1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the operating system Host concept.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/Host.h"
14 #include "llvm/Support/TargetParser.h"
15 #include "llvm/ADT/SmallSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/FileSystem.h"
23 #include "llvm/Support/MemoryBuffer.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <assert.h>
26 #include <string.h>
27 
28 // Include the platform-specific parts of this class.
29 #ifdef LLVM_ON_UNIX
30 #include "Unix/Host.inc"
31 #endif
32 #ifdef _WIN32
33 #include "Windows/Host.inc"
34 #endif
35 #ifdef _MSC_VER
36 #include <intrin.h>
37 #endif
38 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
39 #include <mach/host_info.h>
40 #include <mach/mach.h>
41 #include <mach/mach_host.h>
42 #include <mach/machine.h>
43 #endif
44 
45 #define DEBUG_TYPE "host-detection"
46 
47 //===----------------------------------------------------------------------===//
48 //
49 //  Implementations of the CPU detection routines
50 //
51 //===----------------------------------------------------------------------===//
52 
53 using namespace llvm;
54 
55 static std::unique_ptr<llvm::MemoryBuffer>
56     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
57   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
58       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
59   if (std::error_code EC = Text.getError()) {
60     llvm::errs() << "Can't read "
61                  << "/proc/cpuinfo: " << EC.message() << "\n";
62     return nullptr;
63   }
64   return std::move(*Text);
65 }
66 
67 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
68   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
69   // and so we must use an operating-system interface to determine the current
70   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
71   const char *generic = "generic";
72 
73   // The cpu line is second (after the 'processor: 0' line), so if this
74   // buffer is too small then something has changed (or is wrong).
75   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
76   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
77 
78   StringRef::const_iterator CIP = CPUInfoStart;
79 
80   StringRef::const_iterator CPUStart = 0;
81   size_t CPULen = 0;
82 
83   // We need to find the first line which starts with cpu, spaces, and a colon.
84   // After the colon, there may be some additional spaces and then the cpu type.
85   while (CIP < CPUInfoEnd && CPUStart == 0) {
86     if (CIP < CPUInfoEnd && *CIP == '\n')
87       ++CIP;
88 
89     if (CIP < CPUInfoEnd && *CIP == 'c') {
90       ++CIP;
91       if (CIP < CPUInfoEnd && *CIP == 'p') {
92         ++CIP;
93         if (CIP < CPUInfoEnd && *CIP == 'u') {
94           ++CIP;
95           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
96             ++CIP;
97 
98           if (CIP < CPUInfoEnd && *CIP == ':') {
99             ++CIP;
100             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
101               ++CIP;
102 
103             if (CIP < CPUInfoEnd) {
104               CPUStart = CIP;
105               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
106                                           *CIP != ',' && *CIP != '\n'))
107                 ++CIP;
108               CPULen = CIP - CPUStart;
109             }
110           }
111         }
112       }
113     }
114 
115     if (CPUStart == 0)
116       while (CIP < CPUInfoEnd && *CIP != '\n')
117         ++CIP;
118   }
119 
120   if (CPUStart == 0)
121     return generic;
122 
123   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
124       .Case("604e", "604e")
125       .Case("604", "604")
126       .Case("7400", "7400")
127       .Case("7410", "7400")
128       .Case("7447", "7400")
129       .Case("7455", "7450")
130       .Case("G4", "g4")
131       .Case("POWER4", "970")
132       .Case("PPC970FX", "970")
133       .Case("PPC970MP", "970")
134       .Case("G5", "g5")
135       .Case("POWER5", "g5")
136       .Case("A2", "a2")
137       .Case("POWER6", "pwr6")
138       .Case("POWER7", "pwr7")
139       .Case("POWER8", "pwr8")
140       .Case("POWER8E", "pwr8")
141       .Case("POWER8NVL", "pwr8")
142       .Case("POWER9", "pwr9")
143       .Default(generic);
144 }
145 
146 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
147   // The cpuid register on arm is not accessible from user space. On Linux,
148   // it is exposed through the /proc/cpuinfo file.
149 
150   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
151   // in all cases.
152   SmallVector<StringRef, 32> Lines;
153   ProcCpuinfoContent.split(Lines, "\n");
154 
155   // Look for the CPU implementer line.
156   StringRef Implementer;
157   StringRef Hardware;
158   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
159     if (Lines[I].startswith("CPU implementer"))
160       Implementer = Lines[I].substr(15).ltrim("\t :");
161     if (Lines[I].startswith("Hardware"))
162       Hardware = Lines[I].substr(8).ltrim("\t :");
163   }
164 
165   if (Implementer == "0x41") { // ARM Ltd.
166     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
167     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
168     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
169       return "cortex-a53";
170 
171 
172     // Look for the CPU part line.
173     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
174       if (Lines[I].startswith("CPU part"))
175         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
176         // values correspond to the "Part number" in the CP15/c0 register. The
177         // contents are specified in the various processor manuals.
178         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
179             .Case("0x926", "arm926ej-s")
180             .Case("0xb02", "mpcore")
181             .Case("0xb36", "arm1136j-s")
182             .Case("0xb56", "arm1156t2-s")
183             .Case("0xb76", "arm1176jz-s")
184             .Case("0xc08", "cortex-a8")
185             .Case("0xc09", "cortex-a9")
186             .Case("0xc0f", "cortex-a15")
187             .Case("0xc20", "cortex-m0")
188             .Case("0xc23", "cortex-m3")
189             .Case("0xc24", "cortex-m4")
190             .Case("0xd04", "cortex-a35")
191             .Case("0xd03", "cortex-a53")
192             .Case("0xd07", "cortex-a57")
193             .Case("0xd08", "cortex-a72")
194             .Case("0xd09", "cortex-a73")
195             .Default("generic");
196   }
197 
198   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
199     for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
200       if (Lines[I].startswith("CPU part")) {
201         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
202           .Case("0x516", "thunderx2t99")
203           .Case("0x0516", "thunderx2t99")
204           .Case("0xaf", "thunderx2t99")
205           .Case("0x0af", "thunderx2t99")
206           .Case("0xa1", "thunderxt88")
207           .Case("0x0a1", "thunderxt88")
208           .Default("generic");
209       }
210     }
211   }
212 
213   if (Implementer == "0x48") // HiSilicon Technologies, Inc.
214     // Look for the CPU part line.
215     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
216       if (Lines[I].startswith("CPU part"))
217         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
218         // values correspond to the "Part number" in the CP15/c0 register. The
219         // contents are specified in the various processor manuals.
220         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
221           .Case("0xd01", "tsv110")
222           .Default("generic");
223 
224   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
225     // Look for the CPU part line.
226     for (unsigned I = 0, E = Lines.size(); I != E; ++I)
227       if (Lines[I].startswith("CPU part"))
228         // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
229         // values correspond to the "Part number" in the CP15/c0 register. The
230         // contents are specified in the various processor manuals.
231         return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
232             .Case("0x06f", "krait") // APQ8064
233             .Case("0x201", "kryo")
234             .Case("0x205", "kryo")
235             .Case("0x211", "kryo")
236             .Case("0x800", "cortex-a73")
237             .Case("0x801", "cortex-a73")
238             .Case("0xc00", "falkor")
239             .Case("0xc01", "saphira")
240             .Default("generic");
241 
242   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
243     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
244     // any predictive pattern across variants and parts.
245     unsigned Variant = 0, Part = 0;
246 
247     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
248     // number, corresponding to the Variant bits in the CP15/C0 register.
249     for (auto I : Lines)
250       if (I.consume_front("CPU variant"))
251         I.ltrim("\t :").getAsInteger(0, Variant);
252 
253     // Look for the CPU part line, whose value is a 3 digit hexadecimal
254     // number, corresponding to the PartNum bits in the CP15/C0 register.
255     for (auto I : Lines)
256       if (I.consume_front("CPU part"))
257         I.ltrim("\t :").getAsInteger(0, Part);
258 
259     unsigned Exynos = (Variant << 12) | Part;
260     switch (Exynos) {
261     default:
262       // Default by falling through to Exynos M1.
263       LLVM_FALLTHROUGH;
264 
265     case 0x1001:
266       return "exynos-m1";
267 
268     case 0x4001:
269       return "exynos-m2";
270     }
271   }
272 
273   return "generic";
274 }
275 
276 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
277   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
278 
279   // The "processor 0:" line comes after a fair amount of other information,
280   // including a cache breakdown, but this should be plenty.
281   SmallVector<StringRef, 32> Lines;
282   ProcCpuinfoContent.split(Lines, "\n");
283 
284   // Look for the CPU features.
285   SmallVector<StringRef, 32> CPUFeatures;
286   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
287     if (Lines[I].startswith("features")) {
288       size_t Pos = Lines[I].find(":");
289       if (Pos != StringRef::npos) {
290         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
291         break;
292       }
293     }
294 
295   // We need to check for the presence of vector support independently of
296   // the machine type, since we may only use the vector register set when
297   // supported by the kernel (and hypervisor).
298   bool HaveVectorSupport = false;
299   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
300     if (CPUFeatures[I] == "vx")
301       HaveVectorSupport = true;
302   }
303 
304   // Now check the processor machine type.
305   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
306     if (Lines[I].startswith("processor ")) {
307       size_t Pos = Lines[I].find("machine = ");
308       if (Pos != StringRef::npos) {
309         Pos += sizeof("machine = ") - 1;
310         unsigned int Id;
311         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
312           if (Id >= 3906 && HaveVectorSupport)
313             return "z14";
314           if (Id >= 2964 && HaveVectorSupport)
315             return "z13";
316           if (Id >= 2827)
317             return "zEC12";
318           if (Id >= 2817)
319             return "z196";
320         }
321       }
322       break;
323     }
324   }
325 
326   return "generic";
327 }
328 
329 StringRef sys::detail::getHostCPUNameForBPF() {
330 #if !defined(__linux__) || !defined(__x86_64__)
331   return "generic";
332 #else
333   uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
334       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
335     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
336       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
337       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
338       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
339       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
340       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
341       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
342       /* BPF_EXIT_INSN() */
343       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
344 
345   uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
346       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
347     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
348       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
349       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
350       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
351       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
352       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
353       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
354       /* BPF_EXIT_INSN() */
355       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
356 
357   struct bpf_prog_load_attr {
358     uint32_t prog_type;
359     uint32_t insn_cnt;
360     uint64_t insns;
361     uint64_t license;
362     uint32_t log_level;
363     uint32_t log_size;
364     uint64_t log_buf;
365     uint32_t kern_version;
366     uint32_t prog_flags;
367   } attr = {};
368   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
369   attr.insn_cnt = 5;
370   attr.insns = (uint64_t)v3_insns;
371   attr.license = (uint64_t)"DUMMY";
372 
373   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
374                    sizeof(attr));
375   if (fd >= 0) {
376     close(fd);
377     return "v3";
378   }
379 
380   /* Clear the whole attr in case its content changed by syscall. */
381   memset(&attr, 0, sizeof(attr));
382   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
383   attr.insn_cnt = 5;
384   attr.insns = (uint64_t)v2_insns;
385   attr.license = (uint64_t)"DUMMY";
386   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
387   if (fd >= 0) {
388     close(fd);
389     return "v2";
390   }
391   return "v1";
392 #endif
393 }
394 
395 #if defined(__i386__) || defined(_M_IX86) || \
396     defined(__x86_64__) || defined(_M_X64)
397 
398 enum VendorSignatures {
399   SIG_INTEL = 0x756e6547 /* Genu */,
400   SIG_AMD = 0x68747541 /* Auth */
401 };
402 
403 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
404 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
405 // support. Consequently, for i386, the presence of CPUID is checked first
406 // via the corresponding eflags bit.
407 // Removal of cpuid.h header motivated by PR30384
408 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
409 // or test-suite, but are used in external projects e.g. libstdcxx
410 static bool isCpuIdSupported() {
411 #if defined(__GNUC__) || defined(__clang__)
412 #if defined(__i386__)
413   int __cpuid_supported;
414   __asm__("  pushfl\n"
415           "  popl   %%eax\n"
416           "  movl   %%eax,%%ecx\n"
417           "  xorl   $0x00200000,%%eax\n"
418           "  pushl  %%eax\n"
419           "  popfl\n"
420           "  pushfl\n"
421           "  popl   %%eax\n"
422           "  movl   $0,%0\n"
423           "  cmpl   %%eax,%%ecx\n"
424           "  je     1f\n"
425           "  movl   $1,%0\n"
426           "1:"
427           : "=r"(__cpuid_supported)
428           :
429           : "eax", "ecx");
430   if (!__cpuid_supported)
431     return false;
432 #endif
433   return true;
434 #endif
435   return true;
436 }
437 
438 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
439 /// the specified arguments.  If we can't run cpuid on the host, return true.
440 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
441                                unsigned *rECX, unsigned *rEDX) {
442 #if defined(__GNUC__) || defined(__clang__)
443 #if defined(__x86_64__)
444   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
445   // FIXME: should we save this for Clang?
446   __asm__("movq\t%%rbx, %%rsi\n\t"
447           "cpuid\n\t"
448           "xchgq\t%%rbx, %%rsi\n\t"
449           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
450           : "a"(value));
451   return false;
452 #elif defined(__i386__)
453   __asm__("movl\t%%ebx, %%esi\n\t"
454           "cpuid\n\t"
455           "xchgl\t%%ebx, %%esi\n\t"
456           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
457           : "a"(value));
458   return false;
459 #else
460   return true;
461 #endif
462 #elif defined(_MSC_VER)
463   // The MSVC intrinsic is portable across x86 and x64.
464   int registers[4];
465   __cpuid(registers, value);
466   *rEAX = registers[0];
467   *rEBX = registers[1];
468   *rECX = registers[2];
469   *rEDX = registers[3];
470   return false;
471 #else
472   return true;
473 #endif
474 }
475 
476 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
477 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
478 /// return true.
479 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
480                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
481                                  unsigned *rEDX) {
482 #if defined(__GNUC__) || defined(__clang__)
483 #if defined(__x86_64__)
484   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
485   // FIXME: should we save this for Clang?
486   __asm__("movq\t%%rbx, %%rsi\n\t"
487           "cpuid\n\t"
488           "xchgq\t%%rbx, %%rsi\n\t"
489           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
490           : "a"(value), "c"(subleaf));
491   return false;
492 #elif defined(__i386__)
493   __asm__("movl\t%%ebx, %%esi\n\t"
494           "cpuid\n\t"
495           "xchgl\t%%ebx, %%esi\n\t"
496           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
497           : "a"(value), "c"(subleaf));
498   return false;
499 #else
500   return true;
501 #endif
502 #elif defined(_MSC_VER)
503   int registers[4];
504   __cpuidex(registers, value, subleaf);
505   *rEAX = registers[0];
506   *rEBX = registers[1];
507   *rECX = registers[2];
508   *rEDX = registers[3];
509   return false;
510 #else
511   return true;
512 #endif
513 }
514 
515 // Read control register 0 (XCR0). Used to detect features such as AVX.
516 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
517 #if defined(__GNUC__) || defined(__clang__)
518   // Check xgetbv; this uses a .byte sequence instead of the instruction
519   // directly because older assemblers do not include support for xgetbv and
520   // there is no easy way to conditionally compile based on the assembler used.
521   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
522   return false;
523 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
524   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
525   *rEAX = Result;
526   *rEDX = Result >> 32;
527   return false;
528 #else
529   return true;
530 #endif
531 }
532 
533 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
534                                  unsigned *Model) {
535   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
536   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
537   if (*Family == 6 || *Family == 0xf) {
538     if (*Family == 0xf)
539       // Examine extended family ID if family ID is F.
540       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
541     // Examine extended model ID if family ID is 6 or F.
542     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
543   }
544 }
545 
546 static void
547 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
548                                 unsigned Brand_id, unsigned Features,
549                                 unsigned Features2, unsigned Features3,
550                                 unsigned *Type, unsigned *Subtype) {
551   if (Brand_id != 0)
552     return;
553   switch (Family) {
554   case 3:
555     *Type = X86::INTEL_i386;
556     break;
557   case 4:
558     *Type = X86::INTEL_i486;
559     break;
560   case 5:
561     if (Features & (1 << X86::FEATURE_MMX)) {
562       *Type = X86::INTEL_PENTIUM_MMX;
563       break;
564     }
565     *Type = X86::INTEL_PENTIUM;
566     break;
567   case 6:
568     switch (Model) {
569     case 0x01: // Pentium Pro processor
570       *Type = X86::INTEL_PENTIUM_PRO;
571       break;
572     case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
573                // model 03
574     case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
575                // model 05, and Intel Celeron processor, model 05
576     case 0x06: // Celeron processor, model 06
577       *Type = X86::INTEL_PENTIUM_II;
578       break;
579     case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
580                // processor, model 07
581     case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
582                // model 08, and Celeron processor, model 08
583     case 0x0a: // Pentium III Xeon processor, model 0Ah
584     case 0x0b: // Pentium III processor, model 0Bh
585       *Type = X86::INTEL_PENTIUM_III;
586       break;
587     case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
588     case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
589                // 0Dh. All processors are manufactured using the 90 nm process.
590     case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
591                // Integrated Processor with Intel QuickAssist Technology
592       *Type = X86::INTEL_PENTIUM_M;
593       break;
594     case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
595                // 0Eh. All processors are manufactured using the 65 nm process.
596       *Type = X86::INTEL_CORE_DUO;
597       break;   // yonah
598     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
599                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
600                // mobile processor, Intel Core 2 Extreme processor, Intel
601                // Pentium Dual-Core processor, Intel Xeon processor, model
602                // 0Fh. All processors are manufactured using the 65 nm process.
603     case 0x16: // Intel Celeron processor model 16h. All processors are
604                // manufactured using the 65 nm process
605       *Type = X86::INTEL_CORE2; // "core2"
606       *Subtype = X86::INTEL_CORE2_65;
607       break;
608     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
609                // 17h. All processors are manufactured using the 45 nm process.
610                //
611                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
612     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
613                // the 45 nm process.
614       *Type = X86::INTEL_CORE2; // "penryn"
615       *Subtype = X86::INTEL_CORE2_45;
616       break;
617     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
618                // processors are manufactured using the 45 nm process.
619     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
620                // As found in a Summer 2010 model iMac.
621     case 0x1f:
622     case 0x2e:             // Nehalem EX
623       *Type = X86::INTEL_COREI7; // "nehalem"
624       *Subtype = X86::INTEL_COREI7_NEHALEM;
625       break;
626     case 0x25: // Intel Core i7, laptop version.
627     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
628                // processors are manufactured using the 32 nm process.
629     case 0x2f: // Westmere EX
630       *Type = X86::INTEL_COREI7; // "westmere"
631       *Subtype = X86::INTEL_COREI7_WESTMERE;
632       break;
633     case 0x2a: // Intel Core i7 processor. All processors are manufactured
634                // using the 32 nm process.
635     case 0x2d:
636       *Type = X86::INTEL_COREI7; //"sandybridge"
637       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
638       break;
639     case 0x3a:
640     case 0x3e:             // Ivy Bridge EP
641       *Type = X86::INTEL_COREI7; // "ivybridge"
642       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
643       break;
644 
645     // Haswell:
646     case 0x3c:
647     case 0x3f:
648     case 0x45:
649     case 0x46:
650       *Type = X86::INTEL_COREI7; // "haswell"
651       *Subtype = X86::INTEL_COREI7_HASWELL;
652       break;
653 
654     // Broadwell:
655     case 0x3d:
656     case 0x47:
657     case 0x4f:
658     case 0x56:
659       *Type = X86::INTEL_COREI7; // "broadwell"
660       *Subtype = X86::INTEL_COREI7_BROADWELL;
661       break;
662 
663     // Skylake:
664     case 0x4e: // Skylake mobile
665     case 0x5e: // Skylake desktop
666     case 0x8e: // Kaby Lake mobile
667     case 0x9e: // Kaby Lake desktop
668       *Type = X86::INTEL_COREI7; // "skylake"
669       *Subtype = X86::INTEL_COREI7_SKYLAKE;
670       break;
671 
672     // Skylake Xeon:
673     case 0x55:
674       *Type = X86::INTEL_COREI7;
675       *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
676       break;
677 
678     // Cannonlake:
679     case 0x66:
680       *Type = X86::INTEL_COREI7;
681       *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
682       break;
683 
684     case 0x1c: // Most 45 nm Intel Atom processors
685     case 0x26: // 45 nm Atom Lincroft
686     case 0x27: // 32 nm Atom Medfield
687     case 0x35: // 32 nm Atom Midview
688     case 0x36: // 32 nm Atom Midview
689       *Type = X86::INTEL_BONNELL;
690       break; // "bonnell"
691 
692     // Atom Silvermont codes from the Intel software optimization guide.
693     case 0x37:
694     case 0x4a:
695     case 0x4d:
696     case 0x5a:
697     case 0x5d:
698     case 0x4c: // really airmont
699       *Type = X86::INTEL_SILVERMONT;
700       break; // "silvermont"
701     // Goldmont:
702     case 0x5c: // Apollo Lake
703     case 0x5f: // Denverton
704       *Type = X86::INTEL_GOLDMONT;
705       break; // "goldmont"
706     case 0x7a:
707       *Type = X86::INTEL_GOLDMONT_PLUS;
708       break;
709     case 0x57:
710       *Type = X86::INTEL_KNL; // knl
711       break;
712     case 0x85:
713       *Type = X86::INTEL_KNM; // knm
714       break;
715 
716     default: // Unknown family 6 CPU, try to guess.
717       if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
718         *Type = X86::INTEL_COREI7;
719         *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
720         break;
721       }
722 
723       if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
724         *Type = X86::INTEL_COREI7;
725         *Subtype = X86::INTEL_COREI7_CANNONLAKE;
726         break;
727       }
728 
729       if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
730         *Type = X86::INTEL_COREI7;
731         *Subtype = X86::INTEL_COREI7_CASCADELAKE;
732         break;
733       }
734 
735       if (Features & (1 << X86::FEATURE_AVX512VL)) {
736         *Type = X86::INTEL_COREI7;
737         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
738         break;
739       }
740 
741       if (Features & (1 << X86::FEATURE_AVX512ER)) {
742         *Type = X86::INTEL_KNL; // knl
743         break;
744       }
745 
746       if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
747         if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
748           *Type = X86::INTEL_GOLDMONT;
749         } else {
750           *Type = X86::INTEL_COREI7;
751           *Subtype = X86::INTEL_COREI7_SKYLAKE;
752         }
753         break;
754       }
755       if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
756         *Type = X86::INTEL_COREI7;
757         *Subtype = X86::INTEL_COREI7_BROADWELL;
758         break;
759       }
760       if (Features & (1 << X86::FEATURE_AVX2)) {
761         *Type = X86::INTEL_COREI7;
762         *Subtype = X86::INTEL_COREI7_HASWELL;
763         break;
764       }
765       if (Features & (1 << X86::FEATURE_AVX)) {
766         *Type = X86::INTEL_COREI7;
767         *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
768         break;
769       }
770       if (Features & (1 << X86::FEATURE_SSE4_2)) {
771         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
772           *Type = X86::INTEL_SILVERMONT;
773         } else {
774           *Type = X86::INTEL_COREI7;
775           *Subtype = X86::INTEL_COREI7_NEHALEM;
776         }
777         break;
778       }
779       if (Features & (1 << X86::FEATURE_SSE4_1)) {
780         *Type = X86::INTEL_CORE2; // "penryn"
781         *Subtype = X86::INTEL_CORE2_45;
782         break;
783       }
784       if (Features & (1 << X86::FEATURE_SSSE3)) {
785         if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
786           *Type = X86::INTEL_BONNELL; // "bonnell"
787         } else {
788           *Type = X86::INTEL_CORE2; // "core2"
789           *Subtype = X86::INTEL_CORE2_65;
790         }
791         break;
792       }
793       if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
794         *Type = X86::INTEL_CORE2; // "core2"
795         *Subtype = X86::INTEL_CORE2_65;
796         break;
797       }
798       if (Features & (1 << X86::FEATURE_SSE3)) {
799         *Type = X86::INTEL_CORE_DUO;
800         break;
801       }
802       if (Features & (1 << X86::FEATURE_SSE2)) {
803         *Type = X86::INTEL_PENTIUM_M;
804         break;
805       }
806       if (Features & (1 << X86::FEATURE_SSE)) {
807         *Type = X86::INTEL_PENTIUM_III;
808         break;
809       }
810       if (Features & (1 << X86::FEATURE_MMX)) {
811         *Type = X86::INTEL_PENTIUM_II;
812         break;
813       }
814       *Type = X86::INTEL_PENTIUM_PRO;
815       break;
816     }
817     break;
818   case 15: {
819     if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
820       *Type = X86::INTEL_NOCONA;
821       break;
822     }
823     if (Features & (1 << X86::FEATURE_SSE3)) {
824       *Type = X86::INTEL_PRESCOTT;
825       break;
826     }
827     *Type = X86::INTEL_PENTIUM_IV;
828     break;
829   }
830   default:
831     break; /*"generic"*/
832   }
833 }
834 
835 static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
836                                           unsigned Features, unsigned *Type,
837                                           unsigned *Subtype) {
838   // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
839   // appears to be no way to generate the wide variety of AMD-specific targets
840   // from the information returned from CPUID.
841   switch (Family) {
842   case 4:
843     *Type = X86::AMD_i486;
844     break;
845   case 5:
846     *Type = X86::AMDPENTIUM;
847     switch (Model) {
848     case 6:
849     case 7:
850       *Subtype = X86::AMDPENTIUM_K6;
851       break; // "k6"
852     case 8:
853       *Subtype = X86::AMDPENTIUM_K62;
854       break; // "k6-2"
855     case 9:
856     case 13:
857       *Subtype = X86::AMDPENTIUM_K63;
858       break; // "k6-3"
859     case 10:
860       *Subtype = X86::AMDPENTIUM_GEODE;
861       break; // "geode"
862     }
863     break;
864   case 6:
865     if (Features & (1 << X86::FEATURE_SSE)) {
866       *Type = X86::AMD_ATHLON_XP;
867       break; // "athlon-xp"
868     }
869     *Type = X86::AMD_ATHLON;
870     break; // "athlon"
871   case 15:
872     if (Features & (1 << X86::FEATURE_SSE3)) {
873       *Type = X86::AMD_K8SSE3;
874       break; // "k8-sse3"
875     }
876     *Type = X86::AMD_K8;
877     break; // "k8"
878   case 16:
879     *Type = X86::AMDFAM10H; // "amdfam10"
880     switch (Model) {
881     case 2:
882       *Subtype = X86::AMDFAM10H_BARCELONA;
883       break;
884     case 4:
885       *Subtype = X86::AMDFAM10H_SHANGHAI;
886       break;
887     case 8:
888       *Subtype = X86::AMDFAM10H_ISTANBUL;
889       break;
890     }
891     break;
892   case 20:
893     *Type = X86::AMD_BTVER1;
894     break; // "btver1";
895   case 21:
896     *Type = X86::AMDFAM15H;
897     if (Model >= 0x60 && Model <= 0x7f) {
898       *Subtype = X86::AMDFAM15H_BDVER4;
899       break; // "bdver4"; 60h-7Fh: Excavator
900     }
901     if (Model >= 0x30 && Model <= 0x3f) {
902       *Subtype = X86::AMDFAM15H_BDVER3;
903       break; // "bdver3"; 30h-3Fh: Steamroller
904     }
905     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
906       *Subtype = X86::AMDFAM15H_BDVER2;
907       break; // "bdver2"; 02h, 10h-1Fh: Piledriver
908     }
909     if (Model <= 0x0f) {
910       *Subtype = X86::AMDFAM15H_BDVER1;
911       break; // "bdver1"; 00h-0Fh: Bulldozer
912     }
913     break;
914   case 22:
915     *Type = X86::AMD_BTVER2;
916     break; // "btver2"
917   case 23:
918     *Type = X86::AMDFAM17H;
919     if (Model >= 0x30 && Model <= 0x3f) {
920       *Subtype = X86::AMDFAM17H_ZNVER2;
921       break; // "znver2"; 30h-3fh: Zen2
922     }
923     if (Model <= 0x0f) {
924       *Subtype = X86::AMDFAM17H_ZNVER1;
925       break; // "znver1"; 00h-0Fh: Zen1
926     }
927     break;
928   default:
929     break; // "generic"
930   }
931 }
932 
933 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
934                                  unsigned *FeaturesOut, unsigned *Features2Out,
935                                  unsigned *Features3Out) {
936   unsigned Features = 0;
937   unsigned Features2 = 0;
938   unsigned Features3 = 0;
939   unsigned EAX, EBX;
940 
941   auto setFeature = [&](unsigned F) {
942     if (F < 32)
943       Features |= 1U << (F & 0x1f);
944     else if (F < 64)
945       Features2 |= 1U << ((F - 32) & 0x1f);
946     else if (F < 96)
947       Features3 |= 1U << ((F - 64) & 0x1f);
948     else
949       llvm_unreachable("Unexpected FeatureBit");
950   };
951 
952   if ((EDX >> 15) & 1)
953     setFeature(X86::FEATURE_CMOV);
954   if ((EDX >> 23) & 1)
955     setFeature(X86::FEATURE_MMX);
956   if ((EDX >> 25) & 1)
957     setFeature(X86::FEATURE_SSE);
958   if ((EDX >> 26) & 1)
959     setFeature(X86::FEATURE_SSE2);
960 
961   if ((ECX >> 0) & 1)
962     setFeature(X86::FEATURE_SSE3);
963   if ((ECX >> 1) & 1)
964     setFeature(X86::FEATURE_PCLMUL);
965   if ((ECX >> 9) & 1)
966     setFeature(X86::FEATURE_SSSE3);
967   if ((ECX >> 12) & 1)
968     setFeature(X86::FEATURE_FMA);
969   if ((ECX >> 19) & 1)
970     setFeature(X86::FEATURE_SSE4_1);
971   if ((ECX >> 20) & 1)
972     setFeature(X86::FEATURE_SSE4_2);
973   if ((ECX >> 23) & 1)
974     setFeature(X86::FEATURE_POPCNT);
975   if ((ECX >> 25) & 1)
976     setFeature(X86::FEATURE_AES);
977 
978   if ((ECX >> 22) & 1)
979     setFeature(X86::FEATURE_MOVBE);
980 
981   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
982   // indicates that the AVX registers will be saved and restored on context
983   // switch, then we have full AVX support.
984   const unsigned AVXBits = (1 << 27) | (1 << 28);
985   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
986                 ((EAX & 0x6) == 0x6);
987   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
988 
989   if (HasAVX)
990     setFeature(X86::FEATURE_AVX);
991 
992   bool HasLeaf7 =
993       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
994 
995   if (HasLeaf7 && ((EBX >> 3) & 1))
996     setFeature(X86::FEATURE_BMI);
997   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
998     setFeature(X86::FEATURE_AVX2);
999   if (HasLeaf7 && ((EBX >> 9) & 1))
1000     setFeature(X86::FEATURE_BMI2);
1001   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
1002     setFeature(X86::FEATURE_AVX512F);
1003   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1004     setFeature(X86::FEATURE_AVX512DQ);
1005   if (HasLeaf7 && ((EBX >> 19) & 1))
1006     setFeature(X86::FEATURE_ADX);
1007   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1008     setFeature(X86::FEATURE_AVX512IFMA);
1009   if (HasLeaf7 && ((EBX >> 23) & 1))
1010     setFeature(X86::FEATURE_CLFLUSHOPT);
1011   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
1012     setFeature(X86::FEATURE_AVX512PF);
1013   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
1014     setFeature(X86::FEATURE_AVX512ER);
1015   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1016     setFeature(X86::FEATURE_AVX512CD);
1017   if (HasLeaf7 && ((EBX >> 29) & 1))
1018     setFeature(X86::FEATURE_SHA);
1019   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1020     setFeature(X86::FEATURE_AVX512BW);
1021   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1022     setFeature(X86::FEATURE_AVX512VL);
1023 
1024   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1025     setFeature(X86::FEATURE_AVX512VBMI);
1026   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1027     setFeature(X86::FEATURE_AVX512VBMI2);
1028   if (HasLeaf7 && ((ECX >> 8) & 1))
1029     setFeature(X86::FEATURE_GFNI);
1030   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1031     setFeature(X86::FEATURE_VPCLMULQDQ);
1032   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1033     setFeature(X86::FEATURE_AVX512VNNI);
1034   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1035     setFeature(X86::FEATURE_AVX512BITALG);
1036   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1037     setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1038 
1039   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1040     setFeature(X86::FEATURE_AVX5124VNNIW);
1041   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1042     setFeature(X86::FEATURE_AVX5124FMAPS);
1043 
1044   unsigned MaxExtLevel;
1045   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1046 
1047   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1048                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1049   if (HasExtLeaf1 && ((ECX >> 6) & 1))
1050     setFeature(X86::FEATURE_SSE4_A);
1051   if (HasExtLeaf1 && ((ECX >> 11) & 1))
1052     setFeature(X86::FEATURE_XOP);
1053   if (HasExtLeaf1 && ((ECX >> 16) & 1))
1054     setFeature(X86::FEATURE_FMA4);
1055 
1056   if (HasExtLeaf1 && ((EDX >> 29) & 1))
1057     setFeature(X86::FEATURE_EM64T);
1058 
1059   *FeaturesOut  = Features;
1060   *Features2Out = Features2;
1061   *Features3Out = Features3;
1062 }
1063 
1064 StringRef sys::getHostCPUName() {
1065   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1066   unsigned MaxLeaf, Vendor;
1067 
1068 #if defined(__GNUC__) || defined(__clang__)
1069   //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
1070   // and simplify it to not invoke __cpuid (like cpu_model.c in
1071   // compiler-rt/lib/builtins/cpu_model.c?
1072   // Opting for the second option.
1073   if(!isCpuIdSupported())
1074     return "generic";
1075 #endif
1076   if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
1077     return "generic";
1078   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1079 
1080   unsigned Brand_id = EBX & 0xff;
1081   unsigned Family = 0, Model = 0;
1082   unsigned Features = 0, Features2 = 0, Features3 = 0;
1083   detectX86FamilyModel(EAX, &Family, &Model);
1084   getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);
1085 
1086   unsigned Type = 0;
1087   unsigned Subtype = 0;
1088 
1089   if (Vendor == SIG_INTEL) {
1090     getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
1091                                     Features2, Features3, &Type, &Subtype);
1092   } else if (Vendor == SIG_AMD) {
1093     getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
1094   }
1095 
1096   // Check subtypes first since those are more specific.
1097 #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
1098   if (Subtype == X86::ENUM) \
1099     return ARCHNAME;
1100 #include "llvm/Support/X86TargetParser.def"
1101 
1102   // Now check types.
1103 #define X86_CPU_TYPE(ARCHNAME, ENUM) \
1104   if (Type == X86::ENUM) \
1105     return ARCHNAME;
1106 #include "llvm/Support/X86TargetParser.def"
1107 
1108   return "generic";
1109 }
1110 
1111 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1112 StringRef sys::getHostCPUName() {
1113   host_basic_info_data_t hostInfo;
1114   mach_msg_type_number_t infoCount;
1115 
1116   infoCount = HOST_BASIC_INFO_COUNT;
1117   mach_port_t hostPort = mach_host_self();
1118   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1119             &infoCount);
1120   mach_port_deallocate(mach_task_self(), hostPort);
1121 
1122   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1123     return "generic";
1124 
1125   switch (hostInfo.cpu_subtype) {
1126   case CPU_SUBTYPE_POWERPC_601:
1127     return "601";
1128   case CPU_SUBTYPE_POWERPC_602:
1129     return "602";
1130   case CPU_SUBTYPE_POWERPC_603:
1131     return "603";
1132   case CPU_SUBTYPE_POWERPC_603e:
1133     return "603e";
1134   case CPU_SUBTYPE_POWERPC_603ev:
1135     return "603ev";
1136   case CPU_SUBTYPE_POWERPC_604:
1137     return "604";
1138   case CPU_SUBTYPE_POWERPC_604e:
1139     return "604e";
1140   case CPU_SUBTYPE_POWERPC_620:
1141     return "620";
1142   case CPU_SUBTYPE_POWERPC_750:
1143     return "750";
1144   case CPU_SUBTYPE_POWERPC_7400:
1145     return "7400";
1146   case CPU_SUBTYPE_POWERPC_7450:
1147     return "7450";
1148   case CPU_SUBTYPE_POWERPC_970:
1149     return "970";
1150   default:;
1151   }
1152 
1153   return "generic";
1154 }
1155 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
1156 StringRef sys::getHostCPUName() {
1157   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1158   StringRef Content = P ? P->getBuffer() : "";
1159   return detail::getHostCPUNameForPowerPC(Content);
1160 }
1161 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1162 StringRef sys::getHostCPUName() {
1163   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1164   StringRef Content = P ? P->getBuffer() : "";
1165   return detail::getHostCPUNameForARM(Content);
1166 }
1167 #elif defined(__linux__) && defined(__s390x__)
1168 StringRef sys::getHostCPUName() {
1169   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1170   StringRef Content = P ? P->getBuffer() : "";
1171   return detail::getHostCPUNameForS390x(Content);
1172 }
1173 #else
1174 StringRef sys::getHostCPUName() { return "generic"; }
1175 #endif
1176 
1177 #if defined(__linux__) && defined(__x86_64__)
1178 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1179 // using the number of unique physical/core id pairs. The following
1180 // implementation reads the /proc/cpuinfo format on an x86_64 system.
1181 static int computeHostNumPhysicalCores() {
1182   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1183   // mmapped because it appears to have 0 size.
1184   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1185       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1186   if (std::error_code EC = Text.getError()) {
1187     llvm::errs() << "Can't read "
1188                  << "/proc/cpuinfo: " << EC.message() << "\n";
1189     return -1;
1190   }
1191   SmallVector<StringRef, 8> strs;
1192   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1193                              /*KeepEmpty=*/false);
1194   int CurPhysicalId = -1;
1195   int CurCoreId = -1;
1196   SmallSet<std::pair<int, int>, 32> UniqueItems;
1197   for (auto &Line : strs) {
1198     Line = Line.trim();
1199     if (!Line.startswith("physical id") && !Line.startswith("core id"))
1200       continue;
1201     std::pair<StringRef, StringRef> Data = Line.split(':');
1202     auto Name = Data.first.trim();
1203     auto Val = Data.second.trim();
1204     if (Name == "physical id") {
1205       assert(CurPhysicalId == -1 &&
1206              "Expected a core id before seeing another physical id");
1207       Val.getAsInteger(10, CurPhysicalId);
1208     }
1209     if (Name == "core id") {
1210       assert(CurCoreId == -1 &&
1211              "Expected a physical id before seeing another core id");
1212       Val.getAsInteger(10, CurCoreId);
1213     }
1214     if (CurPhysicalId != -1 && CurCoreId != -1) {
1215       UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
1216       CurPhysicalId = -1;
1217       CurCoreId = -1;
1218     }
1219   }
1220   return UniqueItems.size();
1221 }
1222 #elif defined(__APPLE__) && defined(__x86_64__)
1223 #include <sys/param.h>
1224 #include <sys/sysctl.h>
1225 
1226 // Gets the number of *physical cores* on the machine.
1227 static int computeHostNumPhysicalCores() {
1228   uint32_t count;
1229   size_t len = sizeof(count);
1230   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1231   if (count < 1) {
1232     int nm[2];
1233     nm[0] = CTL_HW;
1234     nm[1] = HW_AVAILCPU;
1235     sysctl(nm, 2, &count, &len, NULL, 0);
1236     if (count < 1)
1237       return -1;
1238   }
1239   return count;
1240 }
1241 #else
1242 // On other systems, return -1 to indicate unknown.
1243 static int computeHostNumPhysicalCores() { return -1; }
1244 #endif
1245 
1246 int sys::getHostNumPhysicalCores() {
1247   static int NumCores = computeHostNumPhysicalCores();
1248   return NumCores;
1249 }
1250 
1251 #if defined(__i386__) || defined(_M_IX86) || \
1252     defined(__x86_64__) || defined(_M_X64)
1253 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1254   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1255   unsigned MaxLevel;
1256   union {
1257     unsigned u[3];
1258     char c[12];
1259   } text;
1260 
1261   if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
1262       MaxLevel < 1)
1263     return false;
1264 
1265   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1266 
1267   Features["cx8"]    = (EDX >>  8) & 1;
1268   Features["cmov"]   = (EDX >> 15) & 1;
1269   Features["mmx"]    = (EDX >> 23) & 1;
1270   Features["fxsr"]   = (EDX >> 24) & 1;
1271   Features["sse"]    = (EDX >> 25) & 1;
1272   Features["sse2"]   = (EDX >> 26) & 1;
1273 
1274   Features["sse3"]   = (ECX >>  0) & 1;
1275   Features["pclmul"] = (ECX >>  1) & 1;
1276   Features["ssse3"]  = (ECX >>  9) & 1;
1277   Features["cx16"]   = (ECX >> 13) & 1;
1278   Features["sse4.1"] = (ECX >> 19) & 1;
1279   Features["sse4.2"] = (ECX >> 20) & 1;
1280   Features["movbe"]  = (ECX >> 22) & 1;
1281   Features["popcnt"] = (ECX >> 23) & 1;
1282   Features["aes"]    = (ECX >> 25) & 1;
1283   Features["rdrnd"]  = (ECX >> 30) & 1;
1284 
1285   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1286   // indicates that the AVX registers will be saved and restored on context
1287   // switch, then we have full AVX support.
1288   bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
1289                     !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
1290   // AVX512 requires additional context to be saved by the OS.
1291   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1292 
1293   Features["avx"]   = HasAVXSave;
1294   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
1295   // Only enable XSAVE if OS has enabled support for saving YMM state.
1296   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1297   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
1298 
1299   unsigned MaxExtLevel;
1300   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1301 
1302   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1303                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1304   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
1305   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
1306   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
1307   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
1308   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1309   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
1310   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1311   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
1312   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1313 
1314   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);
1315 
1316   // Miscellaneous memory related features, detected by
1317   // using the 0x80000008 leaf of the CPUID instruction
1318   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1319                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1320   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
1321   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1322 
1323   bool HasLeaf7 =
1324       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1325 
1326   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
1327   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
1328   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
1329   // AVX2 is only supported if we have the OS save support from AVX.
1330   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
1331   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
1332   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
1333   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
1334   Features["mpx"]        = HasLeaf7 && ((EBX >> 14) & 1);
1335   // AVX512 is only supported if the OS supports the context save for it.
1336   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1337   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1338   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
1339   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
1340   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1341   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1342   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
1343   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1344   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1345   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1346   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
1347   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1348   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1349 
1350   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
1351   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
1352   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
1353   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
1354   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
1355   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
1356   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
1357   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
1358   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1359   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1360   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1361   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1362   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
1363   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
1364   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
1365   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
1366 
1367   // There are two CPUID leafs which information associated with the pconfig
1368   // instruction:
1369   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
1370   // bit of EDX), while the EAX=0x1b leaf returns information on the
1371   // availability of specific pconfig leafs.
1372   // The target feature here only refers to the the first of these two.
1373   // Users might need to check for the availability of specific pconfig
1374   // leaves using cpuid, since that information is ignored while
1375   // detecting features using the "-march=native" flag.
1376   // For more info, see X86 ISA docs.
1377   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
1378   bool HasLeaf7Subleaf1 =
1379       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1380   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
1381 
1382   bool HasLeafD = MaxLevel >= 0xd &&
1383                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1384 
1385   // Only enable XSAVE if OS has enabled support for saving YMM state.
1386   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1387   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1388   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1389 
1390   bool HasLeaf14 = MaxLevel >= 0x14 &&
1391                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
1392 
1393   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
1394 
1395   return true;
1396 }
1397 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1398 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1399   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1400   if (!P)
1401     return false;
1402 
1403   SmallVector<StringRef, 32> Lines;
1404   P->getBuffer().split(Lines, "\n");
1405 
1406   SmallVector<StringRef, 32> CPUFeatures;
1407 
1408   // Look for the CPU features.
1409   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1410     if (Lines[I].startswith("Features")) {
1411       Lines[I].split(CPUFeatures, ' ');
1412       break;
1413     }
1414 
1415 #if defined(__aarch64__)
1416   // Keep track of which crypto features we have seen
1417   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1418   uint32_t crypto = 0;
1419 #endif
1420 
1421   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1422     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1423 #if defined(__aarch64__)
1424                                    .Case("asimd", "neon")
1425                                    .Case("fp", "fp-armv8")
1426                                    .Case("crc32", "crc")
1427 #else
1428                                    .Case("half", "fp16")
1429                                    .Case("neon", "neon")
1430                                    .Case("vfpv3", "vfp3")
1431                                    .Case("vfpv3d16", "d16")
1432                                    .Case("vfpv4", "vfp4")
1433                                    .Case("idiva", "hwdiv-arm")
1434                                    .Case("idivt", "hwdiv")
1435 #endif
1436                                    .Default("");
1437 
1438 #if defined(__aarch64__)
1439     // We need to check crypto separately since we need all of the crypto
1440     // extensions to enable the subtarget feature
1441     if (CPUFeatures[I] == "aes")
1442       crypto |= CAP_AES;
1443     else if (CPUFeatures[I] == "pmull")
1444       crypto |= CAP_PMULL;
1445     else if (CPUFeatures[I] == "sha1")
1446       crypto |= CAP_SHA1;
1447     else if (CPUFeatures[I] == "sha2")
1448       crypto |= CAP_SHA2;
1449 #endif
1450 
1451     if (LLVMFeatureStr != "")
1452       Features[LLVMFeatureStr] = true;
1453   }
1454 
1455 #if defined(__aarch64__)
1456   // If we have all crypto bits we can add the feature
1457   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1458     Features["crypto"] = true;
1459 #endif
1460 
1461   return true;
1462 }
1463 #else
1464 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1465 #endif
1466 
1467 std::string sys::getProcessTriple() {
1468   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
1469   Triple PT(Triple::normalize(TargetTripleString));
1470 
1471   if (sizeof(void *) == 8 && PT.isArch32Bit())
1472     PT = PT.get64BitArchVariant();
1473   if (sizeof(void *) == 4 && PT.isArch64Bit())
1474     PT = PT.get32BitArchVariant();
1475 
1476   return PT.str();
1477 }
1478