1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the operating system Host concept. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Support/Host.h" 14 #include "llvm/Support/TargetParser.h" 15 #include "llvm/ADT/SmallSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/Config/llvm-config.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/FileSystem.h" 23 #include "llvm/Support/MemoryBuffer.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <assert.h> 26 #include <string.h> 27 28 // Include the platform-specific parts of this class. 29 #ifdef LLVM_ON_UNIX 30 #include "Unix/Host.inc" 31 #endif 32 #ifdef _WIN32 33 #include "Windows/Host.inc" 34 #endif 35 #ifdef _MSC_VER 36 #include <intrin.h> 37 #endif 38 #if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) 39 #include <mach/host_info.h> 40 #include <mach/mach.h> 41 #include <mach/mach_host.h> 42 #include <mach/machine.h> 43 #endif 44 45 #define DEBUG_TYPE "host-detection" 46 47 //===----------------------------------------------------------------------===// 48 // 49 // Implementations of the CPU detection routines 50 // 51 //===----------------------------------------------------------------------===// 52 53 using namespace llvm; 54 55 static std::unique_ptr<llvm::MemoryBuffer> 56 LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() { 57 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = 58 llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); 59 if (std::error_code EC = Text.getError()) { 60 llvm::errs() << "Can't read " 61 << "/proc/cpuinfo: " << EC.message() << "\n"; 62 return nullptr; 63 } 64 return std::move(*Text); 65 } 66 67 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) { 68 // Access to the Processor Version Register (PVR) on PowerPC is privileged, 69 // and so we must use an operating-system interface to determine the current 70 // processor type. On Linux, this is exposed through the /proc/cpuinfo file. 71 const char *generic = "generic"; 72 73 // The cpu line is second (after the 'processor: 0' line), so if this 74 // buffer is too small then something has changed (or is wrong). 75 StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin(); 76 StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end(); 77 78 StringRef::const_iterator CIP = CPUInfoStart; 79 80 StringRef::const_iterator CPUStart = 0; 81 size_t CPULen = 0; 82 83 // We need to find the first line which starts with cpu, spaces, and a colon. 84 // After the colon, there may be some additional spaces and then the cpu type. 85 while (CIP < CPUInfoEnd && CPUStart == 0) { 86 if (CIP < CPUInfoEnd && *CIP == '\n') 87 ++CIP; 88 89 if (CIP < CPUInfoEnd && *CIP == 'c') { 90 ++CIP; 91 if (CIP < CPUInfoEnd && *CIP == 'p') { 92 ++CIP; 93 if (CIP < CPUInfoEnd && *CIP == 'u') { 94 ++CIP; 95 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) 96 ++CIP; 97 98 if (CIP < CPUInfoEnd && *CIP == ':') { 99 ++CIP; 100 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t')) 101 ++CIP; 102 103 if (CIP < CPUInfoEnd) { 104 CPUStart = CIP; 105 while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' && 106 *CIP != ',' && *CIP != '\n')) 107 ++CIP; 108 CPULen = CIP - CPUStart; 109 } 110 } 111 } 112 } 113 } 114 115 if (CPUStart == 0) 116 while (CIP < CPUInfoEnd && *CIP != '\n') 117 ++CIP; 118 } 119 120 if (CPUStart == 0) 121 return generic; 122 123 return StringSwitch<const char *>(StringRef(CPUStart, CPULen)) 124 .Case("604e", "604e") 125 .Case("604", "604") 126 .Case("7400", "7400") 127 .Case("7410", "7400") 128 .Case("7447", "7400") 129 .Case("7455", "7450") 130 .Case("G4", "g4") 131 .Case("POWER4", "970") 132 .Case("PPC970FX", "970") 133 .Case("PPC970MP", "970") 134 .Case("G5", "g5") 135 .Case("POWER5", "g5") 136 .Case("A2", "a2") 137 .Case("POWER6", "pwr6") 138 .Case("POWER7", "pwr7") 139 .Case("POWER8", "pwr8") 140 .Case("POWER8E", "pwr8") 141 .Case("POWER8NVL", "pwr8") 142 .Case("POWER9", "pwr9") 143 .Default(generic); 144 } 145 146 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) { 147 // The cpuid register on arm is not accessible from user space. On Linux, 148 // it is exposed through the /proc/cpuinfo file. 149 150 // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line 151 // in all cases. 152 SmallVector<StringRef, 32> Lines; 153 ProcCpuinfoContent.split(Lines, "\n"); 154 155 // Look for the CPU implementer line. 156 StringRef Implementer; 157 StringRef Hardware; 158 for (unsigned I = 0, E = Lines.size(); I != E; ++I) { 159 if (Lines[I].startswith("CPU implementer")) 160 Implementer = Lines[I].substr(15).ltrim("\t :"); 161 if (Lines[I].startswith("Hardware")) 162 Hardware = Lines[I].substr(8).ltrim("\t :"); 163 } 164 165 if (Implementer == "0x41") { // ARM Ltd. 166 // MSM8992/8994 may give cpu part for the core that the kernel is running on, 167 // which is undeterministic and wrong. Always return cortex-a53 for these SoC. 168 if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996")) 169 return "cortex-a53"; 170 171 172 // Look for the CPU part line. 173 for (unsigned I = 0, E = Lines.size(); I != E; ++I) 174 if (Lines[I].startswith("CPU part")) 175 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The 176 // values correspond to the "Part number" in the CP15/c0 register. The 177 // contents are specified in the various processor manuals. 178 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) 179 .Case("0x926", "arm926ej-s") 180 .Case("0xb02", "mpcore") 181 .Case("0xb36", "arm1136j-s") 182 .Case("0xb56", "arm1156t2-s") 183 .Case("0xb76", "arm1176jz-s") 184 .Case("0xc08", "cortex-a8") 185 .Case("0xc09", "cortex-a9") 186 .Case("0xc0f", "cortex-a15") 187 .Case("0xc20", "cortex-m0") 188 .Case("0xc23", "cortex-m3") 189 .Case("0xc24", "cortex-m4") 190 .Case("0xd04", "cortex-a35") 191 .Case("0xd03", "cortex-a53") 192 .Case("0xd07", "cortex-a57") 193 .Case("0xd08", "cortex-a72") 194 .Case("0xd09", "cortex-a73") 195 .Case("0xd0a", "cortex-a75") 196 .Case("0xd0b", "cortex-a76") 197 .Default("generic"); 198 } 199 200 if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium. 201 for (unsigned I = 0, E = Lines.size(); I != E; ++I) { 202 if (Lines[I].startswith("CPU part")) { 203 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) 204 .Case("0x516", "thunderx2t99") 205 .Case("0x0516", "thunderx2t99") 206 .Case("0xaf", "thunderx2t99") 207 .Case("0x0af", "thunderx2t99") 208 .Case("0xa1", "thunderxt88") 209 .Case("0x0a1", "thunderxt88") 210 .Default("generic"); 211 } 212 } 213 } 214 215 if (Implementer == "0x48") // HiSilicon Technologies, Inc. 216 // Look for the CPU part line. 217 for (unsigned I = 0, E = Lines.size(); I != E; ++I) 218 if (Lines[I].startswith("CPU part")) 219 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The 220 // values correspond to the "Part number" in the CP15/c0 register. The 221 // contents are specified in the various processor manuals. 222 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) 223 .Case("0xd01", "tsv110") 224 .Default("generic"); 225 226 if (Implementer == "0x51") // Qualcomm Technologies, Inc. 227 // Look for the CPU part line. 228 for (unsigned I = 0, E = Lines.size(); I != E; ++I) 229 if (Lines[I].startswith("CPU part")) 230 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The 231 // values correspond to the "Part number" in the CP15/c0 register. The 232 // contents are specified in the various processor manuals. 233 return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :")) 234 .Case("0x06f", "krait") // APQ8064 235 .Case("0x201", "kryo") 236 .Case("0x205", "kryo") 237 .Case("0x211", "kryo") 238 .Case("0x800", "cortex-a73") 239 .Case("0x801", "cortex-a73") 240 .Case("0x802", "cortex-a73") 241 .Case("0x803", "cortex-a73") 242 .Case("0x804", "cortex-a73") 243 .Case("0x805", "cortex-a73") 244 .Case("0xc00", "falkor") 245 .Case("0xc01", "saphira") 246 .Default("generic"); 247 248 if (Implementer == "0x53") { // Samsung Electronics Co., Ltd. 249 // The Exynos chips have a convoluted ID scheme that doesn't seem to follow 250 // any predictive pattern across variants and parts. 251 unsigned Variant = 0, Part = 0; 252 253 // Look for the CPU variant line, whose value is a 1 digit hexadecimal 254 // number, corresponding to the Variant bits in the CP15/C0 register. 255 for (auto I : Lines) 256 if (I.consume_front("CPU variant")) 257 I.ltrim("\t :").getAsInteger(0, Variant); 258 259 // Look for the CPU part line, whose value is a 3 digit hexadecimal 260 // number, corresponding to the PartNum bits in the CP15/C0 register. 261 for (auto I : Lines) 262 if (I.consume_front("CPU part")) 263 I.ltrim("\t :").getAsInteger(0, Part); 264 265 unsigned Exynos = (Variant << 12) | Part; 266 switch (Exynos) { 267 default: 268 // Default by falling through to Exynos M1. 269 LLVM_FALLTHROUGH; 270 271 case 0x1001: 272 return "exynos-m1"; 273 274 case 0x4001: 275 return "exynos-m2"; 276 } 277 } 278 279 return "generic"; 280 } 281 282 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) { 283 // STIDP is a privileged operation, so use /proc/cpuinfo instead. 284 285 // The "processor 0:" line comes after a fair amount of other information, 286 // including a cache breakdown, but this should be plenty. 287 SmallVector<StringRef, 32> Lines; 288 ProcCpuinfoContent.split(Lines, "\n"); 289 290 // Look for the CPU features. 291 SmallVector<StringRef, 32> CPUFeatures; 292 for (unsigned I = 0, E = Lines.size(); I != E; ++I) 293 if (Lines[I].startswith("features")) { 294 size_t Pos = Lines[I].find(":"); 295 if (Pos != StringRef::npos) { 296 Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' '); 297 break; 298 } 299 } 300 301 // We need to check for the presence of vector support independently of 302 // the machine type, since we may only use the vector register set when 303 // supported by the kernel (and hypervisor). 304 bool HaveVectorSupport = false; 305 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { 306 if (CPUFeatures[I] == "vx") 307 HaveVectorSupport = true; 308 } 309 310 // Now check the processor machine type. 311 for (unsigned I = 0, E = Lines.size(); I != E; ++I) { 312 if (Lines[I].startswith("processor ")) { 313 size_t Pos = Lines[I].find("machine = "); 314 if (Pos != StringRef::npos) { 315 Pos += sizeof("machine = ") - 1; 316 unsigned int Id; 317 if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) { 318 if (Id >= 8561 && HaveVectorSupport) 319 return "arch13"; 320 if (Id >= 3906 && HaveVectorSupport) 321 return "z14"; 322 if (Id >= 2964 && HaveVectorSupport) 323 return "z13"; 324 if (Id >= 2827) 325 return "zEC12"; 326 if (Id >= 2817) 327 return "z196"; 328 } 329 } 330 break; 331 } 332 } 333 334 return "generic"; 335 } 336 337 StringRef sys::detail::getHostCPUNameForBPF() { 338 #if !defined(__linux__) || !defined(__x86_64__) 339 return "generic"; 340 #else 341 uint8_t v3_insns[40] __attribute__ ((aligned (8))) = 342 /* BPF_MOV64_IMM(BPF_REG_0, 0) */ 343 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 344 /* BPF_MOV64_IMM(BPF_REG_2, 1) */ 345 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 346 /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ 347 0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 348 /* BPF_MOV64_IMM(BPF_REG_0, 1) */ 349 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 350 /* BPF_EXIT_INSN() */ 351 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; 352 353 uint8_t v2_insns[40] __attribute__ ((aligned (8))) = 354 /* BPF_MOV64_IMM(BPF_REG_0, 0) */ 355 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 356 /* BPF_MOV64_IMM(BPF_REG_2, 1) */ 357 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 358 /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */ 359 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 360 /* BPF_MOV64_IMM(BPF_REG_0, 1) */ 361 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 362 /* BPF_EXIT_INSN() */ 363 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 }; 364 365 struct bpf_prog_load_attr { 366 uint32_t prog_type; 367 uint32_t insn_cnt; 368 uint64_t insns; 369 uint64_t license; 370 uint32_t log_level; 371 uint32_t log_size; 372 uint64_t log_buf; 373 uint32_t kern_version; 374 uint32_t prog_flags; 375 } attr = {}; 376 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ 377 attr.insn_cnt = 5; 378 attr.insns = (uint64_t)v3_insns; 379 attr.license = (uint64_t)"DUMMY"; 380 381 int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, 382 sizeof(attr)); 383 if (fd >= 0) { 384 close(fd); 385 return "v3"; 386 } 387 388 /* Clear the whole attr in case its content changed by syscall. */ 389 memset(&attr, 0, sizeof(attr)); 390 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */ 391 attr.insn_cnt = 5; 392 attr.insns = (uint64_t)v2_insns; 393 attr.license = (uint64_t)"DUMMY"; 394 fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr)); 395 if (fd >= 0) { 396 close(fd); 397 return "v2"; 398 } 399 return "v1"; 400 #endif 401 } 402 403 #if defined(__i386__) || defined(_M_IX86) || \ 404 defined(__x86_64__) || defined(_M_X64) 405 406 enum VendorSignatures { 407 SIG_INTEL = 0x756e6547 /* Genu */, 408 SIG_AMD = 0x68747541 /* Auth */ 409 }; 410 411 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max). 412 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID 413 // support. Consequently, for i386, the presence of CPUID is checked first 414 // via the corresponding eflags bit. 415 // Removal of cpuid.h header motivated by PR30384 416 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp 417 // or test-suite, but are used in external projects e.g. libstdcxx 418 static bool isCpuIdSupported() { 419 #if defined(__GNUC__) || defined(__clang__) 420 #if defined(__i386__) 421 int __cpuid_supported; 422 __asm__(" pushfl\n" 423 " popl %%eax\n" 424 " movl %%eax,%%ecx\n" 425 " xorl $0x00200000,%%eax\n" 426 " pushl %%eax\n" 427 " popfl\n" 428 " pushfl\n" 429 " popl %%eax\n" 430 " movl $0,%0\n" 431 " cmpl %%eax,%%ecx\n" 432 " je 1f\n" 433 " movl $1,%0\n" 434 "1:" 435 : "=r"(__cpuid_supported) 436 : 437 : "eax", "ecx"); 438 if (!__cpuid_supported) 439 return false; 440 #endif 441 return true; 442 #endif 443 return true; 444 } 445 446 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in 447 /// the specified arguments. If we can't run cpuid on the host, return true. 448 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX, 449 unsigned *rECX, unsigned *rEDX) { 450 #if defined(__GNUC__) || defined(__clang__) 451 #if defined(__x86_64__) 452 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. 453 // FIXME: should we save this for Clang? 454 __asm__("movq\t%%rbx, %%rsi\n\t" 455 "cpuid\n\t" 456 "xchgq\t%%rbx, %%rsi\n\t" 457 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) 458 : "a"(value)); 459 return false; 460 #elif defined(__i386__) 461 __asm__("movl\t%%ebx, %%esi\n\t" 462 "cpuid\n\t" 463 "xchgl\t%%ebx, %%esi\n\t" 464 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) 465 : "a"(value)); 466 return false; 467 #else 468 return true; 469 #endif 470 #elif defined(_MSC_VER) 471 // The MSVC intrinsic is portable across x86 and x64. 472 int registers[4]; 473 __cpuid(registers, value); 474 *rEAX = registers[0]; 475 *rEBX = registers[1]; 476 *rECX = registers[2]; 477 *rEDX = registers[3]; 478 return false; 479 #else 480 return true; 481 #endif 482 } 483 484 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return 485 /// the 4 values in the specified arguments. If we can't run cpuid on the host, 486 /// return true. 487 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf, 488 unsigned *rEAX, unsigned *rEBX, unsigned *rECX, 489 unsigned *rEDX) { 490 #if defined(__GNUC__) || defined(__clang__) 491 #if defined(__x86_64__) 492 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually. 493 // FIXME: should we save this for Clang? 494 __asm__("movq\t%%rbx, %%rsi\n\t" 495 "cpuid\n\t" 496 "xchgq\t%%rbx, %%rsi\n\t" 497 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) 498 : "a"(value), "c"(subleaf)); 499 return false; 500 #elif defined(__i386__) 501 __asm__("movl\t%%ebx, %%esi\n\t" 502 "cpuid\n\t" 503 "xchgl\t%%ebx, %%esi\n\t" 504 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX) 505 : "a"(value), "c"(subleaf)); 506 return false; 507 #else 508 return true; 509 #endif 510 #elif defined(_MSC_VER) 511 int registers[4]; 512 __cpuidex(registers, value, subleaf); 513 *rEAX = registers[0]; 514 *rEBX = registers[1]; 515 *rECX = registers[2]; 516 *rEDX = registers[3]; 517 return false; 518 #else 519 return true; 520 #endif 521 } 522 523 // Read control register 0 (XCR0). Used to detect features such as AVX. 524 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) { 525 #if defined(__GNUC__) || defined(__clang__) 526 // Check xgetbv; this uses a .byte sequence instead of the instruction 527 // directly because older assemblers do not include support for xgetbv and 528 // there is no easy way to conditionally compile based on the assembler used. 529 __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0)); 530 return false; 531 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK) 532 unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); 533 *rEAX = Result; 534 *rEDX = Result >> 32; 535 return false; 536 #else 537 return true; 538 #endif 539 } 540 541 static void detectX86FamilyModel(unsigned EAX, unsigned *Family, 542 unsigned *Model) { 543 *Family = (EAX >> 8) & 0xf; // Bits 8 - 11 544 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7 545 if (*Family == 6 || *Family == 0xf) { 546 if (*Family == 0xf) 547 // Examine extended family ID if family ID is F. 548 *Family += (EAX >> 20) & 0xff; // Bits 20 - 27 549 // Examine extended model ID if family ID is 6 or F. 550 *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19 551 } 552 } 553 554 static void 555 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model, 556 unsigned Brand_id, unsigned Features, 557 unsigned Features2, unsigned Features3, 558 unsigned *Type, unsigned *Subtype) { 559 if (Brand_id != 0) 560 return; 561 switch (Family) { 562 case 3: 563 *Type = X86::INTEL_i386; 564 break; 565 case 4: 566 *Type = X86::INTEL_i486; 567 break; 568 case 5: 569 if (Features & (1 << X86::FEATURE_MMX)) { 570 *Type = X86::INTEL_PENTIUM_MMX; 571 break; 572 } 573 *Type = X86::INTEL_PENTIUM; 574 break; 575 case 6: 576 switch (Model) { 577 case 0x01: // Pentium Pro processor 578 *Type = X86::INTEL_PENTIUM_PRO; 579 break; 580 case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor, 581 // model 03 582 case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor, 583 // model 05, and Intel Celeron processor, model 05 584 case 0x06: // Celeron processor, model 06 585 *Type = X86::INTEL_PENTIUM_II; 586 break; 587 case 0x07: // Pentium III processor, model 07, and Pentium III Xeon 588 // processor, model 07 589 case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor, 590 // model 08, and Celeron processor, model 08 591 case 0x0a: // Pentium III Xeon processor, model 0Ah 592 case 0x0b: // Pentium III processor, model 0Bh 593 *Type = X86::INTEL_PENTIUM_III; 594 break; 595 case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09. 596 case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model 597 // 0Dh. All processors are manufactured using the 90 nm process. 598 case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579 599 // Integrated Processor with Intel QuickAssist Technology 600 *Type = X86::INTEL_PENTIUM_M; 601 break; 602 case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model 603 // 0Eh. All processors are manufactured using the 65 nm process. 604 *Type = X86::INTEL_CORE_DUO; 605 break; // yonah 606 case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile 607 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad 608 // mobile processor, Intel Core 2 Extreme processor, Intel 609 // Pentium Dual-Core processor, Intel Xeon processor, model 610 // 0Fh. All processors are manufactured using the 65 nm process. 611 case 0x16: // Intel Celeron processor model 16h. All processors are 612 // manufactured using the 65 nm process 613 *Type = X86::INTEL_CORE2; // "core2" 614 *Subtype = X86::INTEL_CORE2_65; 615 break; 616 case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model 617 // 17h. All processors are manufactured using the 45 nm process. 618 // 619 // 45nm: Penryn , Wolfdale, Yorkfield (XE) 620 case 0x1d: // Intel Xeon processor MP. All processors are manufactured using 621 // the 45 nm process. 622 *Type = X86::INTEL_CORE2; // "penryn" 623 *Subtype = X86::INTEL_CORE2_45; 624 break; 625 case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All 626 // processors are manufactured using the 45 nm process. 627 case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz. 628 // As found in a Summer 2010 model iMac. 629 case 0x1f: 630 case 0x2e: // Nehalem EX 631 *Type = X86::INTEL_COREI7; // "nehalem" 632 *Subtype = X86::INTEL_COREI7_NEHALEM; 633 break; 634 case 0x25: // Intel Core i7, laptop version. 635 case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All 636 // processors are manufactured using the 32 nm process. 637 case 0x2f: // Westmere EX 638 *Type = X86::INTEL_COREI7; // "westmere" 639 *Subtype = X86::INTEL_COREI7_WESTMERE; 640 break; 641 case 0x2a: // Intel Core i7 processor. All processors are manufactured 642 // using the 32 nm process. 643 case 0x2d: 644 *Type = X86::INTEL_COREI7; //"sandybridge" 645 *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; 646 break; 647 case 0x3a: 648 case 0x3e: // Ivy Bridge EP 649 *Type = X86::INTEL_COREI7; // "ivybridge" 650 *Subtype = X86::INTEL_COREI7_IVYBRIDGE; 651 break; 652 653 // Haswell: 654 case 0x3c: 655 case 0x3f: 656 case 0x45: 657 case 0x46: 658 *Type = X86::INTEL_COREI7; // "haswell" 659 *Subtype = X86::INTEL_COREI7_HASWELL; 660 break; 661 662 // Broadwell: 663 case 0x3d: 664 case 0x47: 665 case 0x4f: 666 case 0x56: 667 *Type = X86::INTEL_COREI7; // "broadwell" 668 *Subtype = X86::INTEL_COREI7_BROADWELL; 669 break; 670 671 // Skylake: 672 case 0x4e: // Skylake mobile 673 case 0x5e: // Skylake desktop 674 case 0x8e: // Kaby Lake mobile 675 case 0x9e: // Kaby Lake desktop 676 *Type = X86::INTEL_COREI7; // "skylake" 677 *Subtype = X86::INTEL_COREI7_SKYLAKE; 678 break; 679 680 // Skylake Xeon: 681 case 0x55: 682 *Type = X86::INTEL_COREI7; 683 if (Features3 & (1 << (X86::FEATURE_AVX512BF16 - 64))) 684 *Subtype = X86::INTEL_COREI7_COOPERLAKE; // "cooperlake" 685 else if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) 686 *Subtype = X86::INTEL_COREI7_CASCADELAKE; // "cascadelake" 687 else 688 *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512" 689 break; 690 691 // Cannonlake: 692 case 0x66: 693 *Type = X86::INTEL_COREI7; 694 *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake" 695 break; 696 697 // Icelake: 698 case 0x7d: 699 case 0x7e: 700 *Type = X86::INTEL_COREI7; 701 *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; // "icelake-client" 702 break; 703 704 // Icelake Xeon: 705 case 0x6a: 706 case 0x6c: 707 *Type = X86::INTEL_COREI7; 708 *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER; // "icelake-server" 709 break; 710 711 case 0x1c: // Most 45 nm Intel Atom processors 712 case 0x26: // 45 nm Atom Lincroft 713 case 0x27: // 32 nm Atom Medfield 714 case 0x35: // 32 nm Atom Midview 715 case 0x36: // 32 nm Atom Midview 716 *Type = X86::INTEL_BONNELL; 717 break; // "bonnell" 718 719 // Atom Silvermont codes from the Intel software optimization guide. 720 case 0x37: 721 case 0x4a: 722 case 0x4d: 723 case 0x5a: 724 case 0x5d: 725 case 0x4c: // really airmont 726 *Type = X86::INTEL_SILVERMONT; 727 break; // "silvermont" 728 // Goldmont: 729 case 0x5c: // Apollo Lake 730 case 0x5f: // Denverton 731 *Type = X86::INTEL_GOLDMONT; 732 break; // "goldmont" 733 case 0x7a: 734 *Type = X86::INTEL_GOLDMONT_PLUS; 735 break; 736 case 0x86: 737 *Type = X86::INTEL_TREMONT; 738 break; 739 740 case 0x57: 741 *Type = X86::INTEL_KNL; // knl 742 break; 743 744 case 0x85: 745 *Type = X86::INTEL_KNM; // knm 746 break; 747 748 default: // Unknown family 6 CPU, try to guess. 749 // TODO detect tigerlake host 750 if (Features3 & (1 << (X86::FEATURE_AVX512VP2INTERSECT - 64))) { 751 *Type = X86::INTEL_COREI7; 752 *Subtype = X86::INTEL_COREI7_TIGERLAKE; 753 break; 754 } 755 756 if (Features & (1 << X86::FEATURE_AVX512VBMI2)) { 757 *Type = X86::INTEL_COREI7; 758 *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT; 759 break; 760 } 761 762 if (Features & (1 << X86::FEATURE_AVX512VBMI)) { 763 *Type = X86::INTEL_COREI7; 764 *Subtype = X86::INTEL_COREI7_CANNONLAKE; 765 break; 766 } 767 768 if (Features3 & (1 << (X86::FEATURE_AVX512BF16 - 64))) { 769 *Type = X86::INTEL_COREI7; 770 *Subtype = X86::INTEL_COREI7_COOPERLAKE; 771 break; 772 } 773 774 if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) { 775 *Type = X86::INTEL_COREI7; 776 *Subtype = X86::INTEL_COREI7_CASCADELAKE; 777 break; 778 } 779 780 if (Features & (1 << X86::FEATURE_AVX512VL)) { 781 *Type = X86::INTEL_COREI7; 782 *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; 783 break; 784 } 785 786 if (Features & (1 << X86::FEATURE_AVX512ER)) { 787 *Type = X86::INTEL_KNL; // knl 788 break; 789 } 790 791 if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) { 792 if (Features3 & (1 << (X86::FEATURE_SHA - 64))) { 793 *Type = X86::INTEL_GOLDMONT; 794 } else { 795 *Type = X86::INTEL_COREI7; 796 *Subtype = X86::INTEL_COREI7_SKYLAKE; 797 } 798 break; 799 } 800 if (Features3 & (1 << (X86::FEATURE_ADX - 64))) { 801 *Type = X86::INTEL_COREI7; 802 *Subtype = X86::INTEL_COREI7_BROADWELL; 803 break; 804 } 805 if (Features & (1 << X86::FEATURE_AVX2)) { 806 *Type = X86::INTEL_COREI7; 807 *Subtype = X86::INTEL_COREI7_HASWELL; 808 break; 809 } 810 if (Features & (1 << X86::FEATURE_AVX)) { 811 *Type = X86::INTEL_COREI7; 812 *Subtype = X86::INTEL_COREI7_SANDYBRIDGE; 813 break; 814 } 815 if (Features & (1 << X86::FEATURE_SSE4_2)) { 816 if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { 817 *Type = X86::INTEL_SILVERMONT; 818 } else { 819 *Type = X86::INTEL_COREI7; 820 *Subtype = X86::INTEL_COREI7_NEHALEM; 821 } 822 break; 823 } 824 if (Features & (1 << X86::FEATURE_SSE4_1)) { 825 *Type = X86::INTEL_CORE2; // "penryn" 826 *Subtype = X86::INTEL_CORE2_45; 827 break; 828 } 829 if (Features & (1 << X86::FEATURE_SSSE3)) { 830 if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) { 831 *Type = X86::INTEL_BONNELL; // "bonnell" 832 } else { 833 *Type = X86::INTEL_CORE2; // "core2" 834 *Subtype = X86::INTEL_CORE2_65; 835 } 836 break; 837 } 838 if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { 839 *Type = X86::INTEL_CORE2; // "core2" 840 *Subtype = X86::INTEL_CORE2_65; 841 break; 842 } 843 if (Features & (1 << X86::FEATURE_SSE3)) { 844 *Type = X86::INTEL_CORE_DUO; 845 break; 846 } 847 if (Features & (1 << X86::FEATURE_SSE2)) { 848 *Type = X86::INTEL_PENTIUM_M; 849 break; 850 } 851 if (Features & (1 << X86::FEATURE_SSE)) { 852 *Type = X86::INTEL_PENTIUM_III; 853 break; 854 } 855 if (Features & (1 << X86::FEATURE_MMX)) { 856 *Type = X86::INTEL_PENTIUM_II; 857 break; 858 } 859 *Type = X86::INTEL_PENTIUM_PRO; 860 break; 861 } 862 break; 863 case 15: { 864 if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) { 865 *Type = X86::INTEL_NOCONA; 866 break; 867 } 868 if (Features & (1 << X86::FEATURE_SSE3)) { 869 *Type = X86::INTEL_PRESCOTT; 870 break; 871 } 872 *Type = X86::INTEL_PENTIUM_IV; 873 break; 874 } 875 default: 876 break; /*"generic"*/ 877 } 878 } 879 880 static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model, 881 unsigned Features, unsigned *Type, 882 unsigned *Subtype) { 883 // FIXME: this poorly matches the generated SubtargetFeatureKV table. There 884 // appears to be no way to generate the wide variety of AMD-specific targets 885 // from the information returned from CPUID. 886 switch (Family) { 887 case 4: 888 *Type = X86::AMD_i486; 889 break; 890 case 5: 891 *Type = X86::AMDPENTIUM; 892 switch (Model) { 893 case 6: 894 case 7: 895 *Subtype = X86::AMDPENTIUM_K6; 896 break; // "k6" 897 case 8: 898 *Subtype = X86::AMDPENTIUM_K62; 899 break; // "k6-2" 900 case 9: 901 case 13: 902 *Subtype = X86::AMDPENTIUM_K63; 903 break; // "k6-3" 904 case 10: 905 *Subtype = X86::AMDPENTIUM_GEODE; 906 break; // "geode" 907 } 908 break; 909 case 6: 910 if (Features & (1 << X86::FEATURE_SSE)) { 911 *Type = X86::AMD_ATHLON_XP; 912 break; // "athlon-xp" 913 } 914 *Type = X86::AMD_ATHLON; 915 break; // "athlon" 916 case 15: 917 if (Features & (1 << X86::FEATURE_SSE3)) { 918 *Type = X86::AMD_K8SSE3; 919 break; // "k8-sse3" 920 } 921 *Type = X86::AMD_K8; 922 break; // "k8" 923 case 16: 924 *Type = X86::AMDFAM10H; // "amdfam10" 925 switch (Model) { 926 case 2: 927 *Subtype = X86::AMDFAM10H_BARCELONA; 928 break; 929 case 4: 930 *Subtype = X86::AMDFAM10H_SHANGHAI; 931 break; 932 case 8: 933 *Subtype = X86::AMDFAM10H_ISTANBUL; 934 break; 935 } 936 break; 937 case 20: 938 *Type = X86::AMD_BTVER1; 939 break; // "btver1"; 940 case 21: 941 *Type = X86::AMDFAM15H; 942 if (Model >= 0x60 && Model <= 0x7f) { 943 *Subtype = X86::AMDFAM15H_BDVER4; 944 break; // "bdver4"; 60h-7Fh: Excavator 945 } 946 if (Model >= 0x30 && Model <= 0x3f) { 947 *Subtype = X86::AMDFAM15H_BDVER3; 948 break; // "bdver3"; 30h-3Fh: Steamroller 949 } 950 if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) { 951 *Subtype = X86::AMDFAM15H_BDVER2; 952 break; // "bdver2"; 02h, 10h-1Fh: Piledriver 953 } 954 if (Model <= 0x0f) { 955 *Subtype = X86::AMDFAM15H_BDVER1; 956 break; // "bdver1"; 00h-0Fh: Bulldozer 957 } 958 break; 959 case 22: 960 *Type = X86::AMD_BTVER2; 961 break; // "btver2" 962 case 23: 963 *Type = X86::AMDFAM17H; 964 if (Model >= 0x30 && Model <= 0x3f) { 965 *Subtype = X86::AMDFAM17H_ZNVER2; 966 break; // "znver2"; 30h-3fh: Zen2 967 } 968 if (Model <= 0x0f) { 969 *Subtype = X86::AMDFAM17H_ZNVER1; 970 break; // "znver1"; 00h-0Fh: Zen1 971 } 972 break; 973 default: 974 break; // "generic" 975 } 976 } 977 978 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf, 979 unsigned *FeaturesOut, unsigned *Features2Out, 980 unsigned *Features3Out) { 981 unsigned Features = 0; 982 unsigned Features2 = 0; 983 unsigned Features3 = 0; 984 unsigned EAX, EBX; 985 986 auto setFeature = [&](unsigned F) { 987 if (F < 32) 988 Features |= 1U << (F & 0x1f); 989 else if (F < 64) 990 Features2 |= 1U << ((F - 32) & 0x1f); 991 else if (F < 96) 992 Features3 |= 1U << ((F - 64) & 0x1f); 993 else 994 llvm_unreachable("Unexpected FeatureBit"); 995 }; 996 997 if ((EDX >> 15) & 1) 998 setFeature(X86::FEATURE_CMOV); 999 if ((EDX >> 23) & 1) 1000 setFeature(X86::FEATURE_MMX); 1001 if ((EDX >> 25) & 1) 1002 setFeature(X86::FEATURE_SSE); 1003 if ((EDX >> 26) & 1) 1004 setFeature(X86::FEATURE_SSE2); 1005 1006 if ((ECX >> 0) & 1) 1007 setFeature(X86::FEATURE_SSE3); 1008 if ((ECX >> 1) & 1) 1009 setFeature(X86::FEATURE_PCLMUL); 1010 if ((ECX >> 9) & 1) 1011 setFeature(X86::FEATURE_SSSE3); 1012 if ((ECX >> 12) & 1) 1013 setFeature(X86::FEATURE_FMA); 1014 if ((ECX >> 19) & 1) 1015 setFeature(X86::FEATURE_SSE4_1); 1016 if ((ECX >> 20) & 1) 1017 setFeature(X86::FEATURE_SSE4_2); 1018 if ((ECX >> 23) & 1) 1019 setFeature(X86::FEATURE_POPCNT); 1020 if ((ECX >> 25) & 1) 1021 setFeature(X86::FEATURE_AES); 1022 1023 if ((ECX >> 22) & 1) 1024 setFeature(X86::FEATURE_MOVBE); 1025 1026 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV 1027 // indicates that the AVX registers will be saved and restored on context 1028 // switch, then we have full AVX support. 1029 const unsigned AVXBits = (1 << 27) | (1 << 28); 1030 bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) && 1031 ((EAX & 0x6) == 0x6); 1032 bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0); 1033 1034 if (HasAVX) 1035 setFeature(X86::FEATURE_AVX); 1036 1037 bool HasLeaf7 = 1038 MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); 1039 1040 if (HasLeaf7 && ((EBX >> 3) & 1)) 1041 setFeature(X86::FEATURE_BMI); 1042 if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX) 1043 setFeature(X86::FEATURE_AVX2); 1044 if (HasLeaf7 && ((EBX >> 8) & 1)) 1045 setFeature(X86::FEATURE_BMI2); 1046 if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) 1047 setFeature(X86::FEATURE_AVX512F); 1048 if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save) 1049 setFeature(X86::FEATURE_AVX512DQ); 1050 if (HasLeaf7 && ((EBX >> 19) & 1)) 1051 setFeature(X86::FEATURE_ADX); 1052 if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save) 1053 setFeature(X86::FEATURE_AVX512IFMA); 1054 if (HasLeaf7 && ((EBX >> 23) & 1)) 1055 setFeature(X86::FEATURE_CLFLUSHOPT); 1056 if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save) 1057 setFeature(X86::FEATURE_AVX512PF); 1058 if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save) 1059 setFeature(X86::FEATURE_AVX512ER); 1060 if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save) 1061 setFeature(X86::FEATURE_AVX512CD); 1062 if (HasLeaf7 && ((EBX >> 29) & 1)) 1063 setFeature(X86::FEATURE_SHA); 1064 if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save) 1065 setFeature(X86::FEATURE_AVX512BW); 1066 if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save) 1067 setFeature(X86::FEATURE_AVX512VL); 1068 1069 if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save) 1070 setFeature(X86::FEATURE_AVX512VBMI); 1071 if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save) 1072 setFeature(X86::FEATURE_AVX512VBMI2); 1073 if (HasLeaf7 && ((ECX >> 8) & 1)) 1074 setFeature(X86::FEATURE_GFNI); 1075 if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX) 1076 setFeature(X86::FEATURE_VPCLMULQDQ); 1077 if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save) 1078 setFeature(X86::FEATURE_AVX512VNNI); 1079 if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save) 1080 setFeature(X86::FEATURE_AVX512BITALG); 1081 if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save) 1082 setFeature(X86::FEATURE_AVX512VPOPCNTDQ); 1083 1084 if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save) 1085 setFeature(X86::FEATURE_AVX5124VNNIW); 1086 if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save) 1087 setFeature(X86::FEATURE_AVX5124FMAPS); 1088 if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save) 1089 setFeature(X86::FEATURE_AVX512VP2INTERSECT); 1090 1091 unsigned MaxExtLevel; 1092 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); 1093 1094 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && 1095 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); 1096 if (HasExtLeaf1 && ((ECX >> 6) & 1)) 1097 setFeature(X86::FEATURE_SSE4_A); 1098 if (HasExtLeaf1 && ((ECX >> 11) & 1)) 1099 setFeature(X86::FEATURE_XOP); 1100 if (HasExtLeaf1 && ((ECX >> 16) & 1)) 1101 setFeature(X86::FEATURE_FMA4); 1102 1103 if (HasExtLeaf1 && ((EDX >> 29) & 1)) 1104 setFeature(X86::FEATURE_EM64T); 1105 1106 *FeaturesOut = Features; 1107 *Features2Out = Features2; 1108 *Features3Out = Features3; 1109 } 1110 1111 StringRef sys::getHostCPUName() { 1112 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; 1113 unsigned MaxLeaf, Vendor; 1114 1115 #if defined(__GNUC__) || defined(__clang__) 1116 //FIXME: include cpuid.h from clang or copy __get_cpuid_max here 1117 // and simplify it to not invoke __cpuid (like cpu_model.c in 1118 // compiler-rt/lib/builtins/cpu_model.c? 1119 // Opting for the second option. 1120 if(!isCpuIdSupported()) 1121 return "generic"; 1122 #endif 1123 if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1) 1124 return "generic"; 1125 getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); 1126 1127 unsigned Brand_id = EBX & 0xff; 1128 unsigned Family = 0, Model = 0; 1129 unsigned Features = 0, Features2 = 0, Features3 = 0; 1130 detectX86FamilyModel(EAX, &Family, &Model); 1131 getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3); 1132 1133 unsigned Type = 0; 1134 unsigned Subtype = 0; 1135 1136 if (Vendor == SIG_INTEL) { 1137 getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features, 1138 Features2, Features3, &Type, &Subtype); 1139 } else if (Vendor == SIG_AMD) { 1140 getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype); 1141 } 1142 1143 // Check subtypes first since those are more specific. 1144 #define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \ 1145 if (Subtype == X86::ENUM) \ 1146 return ARCHNAME; 1147 #include "llvm/Support/X86TargetParser.def" 1148 1149 // Now check types. 1150 #define X86_CPU_TYPE(ARCHNAME, ENUM) \ 1151 if (Type == X86::ENUM) \ 1152 return ARCHNAME; 1153 #include "llvm/Support/X86TargetParser.def" 1154 1155 return "generic"; 1156 } 1157 1158 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__)) 1159 StringRef sys::getHostCPUName() { 1160 host_basic_info_data_t hostInfo; 1161 mach_msg_type_number_t infoCount; 1162 1163 infoCount = HOST_BASIC_INFO_COUNT; 1164 mach_port_t hostPort = mach_host_self(); 1165 host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo, 1166 &infoCount); 1167 mach_port_deallocate(mach_task_self(), hostPort); 1168 1169 if (hostInfo.cpu_type != CPU_TYPE_POWERPC) 1170 return "generic"; 1171 1172 switch (hostInfo.cpu_subtype) { 1173 case CPU_SUBTYPE_POWERPC_601: 1174 return "601"; 1175 case CPU_SUBTYPE_POWERPC_602: 1176 return "602"; 1177 case CPU_SUBTYPE_POWERPC_603: 1178 return "603"; 1179 case CPU_SUBTYPE_POWERPC_603e: 1180 return "603e"; 1181 case CPU_SUBTYPE_POWERPC_603ev: 1182 return "603ev"; 1183 case CPU_SUBTYPE_POWERPC_604: 1184 return "604"; 1185 case CPU_SUBTYPE_POWERPC_604e: 1186 return "604e"; 1187 case CPU_SUBTYPE_POWERPC_620: 1188 return "620"; 1189 case CPU_SUBTYPE_POWERPC_750: 1190 return "750"; 1191 case CPU_SUBTYPE_POWERPC_7400: 1192 return "7400"; 1193 case CPU_SUBTYPE_POWERPC_7450: 1194 return "7450"; 1195 case CPU_SUBTYPE_POWERPC_970: 1196 return "970"; 1197 default:; 1198 } 1199 1200 return "generic"; 1201 } 1202 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__)) 1203 StringRef sys::getHostCPUName() { 1204 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); 1205 StringRef Content = P ? P->getBuffer() : ""; 1206 return detail::getHostCPUNameForPowerPC(Content); 1207 } 1208 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) 1209 StringRef sys::getHostCPUName() { 1210 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); 1211 StringRef Content = P ? P->getBuffer() : ""; 1212 return detail::getHostCPUNameForARM(Content); 1213 } 1214 #elif defined(__linux__) && defined(__s390x__) 1215 StringRef sys::getHostCPUName() { 1216 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); 1217 StringRef Content = P ? P->getBuffer() : ""; 1218 return detail::getHostCPUNameForS390x(Content); 1219 } 1220 #else 1221 StringRef sys::getHostCPUName() { return "generic"; } 1222 #endif 1223 1224 #if defined(__linux__) && defined(__x86_64__) 1225 // On Linux, the number of physical cores can be computed from /proc/cpuinfo, 1226 // using the number of unique physical/core id pairs. The following 1227 // implementation reads the /proc/cpuinfo format on an x86_64 system. 1228 static int computeHostNumPhysicalCores() { 1229 // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be 1230 // mmapped because it appears to have 0 size. 1231 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text = 1232 llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo"); 1233 if (std::error_code EC = Text.getError()) { 1234 llvm::errs() << "Can't read " 1235 << "/proc/cpuinfo: " << EC.message() << "\n"; 1236 return -1; 1237 } 1238 SmallVector<StringRef, 8> strs; 1239 (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1, 1240 /*KeepEmpty=*/false); 1241 int CurPhysicalId = -1; 1242 int CurCoreId = -1; 1243 SmallSet<std::pair<int, int>, 32> UniqueItems; 1244 for (auto &Line : strs) { 1245 Line = Line.trim(); 1246 if (!Line.startswith("physical id") && !Line.startswith("core id")) 1247 continue; 1248 std::pair<StringRef, StringRef> Data = Line.split(':'); 1249 auto Name = Data.first.trim(); 1250 auto Val = Data.second.trim(); 1251 if (Name == "physical id") { 1252 assert(CurPhysicalId == -1 && 1253 "Expected a core id before seeing another physical id"); 1254 Val.getAsInteger(10, CurPhysicalId); 1255 } 1256 if (Name == "core id") { 1257 assert(CurCoreId == -1 && 1258 "Expected a physical id before seeing another core id"); 1259 Val.getAsInteger(10, CurCoreId); 1260 } 1261 if (CurPhysicalId != -1 && CurCoreId != -1) { 1262 UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId)); 1263 CurPhysicalId = -1; 1264 CurCoreId = -1; 1265 } 1266 } 1267 return UniqueItems.size(); 1268 } 1269 #elif defined(__APPLE__) && defined(__x86_64__) 1270 #include <sys/param.h> 1271 #include <sys/sysctl.h> 1272 1273 // Gets the number of *physical cores* on the machine. 1274 static int computeHostNumPhysicalCores() { 1275 uint32_t count; 1276 size_t len = sizeof(count); 1277 sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0); 1278 if (count < 1) { 1279 int nm[2]; 1280 nm[0] = CTL_HW; 1281 nm[1] = HW_AVAILCPU; 1282 sysctl(nm, 2, &count, &len, NULL, 0); 1283 if (count < 1) 1284 return -1; 1285 } 1286 return count; 1287 } 1288 #else 1289 // On other systems, return -1 to indicate unknown. 1290 static int computeHostNumPhysicalCores() { return -1; } 1291 #endif 1292 1293 int sys::getHostNumPhysicalCores() { 1294 static int NumCores = computeHostNumPhysicalCores(); 1295 return NumCores; 1296 } 1297 1298 #if defined(__i386__) || defined(_M_IX86) || \ 1299 defined(__x86_64__) || defined(_M_X64) 1300 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { 1301 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; 1302 unsigned MaxLevel; 1303 union { 1304 unsigned u[3]; 1305 char c[12]; 1306 } text; 1307 1308 if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) || 1309 MaxLevel < 1) 1310 return false; 1311 1312 getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX); 1313 1314 Features["cx8"] = (EDX >> 8) & 1; 1315 Features["cmov"] = (EDX >> 15) & 1; 1316 Features["mmx"] = (EDX >> 23) & 1; 1317 Features["fxsr"] = (EDX >> 24) & 1; 1318 Features["sse"] = (EDX >> 25) & 1; 1319 Features["sse2"] = (EDX >> 26) & 1; 1320 1321 Features["sse3"] = (ECX >> 0) & 1; 1322 Features["pclmul"] = (ECX >> 1) & 1; 1323 Features["ssse3"] = (ECX >> 9) & 1; 1324 Features["cx16"] = (ECX >> 13) & 1; 1325 Features["sse4.1"] = (ECX >> 19) & 1; 1326 Features["sse4.2"] = (ECX >> 20) & 1; 1327 Features["movbe"] = (ECX >> 22) & 1; 1328 Features["popcnt"] = (ECX >> 23) & 1; 1329 Features["aes"] = (ECX >> 25) & 1; 1330 Features["rdrnd"] = (ECX >> 30) & 1; 1331 1332 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV 1333 // indicates that the AVX registers will be saved and restored on context 1334 // switch, then we have full AVX support. 1335 bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) && 1336 !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6); 1337 // AVX512 requires additional context to be saved by the OS. 1338 bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0); 1339 1340 Features["avx"] = HasAVXSave; 1341 Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave; 1342 // Only enable XSAVE if OS has enabled support for saving YMM state. 1343 Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave; 1344 Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave; 1345 1346 unsigned MaxExtLevel; 1347 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX); 1348 1349 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 && 1350 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX); 1351 Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1); 1352 Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1); 1353 Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1); 1354 Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1); 1355 Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave; 1356 Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1); 1357 Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave; 1358 Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1); 1359 Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1); 1360 1361 Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1); 1362 1363 // Miscellaneous memory related features, detected by 1364 // using the 0x80000008 leaf of the CPUID instruction 1365 bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 && 1366 !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX); 1367 Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1); 1368 Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1); 1369 1370 bool HasLeaf7 = 1371 MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX); 1372 1373 Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1); 1374 Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1); 1375 Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1); 1376 // AVX2 is only supported if we have the OS save support from AVX. 1377 Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave; 1378 Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1); 1379 Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1); 1380 Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1); 1381 Features["mpx"] = HasLeaf7 && ((EBX >> 14) & 1); 1382 // AVX512 is only supported if the OS supports the context save for it. 1383 Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save; 1384 Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save; 1385 Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1); 1386 Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1); 1387 Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save; 1388 Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1); 1389 Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1); 1390 Features["avx512pf"] = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save; 1391 Features["avx512er"] = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save; 1392 Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save; 1393 Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1); 1394 Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save; 1395 Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save; 1396 1397 Features["prefetchwt1"] = HasLeaf7 && ((ECX >> 0) & 1); 1398 Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save; 1399 Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1); 1400 Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1); 1401 Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save; 1402 Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1); 1403 Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1); 1404 Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave; 1405 Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave; 1406 Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save; 1407 Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save; 1408 Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save; 1409 Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1); 1410 Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1); 1411 Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1); 1412 Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1); 1413 Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1); 1414 1415 // There are two CPUID leafs which information associated with the pconfig 1416 // instruction: 1417 // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th 1418 // bit of EDX), while the EAX=0x1b leaf returns information on the 1419 // availability of specific pconfig leafs. 1420 // The target feature here only refers to the the first of these two. 1421 // Users might need to check for the availability of specific pconfig 1422 // leaves using cpuid, since that information is ignored while 1423 // detecting features using the "-march=native" flag. 1424 // For more info, see X86 ISA docs. 1425 Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1); 1426 bool HasLeaf7Subleaf1 = 1427 MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX); 1428 Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save; 1429 1430 bool HasLeafD = MaxLevel >= 0xd && 1431 !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX); 1432 1433 // Only enable XSAVE if OS has enabled support for saving YMM state. 1434 Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave; 1435 Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave; 1436 Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave; 1437 1438 bool HasLeaf14 = MaxLevel >= 0x14 && 1439 !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX); 1440 1441 Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1); 1442 1443 return true; 1444 } 1445 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__)) 1446 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { 1447 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent(); 1448 if (!P) 1449 return false; 1450 1451 SmallVector<StringRef, 32> Lines; 1452 P->getBuffer().split(Lines, "\n"); 1453 1454 SmallVector<StringRef, 32> CPUFeatures; 1455 1456 // Look for the CPU features. 1457 for (unsigned I = 0, E = Lines.size(); I != E; ++I) 1458 if (Lines[I].startswith("Features")) { 1459 Lines[I].split(CPUFeatures, ' '); 1460 break; 1461 } 1462 1463 #if defined(__aarch64__) 1464 // Keep track of which crypto features we have seen 1465 enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 }; 1466 uint32_t crypto = 0; 1467 #endif 1468 1469 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) { 1470 StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I]) 1471 #if defined(__aarch64__) 1472 .Case("asimd", "neon") 1473 .Case("fp", "fp-armv8") 1474 .Case("crc32", "crc") 1475 #else 1476 .Case("half", "fp16") 1477 .Case("neon", "neon") 1478 .Case("vfpv3", "vfp3") 1479 .Case("vfpv3d16", "d16") 1480 .Case("vfpv4", "vfp4") 1481 .Case("idiva", "hwdiv-arm") 1482 .Case("idivt", "hwdiv") 1483 #endif 1484 .Default(""); 1485 1486 #if defined(__aarch64__) 1487 // We need to check crypto separately since we need all of the crypto 1488 // extensions to enable the subtarget feature 1489 if (CPUFeatures[I] == "aes") 1490 crypto |= CAP_AES; 1491 else if (CPUFeatures[I] == "pmull") 1492 crypto |= CAP_PMULL; 1493 else if (CPUFeatures[I] == "sha1") 1494 crypto |= CAP_SHA1; 1495 else if (CPUFeatures[I] == "sha2") 1496 crypto |= CAP_SHA2; 1497 #endif 1498 1499 if (LLVMFeatureStr != "") 1500 Features[LLVMFeatureStr] = true; 1501 } 1502 1503 #if defined(__aarch64__) 1504 // If we have all crypto bits we can add the feature 1505 if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2)) 1506 Features["crypto"] = true; 1507 #endif 1508 1509 return true; 1510 } 1511 #else 1512 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; } 1513 #endif 1514 1515 std::string sys::getProcessTriple() { 1516 std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE); 1517 Triple PT(Triple::normalize(TargetTripleString)); 1518 1519 if (sizeof(void *) == 8 && PT.isArch32Bit()) 1520 PT = PT.get64BitArchVariant(); 1521 if (sizeof(void *) == 4 && PT.isArch64Bit()) 1522 PT = PT.get32BitArchVariant(); 1523 1524 return PT.str(); 1525 } 1526