1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <climits> 28 #include <cmath> 29 #include <cstdlib> 30 #include <cstring> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "apint" 34 35 /// A utility function for allocating memory, checking for allocation failures, 36 /// and ensuring the contents are zeroed. 37 inline static uint64_t* getClearedMemory(unsigned numWords) { 38 uint64_t *result = new uint64_t[numWords]; 39 memset(result, 0, numWords * sizeof(uint64_t)); 40 return result; 41 } 42 43 /// A utility function for allocating memory and checking for allocation 44 /// failure. The content is not zeroed. 45 inline static uint64_t* getMemory(unsigned numWords) { 46 return new uint64_t[numWords]; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(uint64_t val, bool isSigned) { 78 U.pVal = getClearedMemory(getNumWords()); 79 U.pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 U.pVal[i] = WORDTYPE_MAX; 83 clearUnusedBits(); 84 } 85 86 void APInt::initSlowCase(const APInt& that) { 87 U.pVal = getMemory(getNumWords()); 88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 89 } 90 91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 92 assert(bigVal.data() && "Null pointer detected!"); 93 if (isSingleWord()) 94 U.VAL = bigVal[0]; 95 else { 96 // Get memory, cleared to 0 97 U.pVal = getClearedMemory(getNumWords()); 98 // Calculate the number of words to copy 99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 100 // Copy the words from bigVal to pVal 101 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 102 } 103 // Make sure unused high bits are cleared 104 clearUnusedBits(); 105 } 106 107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 108 initFromArray(bigVal); 109 } 110 111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 112 : BitWidth(numBits) { 113 initFromArray(makeArrayRef(bigVal, numWords)); 114 } 115 116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 117 : BitWidth(numbits) { 118 fromString(numbits, Str, radix); 119 } 120 121 void APInt::reallocate(unsigned NewBitWidth) { 122 // If the number of words is the same we can just change the width and stop. 123 if (getNumWords() == getNumWords(NewBitWidth)) { 124 BitWidth = NewBitWidth; 125 return; 126 } 127 128 // If we have an allocation, delete it. 129 if (!isSingleWord()) 130 delete [] U.pVal; 131 132 // Update BitWidth. 133 BitWidth = NewBitWidth; 134 135 // If we are supposed to have an allocation, create it. 136 if (!isSingleWord()) 137 U.pVal = getMemory(getNumWords()); 138 } 139 140 void APInt::AssignSlowCase(const APInt& RHS) { 141 // Don't do anything for X = X 142 if (this == &RHS) 143 return; 144 145 // Adjust the bit width and handle allocations as necessary. 146 reallocate(RHS.getBitWidth()); 147 148 // Copy the data. 149 if (isSingleWord()) 150 U.VAL = RHS.U.VAL; 151 else 152 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 153 } 154 155 /// This method 'profiles' an APInt for use with FoldingSet. 156 void APInt::Profile(FoldingSetNodeID& ID) const { 157 ID.AddInteger(BitWidth); 158 159 if (isSingleWord()) { 160 ID.AddInteger(U.VAL); 161 return; 162 } 163 164 unsigned NumWords = getNumWords(); 165 for (unsigned i = 0; i < NumWords; ++i) 166 ID.AddInteger(U.pVal[i]); 167 } 168 169 /// Prefix increment operator. Increments the APInt by one. 170 APInt& APInt::operator++() { 171 if (isSingleWord()) 172 ++U.VAL; 173 else 174 tcIncrement(U.pVal, getNumWords()); 175 return clearUnusedBits(); 176 } 177 178 /// Prefix decrement operator. Decrements the APInt by one. 179 APInt& APInt::operator--() { 180 if (isSingleWord()) 181 --U.VAL; 182 else 183 tcDecrement(U.pVal, getNumWords()); 184 return clearUnusedBits(); 185 } 186 187 /// Adds the RHS APInt to this APInt. 188 /// @returns this, after addition of RHS. 189 /// Addition assignment operator. 190 APInt& APInt::operator+=(const APInt& RHS) { 191 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 192 if (isSingleWord()) 193 U.VAL += RHS.U.VAL; 194 else 195 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 196 return clearUnusedBits(); 197 } 198 199 APInt& APInt::operator+=(uint64_t RHS) { 200 if (isSingleWord()) 201 U.VAL += RHS; 202 else 203 tcAddPart(U.pVal, RHS, getNumWords()); 204 return clearUnusedBits(); 205 } 206 207 /// Subtracts the RHS APInt from this APInt 208 /// @returns this, after subtraction 209 /// Subtraction assignment operator. 210 APInt& APInt::operator-=(const APInt& RHS) { 211 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 212 if (isSingleWord()) 213 U.VAL -= RHS.U.VAL; 214 else 215 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 216 return clearUnusedBits(); 217 } 218 219 APInt& APInt::operator-=(uint64_t RHS) { 220 if (isSingleWord()) 221 U.VAL -= RHS; 222 else 223 tcSubtractPart(U.pVal, RHS, getNumWords()); 224 return clearUnusedBits(); 225 } 226 227 APInt APInt::operator*(const APInt& RHS) const { 228 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 229 if (isSingleWord()) 230 return APInt(BitWidth, U.VAL * RHS.U.VAL); 231 232 APInt Result(getMemory(getNumWords()), getBitWidth()); 233 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 234 Result.clearUnusedBits(); 235 return Result; 236 } 237 238 void APInt::AndAssignSlowCase(const APInt &RHS) { 239 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 240 for (size_t i = 0, e = getNumWords(); i != e; ++i) 241 dst[i] &= rhs[i]; 242 } 243 244 void APInt::OrAssignSlowCase(const APInt &RHS) { 245 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 246 for (size_t i = 0, e = getNumWords(); i != e; ++i) 247 dst[i] |= rhs[i]; 248 } 249 250 void APInt::XorAssignSlowCase(const APInt &RHS) { 251 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 252 for (size_t i = 0, e = getNumWords(); i != e; ++i) 253 dst[i] ^= rhs[i]; 254 } 255 256 APInt &APInt::operator*=(const APInt &RHS) { 257 *this = *this * RHS; 258 return *this; 259 } 260 261 APInt& APInt::operator*=(uint64_t RHS) { 262 if (isSingleWord()) { 263 U.VAL *= RHS; 264 } else { 265 unsigned NumWords = getNumWords(); 266 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 267 } 268 return clearUnusedBits(); 269 } 270 271 bool APInt::EqualSlowCase(const APInt& RHS) const { 272 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 273 } 274 275 int APInt::compare(const APInt& RHS) const { 276 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 277 if (isSingleWord()) 278 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 279 280 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 281 } 282 283 int APInt::compareSigned(const APInt& RHS) const { 284 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 285 if (isSingleWord()) { 286 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 287 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 288 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 289 } 290 291 bool lhsNeg = isNegative(); 292 bool rhsNeg = RHS.isNegative(); 293 294 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 295 if (lhsNeg != rhsNeg) 296 return lhsNeg ? -1 : 1; 297 298 // Otherwise we can just use an unsigned comparison, because even negative 299 // numbers compare correctly this way if both have the same signed-ness. 300 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 301 } 302 303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 304 unsigned loWord = whichWord(loBit); 305 unsigned hiWord = whichWord(hiBit); 306 307 // Create an initial mask for the low word with zeros below loBit. 308 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 309 310 // If hiBit is not aligned, we need a high mask. 311 unsigned hiShiftAmt = whichBit(hiBit); 312 if (hiShiftAmt != 0) { 313 // Create a high mask with zeros above hiBit. 314 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 315 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 316 // set the bits in hiWord. 317 if (hiWord == loWord) 318 loMask &= hiMask; 319 else 320 U.pVal[hiWord] |= hiMask; 321 } 322 // Apply the mask to the low word. 323 U.pVal[loWord] |= loMask; 324 325 // Fill any words between loWord and hiWord with all ones. 326 for (unsigned word = loWord + 1; word < hiWord; ++word) 327 U.pVal[word] = WORDTYPE_MAX; 328 } 329 330 // Complement a bignum in-place. 331 static void tcComplement(APInt::WordType *dst, unsigned parts) { 332 for (unsigned i = 0; i < parts; i++) 333 dst[i] = ~dst[i]; 334 } 335 336 /// Toggle every bit to its opposite value. 337 void APInt::flipAllBitsSlowCase() { 338 tcComplement(U.pVal, getNumWords()); 339 clearUnusedBits(); 340 } 341 342 /// Toggle a given bit to its opposite value whose position is given 343 /// as "bitPosition". 344 /// Toggles a given bit to its opposite value. 345 void APInt::flipBit(unsigned bitPosition) { 346 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 347 setBitVal(bitPosition, !(*this)[bitPosition]); 348 } 349 350 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 351 unsigned subBitWidth = subBits.getBitWidth(); 352 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && 353 "Illegal bit insertion"); 354 355 // Insertion is a direct copy. 356 if (subBitWidth == BitWidth) { 357 *this = subBits; 358 return; 359 } 360 361 // Single word result can be done as a direct bitmask. 362 if (isSingleWord()) { 363 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 364 U.VAL &= ~(mask << bitPosition); 365 U.VAL |= (subBits.U.VAL << bitPosition); 366 return; 367 } 368 369 unsigned loBit = whichBit(bitPosition); 370 unsigned loWord = whichWord(bitPosition); 371 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 372 373 // Insertion within a single word can be done as a direct bitmask. 374 if (loWord == hi1Word) { 375 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 376 U.pVal[loWord] &= ~(mask << loBit); 377 U.pVal[loWord] |= (subBits.U.VAL << loBit); 378 return; 379 } 380 381 // Insert on word boundaries. 382 if (loBit == 0) { 383 // Direct copy whole words. 384 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 385 memcpy(U.pVal + loWord, subBits.getRawData(), 386 numWholeSubWords * APINT_WORD_SIZE); 387 388 // Mask+insert remaining bits. 389 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 390 if (remainingBits != 0) { 391 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 392 U.pVal[hi1Word] &= ~mask; 393 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 394 } 395 return; 396 } 397 398 // General case - set/clear individual bits in dst based on src. 399 // TODO - there is scope for optimization here, but at the moment this code 400 // path is barely used so prefer readability over performance. 401 for (unsigned i = 0; i != subBitWidth; ++i) 402 setBitVal(bitPosition + i, subBits[i]); 403 } 404 405 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 406 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 407 subBits &= maskBits; 408 if (isSingleWord()) { 409 U.VAL &= ~(maskBits << bitPosition); 410 U.VAL |= subBits << bitPosition; 411 return; 412 } 413 414 unsigned loBit = whichBit(bitPosition); 415 unsigned loWord = whichWord(bitPosition); 416 unsigned hiWord = whichWord(bitPosition + numBits - 1); 417 if (loWord == hiWord) { 418 U.pVal[loWord] &= ~(maskBits << loBit); 419 U.pVal[loWord] |= subBits << loBit; 420 return; 421 } 422 423 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 424 unsigned wordBits = 8 * sizeof(WordType); 425 U.pVal[loWord] &= ~(maskBits << loBit); 426 U.pVal[loWord] |= subBits << loBit; 427 428 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 429 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 430 } 431 432 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 433 assert(numBits > 0 && "Can't extract zero bits"); 434 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 435 "Illegal bit extraction"); 436 437 if (isSingleWord()) 438 return APInt(numBits, U.VAL >> bitPosition); 439 440 unsigned loBit = whichBit(bitPosition); 441 unsigned loWord = whichWord(bitPosition); 442 unsigned hiWord = whichWord(bitPosition + numBits - 1); 443 444 // Single word result extracting bits from a single word source. 445 if (loWord == hiWord) 446 return APInt(numBits, U.pVal[loWord] >> loBit); 447 448 // Extracting bits that start on a source word boundary can be done 449 // as a fast memory copy. 450 if (loBit == 0) 451 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 452 453 // General case - shift + copy source words directly into place. 454 APInt Result(numBits, 0); 455 unsigned NumSrcWords = getNumWords(); 456 unsigned NumDstWords = Result.getNumWords(); 457 458 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 459 for (unsigned word = 0; word < NumDstWords; ++word) { 460 uint64_t w0 = U.pVal[loWord + word]; 461 uint64_t w1 = 462 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 463 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 464 } 465 466 return Result.clearUnusedBits(); 467 } 468 469 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 470 unsigned bitPosition) const { 471 assert(numBits > 0 && "Can't extract zero bits"); 472 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 473 "Illegal bit extraction"); 474 assert(numBits <= 64 && "Illegal bit extraction"); 475 476 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 477 if (isSingleWord()) 478 return (U.VAL >> bitPosition) & maskBits; 479 480 unsigned loBit = whichBit(bitPosition); 481 unsigned loWord = whichWord(bitPosition); 482 unsigned hiWord = whichWord(bitPosition + numBits - 1); 483 if (loWord == hiWord) 484 return (U.pVal[loWord] >> loBit) & maskBits; 485 486 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 487 unsigned wordBits = 8 * sizeof(WordType); 488 uint64_t retBits = U.pVal[loWord] >> loBit; 489 retBits |= U.pVal[hiWord] << (wordBits - loBit); 490 retBits &= maskBits; 491 return retBits; 492 } 493 494 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 495 assert(!str.empty() && "Invalid string length"); 496 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 497 radix == 36) && 498 "Radix should be 2, 8, 10, 16, or 36!"); 499 500 size_t slen = str.size(); 501 502 // Each computation below needs to know if it's negative. 503 StringRef::iterator p = str.begin(); 504 unsigned isNegative = *p == '-'; 505 if (*p == '-' || *p == '+') { 506 p++; 507 slen--; 508 assert(slen && "String is only a sign, needs a value."); 509 } 510 511 // For radixes of power-of-two values, the bits required is accurately and 512 // easily computed 513 if (radix == 2) 514 return slen + isNegative; 515 if (radix == 8) 516 return slen * 3 + isNegative; 517 if (radix == 16) 518 return slen * 4 + isNegative; 519 520 // FIXME: base 36 521 522 // This is grossly inefficient but accurate. We could probably do something 523 // with a computation of roughly slen*64/20 and then adjust by the value of 524 // the first few digits. But, I'm not sure how accurate that could be. 525 526 // Compute a sufficient number of bits that is always large enough but might 527 // be too large. This avoids the assertion in the constructor. This 528 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 529 // bits in that case. 530 unsigned sufficient 531 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 532 : (slen == 1 ? 7 : slen * 16/3); 533 534 // Convert to the actual binary value. 535 APInt tmp(sufficient, StringRef(p, slen), radix); 536 537 // Compute how many bits are required. If the log is infinite, assume we need 538 // just bit. If the log is exact and value is negative, then the value is 539 // MinSignedValue with (log + 1) bits. 540 unsigned log = tmp.logBase2(); 541 if (log == (unsigned)-1) { 542 return isNegative + 1; 543 } else if (isNegative && tmp.isPowerOf2()) { 544 return isNegative + log; 545 } else { 546 return isNegative + log + 1; 547 } 548 } 549 550 hash_code llvm::hash_value(const APInt &Arg) { 551 if (Arg.isSingleWord()) 552 return hash_combine(Arg.BitWidth, Arg.U.VAL); 553 554 return hash_combine( 555 Arg.BitWidth, 556 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 557 } 558 559 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) { 560 return static_cast<unsigned>(hash_value(Key)); 561 } 562 563 bool APInt::isSplat(unsigned SplatSizeInBits) const { 564 assert(getBitWidth() % SplatSizeInBits == 0 && 565 "SplatSizeInBits must divide width!"); 566 // We can check that all parts of an integer are equal by making use of a 567 // little trick: rotate and check if it's still the same value. 568 return *this == rotl(SplatSizeInBits); 569 } 570 571 /// This function returns the high "numBits" bits of this APInt. 572 APInt APInt::getHiBits(unsigned numBits) const { 573 return this->lshr(BitWidth - numBits); 574 } 575 576 /// This function returns the low "numBits" bits of this APInt. 577 APInt APInt::getLoBits(unsigned numBits) const { 578 APInt Result(getLowBitsSet(BitWidth, numBits)); 579 Result &= *this; 580 return Result; 581 } 582 583 /// Return a value containing V broadcasted over NewLen bits. 584 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 585 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 586 587 APInt Val = V.zextOrSelf(NewLen); 588 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 589 Val |= Val << I; 590 591 return Val; 592 } 593 594 unsigned APInt::countLeadingZerosSlowCase() const { 595 unsigned Count = 0; 596 for (int i = getNumWords()-1; i >= 0; --i) { 597 uint64_t V = U.pVal[i]; 598 if (V == 0) 599 Count += APINT_BITS_PER_WORD; 600 else { 601 Count += llvm::countLeadingZeros(V); 602 break; 603 } 604 } 605 // Adjust for unused bits in the most significant word (they are zero). 606 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 607 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 608 return Count; 609 } 610 611 unsigned APInt::countLeadingOnesSlowCase() const { 612 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 613 unsigned shift; 614 if (!highWordBits) { 615 highWordBits = APINT_BITS_PER_WORD; 616 shift = 0; 617 } else { 618 shift = APINT_BITS_PER_WORD - highWordBits; 619 } 620 int i = getNumWords() - 1; 621 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 622 if (Count == highWordBits) { 623 for (i--; i >= 0; --i) { 624 if (U.pVal[i] == WORDTYPE_MAX) 625 Count += APINT_BITS_PER_WORD; 626 else { 627 Count += llvm::countLeadingOnes(U.pVal[i]); 628 break; 629 } 630 } 631 } 632 return Count; 633 } 634 635 unsigned APInt::countTrailingZerosSlowCase() const { 636 unsigned Count = 0; 637 unsigned i = 0; 638 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 639 Count += APINT_BITS_PER_WORD; 640 if (i < getNumWords()) 641 Count += llvm::countTrailingZeros(U.pVal[i]); 642 return std::min(Count, BitWidth); 643 } 644 645 unsigned APInt::countTrailingOnesSlowCase() const { 646 unsigned Count = 0; 647 unsigned i = 0; 648 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 649 Count += APINT_BITS_PER_WORD; 650 if (i < getNumWords()) 651 Count += llvm::countTrailingOnes(U.pVal[i]); 652 assert(Count <= BitWidth); 653 return Count; 654 } 655 656 unsigned APInt::countPopulationSlowCase() const { 657 unsigned Count = 0; 658 for (unsigned i = 0; i < getNumWords(); ++i) 659 Count += llvm::countPopulation(U.pVal[i]); 660 return Count; 661 } 662 663 bool APInt::intersectsSlowCase(const APInt &RHS) const { 664 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 665 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 666 return true; 667 668 return false; 669 } 670 671 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 672 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 673 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 674 return false; 675 676 return true; 677 } 678 679 APInt APInt::byteSwap() const { 680 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 681 if (BitWidth == 16) 682 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 683 if (BitWidth == 32) 684 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 685 if (BitWidth <= 64) { 686 uint64_t Tmp1 = ByteSwap_64(U.VAL); 687 Tmp1 >>= (64 - BitWidth); 688 return APInt(BitWidth, Tmp1); 689 } 690 691 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 692 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 693 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 694 if (Result.BitWidth != BitWidth) { 695 Result.lshrInPlace(Result.BitWidth - BitWidth); 696 Result.BitWidth = BitWidth; 697 } 698 return Result; 699 } 700 701 APInt APInt::reverseBits() const { 702 switch (BitWidth) { 703 case 64: 704 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 705 case 32: 706 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 707 case 16: 708 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 709 case 8: 710 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 711 case 0: 712 return *this; 713 default: 714 break; 715 } 716 717 APInt Val(*this); 718 APInt Reversed(BitWidth, 0); 719 unsigned S = BitWidth; 720 721 for (; Val != 0; Val.lshrInPlace(1)) { 722 Reversed <<= 1; 723 Reversed |= Val[0]; 724 --S; 725 } 726 727 Reversed <<= S; 728 return Reversed; 729 } 730 731 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 732 // Fast-path a common case. 733 if (A == B) return A; 734 735 // Corner cases: if either operand is zero, the other is the gcd. 736 if (!A) return B; 737 if (!B) return A; 738 739 // Count common powers of 2 and remove all other powers of 2. 740 unsigned Pow2; 741 { 742 unsigned Pow2_A = A.countTrailingZeros(); 743 unsigned Pow2_B = B.countTrailingZeros(); 744 if (Pow2_A > Pow2_B) { 745 A.lshrInPlace(Pow2_A - Pow2_B); 746 Pow2 = Pow2_B; 747 } else if (Pow2_B > Pow2_A) { 748 B.lshrInPlace(Pow2_B - Pow2_A); 749 Pow2 = Pow2_A; 750 } else { 751 Pow2 = Pow2_A; 752 } 753 } 754 755 // Both operands are odd multiples of 2^Pow_2: 756 // 757 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 758 // 759 // This is a modified version of Stein's algorithm, taking advantage of 760 // efficient countTrailingZeros(). 761 while (A != B) { 762 if (A.ugt(B)) { 763 A -= B; 764 A.lshrInPlace(A.countTrailingZeros() - Pow2); 765 } else { 766 B -= A; 767 B.lshrInPlace(B.countTrailingZeros() - Pow2); 768 } 769 } 770 771 return A; 772 } 773 774 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 775 uint64_t I = bit_cast<uint64_t>(Double); 776 777 // Get the sign bit from the highest order bit 778 bool isNeg = I >> 63; 779 780 // Get the 11-bit exponent and adjust for the 1023 bit bias 781 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 782 783 // If the exponent is negative, the value is < 0 so just return 0. 784 if (exp < 0) 785 return APInt(width, 0u); 786 787 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 788 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 789 790 // If the exponent doesn't shift all bits out of the mantissa 791 if (exp < 52) 792 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 793 APInt(width, mantissa >> (52 - exp)); 794 795 // If the client didn't provide enough bits for us to shift the mantissa into 796 // then the result is undefined, just return 0 797 if (width <= exp - 52) 798 return APInt(width, 0); 799 800 // Otherwise, we have to shift the mantissa bits up to the right location 801 APInt Tmp(width, mantissa); 802 Tmp <<= (unsigned)exp - 52; 803 return isNeg ? -Tmp : Tmp; 804 } 805 806 /// This function converts this APInt to a double. 807 /// The layout for double is as following (IEEE Standard 754): 808 /// -------------------------------------- 809 /// | Sign Exponent Fraction Bias | 810 /// |-------------------------------------- | 811 /// | 1[63] 11[62-52] 52[51-00] 1023 | 812 /// -------------------------------------- 813 double APInt::roundToDouble(bool isSigned) const { 814 815 // Handle the simple case where the value is contained in one uint64_t. 816 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 817 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 818 if (isSigned) { 819 int64_t sext = SignExtend64(getWord(0), BitWidth); 820 return double(sext); 821 } else 822 return double(getWord(0)); 823 } 824 825 // Determine if the value is negative. 826 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 827 828 // Construct the absolute value if we're negative. 829 APInt Tmp(isNeg ? -(*this) : (*this)); 830 831 // Figure out how many bits we're using. 832 unsigned n = Tmp.getActiveBits(); 833 834 // The exponent (without bias normalization) is just the number of bits 835 // we are using. Note that the sign bit is gone since we constructed the 836 // absolute value. 837 uint64_t exp = n; 838 839 // Return infinity for exponent overflow 840 if (exp > 1023) { 841 if (!isSigned || !isNeg) 842 return std::numeric_limits<double>::infinity(); 843 else 844 return -std::numeric_limits<double>::infinity(); 845 } 846 exp += 1023; // Increment for 1023 bias 847 848 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 849 // extract the high 52 bits from the correct words in pVal. 850 uint64_t mantissa; 851 unsigned hiWord = whichWord(n-1); 852 if (hiWord == 0) { 853 mantissa = Tmp.U.pVal[0]; 854 if (n > 52) 855 mantissa >>= n - 52; // shift down, we want the top 52 bits. 856 } else { 857 assert(hiWord > 0 && "huh?"); 858 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 859 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 860 mantissa = hibits | lobits; 861 } 862 863 // The leading bit of mantissa is implicit, so get rid of it. 864 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 865 uint64_t I = sign | (exp << 52) | mantissa; 866 return bit_cast<double>(I); 867 } 868 869 // Truncate to new width. 870 APInt APInt::trunc(unsigned width) const { 871 assert(width < BitWidth && "Invalid APInt Truncate request"); 872 873 if (width <= APINT_BITS_PER_WORD) 874 return APInt(width, getRawData()[0]); 875 876 APInt Result(getMemory(getNumWords(width)), width); 877 878 // Copy full words. 879 unsigned i; 880 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 881 Result.U.pVal[i] = U.pVal[i]; 882 883 // Truncate and copy any partial word. 884 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 885 if (bits != 0) 886 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 887 888 return Result; 889 } 890 891 // Truncate to new width with unsigned saturation. 892 APInt APInt::truncUSat(unsigned width) const { 893 assert(width < BitWidth && "Invalid APInt Truncate request"); 894 895 // Can we just losslessly truncate it? 896 if (isIntN(width)) 897 return trunc(width); 898 // If not, then just return the new limit. 899 return APInt::getMaxValue(width); 900 } 901 902 // Truncate to new width with signed saturation. 903 APInt APInt::truncSSat(unsigned width) const { 904 assert(width < BitWidth && "Invalid APInt Truncate request"); 905 906 // Can we just losslessly truncate it? 907 if (isSignedIntN(width)) 908 return trunc(width); 909 // If not, then just return the new limits. 910 return isNegative() ? APInt::getSignedMinValue(width) 911 : APInt::getSignedMaxValue(width); 912 } 913 914 // Sign extend to a new width. 915 APInt APInt::sext(unsigned Width) const { 916 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 917 918 if (Width <= APINT_BITS_PER_WORD) 919 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 920 921 APInt Result(getMemory(getNumWords(Width)), Width); 922 923 // Copy words. 924 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 925 926 // Sign extend the last word since there may be unused bits in the input. 927 Result.U.pVal[getNumWords() - 1] = 928 SignExtend64(Result.U.pVal[getNumWords() - 1], 929 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 930 931 // Fill with sign bits. 932 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 933 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 934 Result.clearUnusedBits(); 935 return Result; 936 } 937 938 // Zero extend to a new width. 939 APInt APInt::zext(unsigned width) const { 940 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 941 942 if (width <= APINT_BITS_PER_WORD) 943 return APInt(width, U.VAL); 944 945 APInt Result(getMemory(getNumWords(width)), width); 946 947 // Copy words. 948 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 949 950 // Zero remaining words. 951 std::memset(Result.U.pVal + getNumWords(), 0, 952 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 953 954 return Result; 955 } 956 957 APInt APInt::zextOrTrunc(unsigned width) const { 958 if (BitWidth < width) 959 return zext(width); 960 if (BitWidth > width) 961 return trunc(width); 962 return *this; 963 } 964 965 APInt APInt::sextOrTrunc(unsigned width) const { 966 if (BitWidth < width) 967 return sext(width); 968 if (BitWidth > width) 969 return trunc(width); 970 return *this; 971 } 972 973 APInt APInt::truncOrSelf(unsigned width) const { 974 if (BitWidth > width) 975 return trunc(width); 976 return *this; 977 } 978 979 APInt APInt::zextOrSelf(unsigned width) const { 980 if (BitWidth < width) 981 return zext(width); 982 return *this; 983 } 984 985 APInt APInt::sextOrSelf(unsigned width) const { 986 if (BitWidth < width) 987 return sext(width); 988 return *this; 989 } 990 991 /// Arithmetic right-shift this APInt by shiftAmt. 992 /// Arithmetic right-shift function. 993 void APInt::ashrInPlace(const APInt &shiftAmt) { 994 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 995 } 996 997 /// Arithmetic right-shift this APInt by shiftAmt. 998 /// Arithmetic right-shift function. 999 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1000 // Don't bother performing a no-op shift. 1001 if (!ShiftAmt) 1002 return; 1003 1004 // Save the original sign bit for later. 1005 bool Negative = isNegative(); 1006 1007 // WordShift is the inter-part shift; BitShift is intra-part shift. 1008 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1009 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1010 1011 unsigned WordsToMove = getNumWords() - WordShift; 1012 if (WordsToMove != 0) { 1013 // Sign extend the last word to fill in the unused bits. 1014 U.pVal[getNumWords() - 1] = SignExtend64( 1015 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1016 1017 // Fastpath for moving by whole words. 1018 if (BitShift == 0) { 1019 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1020 } else { 1021 // Move the words containing significant bits. 1022 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1023 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1024 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1025 1026 // Handle the last word which has no high bits to copy. 1027 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1028 // Sign extend one more time. 1029 U.pVal[WordsToMove - 1] = 1030 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1031 } 1032 } 1033 1034 // Fill in the remainder based on the original sign. 1035 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1036 WordShift * APINT_WORD_SIZE); 1037 clearUnusedBits(); 1038 } 1039 1040 /// Logical right-shift this APInt by shiftAmt. 1041 /// Logical right-shift function. 1042 void APInt::lshrInPlace(const APInt &shiftAmt) { 1043 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1044 } 1045 1046 /// Logical right-shift this APInt by shiftAmt. 1047 /// Logical right-shift function. 1048 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1049 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1050 } 1051 1052 /// Left-shift this APInt by shiftAmt. 1053 /// Left-shift function. 1054 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1055 // It's undefined behavior in C to shift by BitWidth or greater. 1056 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1057 return *this; 1058 } 1059 1060 void APInt::shlSlowCase(unsigned ShiftAmt) { 1061 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1062 clearUnusedBits(); 1063 } 1064 1065 // Calculate the rotate amount modulo the bit width. 1066 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1067 if (BitWidth == 0) 1068 return 0; 1069 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1070 APInt rot = rotateAmt; 1071 if (rotBitWidth < BitWidth) { 1072 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1073 // e.g. APInt(1, 32) would give APInt(1, 0). 1074 rot = rotateAmt.zext(BitWidth); 1075 } 1076 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1077 return rot.getLimitedValue(BitWidth); 1078 } 1079 1080 APInt APInt::rotl(const APInt &rotateAmt) const { 1081 return rotl(rotateModulo(BitWidth, rotateAmt)); 1082 } 1083 1084 APInt APInt::rotl(unsigned rotateAmt) const { 1085 if (BitWidth == 0) 1086 return *this; 1087 rotateAmt %= BitWidth; 1088 if (rotateAmt == 0) 1089 return *this; 1090 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1091 } 1092 1093 APInt APInt::rotr(const APInt &rotateAmt) const { 1094 return rotr(rotateModulo(BitWidth, rotateAmt)); 1095 } 1096 1097 APInt APInt::rotr(unsigned rotateAmt) const { 1098 if (BitWidth == 0) 1099 return *this; 1100 rotateAmt %= BitWidth; 1101 if (rotateAmt == 0) 1102 return *this; 1103 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1104 } 1105 1106 /// \returns the nearest log base 2 of this APInt. Ties round up. 1107 /// 1108 /// NOTE: When we have a BitWidth of 1, we define: 1109 /// 1110 /// log2(0) = UINT32_MAX 1111 /// log2(1) = 0 1112 /// 1113 /// to get around any mathematical concerns resulting from 1114 /// referencing 2 in a space where 2 does no exist. 1115 unsigned APInt::nearestLogBase2() const { 1116 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1117 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1118 // UINT32_MAX. 1119 if (BitWidth == 1) 1120 return U.VAL - 1; 1121 1122 // Handle the zero case. 1123 if (isZero()) 1124 return UINT32_MAX; 1125 1126 // The non-zero case is handled by computing: 1127 // 1128 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1129 // 1130 // where x[i] is referring to the value of the ith bit of x. 1131 unsigned lg = logBase2(); 1132 return lg + unsigned((*this)[lg - 1]); 1133 } 1134 1135 // Square Root - this method computes and returns the square root of "this". 1136 // Three mechanisms are used for computation. For small values (<= 5 bits), 1137 // a table lookup is done. This gets some performance for common cases. For 1138 // values using less than 52 bits, the value is converted to double and then 1139 // the libc sqrt function is called. The result is rounded and then converted 1140 // back to a uint64_t which is then used to construct the result. Finally, 1141 // the Babylonian method for computing square roots is used. 1142 APInt APInt::sqrt() const { 1143 1144 // Determine the magnitude of the value. 1145 unsigned magnitude = getActiveBits(); 1146 1147 // Use a fast table for some small values. This also gets rid of some 1148 // rounding errors in libc sqrt for small values. 1149 if (magnitude <= 5) { 1150 static const uint8_t results[32] = { 1151 /* 0 */ 0, 1152 /* 1- 2 */ 1, 1, 1153 /* 3- 6 */ 2, 2, 2, 2, 1154 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1155 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1156 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1157 /* 31 */ 6 1158 }; 1159 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1160 } 1161 1162 // If the magnitude of the value fits in less than 52 bits (the precision of 1163 // an IEEE double precision floating point value), then we can use the 1164 // libc sqrt function which will probably use a hardware sqrt computation. 1165 // This should be faster than the algorithm below. 1166 if (magnitude < 52) { 1167 return APInt(BitWidth, 1168 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1169 : U.pVal[0]))))); 1170 } 1171 1172 // Okay, all the short cuts are exhausted. We must compute it. The following 1173 // is a classical Babylonian method for computing the square root. This code 1174 // was adapted to APInt from a wikipedia article on such computations. 1175 // See http://www.wikipedia.org/ and go to the page named 1176 // Calculate_an_integer_square_root. 1177 unsigned nbits = BitWidth, i = 4; 1178 APInt testy(BitWidth, 16); 1179 APInt x_old(BitWidth, 1); 1180 APInt x_new(BitWidth, 0); 1181 APInt two(BitWidth, 2); 1182 1183 // Select a good starting value using binary logarithms. 1184 for (;; i += 2, testy = testy.shl(2)) 1185 if (i >= nbits || this->ule(testy)) { 1186 x_old = x_old.shl(i / 2); 1187 break; 1188 } 1189 1190 // Use the Babylonian method to arrive at the integer square root: 1191 for (;;) { 1192 x_new = (this->udiv(x_old) + x_old).udiv(two); 1193 if (x_old.ule(x_new)) 1194 break; 1195 x_old = x_new; 1196 } 1197 1198 // Make sure we return the closest approximation 1199 // NOTE: The rounding calculation below is correct. It will produce an 1200 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1201 // determined to be a rounding issue with pari/gp as it begins to use a 1202 // floating point representation after 192 bits. There are no discrepancies 1203 // between this algorithm and pari/gp for bit widths < 192 bits. 1204 APInt square(x_old * x_old); 1205 APInt nextSquare((x_old + 1) * (x_old +1)); 1206 if (this->ult(square)) 1207 return x_old; 1208 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1209 APInt midpoint((nextSquare - square).udiv(two)); 1210 APInt offset(*this - square); 1211 if (offset.ult(midpoint)) 1212 return x_old; 1213 return x_old + 1; 1214 } 1215 1216 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1217 /// iterative extended Euclidean algorithm is used to solve for this value, 1218 /// however we simplify it to speed up calculating only the inverse, and take 1219 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1220 /// (potentially large) APInts around. 1221 /// WARNING: a value of '0' may be returned, 1222 /// signifying that no multiplicative inverse exists! 1223 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1224 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1225 1226 // Using the properties listed at the following web page (accessed 06/21/08): 1227 // http://www.numbertheory.org/php/euclid.html 1228 // (especially the properties numbered 3, 4 and 9) it can be proved that 1229 // BitWidth bits suffice for all the computations in the algorithm implemented 1230 // below. More precisely, this number of bits suffice if the multiplicative 1231 // inverse exists, but may not suffice for the general extended Euclidean 1232 // algorithm. 1233 1234 APInt r[2] = { modulo, *this }; 1235 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1236 APInt q(BitWidth, 0); 1237 1238 unsigned i; 1239 for (i = 0; r[i^1] != 0; i ^= 1) { 1240 // An overview of the math without the confusing bit-flipping: 1241 // q = r[i-2] / r[i-1] 1242 // r[i] = r[i-2] % r[i-1] 1243 // t[i] = t[i-2] - t[i-1] * q 1244 udivrem(r[i], r[i^1], q, r[i]); 1245 t[i] -= t[i^1] * q; 1246 } 1247 1248 // If this APInt and the modulo are not coprime, there is no multiplicative 1249 // inverse, so return 0. We check this by looking at the next-to-last 1250 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1251 // algorithm. 1252 if (r[i] != 1) 1253 return APInt(BitWidth, 0); 1254 1255 // The next-to-last t is the multiplicative inverse. However, we are 1256 // interested in a positive inverse. Calculate a positive one from a negative 1257 // one if necessary. A simple addition of the modulo suffices because 1258 // abs(t[i]) is known to be less than *this/2 (see the link above). 1259 if (t[i].isNegative()) 1260 t[i] += modulo; 1261 1262 return std::move(t[i]); 1263 } 1264 1265 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1266 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1267 /// variables here have the same names as in the algorithm. Comments explain 1268 /// the algorithm and any deviation from it. 1269 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1270 unsigned m, unsigned n) { 1271 assert(u && "Must provide dividend"); 1272 assert(v && "Must provide divisor"); 1273 assert(q && "Must provide quotient"); 1274 assert(u != v && u != q && v != q && "Must use different memory"); 1275 assert(n>1 && "n must be > 1"); 1276 1277 // b denotes the base of the number system. In our case b is 2^32. 1278 const uint64_t b = uint64_t(1) << 32; 1279 1280 // The DEBUG macros here tend to be spam in the debug output if you're not 1281 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1282 #ifdef KNUTH_DEBUG 1283 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1284 #else 1285 #define DEBUG_KNUTH(X) do {} while(false) 1286 #endif 1287 1288 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1289 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1290 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1291 DEBUG_KNUTH(dbgs() << " by"); 1292 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1293 DEBUG_KNUTH(dbgs() << '\n'); 1294 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1295 // u and v by d. Note that we have taken Knuth's advice here to use a power 1296 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1297 // 2 allows us to shift instead of multiply and it is easy to determine the 1298 // shift amount from the leading zeros. We are basically normalizing the u 1299 // and v so that its high bits are shifted to the top of v's range without 1300 // overflow. Note that this can require an extra word in u so that u must 1301 // be of length m+n+1. 1302 unsigned shift = countLeadingZeros(v[n-1]); 1303 uint32_t v_carry = 0; 1304 uint32_t u_carry = 0; 1305 if (shift) { 1306 for (unsigned i = 0; i < m+n; ++i) { 1307 uint32_t u_tmp = u[i] >> (32 - shift); 1308 u[i] = (u[i] << shift) | u_carry; 1309 u_carry = u_tmp; 1310 } 1311 for (unsigned i = 0; i < n; ++i) { 1312 uint32_t v_tmp = v[i] >> (32 - shift); 1313 v[i] = (v[i] << shift) | v_carry; 1314 v_carry = v_tmp; 1315 } 1316 } 1317 u[m+n] = u_carry; 1318 1319 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1320 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1321 DEBUG_KNUTH(dbgs() << " by"); 1322 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1323 DEBUG_KNUTH(dbgs() << '\n'); 1324 1325 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1326 int j = m; 1327 do { 1328 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1329 // D3. [Calculate q'.]. 1330 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1331 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1332 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1333 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1334 // on v[n-2] determines at high speed most of the cases in which the trial 1335 // value qp is one too large, and it eliminates all cases where qp is two 1336 // too large. 1337 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1338 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1339 uint64_t qp = dividend / v[n-1]; 1340 uint64_t rp = dividend % v[n-1]; 1341 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1342 qp--; 1343 rp += v[n-1]; 1344 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1345 qp--; 1346 } 1347 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1348 1349 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1350 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1351 // consists of a simple multiplication by a one-place number, combined with 1352 // a subtraction. 1353 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1354 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1355 // true value plus b**(n+1), namely as the b's complement of 1356 // the true value, and a "borrow" to the left should be remembered. 1357 int64_t borrow = 0; 1358 for (unsigned i = 0; i < n; ++i) { 1359 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1360 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1361 u[j+i] = Lo_32(subres); 1362 borrow = Hi_32(p) - Hi_32(subres); 1363 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1364 << ", borrow = " << borrow << '\n'); 1365 } 1366 bool isNeg = u[j+n] < borrow; 1367 u[j+n] -= Lo_32(borrow); 1368 1369 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1370 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1371 DEBUG_KNUTH(dbgs() << '\n'); 1372 1373 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1374 // negative, go to step D6; otherwise go on to step D7. 1375 q[j] = Lo_32(qp); 1376 if (isNeg) { 1377 // D6. [Add back]. The probability that this step is necessary is very 1378 // small, on the order of only 2/b. Make sure that test data accounts for 1379 // this possibility. Decrease q[j] by 1 1380 q[j]--; 1381 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1382 // A carry will occur to the left of u[j+n], and it should be ignored 1383 // since it cancels with the borrow that occurred in D4. 1384 bool carry = false; 1385 for (unsigned i = 0; i < n; i++) { 1386 uint32_t limit = std::min(u[j+i],v[i]); 1387 u[j+i] += v[i] + carry; 1388 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1389 } 1390 u[j+n] += carry; 1391 } 1392 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1393 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1394 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1395 1396 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1397 } while (--j >= 0); 1398 1399 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1400 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1401 DEBUG_KNUTH(dbgs() << '\n'); 1402 1403 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1404 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1405 // compute the remainder (urem uses this). 1406 if (r) { 1407 // The value d is expressed by the "shift" value above since we avoided 1408 // multiplication by d by using a shift left. So, all we have to do is 1409 // shift right here. 1410 if (shift) { 1411 uint32_t carry = 0; 1412 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1413 for (int i = n-1; i >= 0; i--) { 1414 r[i] = (u[i] >> shift) | carry; 1415 carry = u[i] << (32 - shift); 1416 DEBUG_KNUTH(dbgs() << " " << r[i]); 1417 } 1418 } else { 1419 for (int i = n-1; i >= 0; i--) { 1420 r[i] = u[i]; 1421 DEBUG_KNUTH(dbgs() << " " << r[i]); 1422 } 1423 } 1424 DEBUG_KNUTH(dbgs() << '\n'); 1425 } 1426 DEBUG_KNUTH(dbgs() << '\n'); 1427 } 1428 1429 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1430 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1431 assert(lhsWords >= rhsWords && "Fractional result"); 1432 1433 // First, compose the values into an array of 32-bit words instead of 1434 // 64-bit words. This is a necessity of both the "short division" algorithm 1435 // and the Knuth "classical algorithm" which requires there to be native 1436 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1437 // can't use 64-bit operands here because we don't have native results of 1438 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1439 // work on large-endian machines. 1440 unsigned n = rhsWords * 2; 1441 unsigned m = (lhsWords * 2) - n; 1442 1443 // Allocate space for the temporary values we need either on the stack, if 1444 // it will fit, or on the heap if it won't. 1445 uint32_t SPACE[128]; 1446 uint32_t *U = nullptr; 1447 uint32_t *V = nullptr; 1448 uint32_t *Q = nullptr; 1449 uint32_t *R = nullptr; 1450 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1451 U = &SPACE[0]; 1452 V = &SPACE[m+n+1]; 1453 Q = &SPACE[(m+n+1) + n]; 1454 if (Remainder) 1455 R = &SPACE[(m+n+1) + n + (m+n)]; 1456 } else { 1457 U = new uint32_t[m + n + 1]; 1458 V = new uint32_t[n]; 1459 Q = new uint32_t[m+n]; 1460 if (Remainder) 1461 R = new uint32_t[n]; 1462 } 1463 1464 // Initialize the dividend 1465 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1466 for (unsigned i = 0; i < lhsWords; ++i) { 1467 uint64_t tmp = LHS[i]; 1468 U[i * 2] = Lo_32(tmp); 1469 U[i * 2 + 1] = Hi_32(tmp); 1470 } 1471 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1472 1473 // Initialize the divisor 1474 memset(V, 0, (n)*sizeof(uint32_t)); 1475 for (unsigned i = 0; i < rhsWords; ++i) { 1476 uint64_t tmp = RHS[i]; 1477 V[i * 2] = Lo_32(tmp); 1478 V[i * 2 + 1] = Hi_32(tmp); 1479 } 1480 1481 // initialize the quotient and remainder 1482 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1483 if (Remainder) 1484 memset(R, 0, n * sizeof(uint32_t)); 1485 1486 // Now, adjust m and n for the Knuth division. n is the number of words in 1487 // the divisor. m is the number of words by which the dividend exceeds the 1488 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1489 // contain any zero words or the Knuth algorithm fails. 1490 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1491 n--; 1492 m++; 1493 } 1494 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1495 m--; 1496 1497 // If we're left with only a single word for the divisor, Knuth doesn't work 1498 // so we implement the short division algorithm here. This is much simpler 1499 // and faster because we are certain that we can divide a 64-bit quantity 1500 // by a 32-bit quantity at hardware speed and short division is simply a 1501 // series of such operations. This is just like doing short division but we 1502 // are using base 2^32 instead of base 10. 1503 assert(n != 0 && "Divide by zero?"); 1504 if (n == 1) { 1505 uint32_t divisor = V[0]; 1506 uint32_t remainder = 0; 1507 for (int i = m; i >= 0; i--) { 1508 uint64_t partial_dividend = Make_64(remainder, U[i]); 1509 if (partial_dividend == 0) { 1510 Q[i] = 0; 1511 remainder = 0; 1512 } else if (partial_dividend < divisor) { 1513 Q[i] = 0; 1514 remainder = Lo_32(partial_dividend); 1515 } else if (partial_dividend == divisor) { 1516 Q[i] = 1; 1517 remainder = 0; 1518 } else { 1519 Q[i] = Lo_32(partial_dividend / divisor); 1520 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1521 } 1522 } 1523 if (R) 1524 R[0] = remainder; 1525 } else { 1526 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1527 // case n > 1. 1528 KnuthDiv(U, V, Q, R, m, n); 1529 } 1530 1531 // If the caller wants the quotient 1532 if (Quotient) { 1533 for (unsigned i = 0; i < lhsWords; ++i) 1534 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1535 } 1536 1537 // If the caller wants the remainder 1538 if (Remainder) { 1539 for (unsigned i = 0; i < rhsWords; ++i) 1540 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1541 } 1542 1543 // Clean up the memory we allocated. 1544 if (U != &SPACE[0]) { 1545 delete [] U; 1546 delete [] V; 1547 delete [] Q; 1548 delete [] R; 1549 } 1550 } 1551 1552 APInt APInt::udiv(const APInt &RHS) const { 1553 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1554 1555 // First, deal with the easy case 1556 if (isSingleWord()) { 1557 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1558 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1559 } 1560 1561 // Get some facts about the LHS and RHS number of bits and words 1562 unsigned lhsWords = getNumWords(getActiveBits()); 1563 unsigned rhsBits = RHS.getActiveBits(); 1564 unsigned rhsWords = getNumWords(rhsBits); 1565 assert(rhsWords && "Divided by zero???"); 1566 1567 // Deal with some degenerate cases 1568 if (!lhsWords) 1569 // 0 / X ===> 0 1570 return APInt(BitWidth, 0); 1571 if (rhsBits == 1) 1572 // X / 1 ===> X 1573 return *this; 1574 if (lhsWords < rhsWords || this->ult(RHS)) 1575 // X / Y ===> 0, iff X < Y 1576 return APInt(BitWidth, 0); 1577 if (*this == RHS) 1578 // X / X ===> 1 1579 return APInt(BitWidth, 1); 1580 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1581 // All high words are zero, just use native divide 1582 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1583 1584 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1585 APInt Quotient(BitWidth, 0); // to hold result. 1586 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1587 return Quotient; 1588 } 1589 1590 APInt APInt::udiv(uint64_t RHS) const { 1591 assert(RHS != 0 && "Divide by zero?"); 1592 1593 // First, deal with the easy case 1594 if (isSingleWord()) 1595 return APInt(BitWidth, U.VAL / RHS); 1596 1597 // Get some facts about the LHS words. 1598 unsigned lhsWords = getNumWords(getActiveBits()); 1599 1600 // Deal with some degenerate cases 1601 if (!lhsWords) 1602 // 0 / X ===> 0 1603 return APInt(BitWidth, 0); 1604 if (RHS == 1) 1605 // X / 1 ===> X 1606 return *this; 1607 if (this->ult(RHS)) 1608 // X / Y ===> 0, iff X < Y 1609 return APInt(BitWidth, 0); 1610 if (*this == RHS) 1611 // X / X ===> 1 1612 return APInt(BitWidth, 1); 1613 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1614 // All high words are zero, just use native divide 1615 return APInt(BitWidth, this->U.pVal[0] / RHS); 1616 1617 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1618 APInt Quotient(BitWidth, 0); // to hold result. 1619 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1620 return Quotient; 1621 } 1622 1623 APInt APInt::sdiv(const APInt &RHS) const { 1624 if (isNegative()) { 1625 if (RHS.isNegative()) 1626 return (-(*this)).udiv(-RHS); 1627 return -((-(*this)).udiv(RHS)); 1628 } 1629 if (RHS.isNegative()) 1630 return -(this->udiv(-RHS)); 1631 return this->udiv(RHS); 1632 } 1633 1634 APInt APInt::sdiv(int64_t RHS) const { 1635 if (isNegative()) { 1636 if (RHS < 0) 1637 return (-(*this)).udiv(-RHS); 1638 return -((-(*this)).udiv(RHS)); 1639 } 1640 if (RHS < 0) 1641 return -(this->udiv(-RHS)); 1642 return this->udiv(RHS); 1643 } 1644 1645 APInt APInt::urem(const APInt &RHS) const { 1646 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1647 if (isSingleWord()) { 1648 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1649 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1650 } 1651 1652 // Get some facts about the LHS 1653 unsigned lhsWords = getNumWords(getActiveBits()); 1654 1655 // Get some facts about the RHS 1656 unsigned rhsBits = RHS.getActiveBits(); 1657 unsigned rhsWords = getNumWords(rhsBits); 1658 assert(rhsWords && "Performing remainder operation by zero ???"); 1659 1660 // Check the degenerate cases 1661 if (lhsWords == 0) 1662 // 0 % Y ===> 0 1663 return APInt(BitWidth, 0); 1664 if (rhsBits == 1) 1665 // X % 1 ===> 0 1666 return APInt(BitWidth, 0); 1667 if (lhsWords < rhsWords || this->ult(RHS)) 1668 // X % Y ===> X, iff X < Y 1669 return *this; 1670 if (*this == RHS) 1671 // X % X == 0; 1672 return APInt(BitWidth, 0); 1673 if (lhsWords == 1) 1674 // All high words are zero, just use native remainder 1675 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1676 1677 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1678 APInt Remainder(BitWidth, 0); 1679 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1680 return Remainder; 1681 } 1682 1683 uint64_t APInt::urem(uint64_t RHS) const { 1684 assert(RHS != 0 && "Remainder by zero?"); 1685 1686 if (isSingleWord()) 1687 return U.VAL % RHS; 1688 1689 // Get some facts about the LHS 1690 unsigned lhsWords = getNumWords(getActiveBits()); 1691 1692 // Check the degenerate cases 1693 if (lhsWords == 0) 1694 // 0 % Y ===> 0 1695 return 0; 1696 if (RHS == 1) 1697 // X % 1 ===> 0 1698 return 0; 1699 if (this->ult(RHS)) 1700 // X % Y ===> X, iff X < Y 1701 return getZExtValue(); 1702 if (*this == RHS) 1703 // X % X == 0; 1704 return 0; 1705 if (lhsWords == 1) 1706 // All high words are zero, just use native remainder 1707 return U.pVal[0] % RHS; 1708 1709 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1710 uint64_t Remainder; 1711 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1712 return Remainder; 1713 } 1714 1715 APInt APInt::srem(const APInt &RHS) const { 1716 if (isNegative()) { 1717 if (RHS.isNegative()) 1718 return -((-(*this)).urem(-RHS)); 1719 return -((-(*this)).urem(RHS)); 1720 } 1721 if (RHS.isNegative()) 1722 return this->urem(-RHS); 1723 return this->urem(RHS); 1724 } 1725 1726 int64_t APInt::srem(int64_t RHS) const { 1727 if (isNegative()) { 1728 if (RHS < 0) 1729 return -((-(*this)).urem(-RHS)); 1730 return -((-(*this)).urem(RHS)); 1731 } 1732 if (RHS < 0) 1733 return this->urem(-RHS); 1734 return this->urem(RHS); 1735 } 1736 1737 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1738 APInt &Quotient, APInt &Remainder) { 1739 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1740 unsigned BitWidth = LHS.BitWidth; 1741 1742 // First, deal with the easy case 1743 if (LHS.isSingleWord()) { 1744 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1745 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1746 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1747 Quotient = APInt(BitWidth, QuotVal); 1748 Remainder = APInt(BitWidth, RemVal); 1749 return; 1750 } 1751 1752 // Get some size facts about the dividend and divisor 1753 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1754 unsigned rhsBits = RHS.getActiveBits(); 1755 unsigned rhsWords = getNumWords(rhsBits); 1756 assert(rhsWords && "Performing divrem operation by zero ???"); 1757 1758 // Check the degenerate cases 1759 if (lhsWords == 0) { 1760 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1761 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1762 return; 1763 } 1764 1765 if (rhsBits == 1) { 1766 Quotient = LHS; // X / 1 ===> X 1767 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1768 } 1769 1770 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1771 Remainder = LHS; // X % Y ===> X, iff X < Y 1772 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1773 return; 1774 } 1775 1776 if (LHS == RHS) { 1777 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1778 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1779 return; 1780 } 1781 1782 // Make sure there is enough space to hold the results. 1783 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1784 // change the size. This is necessary if Quotient or Remainder is aliased 1785 // with LHS or RHS. 1786 Quotient.reallocate(BitWidth); 1787 Remainder.reallocate(BitWidth); 1788 1789 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1790 // There is only one word to consider so use the native versions. 1791 uint64_t lhsValue = LHS.U.pVal[0]; 1792 uint64_t rhsValue = RHS.U.pVal[0]; 1793 Quotient = lhsValue / rhsValue; 1794 Remainder = lhsValue % rhsValue; 1795 return; 1796 } 1797 1798 // Okay, lets do it the long way 1799 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1800 Remainder.U.pVal); 1801 // Clear the rest of the Quotient and Remainder. 1802 std::memset(Quotient.U.pVal + lhsWords, 0, 1803 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1804 std::memset(Remainder.U.pVal + rhsWords, 0, 1805 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1806 } 1807 1808 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1809 uint64_t &Remainder) { 1810 assert(RHS != 0 && "Divide by zero?"); 1811 unsigned BitWidth = LHS.BitWidth; 1812 1813 // First, deal with the easy case 1814 if (LHS.isSingleWord()) { 1815 uint64_t QuotVal = LHS.U.VAL / RHS; 1816 Remainder = LHS.U.VAL % RHS; 1817 Quotient = APInt(BitWidth, QuotVal); 1818 return; 1819 } 1820 1821 // Get some size facts about the dividend and divisor 1822 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1823 1824 // Check the degenerate cases 1825 if (lhsWords == 0) { 1826 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1827 Remainder = 0; // 0 % Y ===> 0 1828 return; 1829 } 1830 1831 if (RHS == 1) { 1832 Quotient = LHS; // X / 1 ===> X 1833 Remainder = 0; // X % 1 ===> 0 1834 return; 1835 } 1836 1837 if (LHS.ult(RHS)) { 1838 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1839 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1840 return; 1841 } 1842 1843 if (LHS == RHS) { 1844 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1845 Remainder = 0; // X % X ===> 0; 1846 return; 1847 } 1848 1849 // Make sure there is enough space to hold the results. 1850 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1851 // change the size. This is necessary if Quotient is aliased with LHS. 1852 Quotient.reallocate(BitWidth); 1853 1854 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1855 // There is only one word to consider so use the native versions. 1856 uint64_t lhsValue = LHS.U.pVal[0]; 1857 Quotient = lhsValue / RHS; 1858 Remainder = lhsValue % RHS; 1859 return; 1860 } 1861 1862 // Okay, lets do it the long way 1863 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1864 // Clear the rest of the Quotient. 1865 std::memset(Quotient.U.pVal + lhsWords, 0, 1866 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1867 } 1868 1869 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1870 APInt &Quotient, APInt &Remainder) { 1871 if (LHS.isNegative()) { 1872 if (RHS.isNegative()) 1873 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1874 else { 1875 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1876 Quotient.negate(); 1877 } 1878 Remainder.negate(); 1879 } else if (RHS.isNegative()) { 1880 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1881 Quotient.negate(); 1882 } else { 1883 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1884 } 1885 } 1886 1887 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1888 APInt &Quotient, int64_t &Remainder) { 1889 uint64_t R = Remainder; 1890 if (LHS.isNegative()) { 1891 if (RHS < 0) 1892 APInt::udivrem(-LHS, -RHS, Quotient, R); 1893 else { 1894 APInt::udivrem(-LHS, RHS, Quotient, R); 1895 Quotient.negate(); 1896 } 1897 R = -R; 1898 } else if (RHS < 0) { 1899 APInt::udivrem(LHS, -RHS, Quotient, R); 1900 Quotient.negate(); 1901 } else { 1902 APInt::udivrem(LHS, RHS, Quotient, R); 1903 } 1904 Remainder = R; 1905 } 1906 1907 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1908 APInt Res = *this+RHS; 1909 Overflow = isNonNegative() == RHS.isNonNegative() && 1910 Res.isNonNegative() != isNonNegative(); 1911 return Res; 1912 } 1913 1914 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1915 APInt Res = *this+RHS; 1916 Overflow = Res.ult(RHS); 1917 return Res; 1918 } 1919 1920 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1921 APInt Res = *this - RHS; 1922 Overflow = isNonNegative() != RHS.isNonNegative() && 1923 Res.isNonNegative() != isNonNegative(); 1924 return Res; 1925 } 1926 1927 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1928 APInt Res = *this-RHS; 1929 Overflow = Res.ugt(*this); 1930 return Res; 1931 } 1932 1933 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1934 // MININT/-1 --> overflow. 1935 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 1936 return sdiv(RHS); 1937 } 1938 1939 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1940 APInt Res = *this * RHS; 1941 1942 if (*this != 0 && RHS != 0) 1943 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 1944 else 1945 Overflow = false; 1946 return Res; 1947 } 1948 1949 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1950 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { 1951 Overflow = true; 1952 return *this * RHS; 1953 } 1954 1955 APInt Res = lshr(1) * RHS; 1956 Overflow = Res.isNegative(); 1957 Res <<= 1; 1958 if ((*this)[0]) { 1959 Res += RHS; 1960 if (Res.ult(RHS)) 1961 Overflow = true; 1962 } 1963 return Res; 1964 } 1965 1966 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1967 Overflow = ShAmt.uge(getBitWidth()); 1968 if (Overflow) 1969 return APInt(BitWidth, 0); 1970 1971 if (isNonNegative()) // Don't allow sign change. 1972 Overflow = ShAmt.uge(countLeadingZeros()); 1973 else 1974 Overflow = ShAmt.uge(countLeadingOnes()); 1975 1976 return *this << ShAmt; 1977 } 1978 1979 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 1980 Overflow = ShAmt.uge(getBitWidth()); 1981 if (Overflow) 1982 return APInt(BitWidth, 0); 1983 1984 Overflow = ShAmt.ugt(countLeadingZeros()); 1985 1986 return *this << ShAmt; 1987 } 1988 1989 APInt APInt::sadd_sat(const APInt &RHS) const { 1990 bool Overflow; 1991 APInt Res = sadd_ov(RHS, Overflow); 1992 if (!Overflow) 1993 return Res; 1994 1995 return isNegative() ? APInt::getSignedMinValue(BitWidth) 1996 : APInt::getSignedMaxValue(BitWidth); 1997 } 1998 1999 APInt APInt::uadd_sat(const APInt &RHS) const { 2000 bool Overflow; 2001 APInt Res = uadd_ov(RHS, Overflow); 2002 if (!Overflow) 2003 return Res; 2004 2005 return APInt::getMaxValue(BitWidth); 2006 } 2007 2008 APInt APInt::ssub_sat(const APInt &RHS) const { 2009 bool Overflow; 2010 APInt Res = ssub_ov(RHS, Overflow); 2011 if (!Overflow) 2012 return Res; 2013 2014 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2015 : APInt::getSignedMaxValue(BitWidth); 2016 } 2017 2018 APInt APInt::usub_sat(const APInt &RHS) const { 2019 bool Overflow; 2020 APInt Res = usub_ov(RHS, Overflow); 2021 if (!Overflow) 2022 return Res; 2023 2024 return APInt(BitWidth, 0); 2025 } 2026 2027 APInt APInt::smul_sat(const APInt &RHS) const { 2028 bool Overflow; 2029 APInt Res = smul_ov(RHS, Overflow); 2030 if (!Overflow) 2031 return Res; 2032 2033 // The result is negative if one and only one of inputs is negative. 2034 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2035 2036 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2037 : APInt::getSignedMaxValue(BitWidth); 2038 } 2039 2040 APInt APInt::umul_sat(const APInt &RHS) const { 2041 bool Overflow; 2042 APInt Res = umul_ov(RHS, Overflow); 2043 if (!Overflow) 2044 return Res; 2045 2046 return APInt::getMaxValue(BitWidth); 2047 } 2048 2049 APInt APInt::sshl_sat(const APInt &RHS) const { 2050 bool Overflow; 2051 APInt Res = sshl_ov(RHS, Overflow); 2052 if (!Overflow) 2053 return Res; 2054 2055 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2056 : APInt::getSignedMaxValue(BitWidth); 2057 } 2058 2059 APInt APInt::ushl_sat(const APInt &RHS) const { 2060 bool Overflow; 2061 APInt Res = ushl_ov(RHS, Overflow); 2062 if (!Overflow) 2063 return Res; 2064 2065 return APInt::getMaxValue(BitWidth); 2066 } 2067 2068 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2069 // Check our assumptions here 2070 assert(!str.empty() && "Invalid string length"); 2071 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2072 radix == 36) && 2073 "Radix should be 2, 8, 10, 16, or 36!"); 2074 2075 StringRef::iterator p = str.begin(); 2076 size_t slen = str.size(); 2077 bool isNeg = *p == '-'; 2078 if (*p == '-' || *p == '+') { 2079 p++; 2080 slen--; 2081 assert(slen && "String is only a sign, needs a value."); 2082 } 2083 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2084 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2085 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2086 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2087 "Insufficient bit width"); 2088 2089 // Allocate memory if needed 2090 if (isSingleWord()) 2091 U.VAL = 0; 2092 else 2093 U.pVal = getClearedMemory(getNumWords()); 2094 2095 // Figure out if we can shift instead of multiply 2096 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2097 2098 // Enter digit traversal loop 2099 for (StringRef::iterator e = str.end(); p != e; ++p) { 2100 unsigned digit = getDigit(*p, radix); 2101 assert(digit < radix && "Invalid character in digit string"); 2102 2103 // Shift or multiply the value by the radix 2104 if (slen > 1) { 2105 if (shift) 2106 *this <<= shift; 2107 else 2108 *this *= radix; 2109 } 2110 2111 // Add in the digit we just interpreted 2112 *this += digit; 2113 } 2114 // If its negative, put it in two's complement form 2115 if (isNeg) 2116 this->negate(); 2117 } 2118 2119 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2120 bool Signed, bool formatAsCLiteral) const { 2121 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2122 Radix == 36) && 2123 "Radix should be 2, 8, 10, 16, or 36!"); 2124 2125 const char *Prefix = ""; 2126 if (formatAsCLiteral) { 2127 switch (Radix) { 2128 case 2: 2129 // Binary literals are a non-standard extension added in gcc 4.3: 2130 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2131 Prefix = "0b"; 2132 break; 2133 case 8: 2134 Prefix = "0"; 2135 break; 2136 case 10: 2137 break; // No prefix 2138 case 16: 2139 Prefix = "0x"; 2140 break; 2141 default: 2142 llvm_unreachable("Invalid radix!"); 2143 } 2144 } 2145 2146 // First, check for a zero value and just short circuit the logic below. 2147 if (isZero()) { 2148 while (*Prefix) { 2149 Str.push_back(*Prefix); 2150 ++Prefix; 2151 }; 2152 Str.push_back('0'); 2153 return; 2154 } 2155 2156 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2157 2158 if (isSingleWord()) { 2159 char Buffer[65]; 2160 char *BufPtr = std::end(Buffer); 2161 2162 uint64_t N; 2163 if (!Signed) { 2164 N = getZExtValue(); 2165 } else { 2166 int64_t I = getSExtValue(); 2167 if (I >= 0) { 2168 N = I; 2169 } else { 2170 Str.push_back('-'); 2171 N = -(uint64_t)I; 2172 } 2173 } 2174 2175 while (*Prefix) { 2176 Str.push_back(*Prefix); 2177 ++Prefix; 2178 }; 2179 2180 while (N) { 2181 *--BufPtr = Digits[N % Radix]; 2182 N /= Radix; 2183 } 2184 Str.append(BufPtr, std::end(Buffer)); 2185 return; 2186 } 2187 2188 APInt Tmp(*this); 2189 2190 if (Signed && isNegative()) { 2191 // They want to print the signed version and it is a negative value 2192 // Flip the bits and add one to turn it into the equivalent positive 2193 // value and put a '-' in the result. 2194 Tmp.negate(); 2195 Str.push_back('-'); 2196 } 2197 2198 while (*Prefix) { 2199 Str.push_back(*Prefix); 2200 ++Prefix; 2201 }; 2202 2203 // We insert the digits backward, then reverse them to get the right order. 2204 unsigned StartDig = Str.size(); 2205 2206 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2207 // because the number of bits per digit (1, 3 and 4 respectively) divides 2208 // equally. We just shift until the value is zero. 2209 if (Radix == 2 || Radix == 8 || Radix == 16) { 2210 // Just shift tmp right for each digit width until it becomes zero 2211 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2212 unsigned MaskAmt = Radix - 1; 2213 2214 while (Tmp.getBoolValue()) { 2215 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2216 Str.push_back(Digits[Digit]); 2217 Tmp.lshrInPlace(ShiftAmt); 2218 } 2219 } else { 2220 while (Tmp.getBoolValue()) { 2221 uint64_t Digit; 2222 udivrem(Tmp, Radix, Tmp, Digit); 2223 assert(Digit < Radix && "divide failed"); 2224 Str.push_back(Digits[Digit]); 2225 } 2226 } 2227 2228 // Reverse the digits before returning. 2229 std::reverse(Str.begin()+StartDig, Str.end()); 2230 } 2231 2232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2233 LLVM_DUMP_METHOD void APInt::dump() const { 2234 SmallString<40> S, U; 2235 this->toStringUnsigned(U); 2236 this->toStringSigned(S); 2237 dbgs() << "APInt(" << BitWidth << "b, " 2238 << U << "u " << S << "s)\n"; 2239 } 2240 #endif 2241 2242 void APInt::print(raw_ostream &OS, bool isSigned) const { 2243 SmallString<40> S; 2244 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2245 OS << S; 2246 } 2247 2248 // This implements a variety of operations on a representation of 2249 // arbitrary precision, two's-complement, bignum integer values. 2250 2251 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2252 // and unrestricting assumption. 2253 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2254 "Part width must be divisible by 2!"); 2255 2256 // Returns the integer part with the least significant BITS set. 2257 // BITS cannot be zero. 2258 static inline APInt::WordType lowBitMask(unsigned bits) { 2259 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2260 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2261 } 2262 2263 /// Returns the value of the lower half of PART. 2264 static inline APInt::WordType lowHalf(APInt::WordType part) { 2265 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2266 } 2267 2268 /// Returns the value of the upper half of PART. 2269 static inline APInt::WordType highHalf(APInt::WordType part) { 2270 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2271 } 2272 2273 /// Returns the bit number of the most significant set bit of a part. 2274 /// If the input number has no bits set -1U is returned. 2275 static unsigned partMSB(APInt::WordType value) { 2276 return findLastSet(value, ZB_Max); 2277 } 2278 2279 /// Returns the bit number of the least significant set bit of a part. If the 2280 /// input number has no bits set -1U is returned. 2281 static unsigned partLSB(APInt::WordType value) { 2282 return findFirstSet(value, ZB_Max); 2283 } 2284 2285 /// Sets the least significant part of a bignum to the input value, and zeroes 2286 /// out higher parts. 2287 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2288 assert(parts > 0); 2289 dst[0] = part; 2290 for (unsigned i = 1; i < parts; i++) 2291 dst[i] = 0; 2292 } 2293 2294 /// Assign one bignum to another. 2295 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2296 for (unsigned i = 0; i < parts; i++) 2297 dst[i] = src[i]; 2298 } 2299 2300 /// Returns true if a bignum is zero, false otherwise. 2301 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2302 for (unsigned i = 0; i < parts; i++) 2303 if (src[i]) 2304 return false; 2305 2306 return true; 2307 } 2308 2309 /// Extract the given bit of a bignum; returns 0 or 1. 2310 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2311 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2312 } 2313 2314 /// Set the given bit of a bignum. 2315 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2316 parts[whichWord(bit)] |= maskBit(bit); 2317 } 2318 2319 /// Clears the given bit of a bignum. 2320 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2321 parts[whichWord(bit)] &= ~maskBit(bit); 2322 } 2323 2324 /// Returns the bit number of the least significant set bit of a number. If the 2325 /// input number has no bits set -1U is returned. 2326 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2327 for (unsigned i = 0; i < n; i++) { 2328 if (parts[i] != 0) { 2329 unsigned lsb = partLSB(parts[i]); 2330 return lsb + i * APINT_BITS_PER_WORD; 2331 } 2332 } 2333 2334 return -1U; 2335 } 2336 2337 /// Returns the bit number of the most significant set bit of a number. 2338 /// If the input number has no bits set -1U is returned. 2339 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2340 do { 2341 --n; 2342 2343 if (parts[n] != 0) { 2344 unsigned msb = partMSB(parts[n]); 2345 2346 return msb + n * APINT_BITS_PER_WORD; 2347 } 2348 } while (n); 2349 2350 return -1U; 2351 } 2352 2353 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2354 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2355 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2356 /// */ 2357 void 2358 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2359 unsigned srcBits, unsigned srcLSB) { 2360 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2361 assert(dstParts <= dstCount); 2362 2363 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2364 tcAssign(dst, src + firstSrcPart, dstParts); 2365 2366 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2367 tcShiftRight(dst, dstParts, shift); 2368 2369 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2370 // in DST. If this is less that srcBits, append the rest, else 2371 // clear the high bits. 2372 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2373 if (n < srcBits) { 2374 WordType mask = lowBitMask (srcBits - n); 2375 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2376 << n % APINT_BITS_PER_WORD); 2377 } else if (n > srcBits) { 2378 if (srcBits % APINT_BITS_PER_WORD) 2379 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2380 } 2381 2382 // Clear high parts. 2383 while (dstParts < dstCount) 2384 dst[dstParts++] = 0; 2385 } 2386 2387 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2388 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2389 WordType c, unsigned parts) { 2390 assert(c <= 1); 2391 2392 for (unsigned i = 0; i < parts; i++) { 2393 WordType l = dst[i]; 2394 if (c) { 2395 dst[i] += rhs[i] + 1; 2396 c = (dst[i] <= l); 2397 } else { 2398 dst[i] += rhs[i]; 2399 c = (dst[i] < l); 2400 } 2401 } 2402 2403 return c; 2404 } 2405 2406 /// This function adds a single "word" integer, src, to the multiple 2407 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2408 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2409 /// @returns the carry of the addition. 2410 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2411 unsigned parts) { 2412 for (unsigned i = 0; i < parts; ++i) { 2413 dst[i] += src; 2414 if (dst[i] >= src) 2415 return 0; // No need to carry so exit early. 2416 src = 1; // Carry one to next digit. 2417 } 2418 2419 return 1; 2420 } 2421 2422 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2423 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2424 WordType c, unsigned parts) { 2425 assert(c <= 1); 2426 2427 for (unsigned i = 0; i < parts; i++) { 2428 WordType l = dst[i]; 2429 if (c) { 2430 dst[i] -= rhs[i] + 1; 2431 c = (dst[i] >= l); 2432 } else { 2433 dst[i] -= rhs[i]; 2434 c = (dst[i] > l); 2435 } 2436 } 2437 2438 return c; 2439 } 2440 2441 /// This function subtracts a single "word" (64-bit word), src, from 2442 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2443 /// no further borrowing is needed or it runs out of "words" in dst. The result 2444 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2445 /// exhausted. In other words, if src > dst then this function returns 1, 2446 /// otherwise 0. 2447 /// @returns the borrow out of the subtraction 2448 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2449 unsigned parts) { 2450 for (unsigned i = 0; i < parts; ++i) { 2451 WordType Dst = dst[i]; 2452 dst[i] -= src; 2453 if (src <= Dst) 2454 return 0; // No need to borrow so exit early. 2455 src = 1; // We have to "borrow 1" from next "word" 2456 } 2457 2458 return 1; 2459 } 2460 2461 /// Negate a bignum in-place. 2462 void APInt::tcNegate(WordType *dst, unsigned parts) { 2463 tcComplement(dst, parts); 2464 tcIncrement(dst, parts); 2465 } 2466 2467 /// DST += SRC * MULTIPLIER + CARRY if add is true 2468 /// DST = SRC * MULTIPLIER + CARRY if add is false 2469 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2470 /// they must start at the same point, i.e. DST == SRC. 2471 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2472 /// returned. Otherwise DST is filled with the least significant 2473 /// DSTPARTS parts of the result, and if all of the omitted higher 2474 /// parts were zero return zero, otherwise overflow occurred and 2475 /// return one. 2476 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2477 WordType multiplier, WordType carry, 2478 unsigned srcParts, unsigned dstParts, 2479 bool add) { 2480 // Otherwise our writes of DST kill our later reads of SRC. 2481 assert(dst <= src || dst >= src + srcParts); 2482 assert(dstParts <= srcParts + 1); 2483 2484 // N loops; minimum of dstParts and srcParts. 2485 unsigned n = std::min(dstParts, srcParts); 2486 2487 for (unsigned i = 0; i < n; i++) { 2488 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2489 // This cannot overflow, because: 2490 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2491 // which is less than n^2. 2492 WordType srcPart = src[i]; 2493 WordType low, mid, high; 2494 if (multiplier == 0 || srcPart == 0) { 2495 low = carry; 2496 high = 0; 2497 } else { 2498 low = lowHalf(srcPart) * lowHalf(multiplier); 2499 high = highHalf(srcPart) * highHalf(multiplier); 2500 2501 mid = lowHalf(srcPart) * highHalf(multiplier); 2502 high += highHalf(mid); 2503 mid <<= APINT_BITS_PER_WORD / 2; 2504 if (low + mid < low) 2505 high++; 2506 low += mid; 2507 2508 mid = highHalf(srcPart) * lowHalf(multiplier); 2509 high += highHalf(mid); 2510 mid <<= APINT_BITS_PER_WORD / 2; 2511 if (low + mid < low) 2512 high++; 2513 low += mid; 2514 2515 // Now add carry. 2516 if (low + carry < low) 2517 high++; 2518 low += carry; 2519 } 2520 2521 if (add) { 2522 // And now DST[i], and store the new low part there. 2523 if (low + dst[i] < low) 2524 high++; 2525 dst[i] += low; 2526 } else 2527 dst[i] = low; 2528 2529 carry = high; 2530 } 2531 2532 if (srcParts < dstParts) { 2533 // Full multiplication, there is no overflow. 2534 assert(srcParts + 1 == dstParts); 2535 dst[srcParts] = carry; 2536 return 0; 2537 } 2538 2539 // We overflowed if there is carry. 2540 if (carry) 2541 return 1; 2542 2543 // We would overflow if any significant unwritten parts would be 2544 // non-zero. This is true if any remaining src parts are non-zero 2545 // and the multiplier is non-zero. 2546 if (multiplier) 2547 for (unsigned i = dstParts; i < srcParts; i++) 2548 if (src[i]) 2549 return 1; 2550 2551 // We fitted in the narrow destination. 2552 return 0; 2553 } 2554 2555 /// DST = LHS * RHS, where DST has the same width as the operands and 2556 /// is filled with the least significant parts of the result. Returns 2557 /// one if overflow occurred, otherwise zero. DST must be disjoint 2558 /// from both operands. 2559 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2560 const WordType *rhs, unsigned parts) { 2561 assert(dst != lhs && dst != rhs); 2562 2563 int overflow = 0; 2564 tcSet(dst, 0, parts); 2565 2566 for (unsigned i = 0; i < parts; i++) 2567 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2568 parts - i, true); 2569 2570 return overflow; 2571 } 2572 2573 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2574 /// operands. No overflow occurs. DST must be disjoint from both operands. 2575 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2576 const WordType *rhs, unsigned lhsParts, 2577 unsigned rhsParts) { 2578 // Put the narrower number on the LHS for less loops below. 2579 if (lhsParts > rhsParts) 2580 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2581 2582 assert(dst != lhs && dst != rhs); 2583 2584 tcSet(dst, 0, rhsParts); 2585 2586 for (unsigned i = 0; i < lhsParts; i++) 2587 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2588 } 2589 2590 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2591 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2592 // set REMAINDER to the remainder, return zero. i.e. 2593 // 2594 // OLD_LHS = RHS * LHS + REMAINDER 2595 // 2596 // SCRATCH is a bignum of the same size as the operands and result for 2597 // use by the routine; its contents need not be initialized and are 2598 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2599 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2600 WordType *remainder, WordType *srhs, 2601 unsigned parts) { 2602 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2603 2604 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2605 if (shiftCount == 0) 2606 return true; 2607 2608 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2609 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2610 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2611 2612 tcAssign(srhs, rhs, parts); 2613 tcShiftLeft(srhs, parts, shiftCount); 2614 tcAssign(remainder, lhs, parts); 2615 tcSet(lhs, 0, parts); 2616 2617 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2618 // total. 2619 for (;;) { 2620 int compare = tcCompare(remainder, srhs, parts); 2621 if (compare >= 0) { 2622 tcSubtract(remainder, srhs, 0, parts); 2623 lhs[n] |= mask; 2624 } 2625 2626 if (shiftCount == 0) 2627 break; 2628 shiftCount--; 2629 tcShiftRight(srhs, parts, 1); 2630 if ((mask >>= 1) == 0) { 2631 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2632 n--; 2633 } 2634 } 2635 2636 return false; 2637 } 2638 2639 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2640 /// no restrictions on Count. 2641 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2642 // Don't bother performing a no-op shift. 2643 if (!Count) 2644 return; 2645 2646 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2647 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2648 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2649 2650 // Fastpath for moving by whole words. 2651 if (BitShift == 0) { 2652 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2653 } else { 2654 while (Words-- > WordShift) { 2655 Dst[Words] = Dst[Words - WordShift] << BitShift; 2656 if (Words > WordShift) 2657 Dst[Words] |= 2658 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2659 } 2660 } 2661 2662 // Fill in the remainder with 0s. 2663 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2664 } 2665 2666 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2667 /// are no restrictions on Count. 2668 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2669 // Don't bother performing a no-op shift. 2670 if (!Count) 2671 return; 2672 2673 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2674 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2675 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2676 2677 unsigned WordsToMove = Words - WordShift; 2678 // Fastpath for moving by whole words. 2679 if (BitShift == 0) { 2680 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2681 } else { 2682 for (unsigned i = 0; i != WordsToMove; ++i) { 2683 Dst[i] = Dst[i + WordShift] >> BitShift; 2684 if (i + 1 != WordsToMove) 2685 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2686 } 2687 } 2688 2689 // Fill in the remainder with 0s. 2690 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2691 } 2692 2693 // Comparison (unsigned) of two bignums. 2694 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2695 unsigned parts) { 2696 while (parts) { 2697 parts--; 2698 if (lhs[parts] != rhs[parts]) 2699 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2700 } 2701 2702 return 0; 2703 } 2704 2705 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2706 APInt::Rounding RM) { 2707 // Currently udivrem always rounds down. 2708 switch (RM) { 2709 case APInt::Rounding::DOWN: 2710 case APInt::Rounding::TOWARD_ZERO: 2711 return A.udiv(B); 2712 case APInt::Rounding::UP: { 2713 APInt Quo, Rem; 2714 APInt::udivrem(A, B, Quo, Rem); 2715 if (Rem.isZero()) 2716 return Quo; 2717 return Quo + 1; 2718 } 2719 } 2720 llvm_unreachable("Unknown APInt::Rounding enum"); 2721 } 2722 2723 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2724 APInt::Rounding RM) { 2725 switch (RM) { 2726 case APInt::Rounding::DOWN: 2727 case APInt::Rounding::UP: { 2728 APInt Quo, Rem; 2729 APInt::sdivrem(A, B, Quo, Rem); 2730 if (Rem.isZero()) 2731 return Quo; 2732 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2733 // We want to check whether the non-integer part of the mathematical value 2734 // is negative or not. If the non-integer part is negative, we need to round 2735 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2736 // already rounded down. 2737 if (RM == APInt::Rounding::DOWN) { 2738 if (Rem.isNegative() != B.isNegative()) 2739 return Quo - 1; 2740 return Quo; 2741 } 2742 if (Rem.isNegative() != B.isNegative()) 2743 return Quo; 2744 return Quo + 1; 2745 } 2746 // Currently sdiv rounds towards zero. 2747 case APInt::Rounding::TOWARD_ZERO: 2748 return A.sdiv(B); 2749 } 2750 llvm_unreachable("Unknown APInt::Rounding enum"); 2751 } 2752 2753 Optional<APInt> 2754 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2755 unsigned RangeWidth) { 2756 unsigned CoeffWidth = A.getBitWidth(); 2757 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2758 assert(RangeWidth <= CoeffWidth && 2759 "Value range width should be less than coefficient width"); 2760 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2761 2762 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2763 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2764 2765 // Identify 0 as a (non)solution immediately. 2766 if (C.sextOrTrunc(RangeWidth).isZero()) { 2767 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2768 return APInt(CoeffWidth, 0); 2769 } 2770 2771 // The result of APInt arithmetic has the same bit width as the operands, 2772 // so it can actually lose high bits. A product of two n-bit integers needs 2773 // 2n-1 bits to represent the full value. 2774 // The operation done below (on quadratic coefficients) that can produce 2775 // the largest value is the evaluation of the equation during bisection, 2776 // which needs 3 times the bitwidth of the coefficient, so the total number 2777 // of required bits is 3n. 2778 // 2779 // The purpose of this extension is to simulate the set Z of all integers, 2780 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2781 // and negative numbers (not so much in a modulo arithmetic). The method 2782 // used to solve the equation is based on the standard formula for real 2783 // numbers, and uses the concepts of "positive" and "negative" with their 2784 // usual meanings. 2785 CoeffWidth *= 3; 2786 A = A.sext(CoeffWidth); 2787 B = B.sext(CoeffWidth); 2788 C = C.sext(CoeffWidth); 2789 2790 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2791 // the bit width has increased. 2792 if (A.isNegative()) { 2793 A.negate(); 2794 B.negate(); 2795 C.negate(); 2796 } 2797 2798 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2799 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2800 // and R = 2^BitWidth. 2801 // Since we're trying not only to find exact solutions, but also values 2802 // that "wrap around", such a set will always have a solution, i.e. an x 2803 // that satisfies at least one of the equations, or such that |q(x)| 2804 // exceeds kR, while |q(x-1)| for the same k does not. 2805 // 2806 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2807 // positive solution n (in the above sense), and also such that the n 2808 // will be the least among all solutions corresponding to k = 0, 1, ... 2809 // (more precisely, the least element in the set 2810 // { n(k) | k is such that a solution n(k) exists }). 2811 // 2812 // Consider the parabola (over real numbers) that corresponds to the 2813 // quadratic equation. Since A > 0, the arms of the parabola will point 2814 // up. Picking different values of k will shift it up and down by R. 2815 // 2816 // We want to shift the parabola in such a way as to reduce the problem 2817 // of solving q(x) = kR to solving shifted_q(x) = 0. 2818 // (The interesting solutions are the ceilings of the real number 2819 // solutions.) 2820 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2821 APInt TwoA = 2 * A; 2822 APInt SqrB = B * B; 2823 bool PickLow; 2824 2825 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2826 assert(A.isStrictlyPositive()); 2827 APInt T = V.abs().urem(A); 2828 if (T.isZero()) 2829 return V; 2830 return V.isNegative() ? V+T : V+(A-T); 2831 }; 2832 2833 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2834 // iff B is positive. 2835 if (B.isNonNegative()) { 2836 // If B >= 0, the vertex it at a negative location (or at 0), so in 2837 // order to have a non-negative solution we need to pick k that makes 2838 // C-kR negative. To satisfy all the requirements for the solution 2839 // that we are looking for, it needs to be closest to 0 of all k. 2840 C = C.srem(R); 2841 if (C.isStrictlyPositive()) 2842 C -= R; 2843 // Pick the greater solution. 2844 PickLow = false; 2845 } else { 2846 // If B < 0, the vertex is at a positive location. For any solution 2847 // to exist, the discriminant must be non-negative. This means that 2848 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2849 // lower bound on values of k: kR >= C - B^2/4A. 2850 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2851 // Round LowkR up (towards +inf) to the nearest kR. 2852 LowkR = RoundUp(LowkR, R); 2853 2854 // If there exists k meeting the condition above, and such that 2855 // C-kR > 0, there will be two positive real number solutions of 2856 // q(x) = kR. Out of all such values of k, pick the one that makes 2857 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2858 // In other words, find maximum k such that LowkR <= kR < C. 2859 if (C.sgt(LowkR)) { 2860 // If LowkR < C, then such a k is guaranteed to exist because 2861 // LowkR itself is a multiple of R. 2862 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2863 // Pick the smaller solution. 2864 PickLow = true; 2865 } else { 2866 // If C-kR < 0 for all potential k's, it means that one solution 2867 // will be negative, while the other will be positive. The positive 2868 // solution will shift towards 0 if the parabola is moved up. 2869 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2870 // to 0, or in other words, out of all parabolas that have solutions, 2871 // pick the one that is the farthest "up"). 2872 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2873 C -= LowkR; 2874 // Pick the greater solution. 2875 PickLow = false; 2876 } 2877 } 2878 2879 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2880 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2881 2882 APInt D = SqrB - 4*A*C; 2883 assert(D.isNonNegative() && "Negative discriminant"); 2884 APInt SQ = D.sqrt(); 2885 2886 APInt Q = SQ * SQ; 2887 bool InexactSQ = Q != D; 2888 // The calculated SQ may actually be greater than the exact (non-integer) 2889 // value. If that's the case, decrement SQ to get a value that is lower. 2890 if (Q.sgt(D)) 2891 SQ -= 1; 2892 2893 APInt X; 2894 APInt Rem; 2895 2896 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2897 // When using the quadratic formula directly, the calculated low root 2898 // may be greater than the exact one, since we would be subtracting SQ. 2899 // To make sure that the calculated root is not greater than the exact 2900 // one, subtract SQ+1 when calculating the low root (for inexact value 2901 // of SQ). 2902 if (PickLow) 2903 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2904 else 2905 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2906 2907 // The updated coefficients should be such that the (exact) solution is 2908 // positive. Since APInt division rounds towards 0, the calculated one 2909 // can be 0, but cannot be negative. 2910 assert(X.isNonNegative() && "Solution should be non-negative"); 2911 2912 if (!InexactSQ && Rem.isZero()) { 2913 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2914 return X; 2915 } 2916 2917 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2918 // The exact value of the square root of D should be between SQ and SQ+1. 2919 // This implies that the solution should be between that corresponding to 2920 // SQ (i.e. X) and that corresponding to SQ+1. 2921 // 2922 // The calculated X cannot be greater than the exact (real) solution. 2923 // Actually it must be strictly less than the exact solution, while 2924 // X+1 will be greater than or equal to it. 2925 2926 APInt VX = (A*X + B)*X + C; 2927 APInt VY = VX + TwoA*X + A + B; 2928 bool SignChange = 2929 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 2930 // If the sign did not change between X and X+1, X is not a valid solution. 2931 // This could happen when the actual (exact) roots don't have an integer 2932 // between them, so they would both be contained between X and X+1. 2933 if (!SignChange) { 2934 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2935 return None; 2936 } 2937 2938 X += 1; 2939 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2940 return X; 2941 } 2942 2943 Optional<unsigned> 2944 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2945 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2946 if (A == B) 2947 return llvm::None; 2948 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); 2949 } 2950 2951 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 2952 /// with the integer held in IntVal. 2953 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 2954 unsigned StoreBytes) { 2955 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 2956 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 2957 2958 if (sys::IsLittleEndianHost) { 2959 // Little-endian host - the source is ordered from LSB to MSB. Order the 2960 // destination from LSB to MSB: Do a straight copy. 2961 memcpy(Dst, Src, StoreBytes); 2962 } else { 2963 // Big-endian host - the source is an array of 64 bit words ordered from 2964 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 2965 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 2966 while (StoreBytes > sizeof(uint64_t)) { 2967 StoreBytes -= sizeof(uint64_t); 2968 // May not be aligned so use memcpy. 2969 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 2970 Src += sizeof(uint64_t); 2971 } 2972 2973 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 2974 } 2975 } 2976 2977 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 2978 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 2979 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 2980 unsigned LoadBytes) { 2981 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 2982 uint8_t *Dst = reinterpret_cast<uint8_t *>( 2983 const_cast<uint64_t *>(IntVal.getRawData())); 2984 2985 if (sys::IsLittleEndianHost) 2986 // Little-endian host - the destination must be ordered from LSB to MSB. 2987 // The source is ordered from LSB to MSB: Do a straight copy. 2988 memcpy(Dst, Src, LoadBytes); 2989 else { 2990 // Big-endian - the destination is an array of 64 bit words ordered from 2991 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 2992 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 2993 // a word. 2994 while (LoadBytes > sizeof(uint64_t)) { 2995 LoadBytes -= sizeof(uint64_t); 2996 // May not be aligned so use memcpy. 2997 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 2998 Dst += sizeof(uint64_t); 2999 } 3000 3001 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3002 } 3003 } 3004