1 //===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the operating system Host concept.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Support/Host.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringMap.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/X86TargetParser.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <string.h>
24 
25 // Include the platform-specific parts of this class.
26 #ifdef LLVM_ON_UNIX
27 #include "Unix/Host.inc"
28 #include <sched.h>
29 #endif
30 #ifdef _WIN32
31 #include "Windows/Host.inc"
32 #endif
33 #ifdef _MSC_VER
34 #include <intrin.h>
35 #endif
36 #ifdef __MVS__
37 #include "llvm/Support/BCD.h"
38 #endif
39 #if defined(__APPLE__)
40 #include <mach/host_info.h>
41 #include <mach/mach.h>
42 #include <mach/mach_host.h>
43 #include <mach/machine.h>
44 #include <sys/param.h>
45 #include <sys/sysctl.h>
46 #endif
47 #ifdef _AIX
48 #include <sys/systemcfg.h>
49 #endif
50 
51 #define DEBUG_TYPE "host-detection"
52 
53 //===----------------------------------------------------------------------===//
54 //
55 //  Implementations of the CPU detection routines
56 //
57 //===----------------------------------------------------------------------===//
58 
59 using namespace llvm;
60 
61 static std::unique_ptr<llvm::MemoryBuffer>
62     LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
63   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
64       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
65   if (std::error_code EC = Text.getError()) {
66     llvm::errs() << "Can't read "
67                  << "/proc/cpuinfo: " << EC.message() << "\n";
68     return nullptr;
69   }
70   return std::move(*Text);
71 }
72 
73 StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
74   // Access to the Processor Version Register (PVR) on PowerPC is privileged,
75   // and so we must use an operating-system interface to determine the current
76   // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
77   const char *generic = "generic";
78 
79   // The cpu line is second (after the 'processor: 0' line), so if this
80   // buffer is too small then something has changed (or is wrong).
81   StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
82   StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
83 
84   StringRef::const_iterator CIP = CPUInfoStart;
85 
86   StringRef::const_iterator CPUStart = nullptr;
87   size_t CPULen = 0;
88 
89   // We need to find the first line which starts with cpu, spaces, and a colon.
90   // After the colon, there may be some additional spaces and then the cpu type.
91   while (CIP < CPUInfoEnd && CPUStart == nullptr) {
92     if (CIP < CPUInfoEnd && *CIP == '\n')
93       ++CIP;
94 
95     if (CIP < CPUInfoEnd && *CIP == 'c') {
96       ++CIP;
97       if (CIP < CPUInfoEnd && *CIP == 'p') {
98         ++CIP;
99         if (CIP < CPUInfoEnd && *CIP == 'u') {
100           ++CIP;
101           while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
102             ++CIP;
103 
104           if (CIP < CPUInfoEnd && *CIP == ':') {
105             ++CIP;
106             while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
107               ++CIP;
108 
109             if (CIP < CPUInfoEnd) {
110               CPUStart = CIP;
111               while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
112                                           *CIP != ',' && *CIP != '\n'))
113                 ++CIP;
114               CPULen = CIP - CPUStart;
115             }
116           }
117         }
118       }
119     }
120 
121     if (CPUStart == nullptr)
122       while (CIP < CPUInfoEnd && *CIP != '\n')
123         ++CIP;
124   }
125 
126   if (CPUStart == nullptr)
127     return generic;
128 
129   return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
130       .Case("604e", "604e")
131       .Case("604", "604")
132       .Case("7400", "7400")
133       .Case("7410", "7400")
134       .Case("7447", "7400")
135       .Case("7455", "7450")
136       .Case("G4", "g4")
137       .Case("POWER4", "970")
138       .Case("PPC970FX", "970")
139       .Case("PPC970MP", "970")
140       .Case("G5", "g5")
141       .Case("POWER5", "g5")
142       .Case("A2", "a2")
143       .Case("POWER6", "pwr6")
144       .Case("POWER7", "pwr7")
145       .Case("POWER8", "pwr8")
146       .Case("POWER8E", "pwr8")
147       .Case("POWER8NVL", "pwr8")
148       .Case("POWER9", "pwr9")
149       .Case("POWER10", "pwr10")
150       // FIXME: If we get a simulator or machine with the capabilities of
151       // mcpu=future, we should revisit this and add the name reported by the
152       // simulator/machine.
153       .Default(generic);
154 }
155 
156 StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
157   // The cpuid register on arm is not accessible from user space. On Linux,
158   // it is exposed through the /proc/cpuinfo file.
159 
160   // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
161   // in all cases.
162   SmallVector<StringRef, 32> Lines;
163   ProcCpuinfoContent.split(Lines, "\n");
164 
165   // Look for the CPU implementer line.
166   StringRef Implementer;
167   StringRef Hardware;
168   StringRef Part;
169   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
170     if (Lines[I].startswith("CPU implementer"))
171       Implementer = Lines[I].substr(15).ltrim("\t :");
172     if (Lines[I].startswith("Hardware"))
173       Hardware = Lines[I].substr(8).ltrim("\t :");
174     if (Lines[I].startswith("CPU part"))
175       Part = Lines[I].substr(8).ltrim("\t :");
176   }
177 
178   if (Implementer == "0x41") { // ARM Ltd.
179     // MSM8992/8994 may give cpu part for the core that the kernel is running on,
180     // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
181     if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
182       return "cortex-a53";
183 
184 
185     // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
186     // values correspond to the "Part number" in the CP15/c0 register. The
187     // contents are specified in the various processor manuals.
188     // This corresponds to the Main ID Register in Technical Reference Manuals.
189     // and is used in programs like sys-utils
190     return StringSwitch<const char *>(Part)
191         .Case("0x926", "arm926ej-s")
192         .Case("0xb02", "mpcore")
193         .Case("0xb36", "arm1136j-s")
194         .Case("0xb56", "arm1156t2-s")
195         .Case("0xb76", "arm1176jz-s")
196         .Case("0xc08", "cortex-a8")
197         .Case("0xc09", "cortex-a9")
198         .Case("0xc0f", "cortex-a15")
199         .Case("0xc20", "cortex-m0")
200         .Case("0xc23", "cortex-m3")
201         .Case("0xc24", "cortex-m4")
202         .Case("0xd22", "cortex-m55")
203         .Case("0xd02", "cortex-a34")
204         .Case("0xd04", "cortex-a35")
205         .Case("0xd03", "cortex-a53")
206         .Case("0xd07", "cortex-a57")
207         .Case("0xd08", "cortex-a72")
208         .Case("0xd09", "cortex-a73")
209         .Case("0xd0a", "cortex-a75")
210         .Case("0xd0b", "cortex-a76")
211         .Case("0xd0d", "cortex-a77")
212         .Case("0xd41", "cortex-a78")
213         .Case("0xd44", "cortex-x1")
214         .Case("0xd4c", "cortex-x1c")
215         .Case("0xd0c", "neoverse-n1")
216         .Case("0xd49", "neoverse-n2")
217         .Case("0xd40", "neoverse-v1")
218         .Default("generic");
219   }
220 
221   if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
222     return StringSwitch<const char *>(Part)
223       .Case("0x516", "thunderx2t99")
224       .Case("0x0516", "thunderx2t99")
225       .Case("0xaf", "thunderx2t99")
226       .Case("0x0af", "thunderx2t99")
227       .Case("0xa1", "thunderxt88")
228       .Case("0x0a1", "thunderxt88")
229       .Default("generic");
230   }
231 
232   if (Implementer == "0x46") { // Fujitsu Ltd.
233     return StringSwitch<const char *>(Part)
234       .Case("0x001", "a64fx")
235       .Default("generic");
236   }
237 
238   if (Implementer == "0x4e") { // NVIDIA Corporation
239     return StringSwitch<const char *>(Part)
240         .Case("0x004", "carmel")
241         .Default("generic");
242   }
243 
244   if (Implementer == "0x48") // HiSilicon Technologies, Inc.
245     // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
246     // values correspond to the "Part number" in the CP15/c0 register. The
247     // contents are specified in the various processor manuals.
248     return StringSwitch<const char *>(Part)
249       .Case("0xd01", "tsv110")
250       .Default("generic");
251 
252   if (Implementer == "0x51") // Qualcomm Technologies, Inc.
253     // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
254     // values correspond to the "Part number" in the CP15/c0 register. The
255     // contents are specified in the various processor manuals.
256     return StringSwitch<const char *>(Part)
257         .Case("0x06f", "krait") // APQ8064
258         .Case("0x201", "kryo")
259         .Case("0x205", "kryo")
260         .Case("0x211", "kryo")
261         .Case("0x800", "cortex-a73") // Kryo 2xx Gold
262         .Case("0x801", "cortex-a73") // Kryo 2xx Silver
263         .Case("0x802", "cortex-a75") // Kryo 3xx Gold
264         .Case("0x803", "cortex-a75") // Kryo 3xx Silver
265         .Case("0x804", "cortex-a76") // Kryo 4xx Gold
266         .Case("0x805", "cortex-a76") // Kryo 4xx/5xx Silver
267         .Case("0xc00", "falkor")
268         .Case("0xc01", "saphira")
269         .Default("generic");
270   if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
271     // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
272     // any predictive pattern across variants and parts.
273     unsigned Variant = 0, Part = 0;
274 
275     // Look for the CPU variant line, whose value is a 1 digit hexadecimal
276     // number, corresponding to the Variant bits in the CP15/C0 register.
277     for (auto I : Lines)
278       if (I.consume_front("CPU variant"))
279         I.ltrim("\t :").getAsInteger(0, Variant);
280 
281     // Look for the CPU part line, whose value is a 3 digit hexadecimal
282     // number, corresponding to the PartNum bits in the CP15/C0 register.
283     for (auto I : Lines)
284       if (I.consume_front("CPU part"))
285         I.ltrim("\t :").getAsInteger(0, Part);
286 
287     unsigned Exynos = (Variant << 12) | Part;
288     switch (Exynos) {
289     default:
290       // Default by falling through to Exynos M3.
291       LLVM_FALLTHROUGH;
292     case 0x1002:
293       return "exynos-m3";
294     case 0x1003:
295       return "exynos-m4";
296     }
297   }
298 
299   if (Implementer == "0xc0") { // Ampere Computing
300     return StringSwitch<const char *>(Part)
301         .Case("0xac3", "ampere1")
302         .Default("generic");
303   }
304 
305   return "generic";
306 }
307 
308 namespace {
309 StringRef getCPUNameFromS390Model(unsigned int Id, bool HaveVectorSupport) {
310   switch (Id) {
311     case 2064:  // z900 not supported by LLVM
312     case 2066:
313     case 2084:  // z990 not supported by LLVM
314     case 2086:
315     case 2094:  // z9-109 not supported by LLVM
316     case 2096:
317       return "generic";
318     case 2097:
319     case 2098:
320       return "z10";
321     case 2817:
322     case 2818:
323       return "z196";
324     case 2827:
325     case 2828:
326       return "zEC12";
327     case 2964:
328     case 2965:
329       return HaveVectorSupport? "z13" : "zEC12";
330     case 3906:
331     case 3907:
332       return HaveVectorSupport? "z14" : "zEC12";
333     case 8561:
334     case 8562:
335       return HaveVectorSupport? "z15" : "zEC12";
336     case 3931:
337     case 3932:
338     default:
339       return HaveVectorSupport? "z16" : "zEC12";
340   }
341 }
342 } // end anonymous namespace
343 
344 StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
345   // STIDP is a privileged operation, so use /proc/cpuinfo instead.
346 
347   // The "processor 0:" line comes after a fair amount of other information,
348   // including a cache breakdown, but this should be plenty.
349   SmallVector<StringRef, 32> Lines;
350   ProcCpuinfoContent.split(Lines, "\n");
351 
352   // Look for the CPU features.
353   SmallVector<StringRef, 32> CPUFeatures;
354   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
355     if (Lines[I].startswith("features")) {
356       size_t Pos = Lines[I].find(':');
357       if (Pos != StringRef::npos) {
358         Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
359         break;
360       }
361     }
362 
363   // We need to check for the presence of vector support independently of
364   // the machine type, since we may only use the vector register set when
365   // supported by the kernel (and hypervisor).
366   bool HaveVectorSupport = false;
367   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
368     if (CPUFeatures[I] == "vx")
369       HaveVectorSupport = true;
370   }
371 
372   // Now check the processor machine type.
373   for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
374     if (Lines[I].startswith("processor ")) {
375       size_t Pos = Lines[I].find("machine = ");
376       if (Pos != StringRef::npos) {
377         Pos += sizeof("machine = ") - 1;
378         unsigned int Id;
379         if (!Lines[I].drop_front(Pos).getAsInteger(10, Id))
380           return getCPUNameFromS390Model(Id, HaveVectorSupport);
381       }
382       break;
383     }
384   }
385 
386   return "generic";
387 }
388 
389 StringRef sys::detail::getHostCPUNameForBPF() {
390 #if !defined(__linux__) || !defined(__x86_64__)
391   return "generic";
392 #else
393   uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
394       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
395     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
396       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
397       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
398       /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
399       0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
400       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
401       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
402       /* BPF_EXIT_INSN() */
403       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
404 
405   uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
406       /* BPF_MOV64_IMM(BPF_REG_0, 0) */
407     { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
408       /* BPF_MOV64_IMM(BPF_REG_2, 1) */
409       0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
410       /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
411       0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
412       /* BPF_MOV64_IMM(BPF_REG_0, 1) */
413       0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
414       /* BPF_EXIT_INSN() */
415       0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
416 
417   struct bpf_prog_load_attr {
418     uint32_t prog_type;
419     uint32_t insn_cnt;
420     uint64_t insns;
421     uint64_t license;
422     uint32_t log_level;
423     uint32_t log_size;
424     uint64_t log_buf;
425     uint32_t kern_version;
426     uint32_t prog_flags;
427   } attr = {};
428   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
429   attr.insn_cnt = 5;
430   attr.insns = (uint64_t)v3_insns;
431   attr.license = (uint64_t)"DUMMY";
432 
433   int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
434                    sizeof(attr));
435   if (fd >= 0) {
436     close(fd);
437     return "v3";
438   }
439 
440   /* Clear the whole attr in case its content changed by syscall. */
441   memset(&attr, 0, sizeof(attr));
442   attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
443   attr.insn_cnt = 5;
444   attr.insns = (uint64_t)v2_insns;
445   attr.license = (uint64_t)"DUMMY";
446   fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
447   if (fd >= 0) {
448     close(fd);
449     return "v2";
450   }
451   return "v1";
452 #endif
453 }
454 
455 #if defined(__i386__) || defined(_M_IX86) || \
456     defined(__x86_64__) || defined(_M_X64)
457 
458 // The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
459 // Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
460 // support. Consequently, for i386, the presence of CPUID is checked first
461 // via the corresponding eflags bit.
462 // Removal of cpuid.h header motivated by PR30384
463 // Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
464 // or test-suite, but are used in external projects e.g. libstdcxx
465 static bool isCpuIdSupported() {
466 #if defined(__GNUC__) || defined(__clang__)
467 #if defined(__i386__)
468   int __cpuid_supported;
469   __asm__("  pushfl\n"
470           "  popl   %%eax\n"
471           "  movl   %%eax,%%ecx\n"
472           "  xorl   $0x00200000,%%eax\n"
473           "  pushl  %%eax\n"
474           "  popfl\n"
475           "  pushfl\n"
476           "  popl   %%eax\n"
477           "  movl   $0,%0\n"
478           "  cmpl   %%eax,%%ecx\n"
479           "  je     1f\n"
480           "  movl   $1,%0\n"
481           "1:"
482           : "=r"(__cpuid_supported)
483           :
484           : "eax", "ecx");
485   if (!__cpuid_supported)
486     return false;
487 #endif
488   return true;
489 #endif
490   return true;
491 }
492 
493 /// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
494 /// the specified arguments.  If we can't run cpuid on the host, return true.
495 static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
496                                unsigned *rECX, unsigned *rEDX) {
497 #if defined(__GNUC__) || defined(__clang__)
498 #if defined(__x86_64__)
499   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
500   // FIXME: should we save this for Clang?
501   __asm__("movq\t%%rbx, %%rsi\n\t"
502           "cpuid\n\t"
503           "xchgq\t%%rbx, %%rsi\n\t"
504           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
505           : "a"(value));
506   return false;
507 #elif defined(__i386__)
508   __asm__("movl\t%%ebx, %%esi\n\t"
509           "cpuid\n\t"
510           "xchgl\t%%ebx, %%esi\n\t"
511           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
512           : "a"(value));
513   return false;
514 #else
515   return true;
516 #endif
517 #elif defined(_MSC_VER)
518   // The MSVC intrinsic is portable across x86 and x64.
519   int registers[4];
520   __cpuid(registers, value);
521   *rEAX = registers[0];
522   *rEBX = registers[1];
523   *rECX = registers[2];
524   *rEDX = registers[3];
525   return false;
526 #else
527   return true;
528 #endif
529 }
530 
531 namespace llvm {
532 namespace sys {
533 namespace detail {
534 namespace x86 {
535 
536 VendorSignatures getVendorSignature(unsigned *MaxLeaf) {
537   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
538   if (MaxLeaf == nullptr)
539     MaxLeaf = &EAX;
540   else
541     *MaxLeaf = 0;
542 
543   if (!isCpuIdSupported())
544     return VendorSignatures::UNKNOWN;
545 
546   if (getX86CpuIDAndInfo(0, MaxLeaf, &EBX, &ECX, &EDX) || *MaxLeaf < 1)
547     return VendorSignatures::UNKNOWN;
548 
549   // "Genu ineI ntel"
550   if (EBX == 0x756e6547 && EDX == 0x49656e69 && ECX == 0x6c65746e)
551     return VendorSignatures::GENUINE_INTEL;
552 
553   // "Auth enti cAMD"
554   if (EBX == 0x68747541 && EDX == 0x69746e65 && ECX == 0x444d4163)
555     return VendorSignatures::AUTHENTIC_AMD;
556 
557   return VendorSignatures::UNKNOWN;
558 }
559 
560 } // namespace x86
561 } // namespace detail
562 } // namespace sys
563 } // namespace llvm
564 
565 using namespace llvm::sys::detail::x86;
566 
567 /// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
568 /// the 4 values in the specified arguments.  If we can't run cpuid on the host,
569 /// return true.
570 static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
571                                  unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
572                                  unsigned *rEDX) {
573 #if defined(__GNUC__) || defined(__clang__)
574 #if defined(__x86_64__)
575   // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
576   // FIXME: should we save this for Clang?
577   __asm__("movq\t%%rbx, %%rsi\n\t"
578           "cpuid\n\t"
579           "xchgq\t%%rbx, %%rsi\n\t"
580           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
581           : "a"(value), "c"(subleaf));
582   return false;
583 #elif defined(__i386__)
584   __asm__("movl\t%%ebx, %%esi\n\t"
585           "cpuid\n\t"
586           "xchgl\t%%ebx, %%esi\n\t"
587           : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
588           : "a"(value), "c"(subleaf));
589   return false;
590 #else
591   return true;
592 #endif
593 #elif defined(_MSC_VER)
594   int registers[4];
595   __cpuidex(registers, value, subleaf);
596   *rEAX = registers[0];
597   *rEBX = registers[1];
598   *rECX = registers[2];
599   *rEDX = registers[3];
600   return false;
601 #else
602   return true;
603 #endif
604 }
605 
606 // Read control register 0 (XCR0). Used to detect features such as AVX.
607 static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
608 #if defined(__GNUC__) || defined(__clang__)
609   // Check xgetbv; this uses a .byte sequence instead of the instruction
610   // directly because older assemblers do not include support for xgetbv and
611   // there is no easy way to conditionally compile based on the assembler used.
612   __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
613   return false;
614 #elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
615   unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
616   *rEAX = Result;
617   *rEDX = Result >> 32;
618   return false;
619 #else
620   return true;
621 #endif
622 }
623 
624 static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
625                                  unsigned *Model) {
626   *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
627   *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
628   if (*Family == 6 || *Family == 0xf) {
629     if (*Family == 0xf)
630       // Examine extended family ID if family ID is F.
631       *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
632     // Examine extended model ID if family ID is 6 or F.
633     *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
634   }
635 }
636 
637 static StringRef
638 getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
639                                 const unsigned *Features,
640                                 unsigned *Type, unsigned *Subtype) {
641   auto testFeature = [&](unsigned F) {
642     return (Features[F / 32] & (1U << (F % 32))) != 0;
643   };
644 
645   StringRef CPU;
646 
647   switch (Family) {
648   case 3:
649     CPU = "i386";
650     break;
651   case 4:
652     CPU = "i486";
653     break;
654   case 5:
655     if (testFeature(X86::FEATURE_MMX)) {
656       CPU = "pentium-mmx";
657       break;
658     }
659     CPU = "pentium";
660     break;
661   case 6:
662     switch (Model) {
663     case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
664                // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
665                // mobile processor, Intel Core 2 Extreme processor, Intel
666                // Pentium Dual-Core processor, Intel Xeon processor, model
667                // 0Fh. All processors are manufactured using the 65 nm process.
668     case 0x16: // Intel Celeron processor model 16h. All processors are
669                // manufactured using the 65 nm process
670       CPU = "core2";
671       *Type = X86::INTEL_CORE2;
672       break;
673     case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
674                // 17h. All processors are manufactured using the 45 nm process.
675                //
676                // 45nm: Penryn , Wolfdale, Yorkfield (XE)
677     case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
678                // the 45 nm process.
679       CPU = "penryn";
680       *Type = X86::INTEL_CORE2;
681       break;
682     case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
683                // processors are manufactured using the 45 nm process.
684     case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
685                // As found in a Summer 2010 model iMac.
686     case 0x1f:
687     case 0x2e:              // Nehalem EX
688       CPU = "nehalem";
689       *Type = X86::INTEL_COREI7;
690       *Subtype = X86::INTEL_COREI7_NEHALEM;
691       break;
692     case 0x25: // Intel Core i7, laptop version.
693     case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
694                // processors are manufactured using the 32 nm process.
695     case 0x2f: // Westmere EX
696       CPU = "westmere";
697       *Type = X86::INTEL_COREI7;
698       *Subtype = X86::INTEL_COREI7_WESTMERE;
699       break;
700     case 0x2a: // Intel Core i7 processor. All processors are manufactured
701                // using the 32 nm process.
702     case 0x2d:
703       CPU = "sandybridge";
704       *Type = X86::INTEL_COREI7;
705       *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
706       break;
707     case 0x3a:
708     case 0x3e:              // Ivy Bridge EP
709       CPU = "ivybridge";
710       *Type = X86::INTEL_COREI7;
711       *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
712       break;
713 
714     // Haswell:
715     case 0x3c:
716     case 0x3f:
717     case 0x45:
718     case 0x46:
719       CPU = "haswell";
720       *Type = X86::INTEL_COREI7;
721       *Subtype = X86::INTEL_COREI7_HASWELL;
722       break;
723 
724     // Broadwell:
725     case 0x3d:
726     case 0x47:
727     case 0x4f:
728     case 0x56:
729       CPU = "broadwell";
730       *Type = X86::INTEL_COREI7;
731       *Subtype = X86::INTEL_COREI7_BROADWELL;
732       break;
733 
734     // Skylake:
735     case 0x4e:              // Skylake mobile
736     case 0x5e:              // Skylake desktop
737     case 0x8e:              // Kaby Lake mobile
738     case 0x9e:              // Kaby Lake desktop
739     case 0xa5:              // Comet Lake-H/S
740     case 0xa6:              // Comet Lake-U
741       CPU = "skylake";
742       *Type = X86::INTEL_COREI7;
743       *Subtype = X86::INTEL_COREI7_SKYLAKE;
744       break;
745 
746     // Rocketlake:
747     case 0xa7:
748       CPU = "rocketlake";
749       *Type = X86::INTEL_COREI7;
750       *Subtype = X86::INTEL_COREI7_ROCKETLAKE;
751       break;
752 
753     // Skylake Xeon:
754     case 0x55:
755       *Type = X86::INTEL_COREI7;
756       if (testFeature(X86::FEATURE_AVX512BF16)) {
757         CPU = "cooperlake";
758         *Subtype = X86::INTEL_COREI7_COOPERLAKE;
759       } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
760         CPU = "cascadelake";
761         *Subtype = X86::INTEL_COREI7_CASCADELAKE;
762       } else {
763         CPU = "skylake-avx512";
764         *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
765       }
766       break;
767 
768     // Cannonlake:
769     case 0x66:
770       CPU = "cannonlake";
771       *Type = X86::INTEL_COREI7;
772       *Subtype = X86::INTEL_COREI7_CANNONLAKE;
773       break;
774 
775     // Icelake:
776     case 0x7d:
777     case 0x7e:
778       CPU = "icelake-client";
779       *Type = X86::INTEL_COREI7;
780       *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
781       break;
782 
783     // Tigerlake:
784     case 0x8c:
785     case 0x8d:
786       CPU = "tigerlake";
787       *Type = X86::INTEL_COREI7;
788       *Subtype = X86::INTEL_COREI7_TIGERLAKE;
789       break;
790 
791     // Alderlake:
792     case 0x97:
793     case 0x9a:
794       CPU = "alderlake";
795       *Type = X86::INTEL_COREI7;
796       *Subtype = X86::INTEL_COREI7_ALDERLAKE;
797       break;
798 
799     // Icelake Xeon:
800     case 0x6a:
801     case 0x6c:
802       CPU = "icelake-server";
803       *Type = X86::INTEL_COREI7;
804       *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER;
805       break;
806 
807     // Sapphire Rapids:
808     case 0x8f:
809       CPU = "sapphirerapids";
810       *Type = X86::INTEL_COREI7;
811       *Subtype = X86::INTEL_COREI7_SAPPHIRERAPIDS;
812       break;
813 
814     case 0x1c: // Most 45 nm Intel Atom processors
815     case 0x26: // 45 nm Atom Lincroft
816     case 0x27: // 32 nm Atom Medfield
817     case 0x35: // 32 nm Atom Midview
818     case 0x36: // 32 nm Atom Midview
819       CPU = "bonnell";
820       *Type = X86::INTEL_BONNELL;
821       break;
822 
823     // Atom Silvermont codes from the Intel software optimization guide.
824     case 0x37:
825     case 0x4a:
826     case 0x4d:
827     case 0x5a:
828     case 0x5d:
829     case 0x4c: // really airmont
830       CPU = "silvermont";
831       *Type = X86::INTEL_SILVERMONT;
832       break;
833     // Goldmont:
834     case 0x5c: // Apollo Lake
835     case 0x5f: // Denverton
836       CPU = "goldmont";
837       *Type = X86::INTEL_GOLDMONT;
838       break;
839     case 0x7a:
840       CPU = "goldmont-plus";
841       *Type = X86::INTEL_GOLDMONT_PLUS;
842       break;
843     case 0x86:
844       CPU = "tremont";
845       *Type = X86::INTEL_TREMONT;
846       break;
847 
848     // Xeon Phi (Knights Landing + Knights Mill):
849     case 0x57:
850       CPU = "knl";
851       *Type = X86::INTEL_KNL;
852       break;
853     case 0x85:
854       CPU = "knm";
855       *Type = X86::INTEL_KNM;
856       break;
857 
858     default: // Unknown family 6 CPU, try to guess.
859       // Don't both with Type/Subtype here, they aren't used by the caller.
860       // They're used above to keep the code in sync with compiler-rt.
861       // TODO detect tigerlake host from model
862       if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) {
863         CPU = "tigerlake";
864       } else if (testFeature(X86::FEATURE_AVX512VBMI2)) {
865         CPU = "icelake-client";
866       } else if (testFeature(X86::FEATURE_AVX512VBMI)) {
867         CPU = "cannonlake";
868       } else if (testFeature(X86::FEATURE_AVX512BF16)) {
869         CPU = "cooperlake";
870       } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
871         CPU = "cascadelake";
872       } else if (testFeature(X86::FEATURE_AVX512VL)) {
873         CPU = "skylake-avx512";
874       } else if (testFeature(X86::FEATURE_AVX512ER)) {
875         CPU = "knl";
876       } else if (testFeature(X86::FEATURE_CLFLUSHOPT)) {
877         if (testFeature(X86::FEATURE_SHA))
878           CPU = "goldmont";
879         else
880           CPU = "skylake";
881       } else if (testFeature(X86::FEATURE_ADX)) {
882         CPU = "broadwell";
883       } else if (testFeature(X86::FEATURE_AVX2)) {
884         CPU = "haswell";
885       } else if (testFeature(X86::FEATURE_AVX)) {
886         CPU = "sandybridge";
887       } else if (testFeature(X86::FEATURE_SSE4_2)) {
888         if (testFeature(X86::FEATURE_MOVBE))
889           CPU = "silvermont";
890         else
891           CPU = "nehalem";
892       } else if (testFeature(X86::FEATURE_SSE4_1)) {
893         CPU = "penryn";
894       } else if (testFeature(X86::FEATURE_SSSE3)) {
895         if (testFeature(X86::FEATURE_MOVBE))
896           CPU = "bonnell";
897         else
898           CPU = "core2";
899       } else if (testFeature(X86::FEATURE_64BIT)) {
900         CPU = "core2";
901       } else if (testFeature(X86::FEATURE_SSE3)) {
902         CPU = "yonah";
903       } else if (testFeature(X86::FEATURE_SSE2)) {
904         CPU = "pentium-m";
905       } else if (testFeature(X86::FEATURE_SSE)) {
906         CPU = "pentium3";
907       } else if (testFeature(X86::FEATURE_MMX)) {
908         CPU = "pentium2";
909       } else {
910         CPU = "pentiumpro";
911       }
912       break;
913     }
914     break;
915   case 15: {
916     if (testFeature(X86::FEATURE_64BIT)) {
917       CPU = "nocona";
918       break;
919     }
920     if (testFeature(X86::FEATURE_SSE3)) {
921       CPU = "prescott";
922       break;
923     }
924     CPU = "pentium4";
925     break;
926   }
927   default:
928     break; // Unknown.
929   }
930 
931   return CPU;
932 }
933 
934 static StringRef
935 getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
936                               const unsigned *Features,
937                               unsigned *Type, unsigned *Subtype) {
938   auto testFeature = [&](unsigned F) {
939     return (Features[F / 32] & (1U << (F % 32))) != 0;
940   };
941 
942   StringRef CPU;
943 
944   switch (Family) {
945   case 4:
946     CPU = "i486";
947     break;
948   case 5:
949     CPU = "pentium";
950     switch (Model) {
951     case 6:
952     case 7:
953       CPU = "k6";
954       break;
955     case 8:
956       CPU = "k6-2";
957       break;
958     case 9:
959     case 13:
960       CPU = "k6-3";
961       break;
962     case 10:
963       CPU = "geode";
964       break;
965     }
966     break;
967   case 6:
968     if (testFeature(X86::FEATURE_SSE)) {
969       CPU = "athlon-xp";
970       break;
971     }
972     CPU = "athlon";
973     break;
974   case 15:
975     if (testFeature(X86::FEATURE_SSE3)) {
976       CPU = "k8-sse3";
977       break;
978     }
979     CPU = "k8";
980     break;
981   case 16:
982     CPU = "amdfam10";
983     *Type = X86::AMDFAM10H; // "amdfam10"
984     switch (Model) {
985     case 2:
986       *Subtype = X86::AMDFAM10H_BARCELONA;
987       break;
988     case 4:
989       *Subtype = X86::AMDFAM10H_SHANGHAI;
990       break;
991     case 8:
992       *Subtype = X86::AMDFAM10H_ISTANBUL;
993       break;
994     }
995     break;
996   case 20:
997     CPU = "btver1";
998     *Type = X86::AMD_BTVER1;
999     break;
1000   case 21:
1001     CPU = "bdver1";
1002     *Type = X86::AMDFAM15H;
1003     if (Model >= 0x60 && Model <= 0x7f) {
1004       CPU = "bdver4";
1005       *Subtype = X86::AMDFAM15H_BDVER4;
1006       break; // 60h-7Fh: Excavator
1007     }
1008     if (Model >= 0x30 && Model <= 0x3f) {
1009       CPU = "bdver3";
1010       *Subtype = X86::AMDFAM15H_BDVER3;
1011       break; // 30h-3Fh: Steamroller
1012     }
1013     if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
1014       CPU = "bdver2";
1015       *Subtype = X86::AMDFAM15H_BDVER2;
1016       break; // 02h, 10h-1Fh: Piledriver
1017     }
1018     if (Model <= 0x0f) {
1019       *Subtype = X86::AMDFAM15H_BDVER1;
1020       break; // 00h-0Fh: Bulldozer
1021     }
1022     break;
1023   case 22:
1024     CPU = "btver2";
1025     *Type = X86::AMD_BTVER2;
1026     break;
1027   case 23:
1028     CPU = "znver1";
1029     *Type = X86::AMDFAM17H;
1030     if ((Model >= 0x30 && Model <= 0x3f) || Model == 0x71) {
1031       CPU = "znver2";
1032       *Subtype = X86::AMDFAM17H_ZNVER2;
1033       break; // 30h-3fh, 71h: Zen2
1034     }
1035     if (Model <= 0x0f) {
1036       *Subtype = X86::AMDFAM17H_ZNVER1;
1037       break; // 00h-0Fh: Zen1
1038     }
1039     break;
1040   case 25:
1041     CPU = "znver3";
1042     *Type = X86::AMDFAM19H;
1043     if (Model <= 0x0f || Model == 0x21) {
1044       *Subtype = X86::AMDFAM19H_ZNVER3;
1045       break; // 00h-0Fh, 21h: Zen3
1046     }
1047     break;
1048   default:
1049     break; // Unknown AMD CPU.
1050   }
1051 
1052   return CPU;
1053 }
1054 
1055 static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
1056                                  unsigned *Features) {
1057   unsigned EAX, EBX;
1058 
1059   auto setFeature = [&](unsigned F) {
1060     Features[F / 32] |= 1U << (F % 32);
1061   };
1062 
1063   if ((EDX >> 15) & 1)
1064     setFeature(X86::FEATURE_CMOV);
1065   if ((EDX >> 23) & 1)
1066     setFeature(X86::FEATURE_MMX);
1067   if ((EDX >> 25) & 1)
1068     setFeature(X86::FEATURE_SSE);
1069   if ((EDX >> 26) & 1)
1070     setFeature(X86::FEATURE_SSE2);
1071 
1072   if ((ECX >> 0) & 1)
1073     setFeature(X86::FEATURE_SSE3);
1074   if ((ECX >> 1) & 1)
1075     setFeature(X86::FEATURE_PCLMUL);
1076   if ((ECX >> 9) & 1)
1077     setFeature(X86::FEATURE_SSSE3);
1078   if ((ECX >> 12) & 1)
1079     setFeature(X86::FEATURE_FMA);
1080   if ((ECX >> 19) & 1)
1081     setFeature(X86::FEATURE_SSE4_1);
1082   if ((ECX >> 20) & 1) {
1083     setFeature(X86::FEATURE_SSE4_2);
1084     setFeature(X86::FEATURE_CRC32);
1085   }
1086   if ((ECX >> 23) & 1)
1087     setFeature(X86::FEATURE_POPCNT);
1088   if ((ECX >> 25) & 1)
1089     setFeature(X86::FEATURE_AES);
1090 
1091   if ((ECX >> 22) & 1)
1092     setFeature(X86::FEATURE_MOVBE);
1093 
1094   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1095   // indicates that the AVX registers will be saved and restored on context
1096   // switch, then we have full AVX support.
1097   const unsigned AVXBits = (1 << 27) | (1 << 28);
1098   bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
1099                 ((EAX & 0x6) == 0x6);
1100 #if defined(__APPLE__)
1101   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1102   // save the AVX512 context if we use AVX512 instructions, even the bit is not
1103   // set right now.
1104   bool HasAVX512Save = true;
1105 #else
1106   // AVX512 requires additional context to be saved by the OS.
1107   bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
1108 #endif
1109 
1110   if (HasAVX)
1111     setFeature(X86::FEATURE_AVX);
1112 
1113   bool HasLeaf7 =
1114       MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1115 
1116   if (HasLeaf7 && ((EBX >> 3) & 1))
1117     setFeature(X86::FEATURE_BMI);
1118   if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
1119     setFeature(X86::FEATURE_AVX2);
1120   if (HasLeaf7 && ((EBX >> 8) & 1))
1121     setFeature(X86::FEATURE_BMI2);
1122   if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
1123     setFeature(X86::FEATURE_AVX512F);
1124   if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1125     setFeature(X86::FEATURE_AVX512DQ);
1126   if (HasLeaf7 && ((EBX >> 19) & 1))
1127     setFeature(X86::FEATURE_ADX);
1128   if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1129     setFeature(X86::FEATURE_AVX512IFMA);
1130   if (HasLeaf7 && ((EBX >> 23) & 1))
1131     setFeature(X86::FEATURE_CLFLUSHOPT);
1132   if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
1133     setFeature(X86::FEATURE_AVX512PF);
1134   if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
1135     setFeature(X86::FEATURE_AVX512ER);
1136   if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1137     setFeature(X86::FEATURE_AVX512CD);
1138   if (HasLeaf7 && ((EBX >> 29) & 1))
1139     setFeature(X86::FEATURE_SHA);
1140   if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1141     setFeature(X86::FEATURE_AVX512BW);
1142   if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1143     setFeature(X86::FEATURE_AVX512VL);
1144 
1145   if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1146     setFeature(X86::FEATURE_AVX512VBMI);
1147   if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1148     setFeature(X86::FEATURE_AVX512VBMI2);
1149   if (HasLeaf7 && ((ECX >> 8) & 1))
1150     setFeature(X86::FEATURE_GFNI);
1151   if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1152     setFeature(X86::FEATURE_VPCLMULQDQ);
1153   if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1154     setFeature(X86::FEATURE_AVX512VNNI);
1155   if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1156     setFeature(X86::FEATURE_AVX512BITALG);
1157   if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1158     setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1159 
1160   if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1161     setFeature(X86::FEATURE_AVX5124VNNIW);
1162   if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1163     setFeature(X86::FEATURE_AVX5124FMAPS);
1164   if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
1165     setFeature(X86::FEATURE_AVX512VP2INTERSECT);
1166 
1167   bool HasLeaf7Subleaf1 =
1168       MaxLeaf >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1169   if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
1170     setFeature(X86::FEATURE_AVX512BF16);
1171 
1172   unsigned MaxExtLevel;
1173   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1174 
1175   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1176                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1177   if (HasExtLeaf1 && ((ECX >> 6) & 1))
1178     setFeature(X86::FEATURE_SSE4_A);
1179   if (HasExtLeaf1 && ((ECX >> 11) & 1))
1180     setFeature(X86::FEATURE_XOP);
1181   if (HasExtLeaf1 && ((ECX >> 16) & 1))
1182     setFeature(X86::FEATURE_FMA4);
1183 
1184   if (HasExtLeaf1 && ((EDX >> 29) & 1))
1185     setFeature(X86::FEATURE_64BIT);
1186 }
1187 
1188 StringRef sys::getHostCPUName() {
1189   unsigned MaxLeaf = 0;
1190   const VendorSignatures Vendor = getVendorSignature(&MaxLeaf);
1191   if (Vendor == VendorSignatures::UNKNOWN)
1192     return "generic";
1193 
1194   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1195   getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1196 
1197   unsigned Family = 0, Model = 0;
1198   unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0};
1199   detectX86FamilyModel(EAX, &Family, &Model);
1200   getAvailableFeatures(ECX, EDX, MaxLeaf, Features);
1201 
1202   // These aren't consumed in this file, but we try to keep some source code the
1203   // same or similar to compiler-rt.
1204   unsigned Type = 0;
1205   unsigned Subtype = 0;
1206 
1207   StringRef CPU;
1208 
1209   if (Vendor == VendorSignatures::GENUINE_INTEL) {
1210     CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type,
1211                                           &Subtype);
1212   } else if (Vendor == VendorSignatures::AUTHENTIC_AMD) {
1213     CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type,
1214                                         &Subtype);
1215   }
1216 
1217   if (!CPU.empty())
1218     return CPU;
1219 
1220   return "generic";
1221 }
1222 
1223 #elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
1224 StringRef sys::getHostCPUName() {
1225   host_basic_info_data_t hostInfo;
1226   mach_msg_type_number_t infoCount;
1227 
1228   infoCount = HOST_BASIC_INFO_COUNT;
1229   mach_port_t hostPort = mach_host_self();
1230   host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1231             &infoCount);
1232   mach_port_deallocate(mach_task_self(), hostPort);
1233 
1234   if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1235     return "generic";
1236 
1237   switch (hostInfo.cpu_subtype) {
1238   case CPU_SUBTYPE_POWERPC_601:
1239     return "601";
1240   case CPU_SUBTYPE_POWERPC_602:
1241     return "602";
1242   case CPU_SUBTYPE_POWERPC_603:
1243     return "603";
1244   case CPU_SUBTYPE_POWERPC_603e:
1245     return "603e";
1246   case CPU_SUBTYPE_POWERPC_603ev:
1247     return "603ev";
1248   case CPU_SUBTYPE_POWERPC_604:
1249     return "604";
1250   case CPU_SUBTYPE_POWERPC_604e:
1251     return "604e";
1252   case CPU_SUBTYPE_POWERPC_620:
1253     return "620";
1254   case CPU_SUBTYPE_POWERPC_750:
1255     return "750";
1256   case CPU_SUBTYPE_POWERPC_7400:
1257     return "7400";
1258   case CPU_SUBTYPE_POWERPC_7450:
1259     return "7450";
1260   case CPU_SUBTYPE_POWERPC_970:
1261     return "970";
1262   default:;
1263   }
1264 
1265   return "generic";
1266 }
1267 #elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
1268 StringRef sys::getHostCPUName() {
1269   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1270   StringRef Content = P ? P->getBuffer() : "";
1271   return detail::getHostCPUNameForPowerPC(Content);
1272 }
1273 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1274 StringRef sys::getHostCPUName() {
1275   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1276   StringRef Content = P ? P->getBuffer() : "";
1277   return detail::getHostCPUNameForARM(Content);
1278 }
1279 #elif defined(__linux__) && defined(__s390x__)
1280 StringRef sys::getHostCPUName() {
1281   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1282   StringRef Content = P ? P->getBuffer() : "";
1283   return detail::getHostCPUNameForS390x(Content);
1284 }
1285 #elif defined(__MVS__)
1286 StringRef sys::getHostCPUName() {
1287   // Get pointer to Communications Vector Table (CVT).
1288   // The pointer is located at offset 16 of the Prefixed Save Area (PSA).
1289   // It is stored as 31 bit pointer and will be zero-extended to 64 bit.
1290   int *StartToCVTOffset = reinterpret_cast<int *>(0x10);
1291   // Since its stored as a 31-bit pointer, get the 4 bytes from the start
1292   // of address.
1293   int ReadValue = *StartToCVTOffset;
1294   // Explicitly clear the high order bit.
1295   ReadValue = (ReadValue & 0x7FFFFFFF);
1296   char *CVT = reinterpret_cast<char *>(ReadValue);
1297   // The model number is located in the CVT prefix at offset -6 and stored as
1298   // signless packed decimal.
1299   uint16_t Id = *(uint16_t *)&CVT[-6];
1300   // Convert number to integer.
1301   Id = decodePackedBCD<uint16_t>(Id, false);
1302   // Check for vector support. It's stored in field CVTFLAG5 (offset 244),
1303   // bit CVTVEF (X'80'). The facilities list is part of the PSA but the vector
1304   // extension can only be used if bit CVTVEF is on.
1305   bool HaveVectorSupport = CVT[244] & 0x80;
1306   return getCPUNameFromS390Model(Id, HaveVectorSupport);
1307 }
1308 #elif defined(__APPLE__) && (defined(__arm__) || defined(__aarch64__))
1309 #define CPUFAMILY_ARM_SWIFT 0x1e2d6381
1310 #define CPUFAMILY_ARM_CYCLONE 0x37a09642
1311 #define CPUFAMILY_ARM_TYPHOON 0x2c91a47e
1312 #define CPUFAMILY_ARM_TWISTER 0x92fb37c8
1313 #define CPUFAMILY_ARM_HURRICANE 0x67ceee93
1314 #define CPUFAMILY_ARM_MONSOON_MISTRAL 0xe81e7ef6
1315 #define CPUFAMILY_ARM_VORTEX_TEMPEST 0x07d34b9f
1316 #define CPUFAMILY_ARM_LIGHTNING_THUNDER 0x462504d2
1317 #define CPUFAMILY_ARM_FIRESTORM_ICESTORM 0x1b588bb3
1318 
1319 StringRef sys::getHostCPUName() {
1320   uint32_t Family;
1321   size_t Length = sizeof(Family);
1322   sysctlbyname("hw.cpufamily", &Family, &Length, NULL, 0);
1323 
1324   switch (Family) {
1325   case CPUFAMILY_ARM_SWIFT:
1326     return "swift";
1327   case CPUFAMILY_ARM_CYCLONE:
1328     return "apple-a7";
1329   case CPUFAMILY_ARM_TYPHOON:
1330     return "apple-a8";
1331   case CPUFAMILY_ARM_TWISTER:
1332     return "apple-a9";
1333   case CPUFAMILY_ARM_HURRICANE:
1334     return "apple-a10";
1335   case CPUFAMILY_ARM_MONSOON_MISTRAL:
1336     return "apple-a11";
1337   case CPUFAMILY_ARM_VORTEX_TEMPEST:
1338     return "apple-a12";
1339   case CPUFAMILY_ARM_LIGHTNING_THUNDER:
1340     return "apple-a13";
1341   case CPUFAMILY_ARM_FIRESTORM_ICESTORM:
1342     return "apple-m1";
1343   default:
1344     // Default to the newest CPU we know about.
1345     return "apple-m1";
1346   }
1347 }
1348 #elif defined(_AIX)
1349 StringRef sys::getHostCPUName() {
1350   switch (_system_configuration.implementation) {
1351   case POWER_4:
1352     if (_system_configuration.version == PV_4_3)
1353       return "970";
1354     return "pwr4";
1355   case POWER_5:
1356     if (_system_configuration.version == PV_5)
1357       return "pwr5";
1358     return "pwr5x";
1359   case POWER_6:
1360     if (_system_configuration.version == PV_6_Compat)
1361       return "pwr6";
1362     return "pwr6x";
1363   case POWER_7:
1364     return "pwr7";
1365   case POWER_8:
1366     return "pwr8";
1367   case POWER_9:
1368     return "pwr9";
1369 // TODO: simplify this once the macro is available in all OS levels.
1370 #ifdef POWER_10
1371   case POWER_10:
1372 #else
1373   case 0x40000:
1374 #endif
1375     return "pwr10";
1376   default:
1377     return "generic";
1378   }
1379 }
1380 #elif defined(__riscv)
1381 StringRef sys::getHostCPUName() {
1382 #if __riscv_xlen == 64
1383   return "generic-rv64";
1384 #elif __riscv_xlen == 32
1385   return "generic-rv32";
1386 #else
1387 #error "Unhandled value of __riscv_xlen"
1388 #endif
1389 }
1390 #else
1391 StringRef sys::getHostCPUName() { return "generic"; }
1392 namespace llvm {
1393 namespace sys {
1394 namespace detail {
1395 namespace x86 {
1396 
1397 VendorSignatures getVendorSignature(unsigned *MaxLeaf) {
1398   return VendorSignatures::UNKNOWN;
1399 }
1400 
1401 } // namespace x86
1402 } // namespace detail
1403 } // namespace sys
1404 } // namespace llvm
1405 #endif
1406 
1407 #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__))
1408 // On Linux, the number of physical cores can be computed from /proc/cpuinfo,
1409 // using the number of unique physical/core id pairs. The following
1410 // implementation reads the /proc/cpuinfo format on an x86_64 system.
1411 int computeHostNumPhysicalCores() {
1412   // Enabled represents the number of physical id/core id pairs with at least
1413   // one processor id enabled by the CPU affinity mask.
1414   cpu_set_t Affinity, Enabled;
1415   if (sched_getaffinity(0, sizeof(Affinity), &Affinity) != 0)
1416     return -1;
1417   CPU_ZERO(&Enabled);
1418 
1419   // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
1420   // mmapped because it appears to have 0 size.
1421   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
1422       llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
1423   if (std::error_code EC = Text.getError()) {
1424     llvm::errs() << "Can't read "
1425                  << "/proc/cpuinfo: " << EC.message() << "\n";
1426     return -1;
1427   }
1428   SmallVector<StringRef, 8> strs;
1429   (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
1430                              /*KeepEmpty=*/false);
1431   int CurProcessor = -1;
1432   int CurPhysicalId = -1;
1433   int CurSiblings = -1;
1434   int CurCoreId = -1;
1435   for (StringRef Line : strs) {
1436     std::pair<StringRef, StringRef> Data = Line.split(':');
1437     auto Name = Data.first.trim();
1438     auto Val = Data.second.trim();
1439     // These fields are available if the kernel is configured with CONFIG_SMP.
1440     if (Name == "processor")
1441       Val.getAsInteger(10, CurProcessor);
1442     else if (Name == "physical id")
1443       Val.getAsInteger(10, CurPhysicalId);
1444     else if (Name == "siblings")
1445       Val.getAsInteger(10, CurSiblings);
1446     else if (Name == "core id") {
1447       Val.getAsInteger(10, CurCoreId);
1448       // The processor id corresponds to an index into cpu_set_t.
1449       if (CPU_ISSET(CurProcessor, &Affinity))
1450         CPU_SET(CurPhysicalId * CurSiblings + CurCoreId, &Enabled);
1451     }
1452   }
1453   return CPU_COUNT(&Enabled);
1454 }
1455 #elif defined(__linux__) && defined(__powerpc__)
1456 int computeHostNumPhysicalCores() {
1457   cpu_set_t Affinity;
1458   if (sched_getaffinity(0, sizeof(Affinity), &Affinity) == 0)
1459     return CPU_COUNT(&Affinity);
1460 
1461   // The call to sched_getaffinity() may have failed because the Affinity
1462   // mask is too small for the number of CPU's on the system (i.e. the
1463   // system has more than 1024 CPUs). Allocate a mask large enough for
1464   // twice as many CPUs.
1465   cpu_set_t *DynAffinity;
1466   DynAffinity = CPU_ALLOC(2048);
1467   if (sched_getaffinity(0, CPU_ALLOC_SIZE(2048), DynAffinity) == 0) {
1468     int NumCPUs = CPU_COUNT(DynAffinity);
1469     CPU_FREE(DynAffinity);
1470     return NumCPUs;
1471   }
1472   return -1;
1473 }
1474 #elif defined(__linux__) && defined(__s390x__)
1475 int computeHostNumPhysicalCores() { return sysconf(_SC_NPROCESSORS_ONLN); }
1476 #elif defined(__APPLE__)
1477 // Gets the number of *physical cores* on the machine.
1478 int computeHostNumPhysicalCores() {
1479   uint32_t count;
1480   size_t len = sizeof(count);
1481   sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
1482   if (count < 1) {
1483     int nm[2];
1484     nm[0] = CTL_HW;
1485     nm[1] = HW_AVAILCPU;
1486     sysctl(nm, 2, &count, &len, NULL, 0);
1487     if (count < 1)
1488       return -1;
1489   }
1490   return count;
1491 }
1492 #elif defined(__MVS__)
1493 int computeHostNumPhysicalCores() {
1494   enum {
1495     // Byte offset of the pointer to the Communications Vector Table (CVT) in
1496     // the Prefixed Save Area (PSA). The table entry is a 31-bit pointer and
1497     // will be zero-extended to uintptr_t.
1498     FLCCVT = 16,
1499     // Byte offset of the pointer to the Common System Data Area (CSD) in the
1500     // CVT. The table entry is a 31-bit pointer and will be zero-extended to
1501     // uintptr_t.
1502     CVTCSD = 660,
1503     // Byte offset to the number of live CPs in the LPAR, stored as a signed
1504     // 32-bit value in the table.
1505     CSD_NUMBER_ONLINE_STANDARD_CPS = 264,
1506   };
1507   char *PSA = 0;
1508   char *CVT = reinterpret_cast<char *>(
1509       static_cast<uintptr_t>(reinterpret_cast<unsigned int &>(PSA[FLCCVT])));
1510   char *CSD = reinterpret_cast<char *>(
1511       static_cast<uintptr_t>(reinterpret_cast<unsigned int &>(CVT[CVTCSD])));
1512   return reinterpret_cast<int &>(CSD[CSD_NUMBER_ONLINE_STANDARD_CPS]);
1513 }
1514 #elif defined(_WIN32) && LLVM_ENABLE_THREADS != 0
1515 // Defined in llvm/lib/Support/Windows/Threading.inc
1516 int computeHostNumPhysicalCores();
1517 #else
1518 // On other systems, return -1 to indicate unknown.
1519 static int computeHostNumPhysicalCores() { return -1; }
1520 #endif
1521 
1522 int sys::getHostNumPhysicalCores() {
1523   static int NumCores = computeHostNumPhysicalCores();
1524   return NumCores;
1525 }
1526 
1527 #if defined(__i386__) || defined(_M_IX86) || \
1528     defined(__x86_64__) || defined(_M_X64)
1529 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1530   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1531   unsigned MaxLevel;
1532 
1533   if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1)
1534     return false;
1535 
1536   getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1537 
1538   Features["cx8"]    = (EDX >>  8) & 1;
1539   Features["cmov"]   = (EDX >> 15) & 1;
1540   Features["mmx"]    = (EDX >> 23) & 1;
1541   Features["fxsr"]   = (EDX >> 24) & 1;
1542   Features["sse"]    = (EDX >> 25) & 1;
1543   Features["sse2"]   = (EDX >> 26) & 1;
1544 
1545   Features["sse3"]   = (ECX >>  0) & 1;
1546   Features["pclmul"] = (ECX >>  1) & 1;
1547   Features["ssse3"]  = (ECX >>  9) & 1;
1548   Features["cx16"]   = (ECX >> 13) & 1;
1549   Features["sse4.1"] = (ECX >> 19) & 1;
1550   Features["sse4.2"] = (ECX >> 20) & 1;
1551   Features["crc32"]  = Features["sse4.2"];
1552   Features["movbe"]  = (ECX >> 22) & 1;
1553   Features["popcnt"] = (ECX >> 23) & 1;
1554   Features["aes"]    = (ECX >> 25) & 1;
1555   Features["rdrnd"]  = (ECX >> 30) & 1;
1556 
1557   // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1558   // indicates that the AVX registers will be saved and restored on context
1559   // switch, then we have full AVX support.
1560   bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX);
1561   bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6);
1562 #if defined(__APPLE__)
1563   // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1564   // save the AVX512 context if we use AVX512 instructions, even the bit is not
1565   // set right now.
1566   bool HasAVX512Save = true;
1567 #else
1568   // AVX512 requires additional context to be saved by the OS.
1569   bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1570 #endif
1571   // AMX requires additional context to be saved by the OS.
1572   const unsigned AMXBits = (1 << 17) | (1 << 18);
1573   bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits);
1574 
1575   Features["avx"]   = HasAVXSave;
1576   Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
1577   // Only enable XSAVE if OS has enabled support for saving YMM state.
1578   Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1579   Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;
1580 
1581   unsigned MaxExtLevel;
1582   getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1583 
1584   bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1585                      !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1586   Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
1587   Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
1588   Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
1589   Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
1590   Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1591   Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
1592   Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1593   Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
1594   Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1595 
1596   Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);
1597 
1598   // Miscellaneous memory related features, detected by
1599   // using the 0x80000008 leaf of the CPUID instruction
1600   bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1601                      !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1602   Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
1603   Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1604 
1605   bool HasLeaf7 =
1606       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1607 
1608   Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
1609   Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
1610   Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
1611   // AVX2 is only supported if we have the OS save support from AVX.
1612   Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
1613   Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
1614   Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
1615   Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
1616   // AVX512 is only supported if the OS supports the context save for it.
1617   Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1618   Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1619   Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
1620   Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
1621   Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1622   Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1623   Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
1624   Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
1625   Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
1626   Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1627   Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
1628   Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1629   Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1630 
1631   Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
1632   Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
1633   Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
1634   Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
1635   Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
1636   Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
1637   Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
1638   Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
1639   Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1640   Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1641   Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1642   Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1643   Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
1644   Features["kl"]              = HasLeaf7 && ((ECX >> 23) & 1); // key locker
1645   Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
1646   Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
1647   Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);
1648   Features["enqcmd"]          = HasLeaf7 && ((ECX >> 29) & 1);
1649 
1650   Features["uintr"]           = HasLeaf7 && ((EDX >> 5) & 1);
1651   Features["avx512vp2intersect"] =
1652       HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
1653   Features["serialize"]       = HasLeaf7 && ((EDX >> 14) & 1);
1654   Features["tsxldtrk"]        = HasLeaf7 && ((EDX >> 16) & 1);
1655   // There are two CPUID leafs which information associated with the pconfig
1656   // instruction:
1657   // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
1658   // bit of EDX), while the EAX=0x1b leaf returns information on the
1659   // availability of specific pconfig leafs.
1660   // The target feature here only refers to the the first of these two.
1661   // Users might need to check for the availability of specific pconfig
1662   // leaves using cpuid, since that information is ignored while
1663   // detecting features using the "-march=native" flag.
1664   // For more info, see X86 ISA docs.
1665   Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
1666   Features["amx-bf16"]   = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave;
1667   Features["avx512fp16"] = HasLeaf7 && ((EDX >> 23) & 1) && HasAVX512Save;
1668   Features["amx-tile"]   = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave;
1669   Features["amx-int8"]   = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave;
1670   bool HasLeaf7Subleaf1 =
1671       MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1672   Features["avxvnni"]    = HasLeaf7Subleaf1 && ((EAX >> 4) & 1) && HasAVXSave;
1673   Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
1674   Features["hreset"]     = HasLeaf7Subleaf1 && ((EAX >> 22) & 1);
1675 
1676   bool HasLeafD = MaxLevel >= 0xd &&
1677                   !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1678 
1679   // Only enable XSAVE if OS has enabled support for saving YMM state.
1680   Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1681   Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1682   Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1683 
1684   bool HasLeaf14 = MaxLevel >= 0x14 &&
1685                   !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
1686 
1687   Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
1688 
1689   bool HasLeaf19 =
1690       MaxLevel >= 0x19 && !getX86CpuIDAndInfo(0x19, &EAX, &EBX, &ECX, &EDX);
1691   Features["widekl"] = HasLeaf7 && HasLeaf19 && ((EBX >> 2) & 1);
1692 
1693   return true;
1694 }
1695 #elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1696 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1697   std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1698   if (!P)
1699     return false;
1700 
1701   SmallVector<StringRef, 32> Lines;
1702   P->getBuffer().split(Lines, "\n");
1703 
1704   SmallVector<StringRef, 32> CPUFeatures;
1705 
1706   // Look for the CPU features.
1707   for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1708     if (Lines[I].startswith("Features")) {
1709       Lines[I].split(CPUFeatures, ' ');
1710       break;
1711     }
1712 
1713 #if defined(__aarch64__)
1714   // Keep track of which crypto features we have seen
1715   enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1716   uint32_t crypto = 0;
1717 #endif
1718 
1719   for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1720     StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1721 #if defined(__aarch64__)
1722                                    .Case("asimd", "neon")
1723                                    .Case("fp", "fp-armv8")
1724                                    .Case("crc32", "crc")
1725                                    .Case("atomics", "lse")
1726                                    .Case("sve", "sve")
1727                                    .Case("sve2", "sve2")
1728 #else
1729                                    .Case("half", "fp16")
1730                                    .Case("neon", "neon")
1731                                    .Case("vfpv3", "vfp3")
1732                                    .Case("vfpv3d16", "d16")
1733                                    .Case("vfpv4", "vfp4")
1734                                    .Case("idiva", "hwdiv-arm")
1735                                    .Case("idivt", "hwdiv")
1736 #endif
1737                                    .Default("");
1738 
1739 #if defined(__aarch64__)
1740     // We need to check crypto separately since we need all of the crypto
1741     // extensions to enable the subtarget feature
1742     if (CPUFeatures[I] == "aes")
1743       crypto |= CAP_AES;
1744     else if (CPUFeatures[I] == "pmull")
1745       crypto |= CAP_PMULL;
1746     else if (CPUFeatures[I] == "sha1")
1747       crypto |= CAP_SHA1;
1748     else if (CPUFeatures[I] == "sha2")
1749       crypto |= CAP_SHA2;
1750 #endif
1751 
1752     if (LLVMFeatureStr != "")
1753       Features[LLVMFeatureStr] = true;
1754   }
1755 
1756 #if defined(__aarch64__)
1757   // If we have all crypto bits we can add the feature
1758   if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1759     Features["crypto"] = true;
1760 #endif
1761 
1762   return true;
1763 }
1764 #elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
1765 bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
1766   if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
1767     Features["neon"] = true;
1768   if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
1769     Features["crc"] = true;
1770   if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
1771     Features["crypto"] = true;
1772 
1773   return true;
1774 }
1775 #else
1776 bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
1777 #endif
1778 
1779 std::string sys::getProcessTriple() {
1780   std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
1781   Triple PT(Triple::normalize(TargetTripleString));
1782 
1783   if (sizeof(void *) == 8 && PT.isArch32Bit())
1784     PT = PT.get64BitArchVariant();
1785   if (sizeof(void *) == 4 && PT.isArch64Bit())
1786     PT = PT.get32BitArchVariant();
1787 
1788   return PT.str();
1789 }
1790