1163   // Opting for the second option.
1164   if(!isCpuIdSupported())
1165     return "generic";
1166 #endif
1167   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
1168     return "generic";
1169   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1170 
1171   unsigned Brand_id = EBX & 0xff;
1172   unsigned Family = 0, Model = 0;
1173   unsigned Features = 0, Features2 = 0, Features3 = 0;
1174   detectX86FamilyModel(EAX, &Family, &Model);
1175   getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);
1176 
1177   unsigned Type = 0;
1178   unsigned Subtype = 0;
1179 
1180   if (Vendor == SIG_INTEL) {
1181     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
1182                                     Features2, Features3, &Type, &Subtype);
1183   } else if (Vendor == SIG_AMD) {
1184     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
1185   }
1186 
1187   // Check subtypes first since those are more specific.
1188 #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
1189   if (Subtype == X86::ENUM) \
1190     return ARCHNAME;
1191 #include "llvm/Support/X86TargetParser.def"
1192 
1193   // Now check types.
1194 #define X86_CPU_TYPE(ARCHNAME, ENUM) \
1195   if (Type == X86::ENUM) \
1196     return ARCHNAME;
1197 #include "llvm/Support/X86TargetParser.def"
1198 
1199   return "generic";
1200 }
1201 
1202 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1203 StringRef sys::getHostCPUName() {
1204   host_basic_info_data_t hostInfo;
1205   mach_msg_type_number_t infoCount;
1206 
1207   infoCount = HOST_BASIC_INFO_COUNT;
1208   mach_port_t hostPort = mach_host_self();
1209   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1210             &infoCount);
1211   mach_port_deallocate(mach_task_self(), hostPort);
1212 
1213   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1214     return "generic";
1215 
1216   switch (hostInfo.cpu_subtype) {
1217   case CPU_SUBTYPE_POWERPC_601:
1218     return "601";
1219   case CPU_SUBTYPE_POWERPC_602:
1220     return "602";
1221   case CPU_SUBTYPE_POWERPC_603:
1222     return "603";
1223   case CPU_SUBTYPE_POWERPC_603e:
1224     return "603e";
1225   case CPU_SUBTYPE_POWERPC_603ev:
1226     return "603ev";
1227   case CPU_SUBTYPE_POWERPC_604:
1228     return "604";
1229   case CPU_SUBTYPE_POWERPC_604e:
1230     return "604e";
1231   case CPU_SUBTYPE_POWERPC_620:
1232     return "620";
1233   case CPU_SUBTYPE_POWERPC_750:
1234     return "750";
1235   case CPU_SUBTYPE_POWERPC_7400:
1236     return "7400";
1237   case CPU_SUBTYPE_POWERPC_7450:
1238     return "7450";
1239   case CPU_SUBTYPE_POWERPC_970:
1240     return "970";
1241   default:;
1242   }
1243 
1244   return "generic";
1245 }
1246 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
1247 StringRef sys::getHostCPUName() {
1248   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1249   StringRef Content = P ? P->getBuffer() : "";
1250   return detail::getHostCPUNameForPowerPC(Content);
1251 }
1252 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1253 StringRef sys::getHostCPUName() {
1254   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1255   StringRef Content = P ? P->getBuffer() : "";
1256   return detail::getHostCPUNameForARM(Content);
1257 }
1258 #elif defined(__linux__) && defined(__s390x__)
1259 StringRef sys::getHostCPUName() {
1260   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1261   StringRef Content = P ? P->getBuffer() : "";
1262   return detail::getHostCPUNameForS390x(Content);
1263 }
1264 #elif defined(__APPLE__) && defined(__aarch64__)
1265 StringRef sys::getHostCPUName() {
1266   return "cyclone";
1267 }
1268 #elif defined(__APPLE__) && defined(__arm__)
1269 StringRef sys::getHostCPUName() {
1270   host_basic_info_data_t hostInfo;
1271   mach_msg_type_number_t infoCount;
1272 
1273   infoCount = HOST_BASIC_INFO_COUNT;
1274   mach_port_t hostPort = mach_host_self();
1275   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1276             &infoCount);
1277   mach_port_deallocate(mach_task_self(), hostPort);
1278 
1279   if (hostInfo.cpu_type != CPU_TYPE_ARM) {
1280     assert(false && "CPUType not equal to ARM should not be possible on ARM");
1281     return "generic";
1282   }
1283   switch (hostInfo.cpu_subtype) {
1284     case CPU_SUBTYPE_ARM_V7S:
1285       return "swift";
1286     default:;
1287     }
1288 
1289   return "generic";
1290 }
1291 #else
1292 StringRef sys::getHostCPUName() { return "generic"; }
1293 #endif
1294 
1295 #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
1296 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1297 // using the number of unique physical/core id pairs. The following
1298 // implementation reads the /proc/cpuinfo format on an x86_64 system.
1299 int computeHostNumPhysicalCores() {
1300   // Enabled represents the number of physical id/core id pairs with at least
1301   // one processor id enabled by the CPU affinity mask.
1302   cpu_set_t Affinity, Enabled;
1303   if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0)
1304     return -1;
1305   CPU_ZERO(&Enabled);
1306 
1307   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1308   // mmapped because it appears to have 0 size.
1309   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1310       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1311   if (std::error_code EC = Text.getError()) {
1312     llvm::errs() << "Can't read "
1313                  << "/proc/cpuinfo: " << EC.message() << "\n";
1314     return -1;
1315   }
1316   SmallVector<StringRef, 8> strs;
1317   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1318                              /*KeepEmpty=*/false);
1319   int CurProcessor = -1;
1320   int CurPhysicalId = -1;
1321   int CurSiblings = -1;
1322   int CurCoreId = -1;
1323   for (StringRef Line : strs) {
1324     std::pair<StringRef, StringRef> Data = Line.split(':');
1325     auto Name = Data.first.trim();
1326     auto Val = Data.second.trim();
1327     // These fields are available if the kernel is configured with CONFIG_SMP.
1328     if (Name == "processor")
1329       Val.getAsInteger(10, CurProcessor);
1330     else if (Name == "physical id")
1331       Val.getAsInteger(10, CurPhysicalId);
1332     else if (Name == "siblings")
1333       Val.getAsInteger(10, CurSiblings);
1334     else if (Name == "core id") {
1335       Val.getAsInteger(10, CurCoreId);
1336       // The processor id corresponds to an index into cpu_set_t.
1337       if (CPU_ISSET(CurProcessor, &Affinity))
1338         CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled);
1339     }
1340   }
1341   return CPU_COUNT(&Enabled);
1342 }
1343 #elif defined(__APPLE__) && defined(__x86_64__)
1344 #include <sys/param.h>
1345 #include <sys/sysctl.h>
1346 
1347 // Gets the number of *physical cores* on the machine.
1348 int computeHostNumPhysicalCores() {
1349   uint32_t count;
1350   size_t len = sizeof(count);
1351   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1352   if (count < 1) {
1353     int nm[2];
1354     nm[0] = CTL_HW;
1355     nm[1] = HW_AVAILCPU;
1356     sysctl(nm, 2, &count, &len, NULL, 0);
1357     if (count < 1)
1358       return -1;
1359   }
1360   return count;
1361 }
1362 #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0
1363 // Defined in llvm/lib/Support/Windows/Threading.inc
1364 int computeHostNumPhysicalCores();
1365 #else
1366 // On other systems, return -1 to indicate unknown.
1367 static int computeHostNumPhysicalCores() { return -1; }
1368 #endif
1369 
1370 int sys::getHostNumPhysicalCores() {
1371   static int NumCores = computeHostNumPhysicalCores();
1372   return NumCores;
1373 }
1374 
1375 #if defined(__i386__) || defined(_M_IX86) || \
1376     defined(__x86_64__) || defined(_M_X64)
1377 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1378   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1379   unsigned MaxLevel;
1380   union {
1381     unsigned u[3];
1382     char c[12];
1383   } text;
1384 
1385   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1386       MaxLevel < 1)
1387     return false;
1388 
1389   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1390 
1391   Features["cx8"]    = (EDX >>  8) & 1;
1392   Features["cmov"]   = (EDX >> 15) & 1;
1393   Features["mmx"]    = (EDX >> 23) & 1;
1394   Features["fxsr"]   = (EDX >> 24) & 1;
1395   Features["sse"]    = (EDX >> 25) & 1;
1396   Features["sse2"]   = (EDX >> 26) & 1;
1397 
1398   Features["sse3"]   = (ECX >>  0) & 1;
1399   Features["pclmul"] = (ECX >>  1) & 1;
1400   Features["ssse3"]  = (ECX >>  9) & 1;
1401   Features["cx16"]   = (ECX >> 13) & 1;
1402   Features["sse4.1"] = (ECX >> 19) & 1;
1403   Features["sse4.2"] = (ECX >> 20) & 1;
1404   Features["movbe"]  = (ECX >> 22) & 1;
1405   Features["popcnt"] = (ECX >> 23) & 1;
1406   Features["aes"]    = (ECX >> 25) & 1;
1407   Features["rdrnd"]  = (ECX >> 30) & 1;
1408 
1409   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1410   // indicates that the AVX registers will be saved and restored on context
1411   // switch, then we have full AVX support.
1412   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1413                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1414 #if defined(__APPLE__)
1415   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1416   // save the AVX512 context if we use AVX512 instructions, even the bit is not
1417   // set right now.
1418   bool HasAVX512Save = true;
1419 #else
1420   // AVX512 requires additional context to be saved by the OS.
1421   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1422 #endif
1423 
1424   Features["avx"]   = HasAVXSave;
1425   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
1426   // Only enable XSAVE if OS has enabled support for saving YMM state.
1427   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1428   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
1429 
1430   unsigned MaxExtLevel;
1431   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1432 
1433   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1434                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1435   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
1436   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
1437   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
1438   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
1439   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1440   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
1441   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1442   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
1443   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1444 
1445   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);
1446 
1447   // Miscellaneous memory related features, detected by
1448   // using the 0x80000008 leaf of the CPUID instruction
1449   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1450                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1451   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
1452   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1453 
1454   bool HasLeaf7 =
1455       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1456 
1457   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
1458   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
1459   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
1460   // AVX2 is only supported if we have the OS save support from AVX.
1461   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
1462   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
1463   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
1464   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
1465   // AVX512 is only supported if the OS supports the context save for it.
1466   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1467   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1468   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
1469   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
1470   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1471   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1472   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
1473   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1474   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1475   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1476   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
1477   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1478   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1479 
1480   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
1481   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
1482   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
1483   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
1484   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
1485   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
1486   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
1487   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
1488   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1489   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1490   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1491   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1492   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
1493   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
1494   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
1495   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
1496   Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1);
1497 
1498   Features["avx512vp2intersect"] =
1499       HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
1500   Features["serialize"]       = HasLeaf7 && ((EDX >> 14) & 1);
1501   Features["tsxldtrk"]        = HasLeaf7 && ((EDX >> 16) & 1);
1502   // There are two CPUID leafs which information associated with the pconfig
1503   // instruction:
1504   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
1505   // bit of EDX), while the EAX=0x1b leaf returns information on the
1506   // availability of specific pconfig leafs.
1507   // The target feature here only refers to the the first of these two.
1508   // Users might need to check for the availability of specific pconfig
1509   // leaves using cpuid, since that information is ignored while
1510   // detecting features using the "-march=native" flag.
1511   // For more info, see X86 ISA docs.
1512   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
1513   bool HasLeaf7Subleaf1 =
1514       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1515   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
1516 
1517   bool HasLeafD = MaxLevel >= 0xd &&
1518                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1519 
1520   // Only enable XSAVE if OS has enabled support for saving YMM state.
1521   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1522   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1523   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1524 
1525   bool HasLeaf14 = MaxLevel >= 0x14 &&
1526                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
1527 
1528   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
1529 
1530   return true;
1531 }
1532 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1533 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1534   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1535   if (!P)
1536     return false;
1537 
1538   SmallVector<StringRef, 32> Lines;
1539   P->getBuffer().split(Lines, "\n");
1540 
1541   SmallVector<StringRef, 32> CPUFeatures;
1542 
1543   // Look for the CPU features.
1544   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1545     if (Lines[I].startswith("Features")) {
1546       Lines[I].split(CPUFeatures, ' ');
1547       break;
1548     }
1549 
1550 #if defined(__aarch64__)
1551   // Keep track of which crypto features we have seen
1552   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1553   uint32_t crypto = 0;
1554 #endif
1555 
1556   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1557     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1558 #if defined(__aarch64__)
1559                                    .Case("asimd", "neon")
1560                                    .Case("fp", "fp-armv8")
1561                                    .Case("crc32", "crc")
1562 #else
1563                                    .Case("half", "fp16")
1564                                    .Case("neon", "neon")
1565                                    .Case("vfpv3", "vfp3")
1566                                    .Case("vfpv3d16", "d16")
1567                                    .Case("vfpv4", "vfp4")
1568                                    .Case("idiva", "hwdiv-arm")
1569                                    .Case("idivt", "hwdiv")
1570 #endif
1571                                    .Default("");
1572 
1573 #if defined(__aarch64__)
1574     // We need to check crypto separately since we need all of the crypto
1575     // extensions to enable the subtarget feature
1576     if (CPUFeatures[I] == "aes")
1577       crypto |= CAP_AES;
1578     else if (CPUFeatures[I] == "pmull")
1579       crypto |= CAP_PMULL;
1580     else if (CPUFeatures[I] == "sha1")
1581       crypto |= CAP_SHA1;
1582     else if (CPUFeatures[I] == "sha2")
1583       crypto |= CAP_SHA2;
1584 #endif
1585 
1586     if (LLVMFeatureStr != "")
1587       Features[LLVMFeatureStr] = true;
1588   }
1589 
1590 #if defined(__aarch64__)
1591   // If we have all crypto bits we can add the feature
1592   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1593     Features["crypto"] = true;
1594 #endif
1595 
1596   return true;
1597 }
1598 #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
1599 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1600   if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
1601     Features["neon"] = true;
1602   if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
1603     Features["crc"] = true;
1604   if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
1605     Features["crypto"] = true;
1606 
1607   return true;
1608 }
1609 #else
1610 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1611 #endif
1612 
1613 std::string sys::getProcessTriple() {
1614   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
1615   Triple PT(Triple::normalize(TargetTripleString));
1616 
1617   if (sizeof(void *) == 8 && PT.isArch32Bit())
1618     PT = PT.get64BitArchVariant();
1619   if (sizeof(void *) == 4 && PT.isArch64Bit())
1620     PT = PT.get32BitArchVariant();
1621 
1622   return PT.str();
1623 }
1624