1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the operating system Host concept.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/Host.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/FileSystem.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <string.h>
24 
25 // Include the platform-specific parts of this class.
26 #ifdef LLVM_ON_UNIX
27 #include "Unix/Host.inc"
28 #endif
29 #ifdef LLVM_ON_WIN32
30 #include "Windows/Host.inc"
31 #endif
32 #ifdef _MSC_VER
33 #include <intrin.h>
34 #endif
35 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
36 #include <mach/mach.h>
37 #include <mach/mach_host.h>
38 #include <mach/host_info.h>
39 #include <mach/machine.h>
40 #endif
41 
42 #define DEBUG_TYPE "host-detection"
43 
44 //===----------------------------------------------------------------------===//
45 //
46 //  Implementations of the CPU detection routines
47 //
48 //===----------------------------------------------------------------------===//
49 
50 using namespace llvm;
51 
52 #if defined(__linux__)
53 static ssize_t LLVM_ATTRIBUTE_UNUSED readCpuInfo(void *Buf, size_t Size) {
54   // Note: We cannot mmap /proc/cpuinfo here and then process the resulting
55   // memory buffer because the 'file' has 0 size (it can be read from only
56   // as a stream).
57 
58   int FD;
59   std::error_code EC = sys::fs::openFileForRead("/proc/cpuinfo", FD);
60   if (EC) {
61     DEBUG(dbgs() << "Unable to open /proc/cpuinfo: " << EC.message() << "\n");
62     return -1;
63   }
64   int Ret = read(FD, Buf, Size);
65   int CloseStatus = close(FD);
66   if (CloseStatus)
67     return -1;
68   return Ret;
69 }
70 #endif
71 
72 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
73  || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
74 
75 /// GetX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
76 /// specified arguments.  If we can't run cpuid on the host, return true.
77 static bool GetX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
78                                unsigned *rECX, unsigned *rEDX) {
79 #if defined(__GNUC__) || defined(__clang__)
80   #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
81     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
82     asm ("movq\t%%rbx, %%rsi\n\t"
83          "cpuid\n\t"
84          "xchgq\t%%rbx, %%rsi\n\t"
85          : "=a" (*rEAX),
86            "=S" (*rEBX),
87            "=c" (*rECX),
88            "=d" (*rEDX)
89          :  "a" (value));
90     return false;
91   #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
92     asm ("movl\t%%ebx, %%esi\n\t"
93          "cpuid\n\t"
94          "xchgl\t%%ebx, %%esi\n\t"
95          : "=a" (*rEAX),
96            "=S" (*rEBX),
97            "=c" (*rECX),
98            "=d" (*rEDX)
99          :  "a" (value));
100     return false;
101 // pedantic #else returns to appease -Wunreachable-code (so we don't generate
102 // postprocessed code that looks like "return true; return false;")
103   #else
104     return true;
105   #endif
106 #elif defined(_MSC_VER)
107   // The MSVC intrinsic is portable across x86 and x64.
108   int registers[4];
109   __cpuid(registers, value);
110   *rEAX = registers[0];
111   *rEBX = registers[1];
112   *rECX = registers[2];
113   *rEDX = registers[3];
114   return false;
115 #else
116   return true;
117 #endif
118 }
119 
120 /// GetX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return the
121 /// 4 values in the specified arguments.  If we can't run cpuid on the host,
122 /// return true.
123 static bool GetX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
124                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
125                                  unsigned *rEDX) {
126 #if defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
127   #if defined(__GNUC__)
128     // gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
129     asm ("movq\t%%rbx, %%rsi\n\t"
130          "cpuid\n\t"
131          "xchgq\t%%rbx, %%rsi\n\t"
132          : "=a" (*rEAX),
133            "=S" (*rEBX),
134            "=c" (*rECX),
135            "=d" (*rEDX)
136          :  "a" (value),
137             "c" (subleaf));
138     return false;
139   #elif defined(_MSC_VER)
140     int registers[4];
141     __cpuidex(registers, value, subleaf);
142     *rEAX = registers[0];
143     *rEBX = registers[1];
144     *rECX = registers[2];
145     *rEDX = registers[3];
146     return false;
147   #else
148     return true;
149   #endif
150 #elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
151   #if defined(__GNUC__)
152     asm ("movl\t%%ebx, %%esi\n\t"
153          "cpuid\n\t"
154          "xchgl\t%%ebx, %%esi\n\t"
155          : "=a" (*rEAX),
156            "=S" (*rEBX),
157            "=c" (*rECX),
158            "=d" (*rEDX)
159          :  "a" (value),
160             "c" (subleaf));
161     return false;
162   #elif defined(_MSC_VER)
163     __asm {
164       mov   eax,value
165       mov   ecx,subleaf
166       cpuid
167       mov   esi,rEAX
168       mov   dword ptr [esi],eax
169       mov   esi,rEBX
170       mov   dword ptr [esi],ebx
171       mov   esi,rECX
172       mov   dword ptr [esi],ecx
173       mov   esi,rEDX
174       mov   dword ptr [esi],edx
175     }
176     return false;
177   #else
178     return true;
179   #endif
180 #else
181   return true;
182 #endif
183 }
184 
185 static bool GetX86XCR0(unsigned *rEAX, unsigned *rEDX) {
186 #if defined(__GNUC__)
187   // Check xgetbv; this uses a .byte sequence instead of the instruction
188   // directly because older assemblers do not include support for xgetbv and
189   // there is no easy way to conditionally compile based on the assembler used.
190   __asm__ (".byte 0x0f, 0x01, 0xd0" : "=a" (*rEAX), "=d" (*rEDX) : "c" (0));
191   return false;
192 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
193   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
194   *rEAX = Result;
195   *rEDX = Result >> 32;
196   return false;
197 #else
198   return true;
199 #endif
200 }
201 
202 static void DetectX86FamilyModel(unsigned EAX, unsigned &Family,
203                                  unsigned &Model) {
204   Family = (EAX >> 8) & 0xf; // Bits 8 - 11
205   Model  = (EAX >> 4) & 0xf; // Bits 4 - 7
206   if (Family == 6 || Family == 0xf) {
207     if (Family == 0xf)
208       // Examine extended family ID if family ID is F.
209       Family += (EAX >> 20) & 0xff;    // Bits 20 - 27
210     // Examine extended model ID if family ID is 6 or F.
211     Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
212   }
213 }
214 
215 StringRef sys::getHostCPUName() {
216   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
217   if (GetX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
218     return "generic";
219   unsigned Family = 0;
220   unsigned Model  = 0;
221   DetectX86FamilyModel(EAX, Family, Model);
222 
223   union {
224     unsigned u[3];
225     char     c[12];
226   } text;
227 
228   unsigned MaxLeaf;
229   GetX86CpuIDAndInfo(0, &MaxLeaf, text.u+0, text.u+2, text.u+1);
230 
231   bool HasMMX   = (EDX >> 23) & 1;
232   bool HasSSE   = (EDX >> 25) & 1;
233   bool HasSSE2  = (EDX >> 26) & 1;
234   bool HasSSE3  = (ECX >>  0) & 1;
235   bool HasSSSE3 = (ECX >>  9) & 1;
236   bool HasSSE41 = (ECX >> 19) & 1;
237   bool HasSSE42 = (ECX >> 20) & 1;
238   bool HasMOVBE = (ECX >> 22) & 1;
239   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
240   // indicates that the AVX registers will be saved and restored on context
241   // switch, then we have full AVX support.
242   const unsigned AVXBits = (1 << 27) | (1 << 28);
243   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !GetX86XCR0(&EAX, &EDX) &&
244                 ((EAX & 0x6) == 0x6);
245   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
246   bool HasLeaf7 = MaxLeaf >= 0x7 &&
247                   !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
248   bool HasADX = HasLeaf7 && ((EBX >> 19) & 1);
249   bool HasAVX2 = HasAVX && HasLeaf7 && (EBX & 0x20);
250   bool HasAVX512 = HasLeaf7 && HasAVX512Save && ((EBX >> 16) & 1);
251 
252   GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
253   bool Em64T = (EDX >> 29) & 0x1;
254   bool HasTBM = (ECX >> 21) & 0x1;
255 
256   if (memcmp(text.c, "GenuineIntel", 12) == 0) {
257     switch (Family) {
258     case 3:
259       return "i386";
260     case 4:
261       switch (Model) {
262       case 0: // Intel486 DX processors
263       case 1: // Intel486 DX processors
264       case 2: // Intel486 SX processors
265       case 3: // Intel487 processors, IntelDX2 OverDrive processors,
266               // IntelDX2 processors
267       case 4: // Intel486 SL processor
268       case 5: // IntelSX2 processors
269       case 7: // Write-Back Enhanced IntelDX2 processors
270       case 8: // IntelDX4 OverDrive processors, IntelDX4 processors
271       default: return "i486";
272       }
273     case 5:
274       switch (Model) {
275       case  1: // Pentium OverDrive processor for Pentium processor (60, 66),
276                // Pentium processors (60, 66)
277       case  2: // Pentium OverDrive processor for Pentium processor (75, 90,
278                // 100, 120, 133), Pentium processors (75, 90, 100, 120, 133,
279                // 150, 166, 200)
280       case  3: // Pentium OverDrive processors for Intel486 processor-based
281                // systems
282         return "pentium";
283 
284       case  4: // Pentium OverDrive processor with MMX technology for Pentium
285                // processor (75, 90, 100, 120, 133), Pentium processor with
286                // MMX technology (166, 200)
287         return "pentium-mmx";
288 
289       default: return "pentium";
290       }
291     case 6:
292       switch (Model) {
293       case  1: // Pentium Pro processor
294         return "pentiumpro";
295 
296       case  3: // Intel Pentium II OverDrive processor, Pentium II processor,
297                // model 03
298       case  5: // Pentium II processor, model 05, Pentium II Xeon processor,
299                // model 05, and Intel Celeron processor, model 05
300       case  6: // Celeron processor, model 06
301         return "pentium2";
302 
303       case  7: // Pentium III processor, model 07, and Pentium III Xeon
304                // processor, model 07
305       case  8: // Pentium III processor, model 08, Pentium III Xeon processor,
306                // model 08, and Celeron processor, model 08
307       case 10: // Pentium III Xeon processor, model 0Ah
308       case 11: // Pentium III processor, model 0Bh
309         return "pentium3";
310 
311       case  9: // Intel Pentium M processor, Intel Celeron M processor model 09.
312       case 13: // Intel Pentium M processor, Intel Celeron M processor, model
313                // 0Dh. All processors are manufactured using the 90 nm process.
314       case 21: // Intel EP80579 Integrated Processor and Intel EP80579
315                // Integrated Processor with Intel QuickAssist Technology
316         return "pentium-m";
317 
318       case 14: // Intel Core Duo processor, Intel Core Solo processor, model
319                // 0Eh. All processors are manufactured using the 65 nm process.
320         return "yonah";
321 
322       case 15: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
323                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
324                // mobile processor, Intel Core 2 Extreme processor, Intel
325                // Pentium Dual-Core processor, Intel Xeon processor, model
326                // 0Fh. All processors are manufactured using the 65 nm process.
327       case 22: // Intel Celeron processor model 16h. All processors are
328                // manufactured using the 65 nm process
329         return "core2";
330 
331       case 23: // Intel Core 2 Extreme processor, Intel Xeon processor, model
332                // 17h. All processors are manufactured using the 45 nm process.
333                //
334                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
335       case 29: // Intel Xeon processor MP. All processors are manufactured using
336                // the 45 nm process.
337         return "penryn";
338 
339       case 26: // Intel Core i7 processor and Intel Xeon processor. All
340                // processors are manufactured using the 45 nm process.
341       case 30: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
342                // As found in a Summer 2010 model iMac.
343       case 46: // Nehalem EX
344         return "nehalem";
345       case 37: // Intel Core i7, laptop version.
346       case 44: // Intel Core i7 processor and Intel Xeon processor. All
347                // processors are manufactured using the 32 nm process.
348       case 47: // Westmere EX
349         return "westmere";
350 
351       // SandyBridge:
352       case 42: // Intel Core i7 processor. All processors are manufactured
353                // using the 32 nm process.
354       case 45:
355         return "sandybridge";
356 
357       // Ivy Bridge:
358       case 58:
359       case 62: // Ivy Bridge EP
360         return "ivybridge";
361 
362       // Haswell:
363       case 60:
364       case 63:
365       case 69:
366       case 70:
367         return "haswell";
368 
369       // Broadwell:
370       case 61:
371       case 71:
372         return "broadwell";
373 
374       // Skylake:
375       case 78:
376         return "skylake-avx512";
377       case 94:
378         return "skylake";
379 
380       case 28: // Most 45 nm Intel Atom processors
381       case 38: // 45 nm Atom Lincroft
382       case 39: // 32 nm Atom Medfield
383       case 53: // 32 nm Atom Midview
384       case 54: // 32 nm Atom Midview
385         return "bonnell";
386 
387       // Atom Silvermont codes from the Intel software optimization guide.
388       case 55:
389       case 74:
390       case 77:
391       case 90:
392       case 93:
393         return "silvermont";
394 
395       default: // Unknown family 6 CPU, try to guess.
396         if (HasAVX512)
397           return "knl";
398         if (HasADX)
399           return "broadwell";
400         if (HasAVX2)
401           return "haswell";
402         if (HasAVX)
403           return "sandybridge";
404         if (HasSSE42)
405           return HasMOVBE ? "silvermont" : "nehalem";
406         if (HasSSE41)
407           return "penryn";
408         if (HasSSSE3)
409           return HasMOVBE ? "bonnell" : "core2";
410         if (Em64T)
411           return "x86-64";
412         if (HasSSE2)
413           return "pentium-m";
414         if (HasSSE)
415           return "pentium3";
416         if (HasMMX)
417           return "pentium2";
418         return "pentiumpro";
419       }
420     case 15: {
421       switch (Model) {
422       case  0: // Pentium 4 processor, Intel Xeon processor. All processors are
423                // model 00h and manufactured using the 0.18 micron process.
424       case  1: // Pentium 4 processor, Intel Xeon processor, Intel Xeon
425                // processor MP, and Intel Celeron processor. All processors are
426                // model 01h and manufactured using the 0.18 micron process.
427       case  2: // Pentium 4 processor, Mobile Intel Pentium 4 processor - M,
428                // Intel Xeon processor, Intel Xeon processor MP, Intel Celeron
429                // processor, and Mobile Intel Celeron processor. All processors
430                // are model 02h and manufactured using the 0.13 micron process.
431         return (Em64T) ? "x86-64" : "pentium4";
432 
433       case  3: // Pentium 4 processor, Intel Xeon processor, Intel Celeron D
434                // processor. All processors are model 03h and manufactured using
435                // the 90 nm process.
436       case  4: // Pentium 4 processor, Pentium 4 processor Extreme Edition,
437                // Pentium D processor, Intel Xeon processor, Intel Xeon
438                // processor MP, Intel Celeron D processor. All processors are
439                // model 04h and manufactured using the 90 nm process.
440       case  6: // Pentium 4 processor, Pentium D processor, Pentium processor
441                // Extreme Edition, Intel Xeon processor, Intel Xeon processor
442                // MP, Intel Celeron D processor. All processors are model 06h
443                // and manufactured using the 65 nm process.
444         return (Em64T) ? "nocona" : "prescott";
445 
446       default:
447         return (Em64T) ? "x86-64" : "pentium4";
448       }
449     }
450 
451     default:
452       return "generic";
453     }
454   } else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
455     // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
456     // appears to be no way to generate the wide variety of AMD-specific targets
457     // from the information returned from CPUID.
458     switch (Family) {
459       case 4:
460         return "i486";
461       case 5:
462         switch (Model) {
463         case 6:
464         case 7:  return "k6";
465         case 8:  return "k6-2";
466         case 9:
467         case 13: return "k6-3";
468         case 10: return "geode";
469         default: return "pentium";
470         }
471       case 6:
472         switch (Model) {
473         case 4:  return "athlon-tbird";
474         case 6:
475         case 7:
476         case 8:  return "athlon-mp";
477         case 10: return "athlon-xp";
478         default: return "athlon";
479         }
480       case 15:
481         if (HasSSE3)
482           return "k8-sse3";
483         switch (Model) {
484         case 1:  return "opteron";
485         case 5:  return "athlon-fx"; // also opteron
486         default: return "athlon64";
487         }
488       case 16:
489         return "amdfam10";
490       case 20:
491         return "btver1";
492       case 21:
493         if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
494           return "btver1";
495         if (Model >= 0x50)
496           return "bdver4"; // 50h-6Fh: Excavator
497         if (Model >= 0x30)
498           return "bdver3"; // 30h-3Fh: Steamroller
499         if (Model >= 0x10 || HasTBM)
500           return "bdver2"; // 10h-1Fh: Piledriver
501         return "bdver1";   // 00h-0Fh: Bulldozer
502       case 22:
503         if (!HasAVX) // If the OS doesn't support AVX provide a sane fallback.
504           return "btver1";
505         return "btver2";
506     default:
507       return "generic";
508     }
509   }
510   return "generic";
511 }
512 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
513 StringRef sys::getHostCPUName() {
514   host_basic_info_data_t hostInfo;
515   mach_msg_type_number_t infoCount;
516 
517   infoCount = HOST_BASIC_INFO_COUNT;
518   host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
519             &infoCount);
520 
521   if (hostInfo.cpu_type != CPU_TYPE_POWERPC) return "generic";
522 
523   switch(hostInfo.cpu_subtype) {
524   case CPU_SUBTYPE_POWERPC_601:   return "601";
525   case CPU_SUBTYPE_POWERPC_602:   return "602";
526   case CPU_SUBTYPE_POWERPC_603:   return "603";
527   case CPU_SUBTYPE_POWERPC_603e:  return "603e";
528   case CPU_SUBTYPE_POWERPC_603ev: return "603ev";
529   case CPU_SUBTYPE_POWERPC_604:   return "604";
530   case CPU_SUBTYPE_POWERPC_604e:  return "604e";
531   case CPU_SUBTYPE_POWERPC_620:   return "620";
532   case CPU_SUBTYPE_POWERPC_750:   return "750";
533   case CPU_SUBTYPE_POWERPC_7400:  return "7400";
534   case CPU_SUBTYPE_POWERPC_7450:  return "7450";
535   case CPU_SUBTYPE_POWERPC_970:   return "970";
536   default: ;
537   }
538 
539   return "generic";
540 }
541 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
542 StringRef sys::getHostCPUName() {
543   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
544   // and so we must use an operating-system interface to determine the current
545   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
546   const char *generic = "generic";
547 
548   // The cpu line is second (after the 'processor: 0' line), so if this
549   // buffer is too small then something has changed (or is wrong).
550   char buffer[1024];
551   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
552   if (CPUInfoSize == -1)
553     return generic;
554 
555   const char *CPUInfoStart = buffer;
556   const char *CPUInfoEnd = buffer + CPUInfoSize;
557 
558   const char *CIP = CPUInfoStart;
559 
560   const char *CPUStart = 0;
561   size_t CPULen = 0;
562 
563   // We need to find the first line which starts with cpu, spaces, and a colon.
564   // After the colon, there may be some additional spaces and then the cpu type.
565   while (CIP < CPUInfoEnd && CPUStart == 0) {
566     if (CIP < CPUInfoEnd && *CIP == '\n')
567       ++CIP;
568 
569     if (CIP < CPUInfoEnd && *CIP == 'c') {
570       ++CIP;
571       if (CIP < CPUInfoEnd && *CIP == 'p') {
572         ++CIP;
573         if (CIP < CPUInfoEnd && *CIP == 'u') {
574           ++CIP;
575           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
576             ++CIP;
577 
578           if (CIP < CPUInfoEnd && *CIP == ':') {
579             ++CIP;
580             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
581               ++CIP;
582 
583             if (CIP < CPUInfoEnd) {
584               CPUStart = CIP;
585               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
586                                           *CIP != ',' && *CIP != '\n'))
587                 ++CIP;
588               CPULen = CIP - CPUStart;
589             }
590           }
591         }
592       }
593     }
594 
595     if (CPUStart == 0)
596       while (CIP < CPUInfoEnd && *CIP != '\n')
597         ++CIP;
598   }
599 
600   if (CPUStart == 0)
601     return generic;
602 
603   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
604     .Case("604e", "604e")
605     .Case("604", "604")
606     .Case("7400", "7400")
607     .Case("7410", "7400")
608     .Case("7447", "7400")
609     .Case("7455", "7450")
610     .Case("G4", "g4")
611     .Case("POWER4", "970")
612     .Case("PPC970FX", "970")
613     .Case("PPC970MP", "970")
614     .Case("G5", "g5")
615     .Case("POWER5", "g5")
616     .Case("A2", "a2")
617     .Case("POWER6", "pwr6")
618     .Case("POWER7", "pwr7")
619     .Case("POWER8", "pwr8")
620     .Case("POWER8E", "pwr8")
621     .Default(generic);
622 }
623 #elif defined(__linux__) && defined(__arm__)
624 StringRef sys::getHostCPUName() {
625   // The cpuid register on arm is not accessible from user space. On Linux,
626   // it is exposed through the /proc/cpuinfo file.
627 
628   // Read 1024 bytes from /proc/cpuinfo, which should contain the CPU part line
629   // in all cases.
630   char buffer[1024];
631   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
632   if (CPUInfoSize == -1)
633     return "generic";
634 
635   StringRef Str(buffer, CPUInfoSize);
636 
637   SmallVector<StringRef, 32> Lines;
638   Str.split(Lines, "\n");
639 
640   // Look for the CPU implementer line.
641   StringRef Implementer;
642   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
643     if (Lines[I].startswith("CPU implementer"))
644       Implementer = Lines[I].substr(15).ltrim("\t :");
645 
646   if (Implementer == "0x41") // ARM Ltd.
647     // Look for the CPU part line.
648     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
649       if (Lines[I].startswith("CPU part"))
650         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
651         // values correspond to the "Part number" in the CP15/c0 register. The
652         // contents are specified in the various processor manuals.
653         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
654           .Case("0x926", "arm926ej-s")
655           .Case("0xb02", "mpcore")
656           .Case("0xb36", "arm1136j-s")
657           .Case("0xb56", "arm1156t2-s")
658           .Case("0xb76", "arm1176jz-s")
659           .Case("0xc08", "cortex-a8")
660           .Case("0xc09", "cortex-a9")
661           .Case("0xc0f", "cortex-a15")
662           .Case("0xc20", "cortex-m0")
663           .Case("0xc23", "cortex-m3")
664           .Case("0xc24", "cortex-m4")
665           .Default("generic");
666 
667   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
668     // Look for the CPU part line.
669     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
670       if (Lines[I].startswith("CPU part"))
671         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
672         // values correspond to the "Part number" in the CP15/c0 register. The
673         // contents are specified in the various processor manuals.
674         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
675           .Case("0x06f", "krait") // APQ8064
676           .Default("generic");
677 
678   return "generic";
679 }
680 #elif defined(__linux__) && defined(__s390x__)
681 StringRef sys::getHostCPUName() {
682   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
683 
684   // The "processor 0:" line comes after a fair amount of other information,
685   // including a cache breakdown, but this should be plenty.
686   char buffer[2048];
687   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
688   if (CPUInfoSize == -1)
689     return "generic";
690 
691   StringRef Str(buffer, CPUInfoSize);
692   SmallVector<StringRef, 32> Lines;
693   Str.split(Lines, "\n");
694 
695   // Look for the CPU features.
696   SmallVector<StringRef, 32> CPUFeatures;
697   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
698     if (Lines[I].startswith("features")) {
699       size_t Pos = Lines[I].find(":");
700       if (Pos != StringRef::npos) {
701         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
702         break;
703       }
704     }
705 
706   // We need to check for the presence of vector support independently of
707   // the machine type, since we may only use the vector register set when
708   // supported by the kernel (and hypervisor).
709   bool HaveVectorSupport = false;
710   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
711     if (CPUFeatures[I] == "vx")
712       HaveVectorSupport = true;
713   }
714 
715   // Now check the processor machine type.
716   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
717     if (Lines[I].startswith("processor ")) {
718       size_t Pos = Lines[I].find("machine = ");
719       if (Pos != StringRef::npos) {
720         Pos += sizeof("machine = ") - 1;
721         unsigned int Id;
722         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
723           if (Id >= 2964 && HaveVectorSupport)
724             return "z13";
725           if (Id >= 2827)
726             return "zEC12";
727           if (Id >= 2817)
728             return "z196";
729         }
730       }
731       break;
732     }
733   }
734 
735   return "generic";
736 }
737 #else
738 StringRef sys::getHostCPUName() {
739   return "generic";
740 }
741 #endif
742 
743 #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
744  || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
745 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
746   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
747   unsigned MaxLevel;
748   union {
749     unsigned u[3];
750     char     c[12];
751   } text;
752 
753   if (GetX86CpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
754       MaxLevel < 1)
755     return false;
756 
757   GetX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
758 
759   Features["cmov"]   = (EDX >> 15) & 1;
760   Features["mmx"]    = (EDX >> 23) & 1;
761   Features["sse"]    = (EDX >> 25) & 1;
762   Features["sse2"]   = (EDX >> 26) & 1;
763   Features["sse3"]   = (ECX >>  0) & 1;
764   Features["ssse3"]  = (ECX >>  9) & 1;
765   Features["sse4.1"] = (ECX >> 19) & 1;
766   Features["sse4.2"] = (ECX >> 20) & 1;
767 
768   Features["pclmul"] = (ECX >>  1) & 1;
769   Features["cx16"]   = (ECX >> 13) & 1;
770   Features["movbe"]  = (ECX >> 22) & 1;
771   Features["popcnt"] = (ECX >> 23) & 1;
772   Features["aes"]    = (ECX >> 25) & 1;
773   Features["rdrnd"]  = (ECX >> 30) & 1;
774 
775   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
776   // indicates that the AVX registers will be saved and restored on context
777   // switch, then we have full AVX support.
778   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
779                     !GetX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
780   Features["avx"]    = HasAVXSave;
781   Features["fma"]    = HasAVXSave && (ECX >> 12) & 1;
782   Features["f16c"]   = HasAVXSave && (ECX >> 29) & 1;
783 
784   // Only enable XSAVE if OS has enabled support for saving YMM state.
785   Features["xsave"]  = HasAVXSave && (ECX >> 26) & 1;
786 
787   // AVX512 requires additional context to be saved by the OS.
788   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
789 
790   unsigned MaxExtLevel;
791   GetX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
792 
793   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
794                      !GetX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
795   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
796   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
797   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
798   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
799   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
800   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
801 
802   bool HasLeaf7 = MaxLevel >= 7 &&
803                   !GetX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
804 
805   // AVX2 is only supported if we have the OS save support from AVX.
806   Features["avx2"]     = HasAVXSave && HasLeaf7 && ((EBX >>  5) & 1);
807 
808   Features["fsgsbase"] = HasLeaf7 && ((EBX >>  0) & 1);
809   Features["sgx"]      = HasLeaf7 && ((EBX >>  2) & 1);
810   Features["bmi"]      = HasLeaf7 && ((EBX >>  3) & 1);
811   Features["hle"]      = HasLeaf7 && ((EBX >>  4) & 1);
812   Features["bmi2"]     = HasLeaf7 && ((EBX >>  8) & 1);
813   Features["invpcid"]  = HasLeaf7 && ((EBX >> 10) & 1);
814   Features["rtm"]      = HasLeaf7 && ((EBX >> 11) & 1);
815   Features["rdseed"]   = HasLeaf7 && ((EBX >> 18) & 1);
816   Features["adx"]      = HasLeaf7 && ((EBX >> 19) & 1);
817   Features["smap"]     = HasLeaf7 && ((EBX >> 20) & 1);
818   Features["pcommit"]  = HasLeaf7 && ((EBX >> 22) & 1);
819   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
820   Features["clwb"]     = HasLeaf7 && ((EBX >> 24) & 1);
821   Features["sha"]      = HasLeaf7 && ((EBX >> 29) & 1);
822 
823   // AVX512 is only supported if the OS supports the context save for it.
824   Features["avx512f"]  = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
825   Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
826   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
827   Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
828   Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
829   Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
830   Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
831   Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
832 
833   Features["prefetchwt1"] = HasLeaf7 && (ECX & 1);
834   Features["avx512vbmi"]  = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
835   // Enable protection keys
836   Features["pku"]         = HasLeaf7 && ((ECX >> 4) & 1);
837 
838   bool HasLeafD = MaxLevel >= 0xd &&
839     !GetX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
840 
841   // Only enable XSAVE if OS has enabled support for saving YMM state.
842   Features["xsaveopt"] = HasAVXSave && HasLeafD && ((EAX >> 0) & 1);
843   Features["xsavec"]   = HasAVXSave && HasLeafD && ((EAX >> 1) & 1);
844   Features["xsaves"]   = HasAVXSave && HasLeafD && ((EAX >> 3) & 1);
845 
846   return true;
847 }
848 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
849 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
850   // Read 1024 bytes from /proc/cpuinfo, which should contain the Features line
851   // in all cases.
852   char buffer[1024];
853   ssize_t CPUInfoSize = readCpuInfo(buffer, sizeof(buffer));
854   if (CPUInfoSize == -1)
855     return false;
856 
857   StringRef Str(buffer, CPUInfoSize);
858 
859   SmallVector<StringRef, 32> Lines;
860   Str.split(Lines, "\n");
861 
862   SmallVector<StringRef, 32> CPUFeatures;
863 
864   // Look for the CPU features.
865   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
866     if (Lines[I].startswith("Features")) {
867       Lines[I].split(CPUFeatures, ' ');
868       break;
869     }
870 
871 #if defined(__aarch64__)
872   // Keep track of which crypto features we have seen
873   enum {
874     CAP_AES   = 0x1,
875     CAP_PMULL = 0x2,
876     CAP_SHA1  = 0x4,
877     CAP_SHA2  = 0x8
878   };
879   uint32_t crypto = 0;
880 #endif
881 
882   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
883     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
884 #if defined(__aarch64__)
885       .Case("asimd", "neon")
886       .Case("fp", "fp-armv8")
887       .Case("crc32", "crc")
888 #else
889       .Case("half", "fp16")
890       .Case("neon", "neon")
891       .Case("vfpv3", "vfp3")
892       .Case("vfpv3d16", "d16")
893       .Case("vfpv4", "vfp4")
894       .Case("idiva", "hwdiv-arm")
895       .Case("idivt", "hwdiv")
896 #endif
897       .Default("");
898 
899 #if defined(__aarch64__)
900     // We need to check crypto separately since we need all of the crypto
901     // extensions to enable the subtarget feature
902     if (CPUFeatures[I] == "aes")
903       crypto |= CAP_AES;
904     else if (CPUFeatures[I] == "pmull")
905       crypto |= CAP_PMULL;
906     else if (CPUFeatures[I] == "sha1")
907       crypto |= CAP_SHA1;
908     else if (CPUFeatures[I] == "sha2")
909       crypto |= CAP_SHA2;
910 #endif
911 
912     if (LLVMFeatureStr != "")
913       Features[LLVMFeatureStr] = true;
914   }
915 
916 #if defined(__aarch64__)
917   // If we have all crypto bits we can add the feature
918   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
919     Features["crypto"] = true;
920 #endif
921 
922   return true;
923 }
924 #else
925 bool sys::getHostCPUFeatures(StringMap<bool> &Features){
926   return false;
927 }
928 #endif
929 
930 std::string sys::getProcessTriple() {
931   Triple PT(Triple::normalize(LLVM_HOST_TRIPLE));
932 
933   if (sizeof(void *) == 8 && PT.isArch32Bit())
934     PT = PT.get64BitArchVariant();
935   if (sizeof(void *) == 4 && PT.isArch64Bit())
936     PT = PT.get32BitArchVariant();
937 
938   return PT.str();
939 }
940