1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "apint" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/ADT/FoldingSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cmath> 25 #include <limits> 26 #include <cstring> 27 #include <cstdlib> 28 using namespace llvm; 29 30 /// A utility function for allocating memory, checking for allocation failures, 31 /// and ensuring the contents are zeroed. 32 inline static uint64_t* getClearedMemory(unsigned numWords) { 33 uint64_t * result = new uint64_t[numWords]; 34 assert(result && "APInt memory allocation fails!"); 35 memset(result, 0, numWords * sizeof(uint64_t)); 36 return result; 37 } 38 39 /// A utility function for allocating memory and checking for allocation 40 /// failure. The content is not zeroed. 41 inline static uint64_t* getMemory(unsigned numWords) { 42 uint64_t * result = new uint64_t[numWords]; 43 assert(result && "APInt memory allocation fails!"); 44 return result; 45 } 46 47 /// A utility function that converts a character to a digit. 48 inline static unsigned getDigit(char cdigit, uint8_t radix) { 49 unsigned r; 50 51 if (radix == 16 || radix == 36) { 52 r = cdigit - '0'; 53 if (r <= 9) 54 return r; 55 56 r = cdigit - 'A'; 57 if (r <= radix - 11U) 58 return r + 10; 59 60 r = cdigit - 'a'; 61 if (r <= radix - 11U) 62 return r + 10; 63 64 radix = 10; 65 } 66 67 r = cdigit - '0'; 68 if (r < radix) 69 return r; 70 71 return -1U; 72 } 73 74 75 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { 76 pVal = getClearedMemory(getNumWords()); 77 pVal[0] = val; 78 if (isSigned && int64_t(val) < 0) 79 for (unsigned i = 1; i < getNumWords(); ++i) 80 pVal[i] = -1ULL; 81 } 82 83 void APInt::initSlowCase(const APInt& that) { 84 pVal = getMemory(getNumWords()); 85 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 86 } 87 88 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 89 assert(BitWidth && "Bitwidth too small"); 90 assert(bigVal.data() && "Null pointer detected!"); 91 if (isSingleWord()) 92 VAL = bigVal[0]; 93 else { 94 // Get memory, cleared to 0 95 pVal = getClearedMemory(getNumWords()); 96 // Calculate the number of words to copy 97 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 98 // Copy the words from bigVal to pVal 99 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 100 } 101 // Make sure unused high bits are cleared 102 clearUnusedBits(); 103 } 104 105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 106 : BitWidth(numBits), VAL(0) { 107 initFromArray(bigVal); 108 } 109 110 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 111 : BitWidth(numBits), VAL(0) { 112 initFromArray(makeArrayRef(bigVal, numWords)); 113 } 114 115 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 116 : BitWidth(numbits), VAL(0) { 117 assert(BitWidth && "Bitwidth too small"); 118 fromString(numbits, Str, radix); 119 } 120 121 APInt& APInt::AssignSlowCase(const APInt& RHS) { 122 // Don't do anything for X = X 123 if (this == &RHS) 124 return *this; 125 126 if (BitWidth == RHS.getBitWidth()) { 127 // assume same bit-width single-word case is already handled 128 assert(!isSingleWord()); 129 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 130 return *this; 131 } 132 133 if (isSingleWord()) { 134 // assume case where both are single words is already handled 135 assert(!RHS.isSingleWord()); 136 VAL = 0; 137 pVal = getMemory(RHS.getNumWords()); 138 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 139 } else if (getNumWords() == RHS.getNumWords()) 140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 141 else if (RHS.isSingleWord()) { 142 delete [] pVal; 143 VAL = RHS.VAL; 144 } else { 145 delete [] pVal; 146 pVal = getMemory(RHS.getNumWords()); 147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 148 } 149 BitWidth = RHS.BitWidth; 150 return clearUnusedBits(); 151 } 152 153 APInt& APInt::operator=(uint64_t RHS) { 154 if (isSingleWord()) 155 VAL = RHS; 156 else { 157 pVal[0] = RHS; 158 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 159 } 160 return clearUnusedBits(); 161 } 162 163 /// Profile - This method 'profiles' an APInt for use with FoldingSet. 164 void APInt::Profile(FoldingSetNodeID& ID) const { 165 ID.AddInteger(BitWidth); 166 167 if (isSingleWord()) { 168 ID.AddInteger(VAL); 169 return; 170 } 171 172 unsigned NumWords = getNumWords(); 173 for (unsigned i = 0; i < NumWords; ++i) 174 ID.AddInteger(pVal[i]); 175 } 176 177 /// add_1 - This function adds a single "digit" integer, y, to the multiple 178 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 179 /// 1 is returned if there is a carry out, otherwise 0 is returned. 180 /// @returns the carry of the addition. 181 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 182 for (unsigned i = 0; i < len; ++i) { 183 dest[i] = y + x[i]; 184 if (dest[i] < y) 185 y = 1; // Carry one to next digit. 186 else { 187 y = 0; // No need to carry so exit early 188 break; 189 } 190 } 191 return y; 192 } 193 194 /// @brief Prefix increment operator. Increments the APInt by one. 195 APInt& APInt::operator++() { 196 if (isSingleWord()) 197 ++VAL; 198 else 199 add_1(pVal, pVal, getNumWords(), 1); 200 return clearUnusedBits(); 201 } 202 203 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from 204 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 205 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 206 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 207 /// In other words, if y > x then this function returns 1, otherwise 0. 208 /// @returns the borrow out of the subtraction 209 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 210 for (unsigned i = 0; i < len; ++i) { 211 uint64_t X = x[i]; 212 x[i] -= y; 213 if (y > X) 214 y = 1; // We have to "borrow 1" from next "digit" 215 else { 216 y = 0; // No need to borrow 217 break; // Remaining digits are unchanged so exit early 218 } 219 } 220 return bool(y); 221 } 222 223 /// @brief Prefix decrement operator. Decrements the APInt by one. 224 APInt& APInt::operator--() { 225 if (isSingleWord()) 226 --VAL; 227 else 228 sub_1(pVal, getNumWords(), 1); 229 return clearUnusedBits(); 230 } 231 232 /// add - This function adds the integer array x to the integer array Y and 233 /// places the result in dest. 234 /// @returns the carry out from the addition 235 /// @brief General addition of 64-bit integer arrays 236 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 237 unsigned len) { 238 bool carry = false; 239 for (unsigned i = 0; i< len; ++i) { 240 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 241 dest[i] = x[i] + y[i] + carry; 242 carry = dest[i] < limit || (carry && dest[i] == limit); 243 } 244 return carry; 245 } 246 247 /// Adds the RHS APint to this APInt. 248 /// @returns this, after addition of RHS. 249 /// @brief Addition assignment operator. 250 APInt& APInt::operator+=(const APInt& RHS) { 251 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 252 if (isSingleWord()) 253 VAL += RHS.VAL; 254 else { 255 add(pVal, pVal, RHS.pVal, getNumWords()); 256 } 257 return clearUnusedBits(); 258 } 259 260 /// Subtracts the integer array y from the integer array x 261 /// @returns returns the borrow out. 262 /// @brief Generalized subtraction of 64-bit integer arrays. 263 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 264 unsigned len) { 265 bool borrow = false; 266 for (unsigned i = 0; i < len; ++i) { 267 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 268 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 269 dest[i] = x_tmp - y[i]; 270 } 271 return borrow; 272 } 273 274 /// Subtracts the RHS APInt from this APInt 275 /// @returns this, after subtraction 276 /// @brief Subtraction assignment operator. 277 APInt& APInt::operator-=(const APInt& RHS) { 278 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 279 if (isSingleWord()) 280 VAL -= RHS.VAL; 281 else 282 sub(pVal, pVal, RHS.pVal, getNumWords()); 283 return clearUnusedBits(); 284 } 285 286 /// Multiplies an integer array, x, by a uint64_t integer and places the result 287 /// into dest. 288 /// @returns the carry out of the multiplication. 289 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 290 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 291 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 292 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 293 uint64_t carry = 0; 294 295 // For each digit of x. 296 for (unsigned i = 0; i < len; ++i) { 297 // Split x into high and low words 298 uint64_t lx = x[i] & 0xffffffffULL; 299 uint64_t hx = x[i] >> 32; 300 // hasCarry - A flag to indicate if there is a carry to the next digit. 301 // hasCarry == 0, no carry 302 // hasCarry == 1, has carry 303 // hasCarry == 2, no carry and the calculation result == 0. 304 uint8_t hasCarry = 0; 305 dest[i] = carry + lx * ly; 306 // Determine if the add above introduces carry. 307 hasCarry = (dest[i] < carry) ? 1 : 0; 308 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 309 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 310 // (2^32 - 1) + 2^32 = 2^64. 311 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 312 313 carry += (lx * hy) & 0xffffffffULL; 314 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 315 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 316 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 317 } 318 return carry; 319 } 320 321 /// Multiplies integer array x by integer array y and stores the result into 322 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 323 /// @brief Generalized multiplicate of integer arrays. 324 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 325 unsigned ylen) { 326 dest[xlen] = mul_1(dest, x, xlen, y[0]); 327 for (unsigned i = 1; i < ylen; ++i) { 328 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 329 uint64_t carry = 0, lx = 0, hx = 0; 330 for (unsigned j = 0; j < xlen; ++j) { 331 lx = x[j] & 0xffffffffULL; 332 hx = x[j] >> 32; 333 // hasCarry - A flag to indicate if has carry. 334 // hasCarry == 0, no carry 335 // hasCarry == 1, has carry 336 // hasCarry == 2, no carry and the calculation result == 0. 337 uint8_t hasCarry = 0; 338 uint64_t resul = carry + lx * ly; 339 hasCarry = (resul < carry) ? 1 : 0; 340 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 341 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 342 343 carry += (lx * hy) & 0xffffffffULL; 344 resul = (carry << 32) | (resul & 0xffffffffULL); 345 dest[i+j] += resul; 346 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 347 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 348 ((lx * hy) >> 32) + hx * hy; 349 } 350 dest[i+xlen] = carry; 351 } 352 } 353 354 APInt& APInt::operator*=(const APInt& RHS) { 355 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 356 if (isSingleWord()) { 357 VAL *= RHS.VAL; 358 clearUnusedBits(); 359 return *this; 360 } 361 362 // Get some bit facts about LHS and check for zero 363 unsigned lhsBits = getActiveBits(); 364 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 365 if (!lhsWords) 366 // 0 * X ===> 0 367 return *this; 368 369 // Get some bit facts about RHS and check for zero 370 unsigned rhsBits = RHS.getActiveBits(); 371 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 372 if (!rhsWords) { 373 // X * 0 ===> 0 374 clearAllBits(); 375 return *this; 376 } 377 378 // Allocate space for the result 379 unsigned destWords = rhsWords + lhsWords; 380 uint64_t *dest = getMemory(destWords); 381 382 // Perform the long multiply 383 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 384 385 // Copy result back into *this 386 clearAllBits(); 387 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 388 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 389 clearUnusedBits(); 390 391 // delete dest array and return 392 delete[] dest; 393 return *this; 394 } 395 396 APInt& APInt::operator&=(const APInt& RHS) { 397 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 398 if (isSingleWord()) { 399 VAL &= RHS.VAL; 400 return *this; 401 } 402 unsigned numWords = getNumWords(); 403 for (unsigned i = 0; i < numWords; ++i) 404 pVal[i] &= RHS.pVal[i]; 405 return *this; 406 } 407 408 APInt& APInt::operator|=(const APInt& RHS) { 409 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 410 if (isSingleWord()) { 411 VAL |= RHS.VAL; 412 return *this; 413 } 414 unsigned numWords = getNumWords(); 415 for (unsigned i = 0; i < numWords; ++i) 416 pVal[i] |= RHS.pVal[i]; 417 return *this; 418 } 419 420 APInt& APInt::operator^=(const APInt& RHS) { 421 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 422 if (isSingleWord()) { 423 VAL ^= RHS.VAL; 424 this->clearUnusedBits(); 425 return *this; 426 } 427 unsigned numWords = getNumWords(); 428 for (unsigned i = 0; i < numWords; ++i) 429 pVal[i] ^= RHS.pVal[i]; 430 return clearUnusedBits(); 431 } 432 433 APInt APInt::AndSlowCase(const APInt& RHS) const { 434 unsigned numWords = getNumWords(); 435 uint64_t* val = getMemory(numWords); 436 for (unsigned i = 0; i < numWords; ++i) 437 val[i] = pVal[i] & RHS.pVal[i]; 438 return APInt(val, getBitWidth()); 439 } 440 441 APInt APInt::OrSlowCase(const APInt& RHS) const { 442 unsigned numWords = getNumWords(); 443 uint64_t *val = getMemory(numWords); 444 for (unsigned i = 0; i < numWords; ++i) 445 val[i] = pVal[i] | RHS.pVal[i]; 446 return APInt(val, getBitWidth()); 447 } 448 449 APInt APInt::XorSlowCase(const APInt& RHS) const { 450 unsigned numWords = getNumWords(); 451 uint64_t *val = getMemory(numWords); 452 for (unsigned i = 0; i < numWords; ++i) 453 val[i] = pVal[i] ^ RHS.pVal[i]; 454 455 // 0^0==1 so clear the high bits in case they got set. 456 return APInt(val, getBitWidth()).clearUnusedBits(); 457 } 458 459 bool APInt::operator !() const { 460 if (isSingleWord()) 461 return !VAL; 462 463 for (unsigned i = 0; i < getNumWords(); ++i) 464 if (pVal[i]) 465 return false; 466 return true; 467 } 468 469 APInt APInt::operator*(const APInt& RHS) const { 470 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 471 if (isSingleWord()) 472 return APInt(BitWidth, VAL * RHS.VAL); 473 APInt Result(*this); 474 Result *= RHS; 475 return Result; 476 } 477 478 APInt APInt::operator+(const APInt& RHS) const { 479 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 480 if (isSingleWord()) 481 return APInt(BitWidth, VAL + RHS.VAL); 482 APInt Result(BitWidth, 0); 483 add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 484 return Result.clearUnusedBits(); 485 } 486 487 APInt APInt::operator-(const APInt& RHS) const { 488 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 489 if (isSingleWord()) 490 return APInt(BitWidth, VAL - RHS.VAL); 491 APInt Result(BitWidth, 0); 492 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 493 return Result.clearUnusedBits(); 494 } 495 496 bool APInt::operator[](unsigned bitPosition) const { 497 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 498 return (maskBit(bitPosition) & 499 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0; 500 } 501 502 bool APInt::EqualSlowCase(const APInt& RHS) const { 503 // Get some facts about the number of bits used in the two operands. 504 unsigned n1 = getActiveBits(); 505 unsigned n2 = RHS.getActiveBits(); 506 507 // If the number of bits isn't the same, they aren't equal 508 if (n1 != n2) 509 return false; 510 511 // If the number of bits fits in a word, we only need to compare the low word. 512 if (n1 <= APINT_BITS_PER_WORD) 513 return pVal[0] == RHS.pVal[0]; 514 515 // Otherwise, compare everything 516 for (int i = whichWord(n1 - 1); i >= 0; --i) 517 if (pVal[i] != RHS.pVal[i]) 518 return false; 519 return true; 520 } 521 522 bool APInt::EqualSlowCase(uint64_t Val) const { 523 unsigned n = getActiveBits(); 524 if (n <= APINT_BITS_PER_WORD) 525 return pVal[0] == Val; 526 else 527 return false; 528 } 529 530 bool APInt::ult(const APInt& RHS) const { 531 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 532 if (isSingleWord()) 533 return VAL < RHS.VAL; 534 535 // Get active bit length of both operands 536 unsigned n1 = getActiveBits(); 537 unsigned n2 = RHS.getActiveBits(); 538 539 // If magnitude of LHS is less than RHS, return true. 540 if (n1 < n2) 541 return true; 542 543 // If magnitude of RHS is greather than LHS, return false. 544 if (n2 < n1) 545 return false; 546 547 // If they bot fit in a word, just compare the low order word 548 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 549 return pVal[0] < RHS.pVal[0]; 550 551 // Otherwise, compare all words 552 unsigned topWord = whichWord(std::max(n1,n2)-1); 553 for (int i = topWord; i >= 0; --i) { 554 if (pVal[i] > RHS.pVal[i]) 555 return false; 556 if (pVal[i] < RHS.pVal[i]) 557 return true; 558 } 559 return false; 560 } 561 562 bool APInt::slt(const APInt& RHS) const { 563 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 564 if (isSingleWord()) { 565 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); 566 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); 567 return lhsSext < rhsSext; 568 } 569 570 APInt lhs(*this); 571 APInt rhs(RHS); 572 bool lhsNeg = isNegative(); 573 bool rhsNeg = rhs.isNegative(); 574 if (lhsNeg) { 575 // Sign bit is set so perform two's complement to make it positive 576 lhs.flipAllBits(); 577 lhs++; 578 } 579 if (rhsNeg) { 580 // Sign bit is set so perform two's complement to make it positive 581 rhs.flipAllBits(); 582 rhs++; 583 } 584 585 // Now we have unsigned values to compare so do the comparison if necessary 586 // based on the negativeness of the values. 587 if (lhsNeg) 588 if (rhsNeg) 589 return lhs.ugt(rhs); 590 else 591 return true; 592 else if (rhsNeg) 593 return false; 594 else 595 return lhs.ult(rhs); 596 } 597 598 void APInt::setBit(unsigned bitPosition) { 599 if (isSingleWord()) 600 VAL |= maskBit(bitPosition); 601 else 602 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 603 } 604 605 /// Set the given bit to 0 whose position is given as "bitPosition". 606 /// @brief Set a given bit to 0. 607 void APInt::clearBit(unsigned bitPosition) { 608 if (isSingleWord()) 609 VAL &= ~maskBit(bitPosition); 610 else 611 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 612 } 613 614 /// @brief Toggle every bit to its opposite value. 615 616 /// Toggle a given bit to its opposite value whose position is given 617 /// as "bitPosition". 618 /// @brief Toggles a given bit to its opposite value. 619 void APInt::flipBit(unsigned bitPosition) { 620 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 621 if ((*this)[bitPosition]) clearBit(bitPosition); 622 else setBit(bitPosition); 623 } 624 625 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 626 assert(!str.empty() && "Invalid string length"); 627 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 628 radix == 36) && 629 "Radix should be 2, 8, 10, 16, or 36!"); 630 631 size_t slen = str.size(); 632 633 // Each computation below needs to know if it's negative. 634 StringRef::iterator p = str.begin(); 635 unsigned isNegative = *p == '-'; 636 if (*p == '-' || *p == '+') { 637 p++; 638 slen--; 639 assert(slen && "String is only a sign, needs a value."); 640 } 641 642 // For radixes of power-of-two values, the bits required is accurately and 643 // easily computed 644 if (radix == 2) 645 return slen + isNegative; 646 if (radix == 8) 647 return slen * 3 + isNegative; 648 if (radix == 16) 649 return slen * 4 + isNegative; 650 651 // FIXME: base 36 652 653 // This is grossly inefficient but accurate. We could probably do something 654 // with a computation of roughly slen*64/20 and then adjust by the value of 655 // the first few digits. But, I'm not sure how accurate that could be. 656 657 // Compute a sufficient number of bits that is always large enough but might 658 // be too large. This avoids the assertion in the constructor. This 659 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 660 // bits in that case. 661 unsigned sufficient 662 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 663 : (slen == 1 ? 7 : slen * 16/3); 664 665 // Convert to the actual binary value. 666 APInt tmp(sufficient, StringRef(p, slen), radix); 667 668 // Compute how many bits are required. If the log is infinite, assume we need 669 // just bit. 670 unsigned log = tmp.logBase2(); 671 if (log == (unsigned)-1) { 672 return isNegative + 1; 673 } else { 674 return isNegative + log + 1; 675 } 676 } 677 678 // From http://www.burtleburtle.net, byBob Jenkins. 679 // When targeting x86, both GCC and LLVM seem to recognize this as a 680 // rotate instruction. 681 #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) 682 683 // From http://www.burtleburtle.net, by Bob Jenkins. 684 #define mix(a,b,c) \ 685 { \ 686 a -= c; a ^= rot(c, 4); c += b; \ 687 b -= a; b ^= rot(a, 6); a += c; \ 688 c -= b; c ^= rot(b, 8); b += a; \ 689 a -= c; a ^= rot(c,16); c += b; \ 690 b -= a; b ^= rot(a,19); a += c; \ 691 c -= b; c ^= rot(b, 4); b += a; \ 692 } 693 694 // From http://www.burtleburtle.net, by Bob Jenkins. 695 #define final(a,b,c) \ 696 { \ 697 c ^= b; c -= rot(b,14); \ 698 a ^= c; a -= rot(c,11); \ 699 b ^= a; b -= rot(a,25); \ 700 c ^= b; c -= rot(b,16); \ 701 a ^= c; a -= rot(c,4); \ 702 b ^= a; b -= rot(a,14); \ 703 c ^= b; c -= rot(b,24); \ 704 } 705 706 // hashword() was adapted from http://www.burtleburtle.net, by Bob 707 // Jenkins. k is a pointer to an array of uint32_t values; length is 708 // the length of the key, in 32-bit chunks. This version only handles 709 // keys that are a multiple of 32 bits in size. 710 static inline uint32_t hashword(const uint64_t *k64, size_t length) 711 { 712 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64); 713 uint32_t a,b,c; 714 715 /* Set up the internal state */ 716 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2); 717 718 /*------------------------------------------------- handle most of the key */ 719 while (length > 3) { 720 a += k[0]; 721 b += k[1]; 722 c += k[2]; 723 mix(a,b,c); 724 length -= 3; 725 k += 3; 726 } 727 728 /*------------------------------------------- handle the last 3 uint32_t's */ 729 switch (length) { /* all the case statements fall through */ 730 case 3 : c+=k[2]; 731 case 2 : b+=k[1]; 732 case 1 : a+=k[0]; 733 final(a,b,c); 734 case 0: /* case 0: nothing left to add */ 735 break; 736 } 737 /*------------------------------------------------------ report the result */ 738 return c; 739 } 740 741 // hashword8() was adapted from http://www.burtleburtle.net, by Bob 742 // Jenkins. This computes a 32-bit hash from one 64-bit word. When 743 // targeting x86 (32 or 64 bit), both LLVM and GCC compile this 744 // function into about 35 instructions when inlined. 745 static inline uint32_t hashword8(const uint64_t k64) 746 { 747 uint32_t a,b,c; 748 a = b = c = 0xdeadbeef + 4; 749 b += k64 >> 32; 750 a += k64 & 0xffffffff; 751 final(a,b,c); 752 return c; 753 } 754 #undef final 755 #undef mix 756 #undef rot 757 758 uint64_t APInt::getHashValue() const { 759 uint64_t hash; 760 if (isSingleWord()) 761 hash = hashword8(VAL); 762 else 763 hash = hashword(pVal, getNumWords()*2); 764 return hash; 765 } 766 767 /// HiBits - This function returns the high "numBits" bits of this APInt. 768 APInt APInt::getHiBits(unsigned numBits) const { 769 return APIntOps::lshr(*this, BitWidth - numBits); 770 } 771 772 /// LoBits - This function returns the low "numBits" bits of this APInt. 773 APInt APInt::getLoBits(unsigned numBits) const { 774 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 775 BitWidth - numBits); 776 } 777 778 unsigned APInt::countLeadingZerosSlowCase() const { 779 // Treat the most significand word differently because it might have 780 // meaningless bits set beyond the precision. 781 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; 782 integerPart MSWMask; 783 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; 784 else { 785 MSWMask = ~integerPart(0); 786 BitsInMSW = APINT_BITS_PER_WORD; 787 } 788 789 unsigned i = getNumWords(); 790 integerPart MSW = pVal[i-1] & MSWMask; 791 if (MSW) 792 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); 793 794 unsigned Count = BitsInMSW; 795 for (--i; i > 0u; --i) { 796 if (pVal[i-1] == 0) 797 Count += APINT_BITS_PER_WORD; 798 else { 799 Count += CountLeadingZeros_64(pVal[i-1]); 800 break; 801 } 802 } 803 return Count; 804 } 805 806 static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) { 807 unsigned Count = 0; 808 if (skip) 809 V <<= skip; 810 while (V && (V & (1ULL << 63))) { 811 Count++; 812 V <<= 1; 813 } 814 return Count; 815 } 816 817 unsigned APInt::countLeadingOnes() const { 818 if (isSingleWord()) 819 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth); 820 821 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 822 unsigned shift; 823 if (!highWordBits) { 824 highWordBits = APINT_BITS_PER_WORD; 825 shift = 0; 826 } else { 827 shift = APINT_BITS_PER_WORD - highWordBits; 828 } 829 int i = getNumWords() - 1; 830 unsigned Count = countLeadingOnes_64(pVal[i], shift); 831 if (Count == highWordBits) { 832 for (i--; i >= 0; --i) { 833 if (pVal[i] == -1ULL) 834 Count += APINT_BITS_PER_WORD; 835 else { 836 Count += countLeadingOnes_64(pVal[i], 0); 837 break; 838 } 839 } 840 } 841 return Count; 842 } 843 844 unsigned APInt::countTrailingZeros() const { 845 if (isSingleWord()) 846 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth); 847 unsigned Count = 0; 848 unsigned i = 0; 849 for (; i < getNumWords() && pVal[i] == 0; ++i) 850 Count += APINT_BITS_PER_WORD; 851 if (i < getNumWords()) 852 Count += CountTrailingZeros_64(pVal[i]); 853 return std::min(Count, BitWidth); 854 } 855 856 unsigned APInt::countTrailingOnesSlowCase() const { 857 unsigned Count = 0; 858 unsigned i = 0; 859 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 860 Count += APINT_BITS_PER_WORD; 861 if (i < getNumWords()) 862 Count += CountTrailingOnes_64(pVal[i]); 863 return std::min(Count, BitWidth); 864 } 865 866 unsigned APInt::countPopulationSlowCase() const { 867 unsigned Count = 0; 868 for (unsigned i = 0; i < getNumWords(); ++i) 869 Count += CountPopulation_64(pVal[i]); 870 return Count; 871 } 872 873 /// Perform a logical right-shift from Src to Dst, which must be equal or 874 /// non-overlapping, of Words words, by Shift, which must be less than 64. 875 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 876 unsigned Shift) { 877 uint64_t Carry = 0; 878 for (int I = Words - 1; I >= 0; --I) { 879 uint64_t Tmp = Src[I]; 880 Dst[I] = (Tmp >> Shift) | Carry; 881 Carry = Tmp << (64 - Shift); 882 } 883 } 884 885 APInt APInt::byteSwap() const { 886 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 887 if (BitWidth == 16) 888 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 889 if (BitWidth == 32) 890 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 891 if (BitWidth == 48) { 892 unsigned Tmp1 = unsigned(VAL >> 16); 893 Tmp1 = ByteSwap_32(Tmp1); 894 uint16_t Tmp2 = uint16_t(VAL); 895 Tmp2 = ByteSwap_16(Tmp2); 896 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 897 } 898 if (BitWidth == 64) 899 return APInt(BitWidth, ByteSwap_64(VAL)); 900 901 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 902 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 903 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 904 if (Result.BitWidth != BitWidth) { 905 lshrNear(Result.pVal, Result.pVal, getNumWords(), 906 Result.BitWidth - BitWidth); 907 Result.BitWidth = BitWidth; 908 } 909 return Result; 910 } 911 912 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 913 const APInt& API2) { 914 APInt A = API1, B = API2; 915 while (!!B) { 916 APInt T = B; 917 B = APIntOps::urem(A, B); 918 A = T; 919 } 920 return A; 921 } 922 923 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 924 union { 925 double D; 926 uint64_t I; 927 } T; 928 T.D = Double; 929 930 // Get the sign bit from the highest order bit 931 bool isNeg = T.I >> 63; 932 933 // Get the 11-bit exponent and adjust for the 1023 bit bias 934 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 935 936 // If the exponent is negative, the value is < 0 so just return 0. 937 if (exp < 0) 938 return APInt(width, 0u); 939 940 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 941 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 942 943 // If the exponent doesn't shift all bits out of the mantissa 944 if (exp < 52) 945 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 946 APInt(width, mantissa >> (52 - exp)); 947 948 // If the client didn't provide enough bits for us to shift the mantissa into 949 // then the result is undefined, just return 0 950 if (width <= exp - 52) 951 return APInt(width, 0); 952 953 // Otherwise, we have to shift the mantissa bits up to the right location 954 APInt Tmp(width, mantissa); 955 Tmp = Tmp.shl((unsigned)exp - 52); 956 return isNeg ? -Tmp : Tmp; 957 } 958 959 /// RoundToDouble - This function converts this APInt to a double. 960 /// The layout for double is as following (IEEE Standard 754): 961 /// -------------------------------------- 962 /// | Sign Exponent Fraction Bias | 963 /// |-------------------------------------- | 964 /// | 1[63] 11[62-52] 52[51-00] 1023 | 965 /// -------------------------------------- 966 double APInt::roundToDouble(bool isSigned) const { 967 968 // Handle the simple case where the value is contained in one uint64_t. 969 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 970 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 971 if (isSigned) { 972 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); 973 return double(sext); 974 } else 975 return double(getWord(0)); 976 } 977 978 // Determine if the value is negative. 979 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 980 981 // Construct the absolute value if we're negative. 982 APInt Tmp(isNeg ? -(*this) : (*this)); 983 984 // Figure out how many bits we're using. 985 unsigned n = Tmp.getActiveBits(); 986 987 // The exponent (without bias normalization) is just the number of bits 988 // we are using. Note that the sign bit is gone since we constructed the 989 // absolute value. 990 uint64_t exp = n; 991 992 // Return infinity for exponent overflow 993 if (exp > 1023) { 994 if (!isSigned || !isNeg) 995 return std::numeric_limits<double>::infinity(); 996 else 997 return -std::numeric_limits<double>::infinity(); 998 } 999 exp += 1023; // Increment for 1023 bias 1000 1001 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 1002 // extract the high 52 bits from the correct words in pVal. 1003 uint64_t mantissa; 1004 unsigned hiWord = whichWord(n-1); 1005 if (hiWord == 0) { 1006 mantissa = Tmp.pVal[0]; 1007 if (n > 52) 1008 mantissa >>= n - 52; // shift down, we want the top 52 bits. 1009 } else { 1010 assert(hiWord > 0 && "huh?"); 1011 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 1012 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 1013 mantissa = hibits | lobits; 1014 } 1015 1016 // The leading bit of mantissa is implicit, so get rid of it. 1017 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 1018 union { 1019 double D; 1020 uint64_t I; 1021 } T; 1022 T.I = sign | (exp << 52) | mantissa; 1023 return T.D; 1024 } 1025 1026 // Truncate to new width. 1027 APInt APInt::trunc(unsigned width) const { 1028 assert(width < BitWidth && "Invalid APInt Truncate request"); 1029 assert(width && "Can't truncate to 0 bits"); 1030 1031 if (width <= APINT_BITS_PER_WORD) 1032 return APInt(width, getRawData()[0]); 1033 1034 APInt Result(getMemory(getNumWords(width)), width); 1035 1036 // Copy full words. 1037 unsigned i; 1038 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 1039 Result.pVal[i] = pVal[i]; 1040 1041 // Truncate and copy any partial word. 1042 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 1043 if (bits != 0) 1044 Result.pVal[i] = pVal[i] << bits >> bits; 1045 1046 return Result; 1047 } 1048 1049 // Sign extend to a new width. 1050 APInt APInt::sext(unsigned width) const { 1051 assert(width > BitWidth && "Invalid APInt SignExtend request"); 1052 1053 if (width <= APINT_BITS_PER_WORD) { 1054 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 1055 val = (int64_t)val >> (width - BitWidth); 1056 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 1057 } 1058 1059 APInt Result(getMemory(getNumWords(width)), width); 1060 1061 // Copy full words. 1062 unsigned i; 1063 uint64_t word = 0; 1064 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 1065 word = getRawData()[i]; 1066 Result.pVal[i] = word; 1067 } 1068 1069 // Read and sign-extend any partial word. 1070 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 1071 if (bits != 0) 1072 word = (int64_t)getRawData()[i] << bits >> bits; 1073 else 1074 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1075 1076 // Write remaining full words. 1077 for (; i != width / APINT_BITS_PER_WORD; i++) { 1078 Result.pVal[i] = word; 1079 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1080 } 1081 1082 // Write any partial word. 1083 bits = (0 - width) % APINT_BITS_PER_WORD; 1084 if (bits != 0) 1085 Result.pVal[i] = word << bits >> bits; 1086 1087 return Result; 1088 } 1089 1090 // Zero extend to a new width. 1091 APInt APInt::zext(unsigned width) const { 1092 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 1093 1094 if (width <= APINT_BITS_PER_WORD) 1095 return APInt(width, VAL); 1096 1097 APInt Result(getMemory(getNumWords(width)), width); 1098 1099 // Copy words. 1100 unsigned i; 1101 for (i = 0; i != getNumWords(); i++) 1102 Result.pVal[i] = getRawData()[i]; 1103 1104 // Zero remaining words. 1105 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 1106 1107 return Result; 1108 } 1109 1110 APInt APInt::zextOrTrunc(unsigned width) const { 1111 if (BitWidth < width) 1112 return zext(width); 1113 if (BitWidth > width) 1114 return trunc(width); 1115 return *this; 1116 } 1117 1118 APInt APInt::sextOrTrunc(unsigned width) const { 1119 if (BitWidth < width) 1120 return sext(width); 1121 if (BitWidth > width) 1122 return trunc(width); 1123 return *this; 1124 } 1125 1126 /// Arithmetic right-shift this APInt by shiftAmt. 1127 /// @brief Arithmetic right-shift function. 1128 APInt APInt::ashr(const APInt &shiftAmt) const { 1129 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1130 } 1131 1132 /// Arithmetic right-shift this APInt by shiftAmt. 1133 /// @brief Arithmetic right-shift function. 1134 APInt APInt::ashr(unsigned shiftAmt) const { 1135 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1136 // Handle a degenerate case 1137 if (shiftAmt == 0) 1138 return *this; 1139 1140 // Handle single word shifts with built-in ashr 1141 if (isSingleWord()) { 1142 if (shiftAmt == BitWidth) 1143 return APInt(BitWidth, 0); // undefined 1144 else { 1145 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; 1146 return APInt(BitWidth, 1147 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); 1148 } 1149 } 1150 1151 // If all the bits were shifted out, the result is, technically, undefined. 1152 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1153 // issues in the algorithm below. 1154 if (shiftAmt == BitWidth) { 1155 if (isNegative()) 1156 return APInt(BitWidth, -1ULL, true); 1157 else 1158 return APInt(BitWidth, 0); 1159 } 1160 1161 // Create some space for the result. 1162 uint64_t * val = new uint64_t[getNumWords()]; 1163 1164 // Compute some values needed by the following shift algorithms 1165 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1166 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1167 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1168 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1169 if (bitsInWord == 0) 1170 bitsInWord = APINT_BITS_PER_WORD; 1171 1172 // If we are shifting whole words, just move whole words 1173 if (wordShift == 0) { 1174 // Move the words containing significant bits 1175 for (unsigned i = 0; i <= breakWord; ++i) 1176 val[i] = pVal[i+offset]; // move whole word 1177 1178 // Adjust the top significant word for sign bit fill, if negative 1179 if (isNegative()) 1180 if (bitsInWord < APINT_BITS_PER_WORD) 1181 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1182 } else { 1183 // Shift the low order words 1184 for (unsigned i = 0; i < breakWord; ++i) { 1185 // This combines the shifted corresponding word with the low bits from 1186 // the next word (shifted into this word's high bits). 1187 val[i] = (pVal[i+offset] >> wordShift) | 1188 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1189 } 1190 1191 // Shift the break word. In this case there are no bits from the next word 1192 // to include in this word. 1193 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1194 1195 // Deal with sign extenstion in the break word, and possibly the word before 1196 // it. 1197 if (isNegative()) { 1198 if (wordShift > bitsInWord) { 1199 if (breakWord > 0) 1200 val[breakWord-1] |= 1201 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1202 val[breakWord] |= ~0ULL; 1203 } else 1204 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1205 } 1206 } 1207 1208 // Remaining words are 0 or -1, just assign them. 1209 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1210 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1211 val[i] = fillValue; 1212 return APInt(val, BitWidth).clearUnusedBits(); 1213 } 1214 1215 /// Logical right-shift this APInt by shiftAmt. 1216 /// @brief Logical right-shift function. 1217 APInt APInt::lshr(const APInt &shiftAmt) const { 1218 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1219 } 1220 1221 /// Logical right-shift this APInt by shiftAmt. 1222 /// @brief Logical right-shift function. 1223 APInt APInt::lshr(unsigned shiftAmt) const { 1224 if (isSingleWord()) { 1225 if (shiftAmt == BitWidth) 1226 return APInt(BitWidth, 0); 1227 else 1228 return APInt(BitWidth, this->VAL >> shiftAmt); 1229 } 1230 1231 // If all the bits were shifted out, the result is 0. This avoids issues 1232 // with shifting by the size of the integer type, which produces undefined 1233 // results. We define these "undefined results" to always be 0. 1234 if (shiftAmt == BitWidth) 1235 return APInt(BitWidth, 0); 1236 1237 // If none of the bits are shifted out, the result is *this. This avoids 1238 // issues with shifting by the size of the integer type, which produces 1239 // undefined results in the code below. This is also an optimization. 1240 if (shiftAmt == 0) 1241 return *this; 1242 1243 // Create some space for the result. 1244 uint64_t * val = new uint64_t[getNumWords()]; 1245 1246 // If we are shifting less than a word, compute the shift with a simple carry 1247 if (shiftAmt < APINT_BITS_PER_WORD) { 1248 lshrNear(val, pVal, getNumWords(), shiftAmt); 1249 return APInt(val, BitWidth).clearUnusedBits(); 1250 } 1251 1252 // Compute some values needed by the remaining shift algorithms 1253 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1254 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1255 1256 // If we are shifting whole words, just move whole words 1257 if (wordShift == 0) { 1258 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1259 val[i] = pVal[i+offset]; 1260 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1261 val[i] = 0; 1262 return APInt(val,BitWidth).clearUnusedBits(); 1263 } 1264 1265 // Shift the low order words 1266 unsigned breakWord = getNumWords() - offset -1; 1267 for (unsigned i = 0; i < breakWord; ++i) 1268 val[i] = (pVal[i+offset] >> wordShift) | 1269 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1270 // Shift the break word. 1271 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1272 1273 // Remaining words are 0 1274 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1275 val[i] = 0; 1276 return APInt(val, BitWidth).clearUnusedBits(); 1277 } 1278 1279 /// Left-shift this APInt by shiftAmt. 1280 /// @brief Left-shift function. 1281 APInt APInt::shl(const APInt &shiftAmt) const { 1282 // It's undefined behavior in C to shift by BitWidth or greater. 1283 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1284 } 1285 1286 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1287 // If all the bits were shifted out, the result is 0. This avoids issues 1288 // with shifting by the size of the integer type, which produces undefined 1289 // results. We define these "undefined results" to always be 0. 1290 if (shiftAmt == BitWidth) 1291 return APInt(BitWidth, 0); 1292 1293 // If none of the bits are shifted out, the result is *this. This avoids a 1294 // lshr by the words size in the loop below which can produce incorrect 1295 // results. It also avoids the expensive computation below for a common case. 1296 if (shiftAmt == 0) 1297 return *this; 1298 1299 // Create some space for the result. 1300 uint64_t * val = new uint64_t[getNumWords()]; 1301 1302 // If we are shifting less than a word, do it the easy way 1303 if (shiftAmt < APINT_BITS_PER_WORD) { 1304 uint64_t carry = 0; 1305 for (unsigned i = 0; i < getNumWords(); i++) { 1306 val[i] = pVal[i] << shiftAmt | carry; 1307 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1308 } 1309 return APInt(val, BitWidth).clearUnusedBits(); 1310 } 1311 1312 // Compute some values needed by the remaining shift algorithms 1313 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1314 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1315 1316 // If we are shifting whole words, just move whole words 1317 if (wordShift == 0) { 1318 for (unsigned i = 0; i < offset; i++) 1319 val[i] = 0; 1320 for (unsigned i = offset; i < getNumWords(); i++) 1321 val[i] = pVal[i-offset]; 1322 return APInt(val,BitWidth).clearUnusedBits(); 1323 } 1324 1325 // Copy whole words from this to Result. 1326 unsigned i = getNumWords() - 1; 1327 for (; i > offset; --i) 1328 val[i] = pVal[i-offset] << wordShift | 1329 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1330 val[offset] = pVal[0] << wordShift; 1331 for (i = 0; i < offset; ++i) 1332 val[i] = 0; 1333 return APInt(val, BitWidth).clearUnusedBits(); 1334 } 1335 1336 APInt APInt::rotl(const APInt &rotateAmt) const { 1337 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1338 } 1339 1340 APInt APInt::rotl(unsigned rotateAmt) const { 1341 if (rotateAmt == 0) 1342 return *this; 1343 // Don't get too fancy, just use existing shift/or facilities 1344 APInt hi(*this); 1345 APInt lo(*this); 1346 hi.shl(rotateAmt); 1347 lo.lshr(BitWidth - rotateAmt); 1348 return hi | lo; 1349 } 1350 1351 APInt APInt::rotr(const APInt &rotateAmt) const { 1352 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1353 } 1354 1355 APInt APInt::rotr(unsigned rotateAmt) const { 1356 if (rotateAmt == 0) 1357 return *this; 1358 // Don't get too fancy, just use existing shift/or facilities 1359 APInt hi(*this); 1360 APInt lo(*this); 1361 lo.lshr(rotateAmt); 1362 hi.shl(BitWidth - rotateAmt); 1363 return hi | lo; 1364 } 1365 1366 // Square Root - this method computes and returns the square root of "this". 1367 // Three mechanisms are used for computation. For small values (<= 5 bits), 1368 // a table lookup is done. This gets some performance for common cases. For 1369 // values using less than 52 bits, the value is converted to double and then 1370 // the libc sqrt function is called. The result is rounded and then converted 1371 // back to a uint64_t which is then used to construct the result. Finally, 1372 // the Babylonian method for computing square roots is used. 1373 APInt APInt::sqrt() const { 1374 1375 // Determine the magnitude of the value. 1376 unsigned magnitude = getActiveBits(); 1377 1378 // Use a fast table for some small values. This also gets rid of some 1379 // rounding errors in libc sqrt for small values. 1380 if (magnitude <= 5) { 1381 static const uint8_t results[32] = { 1382 /* 0 */ 0, 1383 /* 1- 2 */ 1, 1, 1384 /* 3- 6 */ 2, 2, 2, 2, 1385 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1386 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1387 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1388 /* 31 */ 6 1389 }; 1390 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1391 } 1392 1393 // If the magnitude of the value fits in less than 52 bits (the precision of 1394 // an IEEE double precision floating point value), then we can use the 1395 // libc sqrt function which will probably use a hardware sqrt computation. 1396 // This should be faster than the algorithm below. 1397 if (magnitude < 52) { 1398 #if HAVE_ROUND 1399 return APInt(BitWidth, 1400 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1401 #else 1402 return APInt(BitWidth, 1403 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); 1404 #endif 1405 } 1406 1407 // Okay, all the short cuts are exhausted. We must compute it. The following 1408 // is a classical Babylonian method for computing the square root. This code 1409 // was adapted to APINt from a wikipedia article on such computations. 1410 // See http://www.wikipedia.org/ and go to the page named 1411 // Calculate_an_integer_square_root. 1412 unsigned nbits = BitWidth, i = 4; 1413 APInt testy(BitWidth, 16); 1414 APInt x_old(BitWidth, 1); 1415 APInt x_new(BitWidth, 0); 1416 APInt two(BitWidth, 2); 1417 1418 // Select a good starting value using binary logarithms. 1419 for (;; i += 2, testy = testy.shl(2)) 1420 if (i >= nbits || this->ule(testy)) { 1421 x_old = x_old.shl(i / 2); 1422 break; 1423 } 1424 1425 // Use the Babylonian method to arrive at the integer square root: 1426 for (;;) { 1427 x_new = (this->udiv(x_old) + x_old).udiv(two); 1428 if (x_old.ule(x_new)) 1429 break; 1430 x_old = x_new; 1431 } 1432 1433 // Make sure we return the closest approximation 1434 // NOTE: The rounding calculation below is correct. It will produce an 1435 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1436 // determined to be a rounding issue with pari/gp as it begins to use a 1437 // floating point representation after 192 bits. There are no discrepancies 1438 // between this algorithm and pari/gp for bit widths < 192 bits. 1439 APInt square(x_old * x_old); 1440 APInt nextSquare((x_old + 1) * (x_old +1)); 1441 if (this->ult(square)) 1442 return x_old; 1443 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1444 APInt midpoint((nextSquare - square).udiv(two)); 1445 APInt offset(*this - square); 1446 if (offset.ult(midpoint)) 1447 return x_old; 1448 return x_old + 1; 1449 } 1450 1451 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1452 /// iterative extended Euclidean algorithm is used to solve for this value, 1453 /// however we simplify it to speed up calculating only the inverse, and take 1454 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1455 /// (potentially large) APInts around. 1456 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1457 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1458 1459 // Using the properties listed at the following web page (accessed 06/21/08): 1460 // http://www.numbertheory.org/php/euclid.html 1461 // (especially the properties numbered 3, 4 and 9) it can be proved that 1462 // BitWidth bits suffice for all the computations in the algorithm implemented 1463 // below. More precisely, this number of bits suffice if the multiplicative 1464 // inverse exists, but may not suffice for the general extended Euclidean 1465 // algorithm. 1466 1467 APInt r[2] = { modulo, *this }; 1468 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1469 APInt q(BitWidth, 0); 1470 1471 unsigned i; 1472 for (i = 0; r[i^1] != 0; i ^= 1) { 1473 // An overview of the math without the confusing bit-flipping: 1474 // q = r[i-2] / r[i-1] 1475 // r[i] = r[i-2] % r[i-1] 1476 // t[i] = t[i-2] - t[i-1] * q 1477 udivrem(r[i], r[i^1], q, r[i]); 1478 t[i] -= t[i^1] * q; 1479 } 1480 1481 // If this APInt and the modulo are not coprime, there is no multiplicative 1482 // inverse, so return 0. We check this by looking at the next-to-last 1483 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1484 // algorithm. 1485 if (r[i] != 1) 1486 return APInt(BitWidth, 0); 1487 1488 // The next-to-last t is the multiplicative inverse. However, we are 1489 // interested in a positive inverse. Calcuate a positive one from a negative 1490 // one if necessary. A simple addition of the modulo suffices because 1491 // abs(t[i]) is known to be less than *this/2 (see the link above). 1492 return t[i].isNegative() ? t[i] + modulo : t[i]; 1493 } 1494 1495 /// Calculate the magic numbers required to implement a signed integer division 1496 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1497 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1498 /// Warren, Jr., chapter 10. 1499 APInt::ms APInt::magic() const { 1500 const APInt& d = *this; 1501 unsigned p; 1502 APInt ad, anc, delta, q1, r1, q2, r2, t; 1503 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1504 struct ms mag; 1505 1506 ad = d.abs(); 1507 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1508 anc = t - 1 - t.urem(ad); // absolute value of nc 1509 p = d.getBitWidth() - 1; // initialize p 1510 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1511 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1512 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1513 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1514 do { 1515 p = p + 1; 1516 q1 = q1<<1; // update q1 = 2p/abs(nc) 1517 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1518 if (r1.uge(anc)) { // must be unsigned comparison 1519 q1 = q1 + 1; 1520 r1 = r1 - anc; 1521 } 1522 q2 = q2<<1; // update q2 = 2p/abs(d) 1523 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1524 if (r2.uge(ad)) { // must be unsigned comparison 1525 q2 = q2 + 1; 1526 r2 = r2 - ad; 1527 } 1528 delta = ad - r2; 1529 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1530 1531 mag.m = q2 + 1; 1532 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1533 mag.s = p - d.getBitWidth(); // resulting shift 1534 return mag; 1535 } 1536 1537 /// Calculate the magic numbers required to implement an unsigned integer 1538 /// division by a constant as a sequence of multiplies, adds and shifts. 1539 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1540 /// S. Warren, Jr., chapter 10. 1541 /// LeadingZeros can be used to simplify the calculation if the upper bits 1542 /// of the divided value are known zero. 1543 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1544 const APInt& d = *this; 1545 unsigned p; 1546 APInt nc, delta, q1, r1, q2, r2; 1547 struct mu magu; 1548 magu.a = 0; // initialize "add" indicator 1549 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1550 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1551 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1552 1553 nc = allOnes - (-d).urem(d); 1554 p = d.getBitWidth() - 1; // initialize p 1555 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1556 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1557 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1558 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1559 do { 1560 p = p + 1; 1561 if (r1.uge(nc - r1)) { 1562 q1 = q1 + q1 + 1; // update q1 1563 r1 = r1 + r1 - nc; // update r1 1564 } 1565 else { 1566 q1 = q1+q1; // update q1 1567 r1 = r1+r1; // update r1 1568 } 1569 if ((r2 + 1).uge(d - r2)) { 1570 if (q2.uge(signedMax)) magu.a = 1; 1571 q2 = q2+q2 + 1; // update q2 1572 r2 = r2+r2 + 1 - d; // update r2 1573 } 1574 else { 1575 if (q2.uge(signedMin)) magu.a = 1; 1576 q2 = q2+q2; // update q2 1577 r2 = r2+r2 + 1; // update r2 1578 } 1579 delta = d - 1 - r2; 1580 } while (p < d.getBitWidth()*2 && 1581 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1582 magu.m = q2 + 1; // resulting magic number 1583 magu.s = p - d.getBitWidth(); // resulting shift 1584 return magu; 1585 } 1586 1587 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1588 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1589 /// variables here have the same names as in the algorithm. Comments explain 1590 /// the algorithm and any deviation from it. 1591 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1592 unsigned m, unsigned n) { 1593 assert(u && "Must provide dividend"); 1594 assert(v && "Must provide divisor"); 1595 assert(q && "Must provide quotient"); 1596 assert(u != v && u != q && v != q && "Must us different memory"); 1597 assert(n>1 && "n must be > 1"); 1598 1599 // Knuth uses the value b as the base of the number system. In our case b 1600 // is 2^31 so we just set it to -1u. 1601 uint64_t b = uint64_t(1) << 32; 1602 1603 #if 0 1604 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1605 DEBUG(dbgs() << "KnuthDiv: original:"); 1606 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1607 DEBUG(dbgs() << " by"); 1608 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1609 DEBUG(dbgs() << '\n'); 1610 #endif 1611 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1612 // u and v by d. Note that we have taken Knuth's advice here to use a power 1613 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1614 // 2 allows us to shift instead of multiply and it is easy to determine the 1615 // shift amount from the leading zeros. We are basically normalizing the u 1616 // and v so that its high bits are shifted to the top of v's range without 1617 // overflow. Note that this can require an extra word in u so that u must 1618 // be of length m+n+1. 1619 unsigned shift = CountLeadingZeros_32(v[n-1]); 1620 unsigned v_carry = 0; 1621 unsigned u_carry = 0; 1622 if (shift) { 1623 for (unsigned i = 0; i < m+n; ++i) { 1624 unsigned u_tmp = u[i] >> (32 - shift); 1625 u[i] = (u[i] << shift) | u_carry; 1626 u_carry = u_tmp; 1627 } 1628 for (unsigned i = 0; i < n; ++i) { 1629 unsigned v_tmp = v[i] >> (32 - shift); 1630 v[i] = (v[i] << shift) | v_carry; 1631 v_carry = v_tmp; 1632 } 1633 } 1634 u[m+n] = u_carry; 1635 #if 0 1636 DEBUG(dbgs() << "KnuthDiv: normal:"); 1637 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1638 DEBUG(dbgs() << " by"); 1639 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1640 DEBUG(dbgs() << '\n'); 1641 #endif 1642 1643 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1644 int j = m; 1645 do { 1646 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1647 // D3. [Calculate q'.]. 1648 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1649 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1650 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1651 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1652 // on v[n-2] determines at high speed most of the cases in which the trial 1653 // value qp is one too large, and it eliminates all cases where qp is two 1654 // too large. 1655 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1656 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1657 uint64_t qp = dividend / v[n-1]; 1658 uint64_t rp = dividend % v[n-1]; 1659 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1660 qp--; 1661 rp += v[n-1]; 1662 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1663 qp--; 1664 } 1665 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1666 1667 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1668 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1669 // consists of a simple multiplication by a one-place number, combined with 1670 // a subtraction. 1671 bool isNeg = false; 1672 for (unsigned i = 0; i < n; ++i) { 1673 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); 1674 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); 1675 bool borrow = subtrahend > u_tmp; 1676 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp 1677 << ", subtrahend == " << subtrahend 1678 << ", borrow = " << borrow << '\n'); 1679 1680 uint64_t result = u_tmp - subtrahend; 1681 unsigned k = j + i; 1682 u[k++] = (unsigned)(result & (b-1)); // subtract low word 1683 u[k++] = (unsigned)(result >> 32); // subtract high word 1684 while (borrow && k <= m+n) { // deal with borrow to the left 1685 borrow = u[k] == 0; 1686 u[k]--; 1687 k++; 1688 } 1689 isNeg |= borrow; 1690 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << 1691 u[j+i+1] << '\n'); 1692 } 1693 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1694 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1695 DEBUG(dbgs() << '\n'); 1696 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1697 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1698 // true value plus b**(n+1), namely as the b's complement of 1699 // the true value, and a "borrow" to the left should be remembered. 1700 // 1701 if (isNeg) { 1702 bool carry = true; // true because b's complement is "complement + 1" 1703 for (unsigned i = 0; i <= m+n; ++i) { 1704 u[i] = ~u[i] + carry; // b's complement 1705 carry = carry && u[i] == 0; 1706 } 1707 } 1708 DEBUG(dbgs() << "KnuthDiv: after complement:"); 1709 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1710 DEBUG(dbgs() << '\n'); 1711 1712 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1713 // negative, go to step D6; otherwise go on to step D7. 1714 q[j] = (unsigned)qp; 1715 if (isNeg) { 1716 // D6. [Add back]. The probability that this step is necessary is very 1717 // small, on the order of only 2/b. Make sure that test data accounts for 1718 // this possibility. Decrease q[j] by 1 1719 q[j]--; 1720 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1721 // A carry will occur to the left of u[j+n], and it should be ignored 1722 // since it cancels with the borrow that occurred in D4. 1723 bool carry = false; 1724 for (unsigned i = 0; i < n; i++) { 1725 unsigned limit = std::min(u[j+i],v[i]); 1726 u[j+i] += v[i] + carry; 1727 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1728 } 1729 u[j+n] += carry; 1730 } 1731 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1732 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); 1733 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1734 1735 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1736 } while (--j >= 0); 1737 1738 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1739 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1740 DEBUG(dbgs() << '\n'); 1741 1742 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1743 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1744 // compute the remainder (urem uses this). 1745 if (r) { 1746 // The value d is expressed by the "shift" value above since we avoided 1747 // multiplication by d by using a shift left. So, all we have to do is 1748 // shift right here. In order to mak 1749 if (shift) { 1750 unsigned carry = 0; 1751 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1752 for (int i = n-1; i >= 0; i--) { 1753 r[i] = (u[i] >> shift) | carry; 1754 carry = u[i] << (32 - shift); 1755 DEBUG(dbgs() << " " << r[i]); 1756 } 1757 } else { 1758 for (int i = n-1; i >= 0; i--) { 1759 r[i] = u[i]; 1760 DEBUG(dbgs() << " " << r[i]); 1761 } 1762 } 1763 DEBUG(dbgs() << '\n'); 1764 } 1765 #if 0 1766 DEBUG(dbgs() << '\n'); 1767 #endif 1768 } 1769 1770 void APInt::divide(const APInt LHS, unsigned lhsWords, 1771 const APInt &RHS, unsigned rhsWords, 1772 APInt *Quotient, APInt *Remainder) 1773 { 1774 assert(lhsWords >= rhsWords && "Fractional result"); 1775 1776 // First, compose the values into an array of 32-bit words instead of 1777 // 64-bit words. This is a necessity of both the "short division" algorithm 1778 // and the Knuth "classical algorithm" which requires there to be native 1779 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1780 // can't use 64-bit operands here because we don't have native results of 1781 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1782 // work on large-endian machines. 1783 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1784 unsigned n = rhsWords * 2; 1785 unsigned m = (lhsWords * 2) - n; 1786 1787 // Allocate space for the temporary values we need either on the stack, if 1788 // it will fit, or on the heap if it won't. 1789 unsigned SPACE[128]; 1790 unsigned *U = 0; 1791 unsigned *V = 0; 1792 unsigned *Q = 0; 1793 unsigned *R = 0; 1794 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1795 U = &SPACE[0]; 1796 V = &SPACE[m+n+1]; 1797 Q = &SPACE[(m+n+1) + n]; 1798 if (Remainder) 1799 R = &SPACE[(m+n+1) + n + (m+n)]; 1800 } else { 1801 U = new unsigned[m + n + 1]; 1802 V = new unsigned[n]; 1803 Q = new unsigned[m+n]; 1804 if (Remainder) 1805 R = new unsigned[n]; 1806 } 1807 1808 // Initialize the dividend 1809 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1810 for (unsigned i = 0; i < lhsWords; ++i) { 1811 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1812 U[i * 2] = (unsigned)(tmp & mask); 1813 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1814 } 1815 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1816 1817 // Initialize the divisor 1818 memset(V, 0, (n)*sizeof(unsigned)); 1819 for (unsigned i = 0; i < rhsWords; ++i) { 1820 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1821 V[i * 2] = (unsigned)(tmp & mask); 1822 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1823 } 1824 1825 // initialize the quotient and remainder 1826 memset(Q, 0, (m+n) * sizeof(unsigned)); 1827 if (Remainder) 1828 memset(R, 0, n * sizeof(unsigned)); 1829 1830 // Now, adjust m and n for the Knuth division. n is the number of words in 1831 // the divisor. m is the number of words by which the dividend exceeds the 1832 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1833 // contain any zero words or the Knuth algorithm fails. 1834 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1835 n--; 1836 m++; 1837 } 1838 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1839 m--; 1840 1841 // If we're left with only a single word for the divisor, Knuth doesn't work 1842 // so we implement the short division algorithm here. This is much simpler 1843 // and faster because we are certain that we can divide a 64-bit quantity 1844 // by a 32-bit quantity at hardware speed and short division is simply a 1845 // series of such operations. This is just like doing short division but we 1846 // are using base 2^32 instead of base 10. 1847 assert(n != 0 && "Divide by zero?"); 1848 if (n == 1) { 1849 unsigned divisor = V[0]; 1850 unsigned remainder = 0; 1851 for (int i = m+n-1; i >= 0; i--) { 1852 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1853 if (partial_dividend == 0) { 1854 Q[i] = 0; 1855 remainder = 0; 1856 } else if (partial_dividend < divisor) { 1857 Q[i] = 0; 1858 remainder = (unsigned)partial_dividend; 1859 } else if (partial_dividend == divisor) { 1860 Q[i] = 1; 1861 remainder = 0; 1862 } else { 1863 Q[i] = (unsigned)(partial_dividend / divisor); 1864 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1865 } 1866 } 1867 if (R) 1868 R[0] = remainder; 1869 } else { 1870 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1871 // case n > 1. 1872 KnuthDiv(U, V, Q, R, m, n); 1873 } 1874 1875 // If the caller wants the quotient 1876 if (Quotient) { 1877 // Set up the Quotient value's memory. 1878 if (Quotient->BitWidth != LHS.BitWidth) { 1879 if (Quotient->isSingleWord()) 1880 Quotient->VAL = 0; 1881 else 1882 delete [] Quotient->pVal; 1883 Quotient->BitWidth = LHS.BitWidth; 1884 if (!Quotient->isSingleWord()) 1885 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1886 } else 1887 Quotient->clearAllBits(); 1888 1889 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1890 // order words. 1891 if (lhsWords == 1) { 1892 uint64_t tmp = 1893 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1894 if (Quotient->isSingleWord()) 1895 Quotient->VAL = tmp; 1896 else 1897 Quotient->pVal[0] = tmp; 1898 } else { 1899 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1900 for (unsigned i = 0; i < lhsWords; ++i) 1901 Quotient->pVal[i] = 1902 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1903 } 1904 } 1905 1906 // If the caller wants the remainder 1907 if (Remainder) { 1908 // Set up the Remainder value's memory. 1909 if (Remainder->BitWidth != RHS.BitWidth) { 1910 if (Remainder->isSingleWord()) 1911 Remainder->VAL = 0; 1912 else 1913 delete [] Remainder->pVal; 1914 Remainder->BitWidth = RHS.BitWidth; 1915 if (!Remainder->isSingleWord()) 1916 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1917 } else 1918 Remainder->clearAllBits(); 1919 1920 // The remainder is in R. Reconstitute the remainder into Remainder's low 1921 // order words. 1922 if (rhsWords == 1) { 1923 uint64_t tmp = 1924 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1925 if (Remainder->isSingleWord()) 1926 Remainder->VAL = tmp; 1927 else 1928 Remainder->pVal[0] = tmp; 1929 } else { 1930 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1931 for (unsigned i = 0; i < rhsWords; ++i) 1932 Remainder->pVal[i] = 1933 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1934 } 1935 } 1936 1937 // Clean up the memory we allocated. 1938 if (U != &SPACE[0]) { 1939 delete [] U; 1940 delete [] V; 1941 delete [] Q; 1942 delete [] R; 1943 } 1944 } 1945 1946 APInt APInt::udiv(const APInt& RHS) const { 1947 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1948 1949 // First, deal with the easy case 1950 if (isSingleWord()) { 1951 assert(RHS.VAL != 0 && "Divide by zero?"); 1952 return APInt(BitWidth, VAL / RHS.VAL); 1953 } 1954 1955 // Get some facts about the LHS and RHS number of bits and words 1956 unsigned rhsBits = RHS.getActiveBits(); 1957 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1958 assert(rhsWords && "Divided by zero???"); 1959 unsigned lhsBits = this->getActiveBits(); 1960 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1961 1962 // Deal with some degenerate cases 1963 if (!lhsWords) 1964 // 0 / X ===> 0 1965 return APInt(BitWidth, 0); 1966 else if (lhsWords < rhsWords || this->ult(RHS)) { 1967 // X / Y ===> 0, iff X < Y 1968 return APInt(BitWidth, 0); 1969 } else if (*this == RHS) { 1970 // X / X ===> 1 1971 return APInt(BitWidth, 1); 1972 } else if (lhsWords == 1 && rhsWords == 1) { 1973 // All high words are zero, just use native divide 1974 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1975 } 1976 1977 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1978 APInt Quotient(1,0); // to hold result. 1979 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); 1980 return Quotient; 1981 } 1982 1983 APInt APInt::urem(const APInt& RHS) const { 1984 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1985 if (isSingleWord()) { 1986 assert(RHS.VAL != 0 && "Remainder by zero?"); 1987 return APInt(BitWidth, VAL % RHS.VAL); 1988 } 1989 1990 // Get some facts about the LHS 1991 unsigned lhsBits = getActiveBits(); 1992 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1993 1994 // Get some facts about the RHS 1995 unsigned rhsBits = RHS.getActiveBits(); 1996 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1997 assert(rhsWords && "Performing remainder operation by zero ???"); 1998 1999 // Check the degenerate cases 2000 if (lhsWords == 0) { 2001 // 0 % Y ===> 0 2002 return APInt(BitWidth, 0); 2003 } else if (lhsWords < rhsWords || this->ult(RHS)) { 2004 // X % Y ===> X, iff X < Y 2005 return *this; 2006 } else if (*this == RHS) { 2007 // X % X == 0; 2008 return APInt(BitWidth, 0); 2009 } else if (lhsWords == 1) { 2010 // All high words are zero, just use native remainder 2011 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 2012 } 2013 2014 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 2015 APInt Remainder(1,0); 2016 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); 2017 return Remainder; 2018 } 2019 2020 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 2021 APInt &Quotient, APInt &Remainder) { 2022 // Get some size facts about the dividend and divisor 2023 unsigned lhsBits = LHS.getActiveBits(); 2024 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 2025 unsigned rhsBits = RHS.getActiveBits(); 2026 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 2027 2028 // Check the degenerate cases 2029 if (lhsWords == 0) { 2030 Quotient = 0; // 0 / Y ===> 0 2031 Remainder = 0; // 0 % Y ===> 0 2032 return; 2033 } 2034 2035 if (lhsWords < rhsWords || LHS.ult(RHS)) { 2036 Remainder = LHS; // X % Y ===> X, iff X < Y 2037 Quotient = 0; // X / Y ===> 0, iff X < Y 2038 return; 2039 } 2040 2041 if (LHS == RHS) { 2042 Quotient = 1; // X / X ===> 1 2043 Remainder = 0; // X % X ===> 0; 2044 return; 2045 } 2046 2047 if (lhsWords == 1 && rhsWords == 1) { 2048 // There is only one word to consider so use the native versions. 2049 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 2050 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 2051 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 2052 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 2053 return; 2054 } 2055 2056 // Okay, lets do it the long way 2057 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 2058 } 2059 2060 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 2061 APInt Res = *this+RHS; 2062 Overflow = isNonNegative() == RHS.isNonNegative() && 2063 Res.isNonNegative() != isNonNegative(); 2064 return Res; 2065 } 2066 2067 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 2068 APInt Res = *this+RHS; 2069 Overflow = Res.ult(RHS); 2070 return Res; 2071 } 2072 2073 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 2074 APInt Res = *this - RHS; 2075 Overflow = isNonNegative() != RHS.isNonNegative() && 2076 Res.isNonNegative() != isNonNegative(); 2077 return Res; 2078 } 2079 2080 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2081 APInt Res = *this-RHS; 2082 Overflow = Res.ugt(*this); 2083 return Res; 2084 } 2085 2086 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2087 // MININT/-1 --> overflow. 2088 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2089 return sdiv(RHS); 2090 } 2091 2092 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2093 APInt Res = *this * RHS; 2094 2095 if (*this != 0 && RHS != 0) 2096 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2097 else 2098 Overflow = false; 2099 return Res; 2100 } 2101 2102 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2103 APInt Res = *this * RHS; 2104 2105 if (*this != 0 && RHS != 0) 2106 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2107 else 2108 Overflow = false; 2109 return Res; 2110 } 2111 2112 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { 2113 Overflow = ShAmt >= getBitWidth(); 2114 if (Overflow) 2115 ShAmt = getBitWidth()-1; 2116 2117 if (isNonNegative()) // Don't allow sign change. 2118 Overflow = ShAmt >= countLeadingZeros(); 2119 else 2120 Overflow = ShAmt >= countLeadingOnes(); 2121 2122 return *this << ShAmt; 2123 } 2124 2125 2126 2127 2128 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2129 // Check our assumptions here 2130 assert(!str.empty() && "Invalid string length"); 2131 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2132 radix == 36) && 2133 "Radix should be 2, 8, 10, 16, or 36!"); 2134 2135 StringRef::iterator p = str.begin(); 2136 size_t slen = str.size(); 2137 bool isNeg = *p == '-'; 2138 if (*p == '-' || *p == '+') { 2139 p++; 2140 slen--; 2141 assert(slen && "String is only a sign, needs a value."); 2142 } 2143 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2144 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2145 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2146 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2147 "Insufficient bit width"); 2148 2149 // Allocate memory 2150 if (!isSingleWord()) 2151 pVal = getClearedMemory(getNumWords()); 2152 2153 // Figure out if we can shift instead of multiply 2154 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2155 2156 // Set up an APInt for the digit to add outside the loop so we don't 2157 // constantly construct/destruct it. 2158 APInt apdigit(getBitWidth(), 0); 2159 APInt apradix(getBitWidth(), radix); 2160 2161 // Enter digit traversal loop 2162 for (StringRef::iterator e = str.end(); p != e; ++p) { 2163 unsigned digit = getDigit(*p, radix); 2164 assert(digit < radix && "Invalid character in digit string"); 2165 2166 // Shift or multiply the value by the radix 2167 if (slen > 1) { 2168 if (shift) 2169 *this <<= shift; 2170 else 2171 *this *= apradix; 2172 } 2173 2174 // Add in the digit we just interpreted 2175 if (apdigit.isSingleWord()) 2176 apdigit.VAL = digit; 2177 else 2178 apdigit.pVal[0] = digit; 2179 *this += apdigit; 2180 } 2181 // If its negative, put it in two's complement form 2182 if (isNeg) { 2183 (*this)--; 2184 this->flipAllBits(); 2185 } 2186 } 2187 2188 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2189 bool Signed, bool formatAsCLiteral) const { 2190 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2191 Radix == 36) && 2192 "Radix should be 2, 8, 10, or 16!"); 2193 2194 const char *Prefix = ""; 2195 if (formatAsCLiteral) { 2196 switch (Radix) { 2197 case 2: 2198 // Binary literals are a non-standard extension added in gcc 4.3: 2199 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2200 Prefix = "0b"; 2201 break; 2202 case 8: 2203 Prefix = "0"; 2204 break; 2205 case 16: 2206 Prefix = "0x"; 2207 break; 2208 } 2209 } 2210 2211 // First, check for a zero value and just short circuit the logic below. 2212 if (*this == 0) { 2213 while (*Prefix) { 2214 Str.push_back(*Prefix); 2215 ++Prefix; 2216 }; 2217 Str.push_back('0'); 2218 return; 2219 } 2220 2221 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2222 2223 if (isSingleWord()) { 2224 char Buffer[65]; 2225 char *BufPtr = Buffer+65; 2226 2227 uint64_t N; 2228 if (!Signed) { 2229 N = getZExtValue(); 2230 } else { 2231 int64_t I = getSExtValue(); 2232 if (I >= 0) { 2233 N = I; 2234 } else { 2235 Str.push_back('-'); 2236 N = -(uint64_t)I; 2237 } 2238 } 2239 2240 while (*Prefix) { 2241 Str.push_back(*Prefix); 2242 ++Prefix; 2243 }; 2244 2245 while (N) { 2246 *--BufPtr = Digits[N % Radix]; 2247 N /= Radix; 2248 } 2249 Str.append(BufPtr, Buffer+65); 2250 return; 2251 } 2252 2253 APInt Tmp(*this); 2254 2255 if (Signed && isNegative()) { 2256 // They want to print the signed version and it is a negative value 2257 // Flip the bits and add one to turn it into the equivalent positive 2258 // value and put a '-' in the result. 2259 Tmp.flipAllBits(); 2260 Tmp++; 2261 Str.push_back('-'); 2262 } 2263 2264 while (*Prefix) { 2265 Str.push_back(*Prefix); 2266 ++Prefix; 2267 }; 2268 2269 // We insert the digits backward, then reverse them to get the right order. 2270 unsigned StartDig = Str.size(); 2271 2272 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2273 // because the number of bits per digit (1, 3 and 4 respectively) divides 2274 // equaly. We just shift until the value is zero. 2275 if (Radix == 2 || Radix == 8 || Radix == 16) { 2276 // Just shift tmp right for each digit width until it becomes zero 2277 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2278 unsigned MaskAmt = Radix - 1; 2279 2280 while (Tmp != 0) { 2281 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2282 Str.push_back(Digits[Digit]); 2283 Tmp = Tmp.lshr(ShiftAmt); 2284 } 2285 } else { 2286 APInt divisor(Radix == 10? 4 : 8, Radix); 2287 while (Tmp != 0) { 2288 APInt APdigit(1, 0); 2289 APInt tmp2(Tmp.getBitWidth(), 0); 2290 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2291 &APdigit); 2292 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2293 assert(Digit < Radix && "divide failed"); 2294 Str.push_back(Digits[Digit]); 2295 Tmp = tmp2; 2296 } 2297 } 2298 2299 // Reverse the digits before returning. 2300 std::reverse(Str.begin()+StartDig, Str.end()); 2301 } 2302 2303 /// toString - This returns the APInt as a std::string. Note that this is an 2304 /// inefficient method. It is better to pass in a SmallVector/SmallString 2305 /// to the methods above. 2306 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2307 SmallString<40> S; 2308 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2309 return S.str(); 2310 } 2311 2312 2313 void APInt::dump() const { 2314 SmallString<40> S, U; 2315 this->toStringUnsigned(U); 2316 this->toStringSigned(S); 2317 dbgs() << "APInt(" << BitWidth << "b, " 2318 << U.str() << "u " << S.str() << "s)"; 2319 } 2320 2321 void APInt::print(raw_ostream &OS, bool isSigned) const { 2322 SmallString<40> S; 2323 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2324 OS << S.str(); 2325 } 2326 2327 // This implements a variety of operations on a representation of 2328 // arbitrary precision, two's-complement, bignum integer values. 2329 2330 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2331 // and unrestricting assumption. 2332 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 2333 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0); 2334 2335 /* Some handy functions local to this file. */ 2336 namespace { 2337 2338 /* Returns the integer part with the least significant BITS set. 2339 BITS cannot be zero. */ 2340 static inline integerPart 2341 lowBitMask(unsigned int bits) 2342 { 2343 assert(bits != 0 && bits <= integerPartWidth); 2344 2345 return ~(integerPart) 0 >> (integerPartWidth - bits); 2346 } 2347 2348 /* Returns the value of the lower half of PART. */ 2349 static inline integerPart 2350 lowHalf(integerPart part) 2351 { 2352 return part & lowBitMask(integerPartWidth / 2); 2353 } 2354 2355 /* Returns the value of the upper half of PART. */ 2356 static inline integerPart 2357 highHalf(integerPart part) 2358 { 2359 return part >> (integerPartWidth / 2); 2360 } 2361 2362 /* Returns the bit number of the most significant set bit of a part. 2363 If the input number has no bits set -1U is returned. */ 2364 static unsigned int 2365 partMSB(integerPart value) 2366 { 2367 unsigned int n, msb; 2368 2369 if (value == 0) 2370 return -1U; 2371 2372 n = integerPartWidth / 2; 2373 2374 msb = 0; 2375 do { 2376 if (value >> n) { 2377 value >>= n; 2378 msb += n; 2379 } 2380 2381 n >>= 1; 2382 } while (n); 2383 2384 return msb; 2385 } 2386 2387 /* Returns the bit number of the least significant set bit of a 2388 part. If the input number has no bits set -1U is returned. */ 2389 static unsigned int 2390 partLSB(integerPart value) 2391 { 2392 unsigned int n, lsb; 2393 2394 if (value == 0) 2395 return -1U; 2396 2397 lsb = integerPartWidth - 1; 2398 n = integerPartWidth / 2; 2399 2400 do { 2401 if (value << n) { 2402 value <<= n; 2403 lsb -= n; 2404 } 2405 2406 n >>= 1; 2407 } while (n); 2408 2409 return lsb; 2410 } 2411 } 2412 2413 /* Sets the least significant part of a bignum to the input value, and 2414 zeroes out higher parts. */ 2415 void 2416 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2417 { 2418 unsigned int i; 2419 2420 assert(parts > 0); 2421 2422 dst[0] = part; 2423 for (i = 1; i < parts; i++) 2424 dst[i] = 0; 2425 } 2426 2427 /* Assign one bignum to another. */ 2428 void 2429 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2430 { 2431 unsigned int i; 2432 2433 for (i = 0; i < parts; i++) 2434 dst[i] = src[i]; 2435 } 2436 2437 /* Returns true if a bignum is zero, false otherwise. */ 2438 bool 2439 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2440 { 2441 unsigned int i; 2442 2443 for (i = 0; i < parts; i++) 2444 if (src[i]) 2445 return false; 2446 2447 return true; 2448 } 2449 2450 /* Extract the given bit of a bignum; returns 0 or 1. */ 2451 int 2452 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2453 { 2454 return (parts[bit / integerPartWidth] & 2455 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2456 } 2457 2458 /* Set the given bit of a bignum. */ 2459 void 2460 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2461 { 2462 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2463 } 2464 2465 /* Clears the given bit of a bignum. */ 2466 void 2467 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2468 { 2469 parts[bit / integerPartWidth] &= 2470 ~((integerPart) 1 << (bit % integerPartWidth)); 2471 } 2472 2473 /* Returns the bit number of the least significant set bit of a 2474 number. If the input number has no bits set -1U is returned. */ 2475 unsigned int 2476 APInt::tcLSB(const integerPart *parts, unsigned int n) 2477 { 2478 unsigned int i, lsb; 2479 2480 for (i = 0; i < n; i++) { 2481 if (parts[i] != 0) { 2482 lsb = partLSB(parts[i]); 2483 2484 return lsb + i * integerPartWidth; 2485 } 2486 } 2487 2488 return -1U; 2489 } 2490 2491 /* Returns the bit number of the most significant set bit of a number. 2492 If the input number has no bits set -1U is returned. */ 2493 unsigned int 2494 APInt::tcMSB(const integerPart *parts, unsigned int n) 2495 { 2496 unsigned int msb; 2497 2498 do { 2499 --n; 2500 2501 if (parts[n] != 0) { 2502 msb = partMSB(parts[n]); 2503 2504 return msb + n * integerPartWidth; 2505 } 2506 } while (n); 2507 2508 return -1U; 2509 } 2510 2511 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2512 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2513 the least significant bit of DST. All high bits above srcBITS in 2514 DST are zero-filled. */ 2515 void 2516 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2517 unsigned int srcBits, unsigned int srcLSB) 2518 { 2519 unsigned int firstSrcPart, dstParts, shift, n; 2520 2521 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2522 assert(dstParts <= dstCount); 2523 2524 firstSrcPart = srcLSB / integerPartWidth; 2525 tcAssign (dst, src + firstSrcPart, dstParts); 2526 2527 shift = srcLSB % integerPartWidth; 2528 tcShiftRight (dst, dstParts, shift); 2529 2530 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2531 in DST. If this is less that srcBits, append the rest, else 2532 clear the high bits. */ 2533 n = dstParts * integerPartWidth - shift; 2534 if (n < srcBits) { 2535 integerPart mask = lowBitMask (srcBits - n); 2536 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2537 << n % integerPartWidth); 2538 } else if (n > srcBits) { 2539 if (srcBits % integerPartWidth) 2540 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2541 } 2542 2543 /* Clear high parts. */ 2544 while (dstParts < dstCount) 2545 dst[dstParts++] = 0; 2546 } 2547 2548 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2549 integerPart 2550 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2551 integerPart c, unsigned int parts) 2552 { 2553 unsigned int i; 2554 2555 assert(c <= 1); 2556 2557 for (i = 0; i < parts; i++) { 2558 integerPart l; 2559 2560 l = dst[i]; 2561 if (c) { 2562 dst[i] += rhs[i] + 1; 2563 c = (dst[i] <= l); 2564 } else { 2565 dst[i] += rhs[i]; 2566 c = (dst[i] < l); 2567 } 2568 } 2569 2570 return c; 2571 } 2572 2573 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2574 integerPart 2575 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2576 integerPart c, unsigned int parts) 2577 { 2578 unsigned int i; 2579 2580 assert(c <= 1); 2581 2582 for (i = 0; i < parts; i++) { 2583 integerPart l; 2584 2585 l = dst[i]; 2586 if (c) { 2587 dst[i] -= rhs[i] + 1; 2588 c = (dst[i] >= l); 2589 } else { 2590 dst[i] -= rhs[i]; 2591 c = (dst[i] > l); 2592 } 2593 } 2594 2595 return c; 2596 } 2597 2598 /* Negate a bignum in-place. */ 2599 void 2600 APInt::tcNegate(integerPart *dst, unsigned int parts) 2601 { 2602 tcComplement(dst, parts); 2603 tcIncrement(dst, parts); 2604 } 2605 2606 /* DST += SRC * MULTIPLIER + CARRY if add is true 2607 DST = SRC * MULTIPLIER + CARRY if add is false 2608 2609 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2610 they must start at the same point, i.e. DST == SRC. 2611 2612 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2613 returned. Otherwise DST is filled with the least significant 2614 DSTPARTS parts of the result, and if all of the omitted higher 2615 parts were zero return zero, otherwise overflow occurred and 2616 return one. */ 2617 int 2618 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2619 integerPart multiplier, integerPart carry, 2620 unsigned int srcParts, unsigned int dstParts, 2621 bool add) 2622 { 2623 unsigned int i, n; 2624 2625 /* Otherwise our writes of DST kill our later reads of SRC. */ 2626 assert(dst <= src || dst >= src + srcParts); 2627 assert(dstParts <= srcParts + 1); 2628 2629 /* N loops; minimum of dstParts and srcParts. */ 2630 n = dstParts < srcParts ? dstParts: srcParts; 2631 2632 for (i = 0; i < n; i++) { 2633 integerPart low, mid, high, srcPart; 2634 2635 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2636 2637 This cannot overflow, because 2638 2639 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2640 2641 which is less than n^2. */ 2642 2643 srcPart = src[i]; 2644 2645 if (multiplier == 0 || srcPart == 0) { 2646 low = carry; 2647 high = 0; 2648 } else { 2649 low = lowHalf(srcPart) * lowHalf(multiplier); 2650 high = highHalf(srcPart) * highHalf(multiplier); 2651 2652 mid = lowHalf(srcPart) * highHalf(multiplier); 2653 high += highHalf(mid); 2654 mid <<= integerPartWidth / 2; 2655 if (low + mid < low) 2656 high++; 2657 low += mid; 2658 2659 mid = highHalf(srcPart) * lowHalf(multiplier); 2660 high += highHalf(mid); 2661 mid <<= integerPartWidth / 2; 2662 if (low + mid < low) 2663 high++; 2664 low += mid; 2665 2666 /* Now add carry. */ 2667 if (low + carry < low) 2668 high++; 2669 low += carry; 2670 } 2671 2672 if (add) { 2673 /* And now DST[i], and store the new low part there. */ 2674 if (low + dst[i] < low) 2675 high++; 2676 dst[i] += low; 2677 } else 2678 dst[i] = low; 2679 2680 carry = high; 2681 } 2682 2683 if (i < dstParts) { 2684 /* Full multiplication, there is no overflow. */ 2685 assert(i + 1 == dstParts); 2686 dst[i] = carry; 2687 return 0; 2688 } else { 2689 /* We overflowed if there is carry. */ 2690 if (carry) 2691 return 1; 2692 2693 /* We would overflow if any significant unwritten parts would be 2694 non-zero. This is true if any remaining src parts are non-zero 2695 and the multiplier is non-zero. */ 2696 if (multiplier) 2697 for (; i < srcParts; i++) 2698 if (src[i]) 2699 return 1; 2700 2701 /* We fitted in the narrow destination. */ 2702 return 0; 2703 } 2704 } 2705 2706 /* DST = LHS * RHS, where DST has the same width as the operands and 2707 is filled with the least significant parts of the result. Returns 2708 one if overflow occurred, otherwise zero. DST must be disjoint 2709 from both operands. */ 2710 int 2711 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2712 const integerPart *rhs, unsigned int parts) 2713 { 2714 unsigned int i; 2715 int overflow; 2716 2717 assert(dst != lhs && dst != rhs); 2718 2719 overflow = 0; 2720 tcSet(dst, 0, parts); 2721 2722 for (i = 0; i < parts; i++) 2723 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2724 parts - i, true); 2725 2726 return overflow; 2727 } 2728 2729 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2730 operands. No overflow occurs. DST must be disjoint from both 2731 operands. Returns the number of parts required to hold the 2732 result. */ 2733 unsigned int 2734 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2735 const integerPart *rhs, unsigned int lhsParts, 2736 unsigned int rhsParts) 2737 { 2738 /* Put the narrower number on the LHS for less loops below. */ 2739 if (lhsParts > rhsParts) { 2740 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2741 } else { 2742 unsigned int n; 2743 2744 assert(dst != lhs && dst != rhs); 2745 2746 tcSet(dst, 0, rhsParts); 2747 2748 for (n = 0; n < lhsParts; n++) 2749 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2750 2751 n = lhsParts + rhsParts; 2752 2753 return n - (dst[n - 1] == 0); 2754 } 2755 } 2756 2757 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2758 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2759 set REMAINDER to the remainder, return zero. i.e. 2760 2761 OLD_LHS = RHS * LHS + REMAINDER 2762 2763 SCRATCH is a bignum of the same size as the operands and result for 2764 use by the routine; its contents need not be initialized and are 2765 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2766 */ 2767 int 2768 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2769 integerPart *remainder, integerPart *srhs, 2770 unsigned int parts) 2771 { 2772 unsigned int n, shiftCount; 2773 integerPart mask; 2774 2775 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2776 2777 shiftCount = tcMSB(rhs, parts) + 1; 2778 if (shiftCount == 0) 2779 return true; 2780 2781 shiftCount = parts * integerPartWidth - shiftCount; 2782 n = shiftCount / integerPartWidth; 2783 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2784 2785 tcAssign(srhs, rhs, parts); 2786 tcShiftLeft(srhs, parts, shiftCount); 2787 tcAssign(remainder, lhs, parts); 2788 tcSet(lhs, 0, parts); 2789 2790 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2791 the total. */ 2792 for (;;) { 2793 int compare; 2794 2795 compare = tcCompare(remainder, srhs, parts); 2796 if (compare >= 0) { 2797 tcSubtract(remainder, srhs, 0, parts); 2798 lhs[n] |= mask; 2799 } 2800 2801 if (shiftCount == 0) 2802 break; 2803 shiftCount--; 2804 tcShiftRight(srhs, parts, 1); 2805 if ((mask >>= 1) == 0) 2806 mask = (integerPart) 1 << (integerPartWidth - 1), n--; 2807 } 2808 2809 return false; 2810 } 2811 2812 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2813 There are no restrictions on COUNT. */ 2814 void 2815 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2816 { 2817 if (count) { 2818 unsigned int jump, shift; 2819 2820 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2821 jump = count / integerPartWidth; 2822 shift = count % integerPartWidth; 2823 2824 while (parts > jump) { 2825 integerPart part; 2826 2827 parts--; 2828 2829 /* dst[i] comes from the two parts src[i - jump] and, if we have 2830 an intra-part shift, src[i - jump - 1]. */ 2831 part = dst[parts - jump]; 2832 if (shift) { 2833 part <<= shift; 2834 if (parts >= jump + 1) 2835 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2836 } 2837 2838 dst[parts] = part; 2839 } 2840 2841 while (parts > 0) 2842 dst[--parts] = 0; 2843 } 2844 } 2845 2846 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2847 zero. There are no restrictions on COUNT. */ 2848 void 2849 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2850 { 2851 if (count) { 2852 unsigned int i, jump, shift; 2853 2854 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2855 jump = count / integerPartWidth; 2856 shift = count % integerPartWidth; 2857 2858 /* Perform the shift. This leaves the most significant COUNT bits 2859 of the result at zero. */ 2860 for (i = 0; i < parts; i++) { 2861 integerPart part; 2862 2863 if (i + jump >= parts) { 2864 part = 0; 2865 } else { 2866 part = dst[i + jump]; 2867 if (shift) { 2868 part >>= shift; 2869 if (i + jump + 1 < parts) 2870 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2871 } 2872 } 2873 2874 dst[i] = part; 2875 } 2876 } 2877 } 2878 2879 /* Bitwise and of two bignums. */ 2880 void 2881 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2882 { 2883 unsigned int i; 2884 2885 for (i = 0; i < parts; i++) 2886 dst[i] &= rhs[i]; 2887 } 2888 2889 /* Bitwise inclusive or of two bignums. */ 2890 void 2891 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2892 { 2893 unsigned int i; 2894 2895 for (i = 0; i < parts; i++) 2896 dst[i] |= rhs[i]; 2897 } 2898 2899 /* Bitwise exclusive or of two bignums. */ 2900 void 2901 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2902 { 2903 unsigned int i; 2904 2905 for (i = 0; i < parts; i++) 2906 dst[i] ^= rhs[i]; 2907 } 2908 2909 /* Complement a bignum in-place. */ 2910 void 2911 APInt::tcComplement(integerPart *dst, unsigned int parts) 2912 { 2913 unsigned int i; 2914 2915 for (i = 0; i < parts; i++) 2916 dst[i] = ~dst[i]; 2917 } 2918 2919 /* Comparison (unsigned) of two bignums. */ 2920 int 2921 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2922 unsigned int parts) 2923 { 2924 while (parts) { 2925 parts--; 2926 if (lhs[parts] == rhs[parts]) 2927 continue; 2928 2929 if (lhs[parts] > rhs[parts]) 2930 return 1; 2931 else 2932 return -1; 2933 } 2934 2935 return 0; 2936 } 2937 2938 /* Increment a bignum in-place, return the carry flag. */ 2939 integerPart 2940 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2941 { 2942 unsigned int i; 2943 2944 for (i = 0; i < parts; i++) 2945 if (++dst[i] != 0) 2946 break; 2947 2948 return i == parts; 2949 } 2950 2951 /* Set the least significant BITS bits of a bignum, clear the 2952 rest. */ 2953 void 2954 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2955 unsigned int bits) 2956 { 2957 unsigned int i; 2958 2959 i = 0; 2960 while (bits > integerPartWidth) { 2961 dst[i++] = ~(integerPart) 0; 2962 bits -= integerPartWidth; 2963 } 2964 2965 if (bits) 2966 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2967 2968 while (i < parts) 2969 dst[i++] = 0; 2970 } 2971