1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the operating system Host concept.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/Host.h"
14 #include "llvm/ADT/SmallSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/FileSystem.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/X86TargetParser.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <assert.h>
27 #include <string.h>
28 
29 // Include the platform-specific parts of this class.
30 #ifdef LLVM_ON_UNIX
31 #include "Unix/Host.inc"
32 #include <sched.h>
33 #endif
34 #ifdef _WIN32
35 #include "Windows/Host.inc"
36 #endif
37 #ifdef _MSC_VER
38 #include <intrin.h>
39 #endif
40 #if defined(__APPLE__) && (!defined(__x86_64__))
41 #include <mach/host_info.h>
42 #include <mach/mach.h>
43 #include <mach/mach_host.h>
44 #include <mach/machine.h>
45 #endif
46 
47 #define DEBUG_TYPE "host-detection"
48 
49 //===----------------------------------------------------------------------===//
50 //
51 //  Implementations of the CPU detection routines
52 //
53 //===----------------------------------------------------------------------===//
54 
55 using namespace llvm;
56 
57 static std::unique_ptr<llvm::MemoryBuffer>
58     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
59   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
60       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
61   if (std::error_code EC = Text.getError()) {
62     llvm::errs() << "Can't read "
63                  << "/proc/cpuinfo: " << EC.message() << "\n";
64     return nullptr;
65   }
66   return std::move(*Text);
67 }
68 
69 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
70   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
71   // and so we must use an operating-system interface to determine the current
72   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
73   const char *generic = "generic";
74 
75   // The cpu line is second (after the 'processor: 0' line), so if this
76   // buffer is too small then something has changed (or is wrong).
77   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
78   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
79 
80   StringRef::const_iterator CIP = CPUInfoStart;
81 
82   StringRef::const_iterator CPUStart = 0;
83   size_t CPULen = 0;
84 
85   // We need to find the first line which starts with cpu, spaces, and a colon.
86   // After the colon, there may be some additional spaces and then the cpu type.
87   while (CIP < CPUInfoEnd && CPUStart == 0) {
88     if (CIP < CPUInfoEnd && *CIP == '\n')
89       ++CIP;
90 
91     if (CIP < CPUInfoEnd && *CIP == 'c') {
92       ++CIP;
93       if (CIP < CPUInfoEnd && *CIP == 'p') {
94         ++CIP;
95         if (CIP < CPUInfoEnd && *CIP == 'u') {
96           ++CIP;
97           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
98             ++CIP;
99 
100           if (CIP < CPUInfoEnd && *CIP == ':') {
101             ++CIP;
102             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
103               ++CIP;
104 
105             if (CIP < CPUInfoEnd) {
106               CPUStart = CIP;
107               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
108                                           *CIP != ',' && *CIP != '\n'))
109                 ++CIP;
110               CPULen = CIP - CPUStart;
111             }
112           }
113         }
114       }
115     }
116 
117     if (CPUStart == 0)
118       while (CIP < CPUInfoEnd && *CIP != '\n')
119         ++CIP;
120   }
121 
122   if (CPUStart == 0)
123     return generic;
124 
125   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
126       .Case("604e", "604e")
127       .Case("604", "604")
128       .Case("7400", "7400")
129       .Case("7410", "7400")
130       .Case("7447", "7400")
131       .Case("7455", "7450")
132       .Case("G4", "g4")
133       .Case("POWER4", "970")
134       .Case("PPC970FX", "970")
135       .Case("PPC970MP", "970")
136       .Case("G5", "g5")
137       .Case("POWER5", "g5")
138       .Case("A2", "a2")
139       .Case("POWER6", "pwr6")
140       .Case("POWER7", "pwr7")
141       .Case("POWER8", "pwr8")
142       .Case("POWER8E", "pwr8")
143       .Case("POWER8NVL", "pwr8")
144       .Case("POWER9", "pwr9")
145       .Case("POWER10", "pwr10")
146       // FIXME: If we get a simulator or machine with the capabilities of
147       // mcpu=future, we should revisit this and add the name reported by the
148       // simulator/machine.
149       .Default(generic);
150 }
151 
152 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
153   // The cpuid register on arm is not accessible from user space. On Linux,
154   // it is exposed through the /proc/cpuinfo file.
155 
156   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
157   // in all cases.
158   SmallVector<StringRef, 32> Lines;
159   ProcCpuinfoContent.split(Lines, "\n");
160 
161   // Look for the CPU implementer line.
162   StringRef Implementer;
163   StringRef Hardware;
164   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
165     if (Lines[I].startswith("CPU implementer"))
166       Implementer = Lines[I].substr(15).ltrim("\t :");
167     if (Lines[I].startswith("Hardware"))
168       Hardware = Lines[I].substr(8).ltrim("\t :");
169   }
170 
171   if (Implementer == "0x41") { // ARM Ltd.
172     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
173     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
174     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
175       return "cortex-a53";
176 
177 
178     // Look for the CPU part line.
179     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
180       if (Lines[I].startswith("CPU part"))
181         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
182         // values correspond to the "Part number" in the CP15/c0 register. The
183         // contents are specified in the various processor manuals.
184         // This corresponds to the Main ID Register in Technical Reference Manuals.
185         // and is used in programs like sys-utils
186         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
187             .Case("0x926", "arm926ej-s")
188             .Case("0xb02", "mpcore")
189             .Case("0xb36", "arm1136j-s")
190             .Case("0xb56", "arm1156t2-s")
191             .Case("0xb76", "arm1176jz-s")
192             .Case("0xc08", "cortex-a8")
193             .Case("0xc09", "cortex-a9")
194             .Case("0xc0f", "cortex-a15")
195             .Case("0xc20", "cortex-m0")
196             .Case("0xc23", "cortex-m3")
197             .Case("0xc24", "cortex-m4")
198             .Case("0xd22", "cortex-m55")
199             .Case("0xd02", "cortex-a34")
200             .Case("0xd04", "cortex-a35")
201             .Case("0xd03", "cortex-a53")
202             .Case("0xd07", "cortex-a57")
203             .Case("0xd08", "cortex-a72")
204             .Case("0xd09", "cortex-a73")
205             .Case("0xd0a", "cortex-a75")
206             .Case("0xd0b", "cortex-a76")
207             .Case("0xd0d", "cortex-a77")
208             .Case("0xd41", "cortex-a78")
209             .Case("0xd44", "cortex-x1")
210             .Case("0xd0c", "neoverse-n1")
211             .Default("generic");
212   }
213 
214   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
215     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
216       if (Lines[I].startswith("CPU part")) {
217         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
218           .Case("0x516", "thunderx2t99")
219           .Case("0x0516", "thunderx2t99")
220           .Case("0xaf", "thunderx2t99")
221           .Case("0x0af", "thunderx2t99")
222           .Case("0xa1", "thunderxt88")
223           .Case("0x0a1", "thunderxt88")
224           .Default("generic");
225       }
226     }
227   }
228 
229   if (Implementer == "0x46") { // Fujitsu Ltd.
230     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
231       if (Lines[I].startswith("CPU part")) {
232         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
233           .Case("0x001", "a64fx")
234           .Default("generic");
235       }
236     }
237   }
238 
239   if (Implementer == "0x4e") { // NVIDIA Corporation
240     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
241       if (Lines[I].startswith("CPU part")) {
242         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
243             .Case("0x004", "carmel")
244             .Default("generic");
245       }
246     }
247   }
248 
249   if (Implementer == "0x48") // HiSilicon Technologies, Inc.
250     // Look for the CPU part line.
251     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
252       if (Lines[I].startswith("CPU part"))
253         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
254         // values correspond to the "Part number" in the CP15/c0 register. The
255         // contents are specified in the various processor manuals.
256         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
257           .Case("0xd01", "tsv110")
258           .Default("generic");
259 
260   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
261     // Look for the CPU part line.
262     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
263       if (Lines[I].startswith("CPU part"))
264         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
265         // values correspond to the "Part number" in the CP15/c0 register. The
266         // contents are specified in the various processor manuals.
267         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
268             .Case("0x06f", "krait") // APQ8064
269             .Case("0x201", "kryo")
270             .Case("0x205", "kryo")
271             .Case("0x211", "kryo")
272             .Case("0x800", "cortex-a73")
273             .Case("0x801", "cortex-a73")
274             .Case("0x802", "cortex-a73")
275             .Case("0x803", "cortex-a73")
276             .Case("0x804", "cortex-a73")
277             .Case("0x805", "cortex-a73")
278             .Case("0xc00", "falkor")
279             .Case("0xc01", "saphira")
280             .Default("generic");
281 
282   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
283     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
284     // any predictive pattern across variants and parts.
285     unsigned Variant = 0, Part = 0;
286 
287     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
288     // number, corresponding to the Variant bits in the CP15/C0 register.
289     for (auto I : Lines)
290       if (I.consume_front("CPU variant"))
291         I.ltrim("\t :").getAsInteger(0, Variant);
292 
293     // Look for the CPU part line, whose value is a 3 digit hexadecimal
294     // number, corresponding to the PartNum bits in the CP15/C0 register.
295     for (auto I : Lines)
296       if (I.consume_front("CPU part"))
297         I.ltrim("\t :").getAsInteger(0, Part);
298 
299     unsigned Exynos = (Variant << 12) | Part;
300     switch (Exynos) {
301     default:
302       // Default by falling through to Exynos M3.
303       LLVM_FALLTHROUGH;
304     case 0x1002:
305       return "exynos-m3";
306     case 0x1003:
307       return "exynos-m4";
308     }
309   }
310 
311   return "generic";
312 }
313 
314 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
315   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
316 
317   // The "processor 0:" line comes after a fair amount of other information,
318   // including a cache breakdown, but this should be plenty.
319   SmallVector<StringRef, 32> Lines;
320   ProcCpuinfoContent.split(Lines, "\n");
321 
322   // Look for the CPU features.
323   SmallVector<StringRef, 32> CPUFeatures;
324   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
325     if (Lines[I].startswith("features")) {
326       size_t Pos = Lines[I].find(":");
327       if (Pos != StringRef::npos) {
328         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
329         break;
330       }
331     }
332 
333   // We need to check for the presence of vector support independently of
334   // the machine type, since we may only use the vector register set when
335   // supported by the kernel (and hypervisor).
336   bool HaveVectorSupport = false;
337   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
338     if (CPUFeatures[I] == "vx")
339       HaveVectorSupport = true;
340   }
341 
342   // Now check the processor machine type.
343   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
344     if (Lines[I].startswith("processor ")) {
345       size_t Pos = Lines[I].find("machine = ");
346       if (Pos != StringRef::npos) {
347         Pos += sizeof("machine = ") - 1;
348         unsigned int Id;
349         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
350           if (Id >= 8561 && HaveVectorSupport)
351             return "z15";
352           if (Id >= 3906 && HaveVectorSupport)
353             return "z14";
354           if (Id >= 2964 && HaveVectorSupport)
355             return "z13";
356           if (Id >= 2827)
357             return "zEC12";
358           if (Id >= 2817)
359             return "z196";
360         }
361       }
362       break;
363     }
364   }
365 
366   return "generic";
367 }
368 
369 StringRef sys::detail::getHostCPUNameForBPF() {
370 #if !defined(__linux__) || !defined(__x86_64__)
371   return "generic";
372 #else
373   uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
374       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
375     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
376       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
377       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
378       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
379       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
380       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
381       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
382       /* BPF_EXIT_INSN() */
383       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
384 
385   uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
386       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
387     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
388       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
389       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
390       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
391       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
392       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
393       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
394       /* BPF_EXIT_INSN() */
395       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
396 
397   struct bpf_prog_load_attr {
398     uint32_t prog_type;
399     uint32_t insn_cnt;
400     uint64_t insns;
401     uint64_t license;
402     uint32_t log_level;
403     uint32_t log_size;
404     uint64_t log_buf;
405     uint32_t kern_version;
406     uint32_t prog_flags;
407   } attr = {};
408   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
409   attr.insn_cnt = 5;
410   attr.insns = (uint64_t)v3_insns;
411   attr.license = (uint64_t)"DUMMY";
412 
413   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
414                    sizeof(attr));
415   if (fd >= 0) {
416     close(fd);
417     return "v3";
418   }
419 
420   /* Clear the whole attr in case its content changed by syscall. */
421   memset(&attr, 0, sizeof(attr));
422   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
423   attr.insn_cnt = 5;
424   attr.insns = (uint64_t)v2_insns;
425   attr.license = (uint64_t)"DUMMY";
426   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
427   if (fd >= 0) {
428     close(fd);
429     return "v2";
430   }
431   return "v1";
432 #endif
433 }
434 
435 #if defined(__i386__) || defined(_M_IX86) || \
436     defined(__x86_64__) || defined(_M_X64)
437 
438 enum VendorSignatures {
439   SIG_INTEL = 0x756e6547 /* Genu */,
440   SIG_AMD = 0x68747541 /* Auth */
441 };
442 
443 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
444 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
445 // support. Consequently, for i386, the presence of CPUID is checked first
446 // via the corresponding eflags bit.
447 // Removal of cpuid.h header motivated by PR30384
448 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
449 // or test-suite, but are used in external projects e.g. libstdcxx
450 static bool isCpuIdSupported() {
451 #if defined(__GNUC__) || defined(__clang__)
452 #if defined(__i386__)
453   int __cpuid_supported;
454   __asm__("  pushfl\n"
455           "  popl   %%eax\n"
456           "  movl   %%eax,%%ecx\n"
457           "  xorl   $0x00200000,%%eax\n"
458           "  pushl  %%eax\n"
459           "  popfl\n"
460           "  pushfl\n"
461           "  popl   %%eax\n"
462           "  movl   $0,%0\n"
463           "  cmpl   %%eax,%%ecx\n"
464           "  je     1f\n"
465           "  movl   $1,%0\n"
466           "1:"
467           : "=r"(__cpuid_supported)
468           :
469           : "eax", "ecx");
470   if (!__cpuid_supported)
471     return false;
472 #endif
473   return true;
474 #endif
475   return true;
476 }
477 
478 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
479 /// the specified arguments.  If we can't run cpuid on the host, return true.
480 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
481                                unsigned *rECX, unsigned *rEDX) {
482 #if defined(__GNUC__) || defined(__clang__)
483 #if defined(__x86_64__)
484   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
485   // FIXME: should we save this for Clang?
486   __asm__("movq\t%%rbx, %%rsi\n\t"
487           "cpuid\n\t"
488           "xchgq\t%%rbx, %%rsi\n\t"
489           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
490           : "a"(value));
491   return false;
492 #elif defined(__i386__)
493   __asm__("movl\t%%ebx, %%esi\n\t"
494           "cpuid\n\t"
495           "xchgl\t%%ebx, %%esi\n\t"
496           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
497           : "a"(value));
498   return false;
499 #else
500   return true;
501 #endif
502 #elif defined(_MSC_VER)
503   // The MSVC intrinsic is portable across x86 and x64.
504   int registers[4];
505   __cpuid(registers, value);
506   *rEAX = registers[0];
507   *rEBX = registers[1];
508   *rECX = registers[2];
509   *rEDX = registers[3];
510   return false;
511 #else
512   return true;
513 #endif
514 }
515 
516 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
517 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
518 /// return true.
519 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
520                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
521                                  unsigned *rEDX) {
522 #if defined(__GNUC__) || defined(__clang__)
523 #if defined(__x86_64__)
524   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
525   // FIXME: should we save this for Clang?
526   __asm__("movq\t%%rbx, %%rsi\n\t"
527           "cpuid\n\t"
528           "xchgq\t%%rbx, %%rsi\n\t"
529           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
530           : "a"(value), "c"(subleaf));
531   return false;
532 #elif defined(__i386__)
533   __asm__("movl\t%%ebx, %%esi\n\t"
534           "cpuid\n\t"
535           "xchgl\t%%ebx, %%esi\n\t"
536           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
537           : "a"(value), "c"(subleaf));
538   return false;
539 #else
540   return true;
541 #endif
542 #elif defined(_MSC_VER)
543   int registers[4];
544   __cpuidex(registers, value, subleaf);
545   *rEAX = registers[0];
546   *rEBX = registers[1];
547   *rECX = registers[2];
548   *rEDX = registers[3];
549   return false;
550 #else
551   return true;
552 #endif
553 }
554 
555 // Read control register 0 (XCR0). Used to detect features such as AVX.
556 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
557 #if defined(__GNUC__) || defined(__clang__)
558   // Check xgetbv; this uses a .byte sequence instead of the instruction
559   // directly because older assemblers do not include support for xgetbv and
560   // there is no easy way to conditionally compile based on the assembler used.
561   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
562   return false;
563 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
564   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
565   *rEAX = Result;
566   *rEDX = Result >> 32;
567   return false;
568 #else
569   return true;
570 #endif
571 }
572 
573 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
574                                  unsigned *Model) {
575   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
576   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
577   if (*Family == 6 || *Family == 0xf) {
578     if (*Family == 0xf)
579       // Examine extended family ID if family ID is F.
580       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
581     // Examine extended model ID if family ID is 6 or F.
582     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
583   }
584 }
585 
586 static StringRef
587 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
588                                 const unsigned *Features,
589                                 unsigned *Type, unsigned *Subtype) {
590   auto testFeature = [&](unsigned F) {
591     return (Features[F / 32] & (1U << (F % 32))) != 0;
592   };
593 
594   StringRef CPU;
595 
596   switch (Family) {
597   case 3:
598     CPU = "i386";
599     break;
600   case 4:
601     CPU = "i486";
602     break;
603   case 5:
604     if (testFeature(X86::FEATURE_MMX)) {
605       CPU = "pentium-mmx";
606       break;
607     }
608     CPU = "pentium";
609     break;
610   case 6:
611     switch (Model) {
612     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
613                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
614                // mobile processor, Intel Core 2 Extreme processor, Intel
615                // Pentium Dual-Core processor, Intel Xeon processor, model
616                // 0Fh. All processors are manufactured using the 65 nm process.
617     case 0x16: // Intel Celeron processor model 16h. All processors are
618                // manufactured using the 65 nm process
619       CPU = "core2";
620       *Type = X86::INTEL_CORE2;
621       break;
622     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
623                // 17h. All processors are manufactured using the 45 nm process.
624                //
625                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
626     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
627                // the 45 nm process.
628       CPU = "penryn";
629       *Type = X86::INTEL_CORE2;
630       break;
631     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
632                // processors are manufactured using the 45 nm process.
633     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
634                // As found in a Summer 2010 model iMac.
635     case 0x1f:
636     case 0x2e:              // Nehalem EX
637       CPU = "nehalem";
638       *Type = X86::INTEL_COREI7;
639       *Subtype = X86::INTEL_COREI7_NEHALEM;
640       break;
641     case 0x25: // Intel Core i7, laptop version.
642     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
643                // processors are manufactured using the 32 nm process.
644     case 0x2f: // Westmere EX
645       CPU = "westmere";
646       *Type = X86::INTEL_COREI7;
647       *Subtype = X86::INTEL_COREI7_WESTMERE;
648       break;
649     case 0x2a: // Intel Core i7 processor. All processors are manufactured
650                // using the 32 nm process.
651     case 0x2d:
652       CPU = "sandybridge";
653       *Type = X86::INTEL_COREI7;
654       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
655       break;
656     case 0x3a:
657     case 0x3e:              // Ivy Bridge EP
658       CPU = "ivybridge";
659       *Type = X86::INTEL_COREI7;
660       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
661       break;
662 
663     // Haswell:
664     case 0x3c:
665     case 0x3f:
666     case 0x45:
667     case 0x46:
668       CPU = "haswell";
669       *Type = X86::INTEL_COREI7;
670       *Subtype = X86::INTEL_COREI7_HASWELL;
671       break;
672 
673     // Broadwell:
674     case 0x3d:
675     case 0x47:
676     case 0x4f:
677     case 0x56:
678       CPU = "broadwell";
679       *Type = X86::INTEL_COREI7;
680       *Subtype = X86::INTEL_COREI7_BROADWELL;
681       break;
682 
683     // Skylake:
684     case 0x4e:              // Skylake mobile
685     case 0x5e:              // Skylake desktop
686     case 0x8e:              // Kaby Lake mobile
687     case 0x9e:              // Kaby Lake desktop
688     case 0xa5:              // Comet Lake-H/S
689     case 0xa6:              // Comet Lake-U
690       CPU = "skylake";
691       *Type = X86::INTEL_COREI7;
692       *Subtype = X86::INTEL_COREI7_SKYLAKE;
693       break;
694 
695     // Skylake Xeon:
696     case 0x55:
697       *Type = X86::INTEL_COREI7;
698       if (testFeature(X86::FEATURE_AVX512BF16)) {
699         CPU = "cooperlake";
700         *Subtype = X86::INTEL_COREI7_COOPERLAKE;
701       } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
702         CPU = "cascadelake";
703         *Subtype = X86::INTEL_COREI7_CASCADELAKE;
704       } else {
705         CPU = "skylake-avx512";
706         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
707       }
708       break;
709 
710     // Cannonlake:
711     case 0x66:
712       CPU = "cannonlake";
713       *Type = X86::INTEL_COREI7;
714       *Subtype = X86::INTEL_COREI7_CANNONLAKE;
715       break;
716 
717     // Icelake:
718     case 0x7d:
719     case 0x7e:
720       CPU = "icelake-client";
721       *Type = X86::INTEL_COREI7;
722       *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
723       break;
724 
725     // Icelake Xeon:
726     case 0x6a:
727     case 0x6c:
728       CPU = "icelake-server";
729       *Type = X86::INTEL_COREI7;
730       *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER;
731       break;
732 
733     case 0x1c: // Most 45 nm Intel Atom processors
734     case 0x26: // 45 nm Atom Lincroft
735     case 0x27: // 32 nm Atom Medfield
736     case 0x35: // 32 nm Atom Midview
737     case 0x36: // 32 nm Atom Midview
738       CPU = "bonnell";
739       *Type = X86::INTEL_BONNELL;
740       break;
741 
742     // Atom Silvermont codes from the Intel software optimization guide.
743     case 0x37:
744     case 0x4a:
745     case 0x4d:
746     case 0x5a:
747     case 0x5d:
748     case 0x4c: // really airmont
749       CPU = "silvermont";
750       *Type = X86::INTEL_SILVERMONT;
751       break;
752     // Goldmont:
753     case 0x5c: // Apollo Lake
754     case 0x5f: // Denverton
755       CPU = "goldmont";
756       *Type = X86::INTEL_GOLDMONT;
757       break;
758     case 0x7a:
759       CPU = "goldmont-plus";
760       *Type = X86::INTEL_GOLDMONT_PLUS;
761       break;
762     case 0x86:
763       *Type = X86::INTEL_TREMONT;
764       break;
765 
766     case 0x57:
767       CPU = "tremont";
768       *Type = X86::INTEL_KNL;
769       break;
770 
771     case 0x85:
772       CPU = "knm";
773       *Type = X86::INTEL_KNM;
774       break;
775 
776     default: // Unknown family 6 CPU, try to guess.
777       // Don't both with Type/Subtype here, they aren't used by the caller.
778       // They're used above to keep the code in sync with compiler-rt.
779       // TODO detect tigerlake host from model
780       if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) {
781         CPU = "tigerlake";
782       } else if (testFeature(X86::FEATURE_AVX512VBMI2)) {
783         CPU = "icelake-client";
784       } else if (testFeature(X86::FEATURE_AVX512VBMI)) {
785         CPU = "cannonlake";
786       } else if (testFeature(X86::FEATURE_AVX512BF16)) {
787         CPU = "cooperlake";
788       } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
789         CPU = "cascadelake";
790       } else if (testFeature(X86::FEATURE_AVX512VL)) {
791         CPU = "skylake-avx512";
792       } else if (testFeature(X86::FEATURE_AVX512ER)) {
793         CPU = "knl";
794       } else if (testFeature(X86::FEATURE_CLFLUSHOPT)) {
795         if (testFeature(X86::FEATURE_SHA))
796           CPU = "goldmont";
797         else
798           CPU = "skylake";
799       } else if (testFeature(X86::FEATURE_ADX)) {
800         CPU = "broadwell";
801       } else if (testFeature(X86::FEATURE_AVX2)) {
802         CPU = "haswell";
803       } else if (testFeature(X86::FEATURE_AVX)) {
804         CPU = "sandybridge";
805       } else if (testFeature(X86::FEATURE_SSE4_2)) {
806         if (testFeature(X86::FEATURE_MOVBE))
807           CPU = "silvermont";
808         else
809           CPU = "nehalem";
810       } else if (testFeature(X86::FEATURE_SSE4_1)) {
811         CPU = "penryn";
812       } else if (testFeature(X86::FEATURE_SSSE3)) {
813         if (testFeature(X86::FEATURE_MOVBE))
814           CPU = "bonnell";
815         else
816           CPU = "core2";
817       } else if (testFeature(X86::FEATURE_64BIT)) {
818         CPU = "core2";
819       } else if (testFeature(X86::FEATURE_SSE3)) {
820         CPU = "yonah";
821       } else if (testFeature(X86::FEATURE_SSE2)) {
822         CPU = "pentium-m";
823       } else if (testFeature(X86::FEATURE_SSE)) {
824         CPU = "pentium3";
825       } else if (testFeature(X86::FEATURE_MMX)) {
826         CPU = "pentium2";
827       } else {
828         CPU = "pentiumpro";
829       }
830       break;
831     }
832     break;
833   case 15: {
834     if (testFeature(X86::FEATURE_64BIT)) {
835       CPU = "nocona";
836       break;
837     }
838     if (testFeature(X86::FEATURE_SSE3)) {
839       CPU = "prescott";
840       break;
841     }
842     CPU = "pentium4";
843     break;
844   }
845   default:
846     break; // Unknown.
847   }
848 
849   return CPU;
850 }
851 
852 static StringRef
853 getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
854                               const unsigned *Features,
855                               unsigned *Type, unsigned *Subtype) {
856   auto testFeature = [&](unsigned F) {
857     return (Features[F / 32] & (1U << (F % 32))) != 0;
858   };
859 
860   StringRef CPU;
861 
862   switch (Family) {
863   case 4:
864     CPU = "i486";
865     break;
866   case 5:
867     CPU = "pentium";
868     switch (Model) {
869     case 6:
870     case 7:
871       CPU = "k6";
872       break;
873     case 8:
874       CPU = "k6-2";
875       break;
876     case 9:
877     case 13:
878       CPU = "k6-3";
879       break;
880     case 10:
881       CPU = "geode";
882       break;
883     }
884     break;
885   case 6:
886     if (testFeature(X86::FEATURE_SSE)) {
887       CPU = "athlon-xp";
888       break;
889     }
890     CPU = "athlon";
891     break;
892   case 15:
893     if (testFeature(X86::FEATURE_SSE3)) {
894       CPU = "k8-sse3";
895       break;
896     }
897     CPU = "k8";
898     break;
899   case 16:
900     CPU = "amdfam10";
901     *Type = X86::AMDFAM10H; // "amdfam10"
902     switch (Model) {
903     case 2:
904       *Subtype = X86::AMDFAM10H_BARCELONA;
905       break;
906     case 4:
907       *Subtype = X86::AMDFAM10H_SHANGHAI;
908       break;
909     case 8:
910       *Subtype = X86::AMDFAM10H_ISTANBUL;
911       break;
912     }
913     break;
914   case 20:
915     CPU = "btver1";
916     *Type = X86::AMD_BTVER1;
917     break;
918   case 21:
919     CPU = "bdver1";
920     *Type = X86::AMDFAM15H;
921     if (Model >= 0x60 && Model <= 0x7f) {
922       CPU = "bdver4";
923       *Subtype = X86::AMDFAM15H_BDVER4;
924       break; // 60h-7Fh: Excavator
925     }
926     if (Model >= 0x30 && Model <= 0x3f) {
927       CPU = "bdver3";
928       *Subtype = X86::AMDFAM15H_BDVER3;
929       break; // 30h-3Fh: Steamroller
930     }
931     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
932       CPU = "bdver2";
933       *Subtype = X86::AMDFAM15H_BDVER2;
934       break; // 02h, 10h-1Fh: Piledriver
935     }
936     if (Model <= 0x0f) {
937       *Subtype = X86::AMDFAM15H_BDVER1;
938       break; // 00h-0Fh: Bulldozer
939     }
940     break;
941   case 22:
942     CPU = "btver2";
943     *Type = X86::AMD_BTVER2;
944     break;
945   case 23:
946     CPU = "znver1";
947     *Type = X86::AMDFAM17H;
948     if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
949       CPU = "znver2";
950       *Subtype = X86::AMDFAM17H_ZNVER2;
951       break; // 30h-3fh, 71h: Zen2
952     }
953     if (Model <= 0x0f) {
954       *Subtype = X86::AMDFAM17H_ZNVER1;
955       break; // 00h-0Fh: Zen1
956     }
957     break;
958   default:
959     break; // Unknown AMD CPU.
960   }
961 
962   return CPU;
963 }
964 
965 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
966                                  unsigned *Features) {
967   unsigned EAX, EBX;
968 
969   auto setFeature = [&](unsigned F) {
970     Features[F / 32] |= 1U << (F % 32);
971   };
972 
973   if ((EDX >> 15) & 1)
974     setFeature(X86::FEATURE_CMOV);
975   if ((EDX >> 23) & 1)
976     setFeature(X86::FEATURE_MMX);
977   if ((EDX >> 25) & 1)
978     setFeature(X86::FEATURE_SSE);
979   if ((EDX >> 26) & 1)
980     setFeature(X86::FEATURE_SSE2);
981 
982   if ((ECX >> 0) & 1)
983     setFeature(X86::FEATURE_SSE3);
984   if ((ECX >> 1) & 1)
985     setFeature(X86::FEATURE_PCLMUL);
986   if ((ECX >> 9) & 1)
987     setFeature(X86::FEATURE_SSSE3);
988   if ((ECX >> 12) & 1)
989     setFeature(X86::FEATURE_FMA);
990   if ((ECX >> 19) & 1)
991     setFeature(X86::FEATURE_SSE4_1);
992   if ((ECX >> 20) & 1)
993     setFeature(X86::FEATURE_SSE4_2);
994   if ((ECX >> 23) & 1)
995     setFeature(X86::FEATURE_POPCNT);
996   if ((ECX >> 25) & 1)
997     setFeature(X86::FEATURE_AES);
998 
999   if ((ECX >> 22) & 1)
1000     setFeature(X86::FEATURE_MOVBE);
1001 
1002   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1003   // indicates that the AVX registers will be saved and restored on context
1004   // switch, then we have full AVX support.
1005   const unsigned AVXBits = (1 << 27) | (1 << 28);
1006   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
1007                 ((EAX & 0x6) == 0x6);
1008 #if defined(__APPLE__)
1009   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1010   // save the AVX512 context if we use AVX512 instructions, even the bit is not
1011   // set right now.
1012   bool HasAVX512Save = true;
1013 #else
1014   // AVX512 requires additional context to be saved by the OS.
1015   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
1016 #endif
1017 
1018   if (HasAVX)
1019     setFeature(X86::FEATURE_AVX);
1020 
1021   bool HasLeaf7 =
1022       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1023 
1024   if (HasLeaf7 && ((EBX >> 3) & 1))
1025     setFeature(X86::FEATURE_BMI);
1026   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
1027     setFeature(X86::FEATURE_AVX2);
1028   if (HasLeaf7 && ((EBX >> 8) & 1))
1029     setFeature(X86::FEATURE_BMI2);
1030   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
1031     setFeature(X86::FEATURE_AVX512F);
1032   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1033     setFeature(X86::FEATURE_AVX512DQ);
1034   if (HasLeaf7 && ((EBX >> 19) & 1))
1035     setFeature(X86::FEATURE_ADX);
1036   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1037     setFeature(X86::FEATURE_AVX512IFMA);
1038   if (HasLeaf7 && ((EBX >> 23) & 1))
1039     setFeature(X86::FEATURE_CLFLUSHOPT);
1040   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
1041     setFeature(X86::FEATURE_AVX512PF);
1042   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
1043     setFeature(X86::FEATURE_AVX512ER);
1044   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1045     setFeature(X86::FEATURE_AVX512CD);
1046   if (HasLeaf7 && ((EBX >> 29) & 1))
1047     setFeature(X86::FEATURE_SHA);
1048   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1049     setFeature(X86::FEATURE_AVX512BW);
1050   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1051     setFeature(X86::FEATURE_AVX512VL);
1052 
1053   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1054     setFeature(X86::FEATURE_AVX512VBMI);
1055   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1056     setFeature(X86::FEATURE_AVX512VBMI2);
1057   if (HasLeaf7 && ((ECX >> 8) & 1))
1058     setFeature(X86::FEATURE_GFNI);
1059   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1060     setFeature(X86::FEATURE_VPCLMULQDQ);
1061   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1062     setFeature(X86::FEATURE_AVX512VNNI);
1063   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1064     setFeature(X86::FEATURE_AVX512BITALG);
1065   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1066     setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1067 
1068   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1069     setFeature(X86::FEATURE_AVX5124VNNIW);
1070   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1071     setFeature(X86::FEATURE_AVX5124FMAPS);
1072   if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
1073     setFeature(X86::FEATURE_AVX512VP2INTERSECT);
1074 
1075   bool HasLeaf7Subleaf1 =
1076       MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1077   if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
1078     setFeature(X86::FEATURE_AVX512BF16);
1079 
1080   unsigned MaxExtLevel;
1081   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1082 
1083   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1084                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1085   if (HasExtLeaf1 && ((ECX >> 6) & 1))
1086     setFeature(X86::FEATURE_SSE4_A);
1087   if (HasExtLeaf1 && ((ECX >> 11) & 1))
1088     setFeature(X86::FEATURE_XOP);
1089   if (HasExtLeaf1 && ((ECX >> 16) & 1))
1090     setFeature(X86::FEATURE_FMA4);
1091 
1092   if (HasExtLeaf1 && ((EDX >> 29) & 1))
1093     setFeature(X86::FEATURE_64BIT);
1094 }
1095 
1096 StringRef sys::getHostCPUName() {
1097   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1098   unsigned MaxLeaf, Vendor;
1099 
1100   if (!isCpuIdSupported())
1101     return "generic";
1102 
1103   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
1104     return "generic";
1105   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1106 
1107   unsigned Family = 0, Model = 0;
1108   unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0};
1109   detectX86FamilyModel(EAX, &Family, &Model);
1110   getAvailableFeatures(ECX, EDX, MaxLeaf, Features);
1111 
1112   // These aren't consumed in this file, but we try to keep some source code the
1113   // same or similar to compiler-rt.
1114   unsigned Type = 0;
1115   unsigned Subtype = 0;
1116 
1117   StringRef CPU;
1118 
1119   if (Vendor == SIG_INTEL) {
1120     CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type,
1121                                           &Subtype);
1122   } else if (Vendor == SIG_AMD) {
1123     CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type,
1124                                         &Subtype);
1125   }
1126 
1127   if (!CPU.empty())
1128     return CPU;
1129 
1130   return "generic";
1131 }
1132 
1133 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1134 StringRef sys::getHostCPUName() {
1135   host_basic_info_data_t hostInfo;
1136   mach_msg_type_number_t infoCount;
1137 
1138   infoCount = HOST_BASIC_INFO_COUNT;
1139   mach_port_t hostPort = mach_host_self();
1140   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1141             &infoCount);
1142   mach_port_deallocate(mach_task_self(), hostPort);
1143 
1144   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1145     return "generic";
1146 
1147   switch (hostInfo.cpu_subtype) {
1148   case CPU_SUBTYPE_POWERPC_601:
1149     return "601";
1150   case CPU_SUBTYPE_POWERPC_602:
1151     return "602";
1152   case CPU_SUBTYPE_POWERPC_603:
1153     return "603";
1154   case CPU_SUBTYPE_POWERPC_603e:
1155     return "603e";
1156   case CPU_SUBTYPE_POWERPC_603ev:
1157     return "603ev";
1158   case CPU_SUBTYPE_POWERPC_604:
1159     return "604";
1160   case CPU_SUBTYPE_POWERPC_604e:
1161     return "604e";
1162   case CPU_SUBTYPE_POWERPC_620:
1163     return "620";
1164   case CPU_SUBTYPE_POWERPC_750:
1165     return "750";
1166   case CPU_SUBTYPE_POWERPC_7400:
1167     return "7400";
1168   case CPU_SUBTYPE_POWERPC_7450:
1169     return "7450";
1170   case CPU_SUBTYPE_POWERPC_970:
1171     return "970";
1172   default:;
1173   }
1174 
1175   return "generic";
1176 }
1177 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
1178 StringRef sys::getHostCPUName() {
1179   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1180   StringRef Content = P ? P->getBuffer() : "";
1181   return detail::getHostCPUNameForPowerPC(Content);
1182 }
1183 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1184 StringRef sys::getHostCPUName() {
1185   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1186   StringRef Content = P ? P->getBuffer() : "";
1187   return detail::getHostCPUNameForARM(Content);
1188 }
1189 #elif defined(__linux__) && defined(__s390x__)
1190 StringRef sys::getHostCPUName() {
1191   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1192   StringRef Content = P ? P->getBuffer() : "";
1193   return detail::getHostCPUNameForS390x(Content);
1194 }
1195 #elif defined(__APPLE__) && defined(__aarch64__)
1196 StringRef sys::getHostCPUName() {
1197   return "cyclone";
1198 }
1199 #elif defined(__APPLE__) && defined(__arm__)
1200 StringRef sys::getHostCPUName() {
1201   host_basic_info_data_t hostInfo;
1202   mach_msg_type_number_t infoCount;
1203 
1204   infoCount = HOST_BASIC_INFO_COUNT;
1205   mach_port_t hostPort = mach_host_self();
1206   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1207             &infoCount);
1208   mach_port_deallocate(mach_task_self(), hostPort);
1209 
1210   if (hostInfo.cpu_type != CPU_TYPE_ARM) {
1211     assert(false && "CPUType not equal to ARM should not be possible on ARM");
1212     return "generic";
1213   }
1214   switch (hostInfo.cpu_subtype) {
1215     case CPU_SUBTYPE_ARM_V7S:
1216       return "swift";
1217     default:;
1218     }
1219 
1220   return "generic";
1221 }
1222 #else
1223 StringRef sys::getHostCPUName() { return "generic"; }
1224 #endif
1225 
1226 #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
1227 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1228 // using the number of unique physical/core id pairs. The following
1229 // implementation reads the /proc/cpuinfo format on an x86_64 system.
1230 int computeHostNumPhysicalCores() {
1231   // Enabled represents the number of physical id/core id pairs with at least
1232   // one processor id enabled by the CPU affinity mask.
1233   cpu_set_t Affinity, Enabled;
1234   if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0)
1235     return -1;
1236   CPU_ZERO(&Enabled);
1237 
1238   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1239   // mmapped because it appears to have 0 size.
1240   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1241       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1242   if (std::error_code EC = Text.getError()) {
1243     llvm::errs() << "Can't read "
1244                  << "/proc/cpuinfo: " << EC.message() << "\n";
1245     return -1;
1246   }
1247   SmallVector<StringRef, 8> strs;
1248   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1249                              /*KeepEmpty=*/false);
1250   int CurProcessor = -1;
1251   int CurPhysicalId = -1;
1252   int CurSiblings = -1;
1253   int CurCoreId = -1;
1254   for (StringRef Line : strs) {
1255     std::pair<StringRef, StringRef> Data = Line.split(':');
1256     auto Name = Data.first.trim();
1257     auto Val = Data.second.trim();
1258     // These fields are available if the kernel is configured with CONFIG_SMP.
1259     if (Name == "processor")
1260       Val.getAsInteger(10, CurProcessor);
1261     else if (Name == "physical id")
1262       Val.getAsInteger(10, CurPhysicalId);
1263     else if (Name == "siblings")
1264       Val.getAsInteger(10, CurSiblings);
1265     else if (Name == "core id") {
1266       Val.getAsInteger(10, CurCoreId);
1267       // The processor id corresponds to an index into cpu_set_t.
1268       if (CPU_ISSET(CurProcessor, &Affinity))
1269         CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled);
1270     }
1271   }
1272   return CPU_COUNT(&Enabled);
1273 }
1274 #elif defined(__linux__) && defined(__powerpc__)
1275 int computeHostNumPhysicalCores() {
1276   cpu_set_t Affinity;
1277   if (sched_getaffinity(0, sizeof(Affinity), &Affinity) == 0)
1278     return CPU_COUNT(&Affinity);
1279 
1280   // The call to sched_getaffinity() may have failed because the Affinity
1281   // mask is too small for the number of CPU's on the system (i.e. the
1282   // system has more than 1024 CPUs). Allocate a mask large enough for
1283   // twice as many CPUs.
1284   cpu_set_t *DynAffinity;
1285   DynAffinity = CPU_ALLOC(2048);
1286   if (sched_getaffinity(0, CPU_ALLOC_SIZE(2048), DynAffinity) == 0) {
1287     int NumCPUs = CPU_COUNT(DynAffinity);
1288     CPU_FREE(DynAffinity);
1289     return NumCPUs;
1290   }
1291   return -1;
1292 }
1293 #elif defined(__linux__) && defined(__s390x__)
1294 int computeHostNumPhysicalCores() { return sysconf(_SC_NPROCESSORS_ONLN); }
1295 #elif defined(__APPLE__) && defined(__x86_64__)
1296 #include <sys/param.h>
1297 #include <sys/sysctl.h>
1298 
1299 // Gets the number of *physical cores* on the machine.
1300 int computeHostNumPhysicalCores() {
1301   uint32_t count;
1302   size_t len = sizeof(count);
1303   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1304   if (count < 1) {
1305     int nm[2];
1306     nm[0] = CTL_HW;
1307     nm[1] = HW_AVAILCPU;
1308     sysctl(nm, 2, &count, &len, NULL, 0);
1309     if (count < 1)
1310       return -1;
1311   }
1312   return count;
1313 }
1314 #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0
1315 // Defined in llvm/lib/Support/Windows/Threading.inc
1316 int computeHostNumPhysicalCores();
1317 #else
1318 // On other systems, return -1 to indicate unknown.
1319 static int computeHostNumPhysicalCores() { return -1; }
1320 #endif
1321 
1322 int sys::getHostNumPhysicalCores() {
1323   static int NumCores = computeHostNumPhysicalCores();
1324   return NumCores;
1325 }
1326 
1327 #if defined(__i386__) || defined(_M_IX86) || \
1328     defined(__x86_64__) || defined(_M_X64)
1329 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1330   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1331   unsigned MaxLevel;
1332 
1333   if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1)
1334     return false;
1335 
1336   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1337 
1338   Features["cx8"]    = (EDX >>  8) & 1;
1339   Features["cmov"]   = (EDX >> 15) & 1;
1340   Features["mmx"]    = (EDX >> 23) & 1;
1341   Features["fxsr"]   = (EDX >> 24) & 1;
1342   Features["sse"]    = (EDX >> 25) & 1;
1343   Features["sse2"]   = (EDX >> 26) & 1;
1344 
1345   Features["sse3"]   = (ECX >>  0) & 1;
1346   Features["pclmul"] = (ECX >>  1) & 1;
1347   Features["ssse3"]  = (ECX >>  9) & 1;
1348   Features["cx16"]   = (ECX >> 13) & 1;
1349   Features["sse4.1"] = (ECX >> 19) & 1;
1350   Features["sse4.2"] = (ECX >> 20) & 1;
1351   Features["movbe"]  = (ECX >> 22) & 1;
1352   Features["popcnt"] = (ECX >> 23) & 1;
1353   Features["aes"]    = (ECX >> 25) & 1;
1354   Features["rdrnd"]  = (ECX >> 30) & 1;
1355 
1356   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1357   // indicates that the AVX registers will be saved and restored on context
1358   // switch, then we have full AVX support.
1359   bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX);
1360   bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6);
1361 #if defined(__APPLE__)
1362   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1363   // save the AVX512 context if we use AVX512 instructions, even the bit is not
1364   // set right now.
1365   bool HasAVX512Save = true;
1366 #else
1367   // AVX512 requires additional context to be saved by the OS.
1368   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1369 #endif
1370   // AMX requires additional context to be saved by the OS.
1371   const unsigned AMXBits = (1 << 17) | (1 << 18);
1372   bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits);
1373 
1374   Features["avx"]   = HasAVXSave;
1375   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
1376   // Only enable XSAVE if OS has enabled support for saving YMM state.
1377   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1378   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
1379 
1380   unsigned MaxExtLevel;
1381   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1382 
1383   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1384                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1385   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
1386   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
1387   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
1388   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
1389   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1390   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
1391   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1392   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
1393   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1394 
1395   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);
1396 
1397   // Miscellaneous memory related features, detected by
1398   // using the 0x80000008 leaf of the CPUID instruction
1399   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1400                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1401   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
1402   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1403 
1404   bool HasLeaf7 =
1405       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1406 
1407   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
1408   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
1409   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
1410   // AVX2 is only supported if we have the OS save support from AVX.
1411   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
1412   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
1413   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
1414   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
1415   // AVX512 is only supported if the OS supports the context save for it.
1416   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1417   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1418   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
1419   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
1420   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1421   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1422   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
1423   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1424   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1425   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1426   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
1427   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1428   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1429 
1430   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
1431   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
1432   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
1433   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
1434   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
1435   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
1436   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
1437   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
1438   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1439   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1440   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1441   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1442   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
1443   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
1444   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
1445   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
1446   Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1);
1447 
1448   Features["avx512vp2intersect"] =
1449       HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
1450   Features["serialize"]       = HasLeaf7 && ((EDX >> 14) & 1);
1451   Features["tsxldtrk"]        = HasLeaf7 && ((EDX >> 16) & 1);
1452   // There are two CPUID leafs which information associated with the pconfig
1453   // instruction:
1454   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
1455   // bit of EDX), while the EAX=0x1b leaf returns information on the
1456   // availability of specific pconfig leafs.
1457   // The target feature here only refers to the the first of these two.
1458   // Users might need to check for the availability of specific pconfig
1459   // leaves using cpuid, since that information is ignored while
1460   // detecting features using the "-march=native" flag.
1461   // For more info, see X86 ISA docs.
1462   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
1463   Features["amx-bf16"]   = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave;
1464   Features["amx-tile"]   = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave;
1465   Features["amx-int8"]   = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave;
1466   bool HasLeaf7Subleaf1 =
1467       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1468   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
1469 
1470   bool HasLeafD = MaxLevel >= 0xd &&
1471                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1472 
1473   // Only enable XSAVE if OS has enabled support for saving YMM state.
1474   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1475   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1476   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1477 
1478   bool HasLeaf14 = MaxLevel >= 0x14 &&
1479                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
1480 
1481   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
1482 
1483   return true;
1484 }
1485 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1486 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1487   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1488   if (!P)
1489     return false;
1490 
1491   SmallVector<StringRef, 32> Lines;
1492   P->getBuffer().split(Lines, "\n");
1493 
1494   SmallVector<StringRef, 32> CPUFeatures;
1495 
1496   // Look for the CPU features.
1497   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1498     if (Lines[I].startswith("Features")) {
1499       Lines[I].split(CPUFeatures, ' ');
1500       break;
1501     }
1502 
1503 #if defined(__aarch64__)
1504   // Keep track of which crypto features we have seen
1505   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1506   uint32_t crypto = 0;
1507 #endif
1508 
1509   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1510     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1511 #if defined(__aarch64__)
1512                                    .Case("asimd", "neon")
1513                                    .Case("fp", "fp-armv8")
1514                                    .Case("crc32", "crc")
1515 #else
1516                                    .Case("half", "fp16")
1517                                    .Case("neon", "neon")
1518                                    .Case("vfpv3", "vfp3")
1519                                    .Case("vfpv3d16", "d16")
1520                                    .Case("vfpv4", "vfp4")
1521                                    .Case("idiva", "hwdiv-arm")
1522                                    .Case("idivt", "hwdiv")
1523 #endif
1524                                    .Default("");
1525 
1526 #if defined(__aarch64__)
1527     // We need to check crypto separately since we need all of the crypto
1528     // extensions to enable the subtarget feature
1529     if (CPUFeatures[I] == "aes")
1530       crypto |= CAP_AES;
1531     else if (CPUFeatures[I] == "pmull")
1532       crypto |= CAP_PMULL;
1533     else if (CPUFeatures[I] == "sha1")
1534       crypto |= CAP_SHA1;
1535     else if (CPUFeatures[I] == "sha2")
1536       crypto |= CAP_SHA2;
1537 #endif
1538 
1539     if (LLVMFeatureStr != "")
1540       Features[LLVMFeatureStr] = true;
1541   }
1542 
1543 #if defined(__aarch64__)
1544   // If we have all crypto bits we can add the feature
1545   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1546     Features["crypto"] = true;
1547 #endif
1548 
1549   return true;
1550 }
1551 #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
1552 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1553   if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
1554     Features["neon"] = true;
1555   if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
1556     Features["crc"] = true;
1557   if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
1558     Features["crypto"] = true;
1559 
1560   return true;
1561 }
1562 #else
1563 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1564 #endif
1565 
1566 std::string sys::getProcessTriple() {
1567   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
1568   Triple PT(Triple::normalize(TargetTripleString));
1569 
1570   if (sizeof(void *) == 8 && PT.isArch32Bit())
1571     PT = PT.get64BitArchVariant();
1572   if (sizeof(void *) == 4 && PT.isArch64Bit())
1573     PT = PT.get32BitArchVariant();
1574 
1575   return PT.str();
1576 }
1577