1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the operating system Host concept.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/Host.h"
15 #include "llvm/Support/TargetParser.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Config/config.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/FileSystem.h"
24 #include "llvm/Support/MemoryBuffer.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <assert.h>
27 #include <string.h>
28 
29 // Include the platform-specific parts of this class.
30 #ifdef LLVM_ON_UNIX
31 #include "Unix/Host.inc"
32 #endif
33 #ifdef LLVM_ON_WIN32
34 #include "Windows/Host.inc"
35 #endif
36 #ifdef _MSC_VER
37 #include <intrin.h>
38 #endif
39 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
40 #include <mach/host_info.h>
41 #include <mach/mach.h>
42 #include <mach/mach_host.h>
43 #include <mach/machine.h>
44 #endif
45 
46 #define DEBUG_TYPE "host-detection"
47 
48 //===----------------------------------------------------------------------===//
49 //
50 //  Implementations of the CPU detection routines
51 //
52 //===----------------------------------------------------------------------===//
53 
54 using namespace llvm;
55 
56 static std::unique_ptr<llvm::MemoryBuffer>
57     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
58   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
59       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
60   if (std::error_code EC = Text.getError()) {
61     llvm::errs() << "Can't read "
62                  << "/proc/cpuinfo: " << EC.message() << "\n";
63     return nullptr;
64   }
65   return std::move(*Text);
66 }
67 
68 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
69   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
70   // and so we must use an operating-system interface to determine the current
71   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
72   const char *generic = "generic";
73 
74   // The cpu line is second (after the 'processor: 0' line), so if this
75   // buffer is too small then something has changed (or is wrong).
76   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
77   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
78 
79   StringRef::const_iterator CIP = CPUInfoStart;
80 
81   StringRef::const_iterator CPUStart = 0;
82   size_t CPULen = 0;
83 
84   // We need to find the first line which starts with cpu, spaces, and a colon.
85   // After the colon, there may be some additional spaces and then the cpu type.
86   while (CIP < CPUInfoEnd && CPUStart == 0) {
87     if (CIP < CPUInfoEnd && *CIP == '\n')
88       ++CIP;
89 
90     if (CIP < CPUInfoEnd && *CIP == 'c') {
91       ++CIP;
92       if (CIP < CPUInfoEnd && *CIP == 'p') {
93         ++CIP;
94         if (CIP < CPUInfoEnd && *CIP == 'u') {
95           ++CIP;
96           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
97             ++CIP;
98 
99           if (CIP < CPUInfoEnd && *CIP == ':') {
100             ++CIP;
101             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
102               ++CIP;
103 
104             if (CIP < CPUInfoEnd) {
105               CPUStart = CIP;
106               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
107                                           *CIP != ',' && *CIP != '\n'))
108                 ++CIP;
109               CPULen = CIP - CPUStart;
110             }
111           }
112         }
113       }
114     }
115 
116     if (CPUStart == 0)
117       while (CIP < CPUInfoEnd && *CIP != '\n')
118         ++CIP;
119   }
120 
121   if (CPUStart == 0)
122     return generic;
123 
124   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
125       .Case("604e", "604e")
126       .Case("604", "604")
127       .Case("7400", "7400")
128       .Case("7410", "7400")
129       .Case("7447", "7400")
130       .Case("7455", "7450")
131       .Case("G4", "g4")
132       .Case("POWER4", "970")
133       .Case("PPC970FX", "970")
134       .Case("PPC970MP", "970")
135       .Case("G5", "g5")
136       .Case("POWER5", "g5")
137       .Case("A2", "a2")
138       .Case("POWER6", "pwr6")
139       .Case("POWER7", "pwr7")
140       .Case("POWER8", "pwr8")
141       .Case("POWER8E", "pwr8")
142       .Case("POWER8NVL", "pwr8")
143       .Case("POWER9", "pwr9")
144       .Default(generic);
145 }
146 
147 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
148   // The cpuid register on arm is not accessible from user space. On Linux,
149   // it is exposed through the /proc/cpuinfo file.
150 
151   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
152   // in all cases.
153   SmallVector<StringRef, 32> Lines;
154   ProcCpuinfoContent.split(Lines, "\n");
155 
156   // Look for the CPU implementer line.
157   StringRef Implementer;
158   StringRef Hardware;
159   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
160     if (Lines[I].startswith("CPU implementer"))
161       Implementer = Lines[I].substr(15).ltrim("\t :");
162     if (Lines[I].startswith("Hardware"))
163       Hardware = Lines[I].substr(8).ltrim("\t :");
164   }
165 
166   if (Implementer == "0x41") { // ARM Ltd.
167     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
168     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
169     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
170       return "cortex-a53";
171 
172 
173     // Look for the CPU part line.
174     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
175       if (Lines[I].startswith("CPU part"))
176         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
177         // values correspond to the "Part number" in the CP15/c0 register. The
178         // contents are specified in the various processor manuals.
179         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
180             .Case("0x926", "arm926ej-s")
181             .Case("0xb02", "mpcore")
182             .Case("0xb36", "arm1136j-s")
183             .Case("0xb56", "arm1156t2-s")
184             .Case("0xb76", "arm1176jz-s")
185             .Case("0xc08", "cortex-a8")
186             .Case("0xc09", "cortex-a9")
187             .Case("0xc0f", "cortex-a15")
188             .Case("0xc20", "cortex-m0")
189             .Case("0xc23", "cortex-m3")
190             .Case("0xc24", "cortex-m4")
191             .Case("0xd04", "cortex-a35")
192             .Case("0xd03", "cortex-a53")
193             .Case("0xd07", "cortex-a57")
194             .Case("0xd08", "cortex-a72")
195             .Case("0xd09", "cortex-a73")
196             .Default("generic");
197   }
198 
199   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
200     // Look for the CPU part line.
201     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
202       if (Lines[I].startswith("CPU part"))
203         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
204         // values correspond to the "Part number" in the CP15/c0 register. The
205         // contents are specified in the various processor manuals.
206         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
207             .Case("0x06f", "krait") // APQ8064
208             .Case("0x201", "kryo")
209             .Case("0x205", "kryo")
210             .Case("0x211", "kryo")
211             .Case("0x800", "cortex-a73")
212             .Case("0x801", "cortex-a73")
213             .Case("0xc00", "falkor")
214             .Case("0xc01", "saphira")
215             .Default("generic");
216 
217   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
218     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
219     // any predictive pattern across variants and parts.
220     unsigned Variant = 0, Part = 0;
221 
222     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
223     // number, corresponding to the Variant bits in the CP15/C0 register.
224     for (auto I : Lines)
225       if (I.consume_front("CPU variant"))
226         I.ltrim("\t :").getAsInteger(0, Variant);
227 
228     // Look for the CPU part line, whose value is a 3 digit hexadecimal
229     // number, corresponding to the PartNum bits in the CP15/C0 register.
230     for (auto I : Lines)
231       if (I.consume_front("CPU part"))
232         I.ltrim("\t :").getAsInteger(0, Part);
233 
234     unsigned Exynos = (Variant << 12) | Part;
235     switch (Exynos) {
236     default:
237       // Default by falling through to Exynos M1.
238       LLVM_FALLTHROUGH;
239 
240     case 0x1001:
241       return "exynos-m1";
242 
243     case 0x4001:
244       return "exynos-m2";
245     }
246   }
247 
248   return "generic";
249 }
250 
251 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
252   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
253 
254   // The "processor 0:" line comes after a fair amount of other information,
255   // including a cache breakdown, but this should be plenty.
256   SmallVector<StringRef, 32> Lines;
257   ProcCpuinfoContent.split(Lines, "\n");
258 
259   // Look for the CPU features.
260   SmallVector<StringRef, 32> CPUFeatures;
261   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
262     if (Lines[I].startswith("features")) {
263       size_t Pos = Lines[I].find(":");
264       if (Pos != StringRef::npos) {
265         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
266         break;
267       }
268     }
269 
270   // We need to check for the presence of vector support independently of
271   // the machine type, since we may only use the vector register set when
272   // supported by the kernel (and hypervisor).
273   bool HaveVectorSupport = false;
274   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
275     if (CPUFeatures[I] == "vx")
276       HaveVectorSupport = true;
277   }
278 
279   // Now check the processor machine type.
280   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
281     if (Lines[I].startswith("processor ")) {
282       size_t Pos = Lines[I].find("machine = ");
283       if (Pos != StringRef::npos) {
284         Pos += sizeof("machine = ") - 1;
285         unsigned int Id;
286         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
287           if (Id >= 3906 && HaveVectorSupport)
288             return "z14";
289           if (Id >= 2964 && HaveVectorSupport)
290             return "z13";
291           if (Id >= 2827)
292             return "zEC12";
293           if (Id >= 2817)
294             return "z196";
295         }
296       }
297       break;
298     }
299   }
300 
301   return "generic";
302 }
303 
304 StringRef sys::detail::getHostCPUNameForBPF() {
305 #if !defined(__linux__) || !defined(__x86_64__)
306   return "generic";
307 #else
308   uint8_t insns[40] __attribute__ ((aligned (8))) =
309       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
310     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
311       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
312       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
313       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
314       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
315       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
316       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
317       /* BPF_EXIT_INSN() */
318       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
319 
320   struct bpf_prog_load_attr {
321     uint32_t prog_type;
322     uint32_t insn_cnt;
323     uint64_t insns;
324     uint64_t license;
325     uint32_t log_level;
326     uint32_t log_size;
327     uint64_t log_buf;
328     uint32_t kern_version;
329     uint32_t prog_flags;
330   } attr = {};
331   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
332   attr.insn_cnt = 5;
333   attr.insns = (uint64_t)insns;
334   attr.license = (uint64_t)"DUMMY";
335 
336   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
337   if (fd >= 0) {
338     close(fd);
339     return "v2";
340   }
341   return "v1";
342 #endif
343 }
344 
345 #if defined(__i386__) || defined(_M_IX86) || \
346     defined(__x86_64__) || defined(_M_X64)
347 
348 enum VendorSignatures {
349   SIG_INTEL = 0x756e6547 /* Genu */,
350   SIG_AMD = 0x68747541 /* Auth */
351 };
352 
353 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
354 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
355 // support. Consequently, for i386, the presence of CPUID is checked first
356 // via the corresponding eflags bit.
357 // Removal of cpuid.h header motivated by PR30384
358 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
359 // or test-suite, but are used in external projects e.g. libstdcxx
360 static bool isCpuIdSupported() {
361 #if defined(__GNUC__) || defined(__clang__)
362 #if defined(__i386__)
363   int __cpuid_supported;
364   __asm__("  pushfl\n"
365           "  popl   %%eax\n"
366           "  movl   %%eax,%%ecx\n"
367           "  xorl   $0x00200000,%%eax\n"
368           "  pushl  %%eax\n"
369           "  popfl\n"
370           "  pushfl\n"
371           "  popl   %%eax\n"
372           "  movl   $0,%0\n"
373           "  cmpl   %%eax,%%ecx\n"
374           "  je     1f\n"
375           "  movl   $1,%0\n"
376           "1:"
377           : "=r"(__cpuid_supported)
378           :
379           : "eax", "ecx");
380   if (!__cpuid_supported)
381     return false;
382 #endif
383   return true;
384 #endif
385   return true;
386 }
387 
388 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
389 /// the specified arguments.  If we can't run cpuid on the host, return true.
390 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
391                                unsigned *rECX, unsigned *rEDX) {
392 #if defined(__GNUC__) || defined(__clang__)
393 #if defined(__x86_64__)
394   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
395   // FIXME: should we save this for Clang?
396   __asm__("movq\t%%rbx, %%rsi\n\t"
397           "cpuid\n\t"
398           "xchgq\t%%rbx, %%rsi\n\t"
399           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
400           : "a"(value));
401   return false;
402 #elif defined(__i386__)
403   __asm__("movl\t%%ebx, %%esi\n\t"
404           "cpuid\n\t"
405           "xchgl\t%%ebx, %%esi\n\t"
406           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
407           : "a"(value));
408   return false;
409 #else
410   return true;
411 #endif
412 #elif defined(_MSC_VER)
413   // The MSVC intrinsic is portable across x86 and x64.
414   int registers[4];
415   __cpuid(registers, value);
416   *rEAX = registers[0];
417   *rEBX = registers[1];
418   *rECX = registers[2];
419   *rEDX = registers[3];
420   return false;
421 #else
422   return true;
423 #endif
424 }
425 
426 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
427 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
428 /// return true.
429 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
430                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
431                                  unsigned *rEDX) {
432 #if defined(__GNUC__) || defined(__clang__)
433 #if defined(__x86_64__)
434   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
435   // FIXME: should we save this for Clang?
436   __asm__("movq\t%%rbx, %%rsi\n\t"
437           "cpuid\n\t"
438           "xchgq\t%%rbx, %%rsi\n\t"
439           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
440           : "a"(value), "c"(subleaf));
441   return false;
442 #elif defined(__i386__)
443   __asm__("movl\t%%ebx, %%esi\n\t"
444           "cpuid\n\t"
445           "xchgl\t%%ebx, %%esi\n\t"
446           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
447           : "a"(value), "c"(subleaf));
448   return false;
449 #else
450   return true;
451 #endif
452 #elif defined(_MSC_VER)
453   int registers[4];
454   __cpuidex(registers, value, subleaf);
455   *rEAX = registers[0];
456   *rEBX = registers[1];
457   *rECX = registers[2];
458   *rEDX = registers[3];
459   return false;
460 #else
461   return true;
462 #endif
463 }
464 
465 // Read control register 0 (XCR0). Used to detect features such as AVX.
466 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
467 #if defined(__GNUC__) || defined(__clang__)
468   // Check xgetbv; this uses a .byte sequence instead of the instruction
469   // directly because older assemblers do not include support for xgetbv and
470   // there is no easy way to conditionally compile based on the assembler used.
471   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
472   return false;
473 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
474   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
475   *rEAX = Result;
476   *rEDX = Result >> 32;
477   return false;
478 #else
479   return true;
480 #endif
481 }
482 
483 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
484                                  unsigned *Model) {
485   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
486   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
487   if (*Family == 6 || *Family == 0xf) {
488     if (*Family == 0xf)
489       // Examine extended family ID if family ID is F.
490       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
491     // Examine extended model ID if family ID is 6 or F.
492     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
493   }
494 }
495 
496 static void
497 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
498                                 unsigned Brand_id, unsigned Features,
499                                 unsigned Features2, unsigned *Type,
500                                 unsigned *Subtype) {
501   if (Brand_id != 0)
502     return;
503   switch (Family) {
504   case 3:
505     *Type = X86::INTEL_i386;
506     break;
507   case 4:
508     *Type = X86::INTEL_i486;
509     break;
510   case 5:
511     if (Features & (1 << X86::FEATURE_MMX)) {
512       *Type = X86::INTEL_PENTIUM_MMX;
513       break;
514     }
515     *Type = X86::INTEL_PENTIUM;
516     break;
517   case 6:
518     switch (Model) {
519     case 0x01: // Pentium Pro processor
520       *Type = X86::INTEL_PENTIUM_PRO;
521       break;
522     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
523                // model 03
524     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
525                // model 05, and Intel Celeron processor, model 05
526     case 0x06: // Celeron processor, model 06
527       *Type = X86::INTEL_PENTIUM_II;
528       break;
529     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
530                // processor, model 07
531     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
532                // model 08, and Celeron processor, model 08
533     case 0x0a: // Pentium III Xeon processor, model 0Ah
534     case 0x0b: // Pentium III processor, model 0Bh
535       *Type = X86::INTEL_PENTIUM_III;
536       break;
537     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
538     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
539                // 0Dh. All processors are manufactured using the 90 nm process.
540     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
541                // Integrated Processor with Intel QuickAssist Technology
542       *Type = X86::INTEL_PENTIUM_M;
543       break;
544     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
545                // 0Eh. All processors are manufactured using the 65 nm process.
546       *Type = X86::INTEL_CORE_DUO;
547       break;   // yonah
548     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
549                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
550                // mobile processor, Intel Core 2 Extreme processor, Intel
551                // Pentium Dual-Core processor, Intel Xeon processor, model
552                // 0Fh. All processors are manufactured using the 65 nm process.
553     case 0x16: // Intel Celeron processor model 16h. All processors are
554                // manufactured using the 65 nm process
555       *Type = X86::INTEL_CORE2; // "core2"
556       *Subtype = X86::INTEL_CORE2_65;
557       break;
558     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
559                // 17h. All processors are manufactured using the 45 nm process.
560                //
561                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
562     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
563                // the 45 nm process.
564       *Type = X86::INTEL_CORE2; // "penryn"
565       *Subtype = X86::INTEL_CORE2_45;
566       break;
567     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
568                // processors are manufactured using the 45 nm process.
569     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
570                // As found in a Summer 2010 model iMac.
571     case 0x1f:
572     case 0x2e:             // Nehalem EX
573       *Type = X86::INTEL_COREI7; // "nehalem"
574       *Subtype = X86::INTEL_COREI7_NEHALEM;
575       break;
576     case 0x25: // Intel Core i7, laptop version.
577     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
578                // processors are manufactured using the 32 nm process.
579     case 0x2f: // Westmere EX
580       *Type = X86::INTEL_COREI7; // "westmere"
581       *Subtype = X86::INTEL_COREI7_WESTMERE;
582       break;
583     case 0x2a: // Intel Core i7 processor. All processors are manufactured
584                // using the 32 nm process.
585     case 0x2d:
586       *Type = X86::INTEL_COREI7; //"sandybridge"
587       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
588       break;
589     case 0x3a:
590     case 0x3e:             // Ivy Bridge EP
591       *Type = X86::INTEL_COREI7; // "ivybridge"
592       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
593       break;
594 
595     // Haswell:
596     case 0x3c:
597     case 0x3f:
598     case 0x45:
599     case 0x46:
600       *Type = X86::INTEL_COREI7; // "haswell"
601       *Subtype = X86::INTEL_COREI7_HASWELL;
602       break;
603 
604     // Broadwell:
605     case 0x3d:
606     case 0x47:
607     case 0x4f:
608     case 0x56:
609       *Type = X86::INTEL_COREI7; // "broadwell"
610       *Subtype = X86::INTEL_COREI7_BROADWELL;
611       break;
612 
613     // Skylake:
614     case 0x4e: // Skylake mobile
615     case 0x5e: // Skylake desktop
616     case 0x8e: // Kaby Lake mobile
617     case 0x9e: // Kaby Lake desktop
618       *Type = X86::INTEL_COREI7; // "skylake"
619       *Subtype = X86::INTEL_COREI7_SKYLAKE;
620       break;
621 
622     // Skylake Xeon:
623     case 0x55:
624       *Type = X86::INTEL_COREI7;
625       *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
626       break;
627 
628     // Cannonlake:
629     case 0x66:
630       *Type = X86::INTEL_COREI7;
631       *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
632       break;
633 
634     case 0x1c: // Most 45 nm Intel Atom processors
635     case 0x26: // 45 nm Atom Lincroft
636     case 0x27: // 32 nm Atom Medfield
637     case 0x35: // 32 nm Atom Midview
638     case 0x36: // 32 nm Atom Midview
639       *Type = X86::INTEL_BONNELL;
640       break; // "bonnell"
641 
642     // Atom Silvermont codes from the Intel software optimization guide.
643     case 0x37:
644     case 0x4a:
645     case 0x4d:
646     case 0x5a:
647     case 0x5d:
648     case 0x4c: // really airmont
649       *Type = X86::INTEL_SILVERMONT;
650       break; // "silvermont"
651     // Goldmont:
652     case 0x5c: // Apollo Lake
653     case 0x5f: // Denverton
654     case 0x7a: // Gemini Lake
655       *Type = X86::INTEL_GOLDMONT;
656       break; // "goldmont"
657     case 0x57:
658       *Type = X86::INTEL_KNL; // knl
659       break;
660     case 0x85:
661       *Type = X86::INTEL_KNM; // knm
662       break;
663 
664     default: // Unknown family 6 CPU, try to guess.
665       if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
666         *Type = X86::INTEL_COREI7;
667         *Subtype = X86::INTEL_COREI7_CANNONLAKE;
668         break;
669       }
670 
671       if (Features & (1 << X86::FEATURE_AVX512VL)) {
672         *Type = X86::INTEL_COREI7;
673         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
674         break;
675       }
676 
677       if (Features & (1 << X86::FEATURE_AVX512ER)) {
678         *Type = X86::INTEL_KNL; // knl
679         break;
680       }
681 
682       if (Features2 & (1 << (X86::FEATURE_CLFLUSHOPT - 32))) {
683         if (Features2 & (1 << (X86::FEATURE_SHA - 32))) {
684           *Type = X86::INTEL_GOLDMONT;
685         } else {
686           *Type = X86::INTEL_COREI7;
687           *Subtype = X86::INTEL_COREI7_SKYLAKE;
688         }
689         break;
690       }
691       if (Features2 & (1 << (X86::FEATURE_ADX - 32))) {
692         *Type = X86::INTEL_COREI7;
693         *Subtype = X86::INTEL_COREI7_BROADWELL;
694         break;
695       }
696       if (Features & (1 << X86::FEATURE_AVX2)) {
697         *Type = X86::INTEL_COREI7;
698         *Subtype = X86::INTEL_COREI7_HASWELL;
699         break;
700       }
701       if (Features & (1 << X86::FEATURE_AVX)) {
702         *Type = X86::INTEL_COREI7;
703         *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
704         break;
705       }
706       if (Features & (1 << X86::FEATURE_SSE4_2)) {
707         if (Features2 & (1 << (X86::FEATURE_MOVBE - 32))) {
708           *Type = X86::INTEL_SILVERMONT;
709         } else {
710           *Type = X86::INTEL_COREI7;
711           *Subtype = X86::INTEL_COREI7_NEHALEM;
712         }
713         break;
714       }
715       if (Features & (1 << X86::FEATURE_SSE4_1)) {
716         *Type = X86::INTEL_CORE2; // "penryn"
717         *Subtype = X86::INTEL_CORE2_45;
718         break;
719       }
720       if (Features & (1 << X86::FEATURE_SSSE3)) {
721         if (Features2 & (1 << (X86::FEATURE_MOVBE - 32))) {
722           *Type = X86::INTEL_BONNELL; // "bonnell"
723         } else {
724           *Type = X86::INTEL_CORE2; // "core2"
725           *Subtype = X86::INTEL_CORE2_65;
726         }
727         break;
728       }
729       if (Features2 & (1 << (X86::FEATURE_EM64T - 32))) {
730         *Type = X86::INTEL_CORE2; // "core2"
731         *Subtype = X86::INTEL_CORE2_65;
732         break;
733       }
734       if (Features & (1 << X86::FEATURE_SSE3)) {
735         *Type = X86::INTEL_CORE_DUO;
736         break;
737       }
738       if (Features & (1 << X86::FEATURE_SSE2)) {
739         *Type = X86::INTEL_PENTIUM_M;
740         break;
741       }
742       if (Features & (1 << X86::FEATURE_SSE)) {
743         *Type = X86::INTEL_PENTIUM_III;
744         break;
745       }
746       if (Features & (1 << X86::FEATURE_MMX)) {
747         *Type = X86::INTEL_PENTIUM_II;
748         break;
749       }
750       *Type = X86::INTEL_PENTIUM_PRO;
751       break;
752     }
753     break;
754   case 15: {
755     if (Features2 & (1 << (X86::FEATURE_EM64T - 32))) {
756       *Type = X86::INTEL_NOCONA;
757       break;
758     }
759     if (Features & (1 << X86::FEATURE_SSE3)) {
760       *Type = X86::INTEL_PRESCOTT;
761       break;
762     }
763     *Type = X86::INTEL_PENTIUM_IV;
764     break;
765   }
766   default:
767     break; /*"generic"*/
768   }
769 }
770 
771 static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
772                                           unsigned Features, unsigned *Type,
773                                           unsigned *Subtype) {
774   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
775   // appears to be no way to generate the wide variety of AMD-specific targets
776   // from the information returned from CPUID.
777   switch (Family) {
778   case 4:
779     *Type = X86::AMD_i486;
780     break;
781   case 5:
782     *Type = X86::AMDPENTIUM;
783     switch (Model) {
784     case 6:
785     case 7:
786       *Subtype = X86::AMDPENTIUM_K6;
787       break; // "k6"
788     case 8:
789       *Subtype = X86::AMDPENTIUM_K62;
790       break; // "k6-2"
791     case 9:
792     case 13:
793       *Subtype = X86::AMDPENTIUM_K63;
794       break; // "k6-3"
795     case 10:
796       *Subtype = X86::AMDPENTIUM_GEODE;
797       break; // "geode"
798     }
799     break;
800   case 6:
801     if (Features & (1 << X86::FEATURE_SSE)) {
802       *Type = X86::AMD_ATHLON_XP;
803       break; // "athlon-xp"
804     }
805     *Type = X86::AMD_ATHLON;
806     break; // "athlon"
807   case 15:
808     if (Features & (1 << X86::FEATURE_SSE3)) {
809       *Type = X86::AMD_K8SSE3;
810       break; // "k8-sse3"
811     }
812     *Type = X86::AMD_K8;
813     break; // "k8"
814   case 16:
815     *Type = X86::AMDFAM10H; // "amdfam10"
816     switch (Model) {
817     case 2:
818       *Subtype = X86::AMDFAM10H_BARCELONA;
819       break;
820     case 4:
821       *Subtype = X86::AMDFAM10H_SHANGHAI;
822       break;
823     case 8:
824       *Subtype = X86::AMDFAM10H_ISTANBUL;
825       break;
826     }
827     break;
828   case 20:
829     *Type = X86::AMD_BTVER1;
830     break; // "btver1";
831   case 21:
832     *Type = X86::AMDFAM15H;
833     if (Model >= 0x60 && Model <= 0x7f) {
834       *Subtype = X86::AMDFAM15H_BDVER4;
835       break; // "bdver4"; 60h-7Fh: Excavator
836     }
837     if (Model >= 0x30 && Model <= 0x3f) {
838       *Subtype = X86::AMDFAM15H_BDVER3;
839       break; // "bdver3"; 30h-3Fh: Steamroller
840     }
841     if (Model >= 0x10 && Model <= 0x1f) {
842       *Subtype = X86::AMDFAM15H_BDVER2;
843       break; // "bdver2"; 10h-1Fh: Piledriver
844     }
845     if (Model <= 0x0f) {
846       *Subtype = X86::AMDFAM15H_BDVER1;
847       break; // "bdver1"; 00h-0Fh: Bulldozer
848     }
849     break;
850   case 22:
851     *Type = X86::AMD_BTVER2;
852     break; // "btver2"
853   case 23:
854     *Type = X86::AMDFAM17H;
855     *Subtype = X86::AMDFAM17H_ZNVER1;
856     break;
857   default:
858     break; // "generic"
859   }
860 }
861 
862 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
863                                  unsigned *FeaturesOut,
864                                  unsigned *Features2Out) {
865   unsigned Features = 0;
866   unsigned Features2 = 0;
867   unsigned EAX, EBX;
868 
869   if ((EDX >> 15) & 1)
870     Features |= 1 << X86::FEATURE_CMOV;
871   if ((EDX >> 23) & 1)
872     Features |= 1 << X86::FEATURE_MMX;
873   if ((EDX >> 25) & 1)
874     Features |= 1 << X86::FEATURE_SSE;
875   if ((EDX >> 26) & 1)
876     Features |= 1 << X86::FEATURE_SSE2;
877 
878   if ((ECX >> 0) & 1)
879     Features |= 1 << X86::FEATURE_SSE3;
880   if ((ECX >> 1) & 1)
881     Features |= 1 << X86::FEATURE_PCLMUL;
882   if ((ECX >> 9) & 1)
883     Features |= 1 << X86::FEATURE_SSSE3;
884   if ((ECX >> 12) & 1)
885     Features |= 1 << X86::FEATURE_FMA;
886   if ((ECX >> 19) & 1)
887     Features |= 1 << X86::FEATURE_SSE4_1;
888   if ((ECX >> 20) & 1)
889     Features |= 1 << X86::FEATURE_SSE4_2;
890   if ((ECX >> 23) & 1)
891     Features |= 1 << X86::FEATURE_POPCNT;
892   if ((ECX >> 25) & 1)
893     Features |= 1 << X86::FEATURE_AES;
894 
895   if ((ECX >> 22) & 1)
896     Features2 |= 1 << (X86::FEATURE_MOVBE - 32);
897 
898   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
899   // indicates that the AVX registers will be saved and restored on context
900   // switch, then we have full AVX support.
901   const unsigned AVXBits = (1 << 27) | (1 << 28);
902   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
903                 ((EAX & 0x6) == 0x6);
904   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
905 
906   if (HasAVX)
907     Features |= 1 << X86::FEATURE_AVX;
908 
909   bool HasLeaf7 =
910       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
911 
912   if (HasLeaf7 && ((EBX >> 3) & 1))
913     Features |= 1 << X86::FEATURE_BMI;
914   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
915     Features |= 1 << X86::FEATURE_AVX2;
916   if (HasLeaf7 && ((EBX >> 9) & 1))
917     Features |= 1 << X86::FEATURE_BMI2;
918   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
919     Features |= 1 << X86::FEATURE_AVX512F;
920   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
921     Features |= 1 << X86::FEATURE_AVX512DQ;
922   if (HasLeaf7 && ((EBX >> 19) & 1))
923     Features2 |= 1 << (X86::FEATURE_ADX - 32);
924   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
925     Features |= 1 << X86::FEATURE_AVX512IFMA;
926   if (HasLeaf7 && ((EBX >> 23) & 1))
927     Features2 |= 1 << (X86::FEATURE_CLFLUSHOPT - 32);
928   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
929     Features |= 1 << X86::FEATURE_AVX512PF;
930   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
931     Features |= 1 << X86::FEATURE_AVX512ER;
932   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
933     Features |= 1 << X86::FEATURE_AVX512CD;
934   if (HasLeaf7 && ((EBX >> 29) & 1))
935     Features2 |= 1 << (X86::FEATURE_SHA - 32);
936   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
937     Features |= 1 << X86::FEATURE_AVX512BW;
938   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
939     Features |= 1 << X86::FEATURE_AVX512VL;
940 
941   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
942     Features |= 1 << X86::FEATURE_AVX512VBMI;
943   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
944     Features |= 1 << X86::FEATURE_AVX512VPOPCNTDQ;
945 
946   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
947     Features |= 1 << X86::FEATURE_AVX5124VNNIW;
948   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
949     Features |= 1 << X86::FEATURE_AVX5124FMAPS;
950 
951   unsigned MaxExtLevel;
952   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
953 
954   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
955                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
956   if (HasExtLeaf1 && ((ECX >> 6) & 1))
957     Features |= 1 << X86::FEATURE_SSE4_A;
958   if (HasExtLeaf1 && ((ECX >> 11) & 1))
959     Features |= 1 << X86::FEATURE_XOP;
960   if (HasExtLeaf1 && ((ECX >> 16) & 1))
961     Features |= 1 << X86::FEATURE_FMA4;
962 
963   if (HasExtLeaf1 && ((EDX >> 29) & 1))
964     Features2 |= 1 << (X86::FEATURE_EM64T - 32);
965 
966   *FeaturesOut  = Features;
967   *Features2Out = Features2;
968 }
969 
970 StringRef sys::getHostCPUName() {
971   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
972   unsigned MaxLeaf, Vendor;
973 
974 #if defined(__GNUC__) || defined(__clang__)
975   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
976   // and simplify it to not invoke __cpuid (like cpu_model.c in
977   // compiler-rt/lib/builtins/cpu_model.c?
978   // Opting for the second option.
979   if(!isCpuIdSupported())
980     return "generic";
981 #endif
982   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
983     return "generic";
984   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
985 
986   unsigned Brand_id = EBX & 0xff;
987   unsigned Family = 0, Model = 0;
988   unsigned Features = 0, Features2 = 0;
989   detectX86FamilyModel(EAX, &Family, &Model);
990   getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2);
991 
992   unsigned Type = 0;
993   unsigned Subtype = 0;
994 
995   if (Vendor == SIG_INTEL) {
996     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
997                                     Features2, &Type, &Subtype);
998   } else if (Vendor == SIG_AMD) {
999     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
1000   }
1001 
1002   // Check subtypes first since those are more specific.
1003 #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
1004   if (Subtype == X86::ENUM) \
1005     return ARCHNAME;
1006 #include "llvm/Support/X86TargetParser.def"
1007 
1008   // Now check types.
1009 #define X86_CPU_TYPE(ARCHNAME, ENUM) \
1010   if (Type == X86::ENUM) \
1011     return ARCHNAME;
1012 #include "llvm/Support/X86TargetParser.def"
1013 
1014   return "generic";
1015 }
1016 
1017 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1018 StringRef sys::getHostCPUName() {
1019   host_basic_info_data_t hostInfo;
1020   mach_msg_type_number_t infoCount;
1021 
1022   infoCount = HOST_BASIC_INFO_COUNT;
1023   host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&hostInfo,
1024             &infoCount);
1025 
1026   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1027     return "generic";
1028 
1029   switch (hostInfo.cpu_subtype) {
1030   case CPU_SUBTYPE_POWERPC_601:
1031     return "601";
1032   case CPU_SUBTYPE_POWERPC_602:
1033     return "602";
1034   case CPU_SUBTYPE_POWERPC_603:
1035     return "603";
1036   case CPU_SUBTYPE_POWERPC_603e:
1037     return "603e";
1038   case CPU_SUBTYPE_POWERPC_603ev:
1039     return "603ev";
1040   case CPU_SUBTYPE_POWERPC_604:
1041     return "604";
1042   case CPU_SUBTYPE_POWERPC_604e:
1043     return "604e";
1044   case CPU_SUBTYPE_POWERPC_620:
1045     return "620";
1046   case CPU_SUBTYPE_POWERPC_750:
1047     return "750";
1048   case CPU_SUBTYPE_POWERPC_7400:
1049     return "7400";
1050   case CPU_SUBTYPE_POWERPC_7450:
1051     return "7450";
1052   case CPU_SUBTYPE_POWERPC_970:
1053     return "970";
1054   default:;
1055   }
1056 
1057   return "generic";
1058 }
1059 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
1060 StringRef sys::getHostCPUName() {
1061   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1062   StringRef Content = P ? P->getBuffer() : "";
1063   return detail::getHostCPUNameForPowerPC(Content);
1064 }
1065 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1066 StringRef sys::getHostCPUName() {
1067   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1068   StringRef Content = P ? P->getBuffer() : "";
1069   return detail::getHostCPUNameForARM(Content);
1070 }
1071 #elif defined(__linux__) && defined(__s390x__)
1072 StringRef sys::getHostCPUName() {
1073   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1074   StringRef Content = P ? P->getBuffer() : "";
1075   return detail::getHostCPUNameForS390x(Content);
1076 }
1077 #else
1078 StringRef sys::getHostCPUName() { return "generic"; }
1079 #endif
1080 
1081 #if defined(__linux__) && defined(__x86_64__)
1082 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1083 // using the number of unique physical/core id pairs. The following
1084 // implementation reads the /proc/cpuinfo format on an x86_64 system.
1085 static int computeHostNumPhysicalCores() {
1086   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1087   // mmapped because it appears to have 0 size.
1088   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1089       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1090   if (std::error_code EC = Text.getError()) {
1091     llvm::errs() << "Can't read "
1092                  << "/proc/cpuinfo: " << EC.message() << "\n";
1093     return -1;
1094   }
1095   SmallVector<StringRef, 8> strs;
1096   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1097                              /*KeepEmpty=*/false);
1098   int CurPhysicalId = -1;
1099   int CurCoreId = -1;
1100   SmallSet<std::pair<int, int>, 32> UniqueItems;
1101   for (auto &Line : strs) {
1102     Line = Line.trim();
1103     if (!Line.startswith("physical id") && !Line.startswith("core id"))
1104       continue;
1105     std::pair<StringRef, StringRef> Data = Line.split(':');
1106     auto Name = Data.first.trim();
1107     auto Val = Data.second.trim();
1108     if (Name == "physical id") {
1109       assert(CurPhysicalId == -1 &&
1110              "Expected a core id before seeing another physical id");
1111       Val.getAsInteger(10, CurPhysicalId);
1112     }
1113     if (Name == "core id") {
1114       assert(CurCoreId == -1 &&
1115              "Expected a physical id before seeing another core id");
1116       Val.getAsInteger(10, CurCoreId);
1117     }
1118     if (CurPhysicalId != -1 && CurCoreId != -1) {
1119       UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
1120       CurPhysicalId = -1;
1121       CurCoreId = -1;
1122     }
1123   }
1124   return UniqueItems.size();
1125 }
1126 #elif defined(__APPLE__) && defined(__x86_64__)
1127 #include <sys/param.h>
1128 #include <sys/sysctl.h>
1129 
1130 // Gets the number of *physical cores* on the machine.
1131 static int computeHostNumPhysicalCores() {
1132   uint32_t count;
1133   size_t len = sizeof(count);
1134   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1135   if (count < 1) {
1136     int nm[2];
1137     nm[0] = CTL_HW;
1138     nm[1] = HW_AVAILCPU;
1139     sysctl(nm, 2, &count, &len, NULL, 0);
1140     if (count < 1)
1141       return -1;
1142   }
1143   return count;
1144 }
1145 #else
1146 // On other systems, return -1 to indicate unknown.
1147 static int computeHostNumPhysicalCores() { return -1; }
1148 #endif
1149 
1150 int sys::getHostNumPhysicalCores() {
1151   static int NumCores = computeHostNumPhysicalCores();
1152   return NumCores;
1153 }
1154 
1155 #if defined(__i386__) || defined(_M_IX86) || \
1156     defined(__x86_64__) || defined(_M_X64)
1157 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1158   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1159   unsigned MaxLevel;
1160   union {
1161     unsigned u[3];
1162     char c[12];
1163   } text;
1164 
1165   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1166       MaxLevel < 1)
1167     return false;
1168 
1169   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1170 
1171   Features["cmov"]   = (EDX >> 15) & 1;
1172   Features["mmx"]    = (EDX >> 23) & 1;
1173   Features["sse"]    = (EDX >> 25) & 1;
1174   Features["sse2"]   = (EDX >> 26) & 1;
1175 
1176   Features["sse3"]   = (ECX >>  0) & 1;
1177   Features["pclmul"] = (ECX >>  1) & 1;
1178   Features["ssse3"]  = (ECX >>  9) & 1;
1179   Features["cx16"]   = (ECX >> 13) & 1;
1180   Features["sse4.1"] = (ECX >> 19) & 1;
1181   Features["sse4.2"] = (ECX >> 20) & 1;
1182   Features["movbe"]  = (ECX >> 22) & 1;
1183   Features["popcnt"] = (ECX >> 23) & 1;
1184   Features["aes"]    = (ECX >> 25) & 1;
1185   Features["rdrnd"]  = (ECX >> 30) & 1;
1186 
1187   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1188   // indicates that the AVX registers will be saved and restored on context
1189   // switch, then we have full AVX support.
1190   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1191                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1192   // AVX512 requires additional context to be saved by the OS.
1193   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1194 
1195   Features["avx"]   = HasAVXSave;
1196   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
1197   // Only enable XSAVE if OS has enabled support for saving YMM state.
1198   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1199   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
1200 
1201   unsigned MaxExtLevel;
1202   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1203 
1204   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1205                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1206   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
1207   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
1208   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
1209   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
1210   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1211   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
1212   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1213   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
1214   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1215 
1216   // Miscellaneous memory related features, detected by
1217   // using the 0x80000008 leaf of the CPUID instruction
1218   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1219                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1220   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
1221   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1222 
1223   bool HasLeaf7 =
1224       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1225 
1226   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
1227   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
1228   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
1229   // AVX2 is only supported if we have the OS save support from AVX.
1230   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
1231   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
1232   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
1233   // AVX512 is only supported if the OS supports the context save for it.
1234   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1235   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1236   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
1237   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
1238   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1239   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1240   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
1241   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1242   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1243   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1244   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
1245   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1246   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1247 
1248   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
1249   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
1250   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
1251   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
1252   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
1253   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
1254   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
1255   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1256   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1257   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1258   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1259   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
1260 
1261   Features["ibt"] = HasLeaf7 && ((EDX >> 20) & 1);
1262 
1263   bool HasLeafD = MaxLevel >= 0xd &&
1264                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1265 
1266   // Only enable XSAVE if OS has enabled support for saving YMM state.
1267   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1268   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1269   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1270 
1271   return true;
1272 }
1273 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1274 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1275   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1276   if (!P)
1277     return false;
1278 
1279   SmallVector<StringRef, 32> Lines;
1280   P->getBuffer().split(Lines, "\n");
1281 
1282   SmallVector<StringRef, 32> CPUFeatures;
1283 
1284   // Look for the CPU features.
1285   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1286     if (Lines[I].startswith("Features")) {
1287       Lines[I].split(CPUFeatures, ' ');
1288       break;
1289     }
1290 
1291 #if defined(__aarch64__)
1292   // Keep track of which crypto features we have seen
1293   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1294   uint32_t crypto = 0;
1295 #endif
1296 
1297   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1298     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1299 #if defined(__aarch64__)
1300                                    .Case("asimd", "neon")
1301                                    .Case("fp", "fp-armv8")
1302                                    .Case("crc32", "crc")
1303 #else
1304                                    .Case("half", "fp16")
1305                                    .Case("neon", "neon")
1306                                    .Case("vfpv3", "vfp3")
1307                                    .Case("vfpv3d16", "d16")
1308                                    .Case("vfpv4", "vfp4")
1309                                    .Case("idiva", "hwdiv-arm")
1310                                    .Case("idivt", "hwdiv")
1311 #endif
1312                                    .Default("");
1313 
1314 #if defined(__aarch64__)
1315     // We need to check crypto separately since we need all of the crypto
1316     // extensions to enable the subtarget feature
1317     if (CPUFeatures[I] == "aes")
1318       crypto |= CAP_AES;
1319     else if (CPUFeatures[I] == "pmull")
1320       crypto |= CAP_PMULL;
1321     else if (CPUFeatures[I] == "sha1")
1322       crypto |= CAP_SHA1;
1323     else if (CPUFeatures[I] == "sha2")
1324       crypto |= CAP_SHA2;
1325 #endif
1326 
1327     if (LLVMFeatureStr != "")
1328       Features[LLVMFeatureStr] = true;
1329   }
1330 
1331 #if defined(__aarch64__)
1332   // If we have all crypto bits we can add the feature
1333   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1334     Features["crypto"] = true;
1335 #endif
1336 
1337   return true;
1338 }
1339 #else
1340 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1341 #endif
1342 
1343 std::string sys::getProcessTriple() {
1344   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
1345   Triple PT(Triple::normalize(TargetTripleString));
1346 
1347   if (sizeof(void *) == 8 && PT.isArch32Bit())
1348     PT = PT.get64BitArchVariant();
1349   if (sizeof(void *) == 4 && PT.isArch64Bit())
1350     PT = PT.get32BitArchVariant();
1351 
1352   return PT.str();
1353 }
1354