1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <climits> 26 #include <cmath> 27 #include <cstdlib> 28 #include <cstring> 29 using namespace llvm; 30 31 #define DEBUG_TYPE "apint" 32 33 /// A utility function for allocating memory, checking for allocation failures, 34 /// and ensuring the contents are zeroed. 35 inline static uint64_t* getClearedMemory(unsigned numWords) { 36 uint64_t * result = new uint64_t[numWords]; 37 assert(result && "APInt memory allocation fails!"); 38 memset(result, 0, numWords * sizeof(uint64_t)); 39 return result; 40 } 41 42 /// A utility function for allocating memory and checking for allocation 43 /// failure. The content is not zeroed. 44 inline static uint64_t* getMemory(unsigned numWords) { 45 uint64_t * result = new uint64_t[numWords]; 46 assert(result && "APInt memory allocation fails!"); 47 return result; 48 } 49 50 /// A utility function that converts a character to a digit. 51 inline static unsigned getDigit(char cdigit, uint8_t radix) { 52 unsigned r; 53 54 if (radix == 16 || radix == 36) { 55 r = cdigit - '0'; 56 if (r <= 9) 57 return r; 58 59 r = cdigit - 'A'; 60 if (r <= radix - 11U) 61 return r + 10; 62 63 r = cdigit - 'a'; 64 if (r <= radix - 11U) 65 return r + 10; 66 67 radix = 10; 68 } 69 70 r = cdigit - '0'; 71 if (r < radix) 72 return r; 73 74 return -1U; 75 } 76 77 78 void APInt::initSlowCase(uint64_t val, bool isSigned) { 79 VAL = 0; 80 pVal = getClearedMemory(getNumWords()); 81 pVal[0] = val; 82 if (isSigned && int64_t(val) < 0) 83 for (unsigned i = 1; i < getNumWords(); ++i) 84 pVal[i] = -1ULL; 85 clearUnusedBits(); 86 } 87 88 void APInt::initSlowCase(const APInt& that) { 89 VAL = 0; 90 pVal = getMemory(getNumWords()); 91 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 92 } 93 94 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 95 assert(BitWidth && "Bitwidth too small"); 96 assert(bigVal.data() && "Null pointer detected!"); 97 if (isSingleWord()) 98 VAL = bigVal[0]; 99 else { 100 // Get memory, cleared to 0 101 VAL = 0; 102 pVal = getClearedMemory(getNumWords()); 103 // Calculate the number of words to copy 104 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 105 // Copy the words from bigVal to pVal 106 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 107 } 108 // Make sure unused high bits are cleared 109 clearUnusedBits(); 110 } 111 112 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 113 : BitWidth(numBits) { 114 initFromArray(bigVal); 115 } 116 117 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 118 : BitWidth(numBits) { 119 initFromArray(makeArrayRef(bigVal, numWords)); 120 } 121 122 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 123 : BitWidth(numbits), VAL(0) { 124 assert(BitWidth && "Bitwidth too small"); 125 fromString(numbits, Str, radix); 126 } 127 128 APInt& APInt::AssignSlowCase(const APInt& RHS) { 129 // Don't do anything for X = X 130 if (this == &RHS) 131 return *this; 132 133 if (BitWidth == RHS.getBitWidth()) { 134 // assume same bit-width single-word case is already handled 135 assert(!isSingleWord()); 136 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 137 return *this; 138 } 139 140 if (isSingleWord()) { 141 // assume case where both are single words is already handled 142 assert(!RHS.isSingleWord()); 143 VAL = 0; 144 pVal = getMemory(RHS.getNumWords()); 145 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 146 } else if (getNumWords() == RHS.getNumWords()) 147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 148 else if (RHS.isSingleWord()) { 149 delete [] pVal; 150 VAL = RHS.VAL; 151 } else { 152 delete [] pVal; 153 pVal = getMemory(RHS.getNumWords()); 154 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 155 } 156 BitWidth = RHS.BitWidth; 157 return clearUnusedBits(); 158 } 159 160 /// This method 'profiles' an APInt for use with FoldingSet. 161 void APInt::Profile(FoldingSetNodeID& ID) const { 162 ID.AddInteger(BitWidth); 163 164 if (isSingleWord()) { 165 ID.AddInteger(VAL); 166 return; 167 } 168 169 unsigned NumWords = getNumWords(); 170 for (unsigned i = 0; i < NumWords; ++i) 171 ID.AddInteger(pVal[i]); 172 } 173 174 /// This function adds a single "digit" integer, y, to the multiple 175 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 176 /// 1 is returned if there is a carry out, otherwise 0 is returned. 177 /// @returns the carry of the addition. 178 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 179 for (unsigned i = 0; i < len; ++i) { 180 dest[i] = y + x[i]; 181 if (dest[i] < y) 182 y = 1; // Carry one to next digit. 183 else { 184 y = 0; // No need to carry so exit early 185 break; 186 } 187 } 188 return y; 189 } 190 191 /// @brief Prefix increment operator. Increments the APInt by one. 192 APInt& APInt::operator++() { 193 if (isSingleWord()) 194 ++VAL; 195 else 196 add_1(pVal, pVal, getNumWords(), 1); 197 return clearUnusedBits(); 198 } 199 200 /// This function subtracts a single "digit" (64-bit word), y, from 201 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 202 /// no further borrowing is needed or it runs out of "digits" in x. The result 203 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 204 /// In other words, if y > x then this function returns 1, otherwise 0. 205 /// @returns the borrow out of the subtraction 206 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 207 for (unsigned i = 0; i < len; ++i) { 208 uint64_t X = x[i]; 209 x[i] -= y; 210 if (y > X) 211 y = 1; // We have to "borrow 1" from next "digit" 212 else { 213 y = 0; // No need to borrow 214 break; // Remaining digits are unchanged so exit early 215 } 216 } 217 return bool(y); 218 } 219 220 /// @brief Prefix decrement operator. Decrements the APInt by one. 221 APInt& APInt::operator--() { 222 if (isSingleWord()) 223 --VAL; 224 else 225 sub_1(pVal, getNumWords(), 1); 226 return clearUnusedBits(); 227 } 228 229 /// Adds the RHS APint to this APInt. 230 /// @returns this, after addition of RHS. 231 /// @brief Addition assignment operator. 232 APInt& APInt::operator+=(const APInt& RHS) { 233 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 234 if (isSingleWord()) 235 VAL += RHS.VAL; 236 else 237 tcAdd(pVal, RHS.pVal, 0, getNumWords()); 238 return clearUnusedBits(); 239 } 240 241 APInt& APInt::operator+=(uint64_t RHS) { 242 if (isSingleWord()) 243 VAL += RHS; 244 else 245 add_1(pVal, pVal, getNumWords(), RHS); 246 return clearUnusedBits(); 247 } 248 249 /// Subtracts the RHS APInt from this APInt 250 /// @returns this, after subtraction 251 /// @brief Subtraction assignment operator. 252 APInt& APInt::operator-=(const APInt& RHS) { 253 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 254 if (isSingleWord()) 255 VAL -= RHS.VAL; 256 else 257 tcSubtract(pVal, RHS.pVal, 0, getNumWords()); 258 return clearUnusedBits(); 259 } 260 261 APInt& APInt::operator-=(uint64_t RHS) { 262 if (isSingleWord()) 263 VAL -= RHS; 264 else 265 sub_1(pVal, getNumWords(), RHS); 266 return clearUnusedBits(); 267 } 268 269 /// Multiplies an integer array, x, by a uint64_t integer and places the result 270 /// into dest. 271 /// @returns the carry out of the multiplication. 272 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 273 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 274 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 275 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 276 uint64_t carry = 0; 277 278 // For each digit of x. 279 for (unsigned i = 0; i < len; ++i) { 280 // Split x into high and low words 281 uint64_t lx = x[i] & 0xffffffffULL; 282 uint64_t hx = x[i] >> 32; 283 // hasCarry - A flag to indicate if there is a carry to the next digit. 284 // hasCarry == 0, no carry 285 // hasCarry == 1, has carry 286 // hasCarry == 2, no carry and the calculation result == 0. 287 uint8_t hasCarry = 0; 288 dest[i] = carry + lx * ly; 289 // Determine if the add above introduces carry. 290 hasCarry = (dest[i] < carry) ? 1 : 0; 291 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 292 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 293 // (2^32 - 1) + 2^32 = 2^64. 294 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 295 296 carry += (lx * hy) & 0xffffffffULL; 297 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 298 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 299 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 300 } 301 return carry; 302 } 303 304 /// Multiplies integer array x by integer array y and stores the result into 305 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 306 /// @brief Generalized multiplication of integer arrays. 307 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 308 unsigned ylen) { 309 dest[xlen] = mul_1(dest, x, xlen, y[0]); 310 for (unsigned i = 1; i < ylen; ++i) { 311 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 312 uint64_t carry = 0, lx = 0, hx = 0; 313 for (unsigned j = 0; j < xlen; ++j) { 314 lx = x[j] & 0xffffffffULL; 315 hx = x[j] >> 32; 316 // hasCarry - A flag to indicate if has carry. 317 // hasCarry == 0, no carry 318 // hasCarry == 1, has carry 319 // hasCarry == 2, no carry and the calculation result == 0. 320 uint8_t hasCarry = 0; 321 uint64_t resul = carry + lx * ly; 322 hasCarry = (resul < carry) ? 1 : 0; 323 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 324 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 325 326 carry += (lx * hy) & 0xffffffffULL; 327 resul = (carry << 32) | (resul & 0xffffffffULL); 328 dest[i+j] += resul; 329 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 330 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 331 ((lx * hy) >> 32) + hx * hy; 332 } 333 dest[i+xlen] = carry; 334 } 335 } 336 337 APInt& APInt::operator*=(const APInt& RHS) { 338 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 339 if (isSingleWord()) { 340 VAL *= RHS.VAL; 341 clearUnusedBits(); 342 return *this; 343 } 344 345 // Get some bit facts about LHS and check for zero 346 unsigned lhsBits = getActiveBits(); 347 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 348 if (!lhsWords) 349 // 0 * X ===> 0 350 return *this; 351 352 // Get some bit facts about RHS and check for zero 353 unsigned rhsBits = RHS.getActiveBits(); 354 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 355 if (!rhsWords) { 356 // X * 0 ===> 0 357 clearAllBits(); 358 return *this; 359 } 360 361 // Allocate space for the result 362 unsigned destWords = rhsWords + lhsWords; 363 uint64_t *dest = getMemory(destWords); 364 365 // Perform the long multiply 366 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 367 368 // Copy result back into *this 369 clearAllBits(); 370 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 371 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 372 clearUnusedBits(); 373 374 // delete dest array and return 375 delete[] dest; 376 return *this; 377 } 378 379 APInt& APInt::AndAssignSlowCase(const APInt& RHS) { 380 tcAnd(pVal, RHS.pVal, getNumWords()); 381 return *this; 382 } 383 384 APInt& APInt::OrAssignSlowCase(const APInt& RHS) { 385 tcOr(pVal, RHS.pVal, getNumWords()); 386 return *this; 387 } 388 389 APInt& APInt::XorAssignSlowCase(const APInt& RHS) { 390 tcXor(pVal, RHS.pVal, getNumWords()); 391 return *this; 392 } 393 394 APInt APInt::operator*(const APInt& RHS) const { 395 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 396 if (isSingleWord()) 397 return APInt(BitWidth, VAL * RHS.VAL); 398 APInt Result(*this); 399 Result *= RHS; 400 return Result; 401 } 402 403 bool APInt::EqualSlowCase(const APInt& RHS) const { 404 return std::equal(pVal, pVal + getNumWords(), RHS.pVal); 405 } 406 407 bool APInt::EqualSlowCase(uint64_t Val) const { 408 unsigned n = getActiveBits(); 409 if (n <= APINT_BITS_PER_WORD) 410 return pVal[0] == Val; 411 else 412 return false; 413 } 414 415 bool APInt::ult(const APInt& RHS) const { 416 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 417 if (isSingleWord()) 418 return VAL < RHS.VAL; 419 420 // Get active bit length of both operands 421 unsigned n1 = getActiveBits(); 422 unsigned n2 = RHS.getActiveBits(); 423 424 // If magnitude of LHS is less than RHS, return true. 425 if (n1 < n2) 426 return true; 427 428 // If magnitude of RHS is greater than LHS, return false. 429 if (n2 < n1) 430 return false; 431 432 // If they both fit in a word, just compare the low order word 433 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 434 return pVal[0] < RHS.pVal[0]; 435 436 // Otherwise, compare all words 437 unsigned topWord = whichWord(std::max(n1,n2)-1); 438 for (int i = topWord; i >= 0; --i) { 439 if (pVal[i] > RHS.pVal[i]) 440 return false; 441 if (pVal[i] < RHS.pVal[i]) 442 return true; 443 } 444 return false; 445 } 446 447 bool APInt::slt(const APInt& RHS) const { 448 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 449 if (isSingleWord()) { 450 int64_t lhsSext = SignExtend64(VAL, BitWidth); 451 int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth); 452 return lhsSext < rhsSext; 453 } 454 455 bool lhsNeg = isNegative(); 456 bool rhsNeg = RHS.isNegative(); 457 458 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 459 if (lhsNeg != rhsNeg) 460 return lhsNeg; 461 462 // Otherwise we can just use an unsigned comparison, because even negative 463 // numbers compare correctly this way if both have the same signed-ness. 464 return ult(RHS); 465 } 466 467 void APInt::setBit(unsigned bitPosition) { 468 if (isSingleWord()) 469 VAL |= maskBit(bitPosition); 470 else 471 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 472 } 473 474 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 475 unsigned loWord = whichWord(loBit); 476 unsigned hiWord = whichWord(hiBit); 477 478 // Create an initial mask for the low word with zeros below loBit. 479 uint64_t loMask = UINT64_MAX << whichBit(loBit); 480 481 // If hiBit is not aligned, we need a high mask. 482 unsigned hiShiftAmt = whichBit(hiBit); 483 if (hiShiftAmt != 0) { 484 // Create a high mask with zeros above hiBit. 485 uint64_t hiMask = UINT64_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 486 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 487 // set the bits in hiWord. 488 if (hiWord == loWord) 489 loMask &= hiMask; 490 else 491 pVal[hiWord] |= hiMask; 492 } 493 // Apply the mask to the low word. 494 pVal[loWord] |= loMask; 495 496 // Fill any words between loWord and hiWord with all ones. 497 for (unsigned word = loWord + 1; word < hiWord; ++word) 498 pVal[word] = UINT64_MAX; 499 } 500 501 /// Set the given bit to 0 whose position is given as "bitPosition". 502 /// @brief Set a given bit to 0. 503 void APInt::clearBit(unsigned bitPosition) { 504 if (isSingleWord()) 505 VAL &= ~maskBit(bitPosition); 506 else 507 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 508 } 509 510 /// @brief Toggle every bit to its opposite value. 511 void APInt::flipAllBitsSlowCase() { 512 tcComplement(pVal, getNumWords()); 513 clearUnusedBits(); 514 } 515 516 /// Toggle a given bit to its opposite value whose position is given 517 /// as "bitPosition". 518 /// @brief Toggles a given bit to its opposite value. 519 void APInt::flipBit(unsigned bitPosition) { 520 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 521 if ((*this)[bitPosition]) clearBit(bitPosition); 522 else setBit(bitPosition); 523 } 524 525 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 526 unsigned subBitWidth = subBits.getBitWidth(); 527 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && 528 "Illegal bit insertion"); 529 530 // Insertion is a direct copy. 531 if (subBitWidth == BitWidth) { 532 *this = subBits; 533 return; 534 } 535 536 // Single word result can be done as a direct bitmask. 537 if (isSingleWord()) { 538 uint64_t mask = UINT64_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 539 VAL &= ~(mask << bitPosition); 540 VAL |= (subBits.VAL << bitPosition); 541 return; 542 } 543 544 unsigned loBit = whichBit(bitPosition); 545 unsigned loWord = whichWord(bitPosition); 546 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 547 548 // Insertion within a single word can be done as a direct bitmask. 549 if (loWord == hi1Word) { 550 uint64_t mask = UINT64_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 551 pVal[loWord] &= ~(mask << loBit); 552 pVal[loWord] |= (subBits.VAL << loBit); 553 return; 554 } 555 556 // Insert on word boundaries. 557 if (loBit == 0) { 558 // Direct copy whole words. 559 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 560 memcpy(pVal + loWord, subBits.getRawData(), 561 numWholeSubWords * APINT_WORD_SIZE); 562 563 // Mask+insert remaining bits. 564 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 565 if (remainingBits != 0) { 566 uint64_t mask = UINT64_MAX >> (APINT_BITS_PER_WORD - remainingBits); 567 pVal[hi1Word] &= ~mask; 568 pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 569 } 570 return; 571 } 572 573 // General case - set/clear individual bits in dst based on src. 574 // TODO - there is scope for optimization here, but at the moment this code 575 // path is barely used so prefer readability over performance. 576 for (unsigned i = 0; i != subBitWidth; ++i) { 577 if (subBits[i]) 578 setBit(bitPosition + i); 579 else 580 clearBit(bitPosition + i); 581 } 582 } 583 584 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 585 assert(numBits > 0 && "Can't extract zero bits"); 586 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 587 "Illegal bit extraction"); 588 589 if (isSingleWord()) 590 return APInt(numBits, VAL >> bitPosition); 591 592 unsigned loBit = whichBit(bitPosition); 593 unsigned loWord = whichWord(bitPosition); 594 unsigned hiWord = whichWord(bitPosition + numBits - 1); 595 596 // Single word result extracting bits from a single word source. 597 if (loWord == hiWord) 598 return APInt(numBits, pVal[loWord] >> loBit); 599 600 // Extracting bits that start on a source word boundary can be done 601 // as a fast memory copy. 602 if (loBit == 0) 603 return APInt(numBits, makeArrayRef(pVal + loWord, 1 + hiWord - loWord)); 604 605 // General case - shift + copy source words directly into place. 606 APInt Result(numBits, 0); 607 unsigned NumSrcWords = getNumWords(); 608 unsigned NumDstWords = Result.getNumWords(); 609 610 for (unsigned word = 0; word < NumDstWords; ++word) { 611 uint64_t w0 = pVal[loWord + word]; 612 uint64_t w1 = 613 (loWord + word + 1) < NumSrcWords ? pVal[loWord + word + 1] : 0; 614 Result.pVal[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 615 } 616 617 return Result.clearUnusedBits(); 618 } 619 620 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 621 assert(!str.empty() && "Invalid string length"); 622 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 623 radix == 36) && 624 "Radix should be 2, 8, 10, 16, or 36!"); 625 626 size_t slen = str.size(); 627 628 // Each computation below needs to know if it's negative. 629 StringRef::iterator p = str.begin(); 630 unsigned isNegative = *p == '-'; 631 if (*p == '-' || *p == '+') { 632 p++; 633 slen--; 634 assert(slen && "String is only a sign, needs a value."); 635 } 636 637 // For radixes of power-of-two values, the bits required is accurately and 638 // easily computed 639 if (radix == 2) 640 return slen + isNegative; 641 if (radix == 8) 642 return slen * 3 + isNegative; 643 if (radix == 16) 644 return slen * 4 + isNegative; 645 646 // FIXME: base 36 647 648 // This is grossly inefficient but accurate. We could probably do something 649 // with a computation of roughly slen*64/20 and then adjust by the value of 650 // the first few digits. But, I'm not sure how accurate that could be. 651 652 // Compute a sufficient number of bits that is always large enough but might 653 // be too large. This avoids the assertion in the constructor. This 654 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 655 // bits in that case. 656 unsigned sufficient 657 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 658 : (slen == 1 ? 7 : slen * 16/3); 659 660 // Convert to the actual binary value. 661 APInt tmp(sufficient, StringRef(p, slen), radix); 662 663 // Compute how many bits are required. If the log is infinite, assume we need 664 // just bit. 665 unsigned log = tmp.logBase2(); 666 if (log == (unsigned)-1) { 667 return isNegative + 1; 668 } else { 669 return isNegative + log + 1; 670 } 671 } 672 673 hash_code llvm::hash_value(const APInt &Arg) { 674 if (Arg.isSingleWord()) 675 return hash_combine(Arg.VAL); 676 677 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); 678 } 679 680 bool APInt::isSplat(unsigned SplatSizeInBits) const { 681 assert(getBitWidth() % SplatSizeInBits == 0 && 682 "SplatSizeInBits must divide width!"); 683 // We can check that all parts of an integer are equal by making use of a 684 // little trick: rotate and check if it's still the same value. 685 return *this == rotl(SplatSizeInBits); 686 } 687 688 /// This function returns the high "numBits" bits of this APInt. 689 APInt APInt::getHiBits(unsigned numBits) const { 690 return this->lshr(BitWidth - numBits); 691 } 692 693 /// This function returns the low "numBits" bits of this APInt. 694 APInt APInt::getLoBits(unsigned numBits) const { 695 APInt Result(getLowBitsSet(BitWidth, numBits)); 696 Result &= *this; 697 return Result; 698 } 699 700 unsigned APInt::countLeadingZerosSlowCase() const { 701 unsigned Count = 0; 702 for (int i = getNumWords()-1; i >= 0; --i) { 703 uint64_t V = pVal[i]; 704 if (V == 0) 705 Count += APINT_BITS_PER_WORD; 706 else { 707 Count += llvm::countLeadingZeros(V); 708 break; 709 } 710 } 711 // Adjust for unused bits in the most significant word (they are zero). 712 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 713 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 714 return Count; 715 } 716 717 unsigned APInt::countLeadingOnes() const { 718 if (isSingleWord()) 719 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); 720 721 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 722 unsigned shift; 723 if (!highWordBits) { 724 highWordBits = APINT_BITS_PER_WORD; 725 shift = 0; 726 } else { 727 shift = APINT_BITS_PER_WORD - highWordBits; 728 } 729 int i = getNumWords() - 1; 730 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift); 731 if (Count == highWordBits) { 732 for (i--; i >= 0; --i) { 733 if (pVal[i] == -1ULL) 734 Count += APINT_BITS_PER_WORD; 735 else { 736 Count += llvm::countLeadingOnes(pVal[i]); 737 break; 738 } 739 } 740 } 741 return Count; 742 } 743 744 unsigned APInt::countTrailingZeros() const { 745 if (isSingleWord()) 746 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); 747 unsigned Count = 0; 748 unsigned i = 0; 749 for (; i < getNumWords() && pVal[i] == 0; ++i) 750 Count += APINT_BITS_PER_WORD; 751 if (i < getNumWords()) 752 Count += llvm::countTrailingZeros(pVal[i]); 753 return std::min(Count, BitWidth); 754 } 755 756 unsigned APInt::countTrailingOnesSlowCase() const { 757 unsigned Count = 0; 758 unsigned i = 0; 759 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 760 Count += APINT_BITS_PER_WORD; 761 if (i < getNumWords()) 762 Count += llvm::countTrailingOnes(pVal[i]); 763 return std::min(Count, BitWidth); 764 } 765 766 unsigned APInt::countPopulationSlowCase() const { 767 unsigned Count = 0; 768 for (unsigned i = 0; i < getNumWords(); ++i) 769 Count += llvm::countPopulation(pVal[i]); 770 return Count; 771 } 772 773 /// Perform a logical right-shift from Src to Dst, which must be equal or 774 /// non-overlapping, of Words words, by Shift, which must be less than 64. 775 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 776 unsigned Shift) { 777 uint64_t Carry = 0; 778 for (int I = Words - 1; I >= 0; --I) { 779 uint64_t Tmp = Src[I]; 780 Dst[I] = (Tmp >> Shift) | Carry; 781 Carry = Tmp << (64 - Shift); 782 } 783 } 784 785 APInt APInt::byteSwap() const { 786 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 787 if (BitWidth == 16) 788 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 789 if (BitWidth == 32) 790 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 791 if (BitWidth == 48) { 792 unsigned Tmp1 = unsigned(VAL >> 16); 793 Tmp1 = ByteSwap_32(Tmp1); 794 uint16_t Tmp2 = uint16_t(VAL); 795 Tmp2 = ByteSwap_16(Tmp2); 796 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 797 } 798 if (BitWidth == 64) 799 return APInt(BitWidth, ByteSwap_64(VAL)); 800 801 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 802 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 803 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 804 if (Result.BitWidth != BitWidth) { 805 lshrNear(Result.pVal, Result.pVal, getNumWords(), 806 Result.BitWidth - BitWidth); 807 Result.BitWidth = BitWidth; 808 } 809 return Result; 810 } 811 812 APInt APInt::reverseBits() const { 813 switch (BitWidth) { 814 case 64: 815 return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL)); 816 case 32: 817 return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL)); 818 case 16: 819 return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL)); 820 case 8: 821 return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL)); 822 default: 823 break; 824 } 825 826 APInt Val(*this); 827 APInt Reversed(*this); 828 int S = BitWidth - 1; 829 830 const APInt One(BitWidth, 1); 831 832 for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) { 833 Reversed <<= 1; 834 Reversed |= (Val & One); 835 --S; 836 } 837 838 Reversed <<= S; 839 return Reversed; 840 } 841 842 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 843 while (!!B) { 844 APInt R = A.urem(B); 845 A = std::move(B); 846 B = std::move(R); 847 } 848 return A; 849 } 850 851 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 852 union { 853 double D; 854 uint64_t I; 855 } T; 856 T.D = Double; 857 858 // Get the sign bit from the highest order bit 859 bool isNeg = T.I >> 63; 860 861 // Get the 11-bit exponent and adjust for the 1023 bit bias 862 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 863 864 // If the exponent is negative, the value is < 0 so just return 0. 865 if (exp < 0) 866 return APInt(width, 0u); 867 868 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 869 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 870 871 // If the exponent doesn't shift all bits out of the mantissa 872 if (exp < 52) 873 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 874 APInt(width, mantissa >> (52 - exp)); 875 876 // If the client didn't provide enough bits for us to shift the mantissa into 877 // then the result is undefined, just return 0 878 if (width <= exp - 52) 879 return APInt(width, 0); 880 881 // Otherwise, we have to shift the mantissa bits up to the right location 882 APInt Tmp(width, mantissa); 883 Tmp = Tmp.shl((unsigned)exp - 52); 884 return isNeg ? -Tmp : Tmp; 885 } 886 887 /// This function converts this APInt to a double. 888 /// The layout for double is as following (IEEE Standard 754): 889 /// -------------------------------------- 890 /// | Sign Exponent Fraction Bias | 891 /// |-------------------------------------- | 892 /// | 1[63] 11[62-52] 52[51-00] 1023 | 893 /// -------------------------------------- 894 double APInt::roundToDouble(bool isSigned) const { 895 896 // Handle the simple case where the value is contained in one uint64_t. 897 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 898 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 899 if (isSigned) { 900 int64_t sext = SignExtend64(getWord(0), BitWidth); 901 return double(sext); 902 } else 903 return double(getWord(0)); 904 } 905 906 // Determine if the value is negative. 907 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 908 909 // Construct the absolute value if we're negative. 910 APInt Tmp(isNeg ? -(*this) : (*this)); 911 912 // Figure out how many bits we're using. 913 unsigned n = Tmp.getActiveBits(); 914 915 // The exponent (without bias normalization) is just the number of bits 916 // we are using. Note that the sign bit is gone since we constructed the 917 // absolute value. 918 uint64_t exp = n; 919 920 // Return infinity for exponent overflow 921 if (exp > 1023) { 922 if (!isSigned || !isNeg) 923 return std::numeric_limits<double>::infinity(); 924 else 925 return -std::numeric_limits<double>::infinity(); 926 } 927 exp += 1023; // Increment for 1023 bias 928 929 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 930 // extract the high 52 bits from the correct words in pVal. 931 uint64_t mantissa; 932 unsigned hiWord = whichWord(n-1); 933 if (hiWord == 0) { 934 mantissa = Tmp.pVal[0]; 935 if (n > 52) 936 mantissa >>= n - 52; // shift down, we want the top 52 bits. 937 } else { 938 assert(hiWord > 0 && "huh?"); 939 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 940 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 941 mantissa = hibits | lobits; 942 } 943 944 // The leading bit of mantissa is implicit, so get rid of it. 945 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 946 union { 947 double D; 948 uint64_t I; 949 } T; 950 T.I = sign | (exp << 52) | mantissa; 951 return T.D; 952 } 953 954 // Truncate to new width. 955 APInt APInt::trunc(unsigned width) const { 956 assert(width < BitWidth && "Invalid APInt Truncate request"); 957 assert(width && "Can't truncate to 0 bits"); 958 959 if (width <= APINT_BITS_PER_WORD) 960 return APInt(width, getRawData()[0]); 961 962 APInt Result(getMemory(getNumWords(width)), width); 963 964 // Copy full words. 965 unsigned i; 966 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 967 Result.pVal[i] = pVal[i]; 968 969 // Truncate and copy any partial word. 970 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 971 if (bits != 0) 972 Result.pVal[i] = pVal[i] << bits >> bits; 973 974 return Result; 975 } 976 977 // Sign extend to a new width. 978 APInt APInt::sext(unsigned width) const { 979 assert(width > BitWidth && "Invalid APInt SignExtend request"); 980 981 if (width <= APINT_BITS_PER_WORD) { 982 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 983 val = (int64_t)val >> (width - BitWidth); 984 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 985 } 986 987 APInt Result(getMemory(getNumWords(width)), width); 988 989 // Copy full words. 990 unsigned i; 991 uint64_t word = 0; 992 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 993 word = getRawData()[i]; 994 Result.pVal[i] = word; 995 } 996 997 // Read and sign-extend any partial word. 998 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 999 if (bits != 0) 1000 word = (int64_t)getRawData()[i] << bits >> bits; 1001 else 1002 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1003 1004 // Write remaining full words. 1005 for (; i != width / APINT_BITS_PER_WORD; i++) { 1006 Result.pVal[i] = word; 1007 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 1008 } 1009 1010 // Write any partial word. 1011 bits = (0 - width) % APINT_BITS_PER_WORD; 1012 if (bits != 0) 1013 Result.pVal[i] = word << bits >> bits; 1014 1015 return Result; 1016 } 1017 1018 // Zero extend to a new width. 1019 APInt APInt::zext(unsigned width) const { 1020 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 1021 1022 if (width <= APINT_BITS_PER_WORD) 1023 return APInt(width, VAL); 1024 1025 APInt Result(getMemory(getNumWords(width)), width); 1026 1027 // Copy words. 1028 unsigned i; 1029 for (i = 0; i != getNumWords(); i++) 1030 Result.pVal[i] = getRawData()[i]; 1031 1032 // Zero remaining words. 1033 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 1034 1035 return Result; 1036 } 1037 1038 APInt APInt::zextOrTrunc(unsigned width) const { 1039 if (BitWidth < width) 1040 return zext(width); 1041 if (BitWidth > width) 1042 return trunc(width); 1043 return *this; 1044 } 1045 1046 APInt APInt::sextOrTrunc(unsigned width) const { 1047 if (BitWidth < width) 1048 return sext(width); 1049 if (BitWidth > width) 1050 return trunc(width); 1051 return *this; 1052 } 1053 1054 APInt APInt::zextOrSelf(unsigned width) const { 1055 if (BitWidth < width) 1056 return zext(width); 1057 return *this; 1058 } 1059 1060 APInt APInt::sextOrSelf(unsigned width) const { 1061 if (BitWidth < width) 1062 return sext(width); 1063 return *this; 1064 } 1065 1066 /// Arithmetic right-shift this APInt by shiftAmt. 1067 /// @brief Arithmetic right-shift function. 1068 APInt APInt::ashr(const APInt &shiftAmt) const { 1069 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1070 } 1071 1072 /// Arithmetic right-shift this APInt by shiftAmt. 1073 /// @brief Arithmetic right-shift function. 1074 APInt APInt::ashr(unsigned shiftAmt) const { 1075 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1076 // Handle a degenerate case 1077 if (shiftAmt == 0) 1078 return *this; 1079 1080 // Handle single word shifts with built-in ashr 1081 if (isSingleWord()) { 1082 if (shiftAmt == BitWidth) 1083 return APInt(BitWidth, 0); // undefined 1084 return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt); 1085 } 1086 1087 // If all the bits were shifted out, the result is, technically, undefined. 1088 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1089 // issues in the algorithm below. 1090 if (shiftAmt == BitWidth) { 1091 if (isNegative()) 1092 return APInt(BitWidth, -1ULL, true); 1093 else 1094 return APInt(BitWidth, 0); 1095 } 1096 1097 // Create some space for the result. 1098 uint64_t * val = new uint64_t[getNumWords()]; 1099 1100 // Compute some values needed by the following shift algorithms 1101 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1102 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1103 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1104 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1105 if (bitsInWord == 0) 1106 bitsInWord = APINT_BITS_PER_WORD; 1107 1108 // If we are shifting whole words, just move whole words 1109 if (wordShift == 0) { 1110 // Move the words containing significant bits 1111 for (unsigned i = 0; i <= breakWord; ++i) 1112 val[i] = pVal[i+offset]; // move whole word 1113 1114 // Adjust the top significant word for sign bit fill, if negative 1115 if (isNegative()) 1116 if (bitsInWord < APINT_BITS_PER_WORD) 1117 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1118 } else { 1119 // Shift the low order words 1120 for (unsigned i = 0; i < breakWord; ++i) { 1121 // This combines the shifted corresponding word with the low bits from 1122 // the next word (shifted into this word's high bits). 1123 val[i] = (pVal[i+offset] >> wordShift) | 1124 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1125 } 1126 1127 // Shift the break word. In this case there are no bits from the next word 1128 // to include in this word. 1129 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1130 1131 // Deal with sign extension in the break word, and possibly the word before 1132 // it. 1133 if (isNegative()) { 1134 if (wordShift > bitsInWord) { 1135 if (breakWord > 0) 1136 val[breakWord-1] |= 1137 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1138 val[breakWord] |= ~0ULL; 1139 } else 1140 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1141 } 1142 } 1143 1144 // Remaining words are 0 or -1, just assign them. 1145 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1146 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1147 val[i] = fillValue; 1148 APInt Result(val, BitWidth); 1149 Result.clearUnusedBits(); 1150 return Result; 1151 } 1152 1153 /// Logical right-shift this APInt by shiftAmt. 1154 /// @brief Logical right-shift function. 1155 APInt APInt::lshr(const APInt &shiftAmt) const { 1156 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1157 } 1158 1159 /// Logical right-shift this APInt by shiftAmt. 1160 /// @brief Logical right-shift function. 1161 APInt APInt::lshr(unsigned shiftAmt) const { 1162 if (isSingleWord()) { 1163 if (shiftAmt >= BitWidth) 1164 return APInt(BitWidth, 0); 1165 else 1166 return APInt(BitWidth, this->VAL >> shiftAmt); 1167 } 1168 1169 // If all the bits were shifted out, the result is 0. This avoids issues 1170 // with shifting by the size of the integer type, which produces undefined 1171 // results. We define these "undefined results" to always be 0. 1172 if (shiftAmt >= BitWidth) 1173 return APInt(BitWidth, 0); 1174 1175 // If none of the bits are shifted out, the result is *this. This avoids 1176 // issues with shifting by the size of the integer type, which produces 1177 // undefined results in the code below. This is also an optimization. 1178 if (shiftAmt == 0) 1179 return *this; 1180 1181 // Create some space for the result. 1182 uint64_t * val = new uint64_t[getNumWords()]; 1183 1184 // If we are shifting less than a word, compute the shift with a simple carry 1185 if (shiftAmt < APINT_BITS_PER_WORD) { 1186 lshrNear(val, pVal, getNumWords(), shiftAmt); 1187 APInt Result(val, BitWidth); 1188 Result.clearUnusedBits(); 1189 return Result; 1190 } 1191 1192 // Compute some values needed by the remaining shift algorithms 1193 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1194 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1195 1196 // If we are shifting whole words, just move whole words 1197 if (wordShift == 0) { 1198 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1199 val[i] = pVal[i+offset]; 1200 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1201 val[i] = 0; 1202 APInt Result(val, BitWidth); 1203 Result.clearUnusedBits(); 1204 return Result; 1205 } 1206 1207 // Shift the low order words 1208 unsigned breakWord = getNumWords() - offset -1; 1209 for (unsigned i = 0; i < breakWord; ++i) 1210 val[i] = (pVal[i+offset] >> wordShift) | 1211 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1212 // Shift the break word. 1213 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1214 1215 // Remaining words are 0 1216 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1217 val[i] = 0; 1218 APInt Result(val, BitWidth); 1219 Result.clearUnusedBits(); 1220 return Result; 1221 } 1222 1223 /// Left-shift this APInt by shiftAmt. 1224 /// @brief Left-shift function. 1225 APInt APInt::shl(const APInt &shiftAmt) const { 1226 // It's undefined behavior in C to shift by BitWidth or greater. 1227 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1228 } 1229 1230 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1231 // If all the bits were shifted out, the result is 0. This avoids issues 1232 // with shifting by the size of the integer type, which produces undefined 1233 // results. We define these "undefined results" to always be 0. 1234 if (shiftAmt == BitWidth) 1235 return APInt(BitWidth, 0); 1236 1237 // If none of the bits are shifted out, the result is *this. This avoids a 1238 // lshr by the words size in the loop below which can produce incorrect 1239 // results. It also avoids the expensive computation below for a common case. 1240 if (shiftAmt == 0) 1241 return *this; 1242 1243 // Create some space for the result. 1244 uint64_t * val = new uint64_t[getNumWords()]; 1245 1246 // If we are shifting less than a word, do it the easy way 1247 if (shiftAmt < APINT_BITS_PER_WORD) { 1248 uint64_t carry = 0; 1249 for (unsigned i = 0; i < getNumWords(); i++) { 1250 val[i] = pVal[i] << shiftAmt | carry; 1251 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1252 } 1253 APInt Result(val, BitWidth); 1254 Result.clearUnusedBits(); 1255 return Result; 1256 } 1257 1258 // Compute some values needed by the remaining shift algorithms 1259 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1260 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1261 1262 // If we are shifting whole words, just move whole words 1263 if (wordShift == 0) { 1264 for (unsigned i = 0; i < offset; i++) 1265 val[i] = 0; 1266 for (unsigned i = offset; i < getNumWords(); i++) 1267 val[i] = pVal[i-offset]; 1268 APInt Result(val, BitWidth); 1269 Result.clearUnusedBits(); 1270 return Result; 1271 } 1272 1273 // Copy whole words from this to Result. 1274 unsigned i = getNumWords() - 1; 1275 for (; i > offset; --i) 1276 val[i] = pVal[i-offset] << wordShift | 1277 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1278 val[offset] = pVal[0] << wordShift; 1279 for (i = 0; i < offset; ++i) 1280 val[i] = 0; 1281 APInt Result(val, BitWidth); 1282 Result.clearUnusedBits(); 1283 return Result; 1284 } 1285 1286 // Calculate the rotate amount modulo the bit width. 1287 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1288 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1289 APInt rot = rotateAmt; 1290 if (rotBitWidth < BitWidth) { 1291 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1292 // e.g. APInt(1, 32) would give APInt(1, 0). 1293 rot = rotateAmt.zext(BitWidth); 1294 } 1295 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1296 return rot.getLimitedValue(BitWidth); 1297 } 1298 1299 APInt APInt::rotl(const APInt &rotateAmt) const { 1300 return rotl(rotateModulo(BitWidth, rotateAmt)); 1301 } 1302 1303 APInt APInt::rotl(unsigned rotateAmt) const { 1304 rotateAmt %= BitWidth; 1305 if (rotateAmt == 0) 1306 return *this; 1307 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1308 } 1309 1310 APInt APInt::rotr(const APInt &rotateAmt) const { 1311 return rotr(rotateModulo(BitWidth, rotateAmt)); 1312 } 1313 1314 APInt APInt::rotr(unsigned rotateAmt) const { 1315 rotateAmt %= BitWidth; 1316 if (rotateAmt == 0) 1317 return *this; 1318 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1319 } 1320 1321 // Square Root - this method computes and returns the square root of "this". 1322 // Three mechanisms are used for computation. For small values (<= 5 bits), 1323 // a table lookup is done. This gets some performance for common cases. For 1324 // values using less than 52 bits, the value is converted to double and then 1325 // the libc sqrt function is called. The result is rounded and then converted 1326 // back to a uint64_t which is then used to construct the result. Finally, 1327 // the Babylonian method for computing square roots is used. 1328 APInt APInt::sqrt() const { 1329 1330 // Determine the magnitude of the value. 1331 unsigned magnitude = getActiveBits(); 1332 1333 // Use a fast table for some small values. This also gets rid of some 1334 // rounding errors in libc sqrt for small values. 1335 if (magnitude <= 5) { 1336 static const uint8_t results[32] = { 1337 /* 0 */ 0, 1338 /* 1- 2 */ 1, 1, 1339 /* 3- 6 */ 2, 2, 2, 2, 1340 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1341 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1342 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1343 /* 31 */ 6 1344 }; 1345 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1346 } 1347 1348 // If the magnitude of the value fits in less than 52 bits (the precision of 1349 // an IEEE double precision floating point value), then we can use the 1350 // libc sqrt function which will probably use a hardware sqrt computation. 1351 // This should be faster than the algorithm below. 1352 if (magnitude < 52) { 1353 return APInt(BitWidth, 1354 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1355 } 1356 1357 // Okay, all the short cuts are exhausted. We must compute it. The following 1358 // is a classical Babylonian method for computing the square root. This code 1359 // was adapted to APInt from a wikipedia article on such computations. 1360 // See http://www.wikipedia.org/ and go to the page named 1361 // Calculate_an_integer_square_root. 1362 unsigned nbits = BitWidth, i = 4; 1363 APInt testy(BitWidth, 16); 1364 APInt x_old(BitWidth, 1); 1365 APInt x_new(BitWidth, 0); 1366 APInt two(BitWidth, 2); 1367 1368 // Select a good starting value using binary logarithms. 1369 for (;; i += 2, testy = testy.shl(2)) 1370 if (i >= nbits || this->ule(testy)) { 1371 x_old = x_old.shl(i / 2); 1372 break; 1373 } 1374 1375 // Use the Babylonian method to arrive at the integer square root: 1376 for (;;) { 1377 x_new = (this->udiv(x_old) + x_old).udiv(two); 1378 if (x_old.ule(x_new)) 1379 break; 1380 x_old = x_new; 1381 } 1382 1383 // Make sure we return the closest approximation 1384 // NOTE: The rounding calculation below is correct. It will produce an 1385 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1386 // determined to be a rounding issue with pari/gp as it begins to use a 1387 // floating point representation after 192 bits. There are no discrepancies 1388 // between this algorithm and pari/gp for bit widths < 192 bits. 1389 APInt square(x_old * x_old); 1390 APInt nextSquare((x_old + 1) * (x_old +1)); 1391 if (this->ult(square)) 1392 return x_old; 1393 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1394 APInt midpoint((nextSquare - square).udiv(two)); 1395 APInt offset(*this - square); 1396 if (offset.ult(midpoint)) 1397 return x_old; 1398 return x_old + 1; 1399 } 1400 1401 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1402 /// iterative extended Euclidean algorithm is used to solve for this value, 1403 /// however we simplify it to speed up calculating only the inverse, and take 1404 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1405 /// (potentially large) APInts around. 1406 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1407 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1408 1409 // Using the properties listed at the following web page (accessed 06/21/08): 1410 // http://www.numbertheory.org/php/euclid.html 1411 // (especially the properties numbered 3, 4 and 9) it can be proved that 1412 // BitWidth bits suffice for all the computations in the algorithm implemented 1413 // below. More precisely, this number of bits suffice if the multiplicative 1414 // inverse exists, but may not suffice for the general extended Euclidean 1415 // algorithm. 1416 1417 APInt r[2] = { modulo, *this }; 1418 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1419 APInt q(BitWidth, 0); 1420 1421 unsigned i; 1422 for (i = 0; r[i^1] != 0; i ^= 1) { 1423 // An overview of the math without the confusing bit-flipping: 1424 // q = r[i-2] / r[i-1] 1425 // r[i] = r[i-2] % r[i-1] 1426 // t[i] = t[i-2] - t[i-1] * q 1427 udivrem(r[i], r[i^1], q, r[i]); 1428 t[i] -= t[i^1] * q; 1429 } 1430 1431 // If this APInt and the modulo are not coprime, there is no multiplicative 1432 // inverse, so return 0. We check this by looking at the next-to-last 1433 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1434 // algorithm. 1435 if (r[i] != 1) 1436 return APInt(BitWidth, 0); 1437 1438 // The next-to-last t is the multiplicative inverse. However, we are 1439 // interested in a positive inverse. Calcuate a positive one from a negative 1440 // one if necessary. A simple addition of the modulo suffices because 1441 // abs(t[i]) is known to be less than *this/2 (see the link above). 1442 return t[i].isNegative() ? t[i] + modulo : t[i]; 1443 } 1444 1445 /// Calculate the magic numbers required to implement a signed integer division 1446 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1447 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1448 /// Warren, Jr., chapter 10. 1449 APInt::ms APInt::magic() const { 1450 const APInt& d = *this; 1451 unsigned p; 1452 APInt ad, anc, delta, q1, r1, q2, r2, t; 1453 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1454 struct ms mag; 1455 1456 ad = d.abs(); 1457 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1458 anc = t - 1 - t.urem(ad); // absolute value of nc 1459 p = d.getBitWidth() - 1; // initialize p 1460 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1461 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1462 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1463 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1464 do { 1465 p = p + 1; 1466 q1 = q1<<1; // update q1 = 2p/abs(nc) 1467 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1468 if (r1.uge(anc)) { // must be unsigned comparison 1469 q1 = q1 + 1; 1470 r1 = r1 - anc; 1471 } 1472 q2 = q2<<1; // update q2 = 2p/abs(d) 1473 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1474 if (r2.uge(ad)) { // must be unsigned comparison 1475 q2 = q2 + 1; 1476 r2 = r2 - ad; 1477 } 1478 delta = ad - r2; 1479 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1480 1481 mag.m = q2 + 1; 1482 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1483 mag.s = p - d.getBitWidth(); // resulting shift 1484 return mag; 1485 } 1486 1487 /// Calculate the magic numbers required to implement an unsigned integer 1488 /// division by a constant as a sequence of multiplies, adds and shifts. 1489 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1490 /// S. Warren, Jr., chapter 10. 1491 /// LeadingZeros can be used to simplify the calculation if the upper bits 1492 /// of the divided value are known zero. 1493 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1494 const APInt& d = *this; 1495 unsigned p; 1496 APInt nc, delta, q1, r1, q2, r2; 1497 struct mu magu; 1498 magu.a = 0; // initialize "add" indicator 1499 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1500 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1501 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1502 1503 nc = allOnes - (allOnes - d).urem(d); 1504 p = d.getBitWidth() - 1; // initialize p 1505 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1506 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1507 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1508 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1509 do { 1510 p = p + 1; 1511 if (r1.uge(nc - r1)) { 1512 q1 = q1 + q1 + 1; // update q1 1513 r1 = r1 + r1 - nc; // update r1 1514 } 1515 else { 1516 q1 = q1+q1; // update q1 1517 r1 = r1+r1; // update r1 1518 } 1519 if ((r2 + 1).uge(d - r2)) { 1520 if (q2.uge(signedMax)) magu.a = 1; 1521 q2 = q2+q2 + 1; // update q2 1522 r2 = r2+r2 + 1 - d; // update r2 1523 } 1524 else { 1525 if (q2.uge(signedMin)) magu.a = 1; 1526 q2 = q2+q2; // update q2 1527 r2 = r2+r2 + 1; // update r2 1528 } 1529 delta = d - 1 - r2; 1530 } while (p < d.getBitWidth()*2 && 1531 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1532 magu.m = q2 + 1; // resulting magic number 1533 magu.s = p - d.getBitWidth(); // resulting shift 1534 return magu; 1535 } 1536 1537 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1538 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1539 /// variables here have the same names as in the algorithm. Comments explain 1540 /// the algorithm and any deviation from it. 1541 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1542 unsigned m, unsigned n) { 1543 assert(u && "Must provide dividend"); 1544 assert(v && "Must provide divisor"); 1545 assert(q && "Must provide quotient"); 1546 assert(u != v && u != q && v != q && "Must use different memory"); 1547 assert(n>1 && "n must be > 1"); 1548 1549 // b denotes the base of the number system. In our case b is 2^32. 1550 const uint64_t b = uint64_t(1) << 32; 1551 1552 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1553 DEBUG(dbgs() << "KnuthDiv: original:"); 1554 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1555 DEBUG(dbgs() << " by"); 1556 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1557 DEBUG(dbgs() << '\n'); 1558 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1559 // u and v by d. Note that we have taken Knuth's advice here to use a power 1560 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1561 // 2 allows us to shift instead of multiply and it is easy to determine the 1562 // shift amount from the leading zeros. We are basically normalizing the u 1563 // and v so that its high bits are shifted to the top of v's range without 1564 // overflow. Note that this can require an extra word in u so that u must 1565 // be of length m+n+1. 1566 unsigned shift = countLeadingZeros(v[n-1]); 1567 unsigned v_carry = 0; 1568 unsigned u_carry = 0; 1569 if (shift) { 1570 for (unsigned i = 0; i < m+n; ++i) { 1571 unsigned u_tmp = u[i] >> (32 - shift); 1572 u[i] = (u[i] << shift) | u_carry; 1573 u_carry = u_tmp; 1574 } 1575 for (unsigned i = 0; i < n; ++i) { 1576 unsigned v_tmp = v[i] >> (32 - shift); 1577 v[i] = (v[i] << shift) | v_carry; 1578 v_carry = v_tmp; 1579 } 1580 } 1581 u[m+n] = u_carry; 1582 1583 DEBUG(dbgs() << "KnuthDiv: normal:"); 1584 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1585 DEBUG(dbgs() << " by"); 1586 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1587 DEBUG(dbgs() << '\n'); 1588 1589 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1590 int j = m; 1591 do { 1592 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1593 // D3. [Calculate q'.]. 1594 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1595 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1596 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1597 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1598 // on v[n-2] determines at high speed most of the cases in which the trial 1599 // value qp is one too large, and it eliminates all cases where qp is two 1600 // too large. 1601 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1602 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1603 uint64_t qp = dividend / v[n-1]; 1604 uint64_t rp = dividend % v[n-1]; 1605 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1606 qp--; 1607 rp += v[n-1]; 1608 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1609 qp--; 1610 } 1611 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1612 1613 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1614 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1615 // consists of a simple multiplication by a one-place number, combined with 1616 // a subtraction. 1617 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1618 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1619 // true value plus b**(n+1), namely as the b's complement of 1620 // the true value, and a "borrow" to the left should be remembered. 1621 int64_t borrow = 0; 1622 for (unsigned i = 0; i < n; ++i) { 1623 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1624 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; 1625 u[j+i] = (unsigned)subres; 1626 borrow = (p >> 32) - (subres >> 32); 1627 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] 1628 << ", borrow = " << borrow << '\n'); 1629 } 1630 bool isNeg = u[j+n] < borrow; 1631 u[j+n] -= (unsigned)borrow; 1632 1633 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1634 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1635 DEBUG(dbgs() << '\n'); 1636 1637 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1638 // negative, go to step D6; otherwise go on to step D7. 1639 q[j] = (unsigned)qp; 1640 if (isNeg) { 1641 // D6. [Add back]. The probability that this step is necessary is very 1642 // small, on the order of only 2/b. Make sure that test data accounts for 1643 // this possibility. Decrease q[j] by 1 1644 q[j]--; 1645 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1646 // A carry will occur to the left of u[j+n], and it should be ignored 1647 // since it cancels with the borrow that occurred in D4. 1648 bool carry = false; 1649 for (unsigned i = 0; i < n; i++) { 1650 unsigned limit = std::min(u[j+i],v[i]); 1651 u[j+i] += v[i] + carry; 1652 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1653 } 1654 u[j+n] += carry; 1655 } 1656 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1657 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1658 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1659 1660 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1661 } while (--j >= 0); 1662 1663 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1664 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1665 DEBUG(dbgs() << '\n'); 1666 1667 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1668 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1669 // compute the remainder (urem uses this). 1670 if (r) { 1671 // The value d is expressed by the "shift" value above since we avoided 1672 // multiplication by d by using a shift left. So, all we have to do is 1673 // shift right here. 1674 if (shift) { 1675 unsigned carry = 0; 1676 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1677 for (int i = n-1; i >= 0; i--) { 1678 r[i] = (u[i] >> shift) | carry; 1679 carry = u[i] << (32 - shift); 1680 DEBUG(dbgs() << " " << r[i]); 1681 } 1682 } else { 1683 for (int i = n-1; i >= 0; i--) { 1684 r[i] = u[i]; 1685 DEBUG(dbgs() << " " << r[i]); 1686 } 1687 } 1688 DEBUG(dbgs() << '\n'); 1689 } 1690 DEBUG(dbgs() << '\n'); 1691 } 1692 1693 void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, 1694 unsigned rhsWords, APInt *Quotient, APInt *Remainder) { 1695 assert(lhsWords >= rhsWords && "Fractional result"); 1696 1697 // First, compose the values into an array of 32-bit words instead of 1698 // 64-bit words. This is a necessity of both the "short division" algorithm 1699 // and the Knuth "classical algorithm" which requires there to be native 1700 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1701 // can't use 64-bit operands here because we don't have native results of 1702 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1703 // work on large-endian machines. 1704 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1705 unsigned n = rhsWords * 2; 1706 unsigned m = (lhsWords * 2) - n; 1707 1708 // Allocate space for the temporary values we need either on the stack, if 1709 // it will fit, or on the heap if it won't. 1710 unsigned SPACE[128]; 1711 unsigned *U = nullptr; 1712 unsigned *V = nullptr; 1713 unsigned *Q = nullptr; 1714 unsigned *R = nullptr; 1715 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1716 U = &SPACE[0]; 1717 V = &SPACE[m+n+1]; 1718 Q = &SPACE[(m+n+1) + n]; 1719 if (Remainder) 1720 R = &SPACE[(m+n+1) + n + (m+n)]; 1721 } else { 1722 U = new unsigned[m + n + 1]; 1723 V = new unsigned[n]; 1724 Q = new unsigned[m+n]; 1725 if (Remainder) 1726 R = new unsigned[n]; 1727 } 1728 1729 // Initialize the dividend 1730 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1731 for (unsigned i = 0; i < lhsWords; ++i) { 1732 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1733 U[i * 2] = (unsigned)(tmp & mask); 1734 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1735 } 1736 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1737 1738 // Initialize the divisor 1739 memset(V, 0, (n)*sizeof(unsigned)); 1740 for (unsigned i = 0; i < rhsWords; ++i) { 1741 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1742 V[i * 2] = (unsigned)(tmp & mask); 1743 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1744 } 1745 1746 // initialize the quotient and remainder 1747 memset(Q, 0, (m+n) * sizeof(unsigned)); 1748 if (Remainder) 1749 memset(R, 0, n * sizeof(unsigned)); 1750 1751 // Now, adjust m and n for the Knuth division. n is the number of words in 1752 // the divisor. m is the number of words by which the dividend exceeds the 1753 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1754 // contain any zero words or the Knuth algorithm fails. 1755 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1756 n--; 1757 m++; 1758 } 1759 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1760 m--; 1761 1762 // If we're left with only a single word for the divisor, Knuth doesn't work 1763 // so we implement the short division algorithm here. This is much simpler 1764 // and faster because we are certain that we can divide a 64-bit quantity 1765 // by a 32-bit quantity at hardware speed and short division is simply a 1766 // series of such operations. This is just like doing short division but we 1767 // are using base 2^32 instead of base 10. 1768 assert(n != 0 && "Divide by zero?"); 1769 if (n == 1) { 1770 unsigned divisor = V[0]; 1771 unsigned remainder = 0; 1772 for (int i = m+n-1; i >= 0; i--) { 1773 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1774 if (partial_dividend == 0) { 1775 Q[i] = 0; 1776 remainder = 0; 1777 } else if (partial_dividend < divisor) { 1778 Q[i] = 0; 1779 remainder = (unsigned)partial_dividend; 1780 } else if (partial_dividend == divisor) { 1781 Q[i] = 1; 1782 remainder = 0; 1783 } else { 1784 Q[i] = (unsigned)(partial_dividend / divisor); 1785 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1786 } 1787 } 1788 if (R) 1789 R[0] = remainder; 1790 } else { 1791 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1792 // case n > 1. 1793 KnuthDiv(U, V, Q, R, m, n); 1794 } 1795 1796 // If the caller wants the quotient 1797 if (Quotient) { 1798 // Set up the Quotient value's memory. 1799 if (Quotient->BitWidth != LHS.BitWidth) { 1800 if (Quotient->isSingleWord()) 1801 Quotient->VAL = 0; 1802 else 1803 delete [] Quotient->pVal; 1804 Quotient->BitWidth = LHS.BitWidth; 1805 if (!Quotient->isSingleWord()) 1806 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1807 } else 1808 Quotient->clearAllBits(); 1809 1810 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1811 // order words. 1812 // This case is currently dead as all users of divide() handle trivial cases 1813 // earlier. 1814 if (lhsWords == 1) { 1815 uint64_t tmp = 1816 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1817 if (Quotient->isSingleWord()) 1818 Quotient->VAL = tmp; 1819 else 1820 Quotient->pVal[0] = tmp; 1821 } else { 1822 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1823 for (unsigned i = 0; i < lhsWords; ++i) 1824 Quotient->pVal[i] = 1825 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1826 } 1827 } 1828 1829 // If the caller wants the remainder 1830 if (Remainder) { 1831 // Set up the Remainder value's memory. 1832 if (Remainder->BitWidth != RHS.BitWidth) { 1833 if (Remainder->isSingleWord()) 1834 Remainder->VAL = 0; 1835 else 1836 delete [] Remainder->pVal; 1837 Remainder->BitWidth = RHS.BitWidth; 1838 if (!Remainder->isSingleWord()) 1839 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1840 } else 1841 Remainder->clearAllBits(); 1842 1843 // The remainder is in R. Reconstitute the remainder into Remainder's low 1844 // order words. 1845 if (rhsWords == 1) { 1846 uint64_t tmp = 1847 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1848 if (Remainder->isSingleWord()) 1849 Remainder->VAL = tmp; 1850 else 1851 Remainder->pVal[0] = tmp; 1852 } else { 1853 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1854 for (unsigned i = 0; i < rhsWords; ++i) 1855 Remainder->pVal[i] = 1856 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1857 } 1858 } 1859 1860 // Clean up the memory we allocated. 1861 if (U != &SPACE[0]) { 1862 delete [] U; 1863 delete [] V; 1864 delete [] Q; 1865 delete [] R; 1866 } 1867 } 1868 1869 APInt APInt::udiv(const APInt& RHS) const { 1870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1871 1872 // First, deal with the easy case 1873 if (isSingleWord()) { 1874 assert(RHS.VAL != 0 && "Divide by zero?"); 1875 return APInt(BitWidth, VAL / RHS.VAL); 1876 } 1877 1878 // Get some facts about the LHS and RHS number of bits and words 1879 unsigned rhsBits = RHS.getActiveBits(); 1880 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1881 assert(rhsWords && "Divided by zero???"); 1882 unsigned lhsBits = this->getActiveBits(); 1883 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1884 1885 // Deal with some degenerate cases 1886 if (!lhsWords) 1887 // 0 / X ===> 0 1888 return APInt(BitWidth, 0); 1889 else if (lhsWords < rhsWords || this->ult(RHS)) { 1890 // X / Y ===> 0, iff X < Y 1891 return APInt(BitWidth, 0); 1892 } else if (*this == RHS) { 1893 // X / X ===> 1 1894 return APInt(BitWidth, 1); 1895 } else if (lhsWords == 1 && rhsWords == 1) { 1896 // All high words are zero, just use native divide 1897 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1898 } 1899 1900 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1901 APInt Quotient(1,0); // to hold result. 1902 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); 1903 return Quotient; 1904 } 1905 1906 APInt APInt::sdiv(const APInt &RHS) const { 1907 if (isNegative()) { 1908 if (RHS.isNegative()) 1909 return (-(*this)).udiv(-RHS); 1910 return -((-(*this)).udiv(RHS)); 1911 } 1912 if (RHS.isNegative()) 1913 return -(this->udiv(-RHS)); 1914 return this->udiv(RHS); 1915 } 1916 1917 APInt APInt::urem(const APInt& RHS) const { 1918 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1919 if (isSingleWord()) { 1920 assert(RHS.VAL != 0 && "Remainder by zero?"); 1921 return APInt(BitWidth, VAL % RHS.VAL); 1922 } 1923 1924 // Get some facts about the LHS 1925 unsigned lhsBits = getActiveBits(); 1926 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1927 1928 // Get some facts about the RHS 1929 unsigned rhsBits = RHS.getActiveBits(); 1930 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1931 assert(rhsWords && "Performing remainder operation by zero ???"); 1932 1933 // Check the degenerate cases 1934 if (lhsWords == 0) { 1935 // 0 % Y ===> 0 1936 return APInt(BitWidth, 0); 1937 } else if (lhsWords < rhsWords || this->ult(RHS)) { 1938 // X % Y ===> X, iff X < Y 1939 return *this; 1940 } else if (*this == RHS) { 1941 // X % X == 0; 1942 return APInt(BitWidth, 0); 1943 } else if (lhsWords == 1) { 1944 // All high words are zero, just use native remainder 1945 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 1946 } 1947 1948 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1949 APInt Remainder(1,0); 1950 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); 1951 return Remainder; 1952 } 1953 1954 APInt APInt::srem(const APInt &RHS) const { 1955 if (isNegative()) { 1956 if (RHS.isNegative()) 1957 return -((-(*this)).urem(-RHS)); 1958 return -((-(*this)).urem(RHS)); 1959 } 1960 if (RHS.isNegative()) 1961 return this->urem(-RHS); 1962 return this->urem(RHS); 1963 } 1964 1965 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1966 APInt &Quotient, APInt &Remainder) { 1967 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1968 1969 // First, deal with the easy case 1970 if (LHS.isSingleWord()) { 1971 assert(RHS.VAL != 0 && "Divide by zero?"); 1972 uint64_t QuotVal = LHS.VAL / RHS.VAL; 1973 uint64_t RemVal = LHS.VAL % RHS.VAL; 1974 Quotient = APInt(LHS.BitWidth, QuotVal); 1975 Remainder = APInt(LHS.BitWidth, RemVal); 1976 return; 1977 } 1978 1979 // Get some size facts about the dividend and divisor 1980 unsigned lhsBits = LHS.getActiveBits(); 1981 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1982 unsigned rhsBits = RHS.getActiveBits(); 1983 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1984 1985 // Check the degenerate cases 1986 if (lhsWords == 0) { 1987 Quotient = 0; // 0 / Y ===> 0 1988 Remainder = 0; // 0 % Y ===> 0 1989 return; 1990 } 1991 1992 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1993 Remainder = LHS; // X % Y ===> X, iff X < Y 1994 Quotient = 0; // X / Y ===> 0, iff X < Y 1995 return; 1996 } 1997 1998 if (LHS == RHS) { 1999 Quotient = 1; // X / X ===> 1 2000 Remainder = 0; // X % X ===> 0; 2001 return; 2002 } 2003 2004 if (lhsWords == 1 && rhsWords == 1) { 2005 // There is only one word to consider so use the native versions. 2006 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 2007 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 2008 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 2009 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 2010 return; 2011 } 2012 2013 // Okay, lets do it the long way 2014 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 2015 } 2016 2017 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 2018 APInt &Quotient, APInt &Remainder) { 2019 if (LHS.isNegative()) { 2020 if (RHS.isNegative()) 2021 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 2022 else { 2023 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 2024 Quotient = -Quotient; 2025 } 2026 Remainder = -Remainder; 2027 } else if (RHS.isNegative()) { 2028 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 2029 Quotient = -Quotient; 2030 } else { 2031 APInt::udivrem(LHS, RHS, Quotient, Remainder); 2032 } 2033 } 2034 2035 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 2036 APInt Res = *this+RHS; 2037 Overflow = isNonNegative() == RHS.isNonNegative() && 2038 Res.isNonNegative() != isNonNegative(); 2039 return Res; 2040 } 2041 2042 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 2043 APInt Res = *this+RHS; 2044 Overflow = Res.ult(RHS); 2045 return Res; 2046 } 2047 2048 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 2049 APInt Res = *this - RHS; 2050 Overflow = isNonNegative() != RHS.isNonNegative() && 2051 Res.isNonNegative() != isNonNegative(); 2052 return Res; 2053 } 2054 2055 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2056 APInt Res = *this-RHS; 2057 Overflow = Res.ugt(*this); 2058 return Res; 2059 } 2060 2061 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2062 // MININT/-1 --> overflow. 2063 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2064 return sdiv(RHS); 2065 } 2066 2067 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2068 APInt Res = *this * RHS; 2069 2070 if (*this != 0 && RHS != 0) 2071 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2072 else 2073 Overflow = false; 2074 return Res; 2075 } 2076 2077 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2078 APInt Res = *this * RHS; 2079 2080 if (*this != 0 && RHS != 0) 2081 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2082 else 2083 Overflow = false; 2084 return Res; 2085 } 2086 2087 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 2088 Overflow = ShAmt.uge(getBitWidth()); 2089 if (Overflow) 2090 return APInt(BitWidth, 0); 2091 2092 if (isNonNegative()) // Don't allow sign change. 2093 Overflow = ShAmt.uge(countLeadingZeros()); 2094 else 2095 Overflow = ShAmt.uge(countLeadingOnes()); 2096 2097 return *this << ShAmt; 2098 } 2099 2100 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2101 Overflow = ShAmt.uge(getBitWidth()); 2102 if (Overflow) 2103 return APInt(BitWidth, 0); 2104 2105 Overflow = ShAmt.ugt(countLeadingZeros()); 2106 2107 return *this << ShAmt; 2108 } 2109 2110 2111 2112 2113 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2114 // Check our assumptions here 2115 assert(!str.empty() && "Invalid string length"); 2116 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2117 radix == 36) && 2118 "Radix should be 2, 8, 10, 16, or 36!"); 2119 2120 StringRef::iterator p = str.begin(); 2121 size_t slen = str.size(); 2122 bool isNeg = *p == '-'; 2123 if (*p == '-' || *p == '+') { 2124 p++; 2125 slen--; 2126 assert(slen && "String is only a sign, needs a value."); 2127 } 2128 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2129 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2130 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2131 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2132 "Insufficient bit width"); 2133 2134 // Allocate memory 2135 if (!isSingleWord()) 2136 pVal = getClearedMemory(getNumWords()); 2137 2138 // Figure out if we can shift instead of multiply 2139 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2140 2141 // Set up an APInt for the radix multiplier outside the loop so we don't 2142 // constantly construct/destruct it. 2143 APInt apradix(getBitWidth(), radix); 2144 2145 // Enter digit traversal loop 2146 for (StringRef::iterator e = str.end(); p != e; ++p) { 2147 unsigned digit = getDigit(*p, radix); 2148 assert(digit < radix && "Invalid character in digit string"); 2149 2150 // Shift or multiply the value by the radix 2151 if (slen > 1) { 2152 if (shift) 2153 *this <<= shift; 2154 else 2155 *this *= apradix; 2156 } 2157 2158 // Add in the digit we just interpreted 2159 *this += digit; 2160 } 2161 // If its negative, put it in two's complement form 2162 if (isNeg) { 2163 --(*this); 2164 this->flipAllBits(); 2165 } 2166 } 2167 2168 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2169 bool Signed, bool formatAsCLiteral) const { 2170 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2171 Radix == 36) && 2172 "Radix should be 2, 8, 10, 16, or 36!"); 2173 2174 const char *Prefix = ""; 2175 if (formatAsCLiteral) { 2176 switch (Radix) { 2177 case 2: 2178 // Binary literals are a non-standard extension added in gcc 4.3: 2179 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2180 Prefix = "0b"; 2181 break; 2182 case 8: 2183 Prefix = "0"; 2184 break; 2185 case 10: 2186 break; // No prefix 2187 case 16: 2188 Prefix = "0x"; 2189 break; 2190 default: 2191 llvm_unreachable("Invalid radix!"); 2192 } 2193 } 2194 2195 // First, check for a zero value and just short circuit the logic below. 2196 if (*this == 0) { 2197 while (*Prefix) { 2198 Str.push_back(*Prefix); 2199 ++Prefix; 2200 }; 2201 Str.push_back('0'); 2202 return; 2203 } 2204 2205 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2206 2207 if (isSingleWord()) { 2208 char Buffer[65]; 2209 char *BufPtr = Buffer+65; 2210 2211 uint64_t N; 2212 if (!Signed) { 2213 N = getZExtValue(); 2214 } else { 2215 int64_t I = getSExtValue(); 2216 if (I >= 0) { 2217 N = I; 2218 } else { 2219 Str.push_back('-'); 2220 N = -(uint64_t)I; 2221 } 2222 } 2223 2224 while (*Prefix) { 2225 Str.push_back(*Prefix); 2226 ++Prefix; 2227 }; 2228 2229 while (N) { 2230 *--BufPtr = Digits[N % Radix]; 2231 N /= Radix; 2232 } 2233 Str.append(BufPtr, Buffer+65); 2234 return; 2235 } 2236 2237 APInt Tmp(*this); 2238 2239 if (Signed && isNegative()) { 2240 // They want to print the signed version and it is a negative value 2241 // Flip the bits and add one to turn it into the equivalent positive 2242 // value and put a '-' in the result. 2243 Tmp.flipAllBits(); 2244 ++Tmp; 2245 Str.push_back('-'); 2246 } 2247 2248 while (*Prefix) { 2249 Str.push_back(*Prefix); 2250 ++Prefix; 2251 }; 2252 2253 // We insert the digits backward, then reverse them to get the right order. 2254 unsigned StartDig = Str.size(); 2255 2256 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2257 // because the number of bits per digit (1, 3 and 4 respectively) divides 2258 // equally. We just shift until the value is zero. 2259 if (Radix == 2 || Radix == 8 || Radix == 16) { 2260 // Just shift tmp right for each digit width until it becomes zero 2261 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2262 unsigned MaskAmt = Radix - 1; 2263 2264 while (Tmp != 0) { 2265 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2266 Str.push_back(Digits[Digit]); 2267 Tmp = Tmp.lshr(ShiftAmt); 2268 } 2269 } else { 2270 APInt divisor(Radix == 10? 4 : 8, Radix); 2271 while (Tmp != 0) { 2272 APInt APdigit(1, 0); 2273 APInt tmp2(Tmp.getBitWidth(), 0); 2274 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2275 &APdigit); 2276 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2277 assert(Digit < Radix && "divide failed"); 2278 Str.push_back(Digits[Digit]); 2279 Tmp = tmp2; 2280 } 2281 } 2282 2283 // Reverse the digits before returning. 2284 std::reverse(Str.begin()+StartDig, Str.end()); 2285 } 2286 2287 /// Returns the APInt as a std::string. Note that this is an inefficient method. 2288 /// It is better to pass in a SmallVector/SmallString to the methods above. 2289 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2290 SmallString<40> S; 2291 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2292 return S.str(); 2293 } 2294 2295 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2296 LLVM_DUMP_METHOD void APInt::dump() const { 2297 SmallString<40> S, U; 2298 this->toStringUnsigned(U); 2299 this->toStringSigned(S); 2300 dbgs() << "APInt(" << BitWidth << "b, " 2301 << U << "u " << S << "s)\n"; 2302 } 2303 #endif 2304 2305 void APInt::print(raw_ostream &OS, bool isSigned) const { 2306 SmallString<40> S; 2307 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2308 OS << S; 2309 } 2310 2311 // This implements a variety of operations on a representation of 2312 // arbitrary precision, two's-complement, bignum integer values. 2313 2314 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2315 // and unrestricting assumption. 2316 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2317 "Part width must be divisible by 2!"); 2318 2319 /* Some handy functions local to this file. */ 2320 2321 /* Returns the integer part with the least significant BITS set. 2322 BITS cannot be zero. */ 2323 static inline APInt::WordType lowBitMask(unsigned bits) { 2324 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2325 2326 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2327 } 2328 2329 /* Returns the value of the lower half of PART. */ 2330 static inline APInt::WordType lowHalf(APInt::WordType part) { 2331 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2332 } 2333 2334 /* Returns the value of the upper half of PART. */ 2335 static inline APInt::WordType highHalf(APInt::WordType part) { 2336 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2337 } 2338 2339 /* Returns the bit number of the most significant set bit of a part. 2340 If the input number has no bits set -1U is returned. */ 2341 static unsigned partMSB(APInt::WordType value) { 2342 return findLastSet(value, ZB_Max); 2343 } 2344 2345 /* Returns the bit number of the least significant set bit of a 2346 part. If the input number has no bits set -1U is returned. */ 2347 static unsigned partLSB(APInt::WordType value) { 2348 return findFirstSet(value, ZB_Max); 2349 } 2350 2351 /* Sets the least significant part of a bignum to the input value, and 2352 zeroes out higher parts. */ 2353 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2354 assert(parts > 0); 2355 2356 dst[0] = part; 2357 for (unsigned i = 1; i < parts; i++) 2358 dst[i] = 0; 2359 } 2360 2361 /* Assign one bignum to another. */ 2362 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2363 for (unsigned i = 0; i < parts; i++) 2364 dst[i] = src[i]; 2365 } 2366 2367 /* Returns true if a bignum is zero, false otherwise. */ 2368 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2369 for (unsigned i = 0; i < parts; i++) 2370 if (src[i]) 2371 return false; 2372 2373 return true; 2374 } 2375 2376 /* Extract the given bit of a bignum; returns 0 or 1. */ 2377 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2378 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2379 } 2380 2381 /* Set the given bit of a bignum. */ 2382 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2383 parts[whichWord(bit)] |= maskBit(bit); 2384 } 2385 2386 /* Clears the given bit of a bignum. */ 2387 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2388 parts[whichWord(bit)] &= ~maskBit(bit); 2389 } 2390 2391 /* Returns the bit number of the least significant set bit of a 2392 number. If the input number has no bits set -1U is returned. */ 2393 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2394 for (unsigned i = 0; i < n; i++) { 2395 if (parts[i] != 0) { 2396 unsigned lsb = partLSB(parts[i]); 2397 2398 return lsb + i * APINT_BITS_PER_WORD; 2399 } 2400 } 2401 2402 return -1U; 2403 } 2404 2405 /* Returns the bit number of the most significant set bit of a number. 2406 If the input number has no bits set -1U is returned. */ 2407 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2408 do { 2409 --n; 2410 2411 if (parts[n] != 0) { 2412 unsigned msb = partMSB(parts[n]); 2413 2414 return msb + n * APINT_BITS_PER_WORD; 2415 } 2416 } while (n); 2417 2418 return -1U; 2419 } 2420 2421 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2422 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2423 the least significant bit of DST. All high bits above srcBITS in 2424 DST are zero-filled. */ 2425 void 2426 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2427 unsigned srcBits, unsigned srcLSB) { 2428 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2429 assert(dstParts <= dstCount); 2430 2431 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2432 tcAssign (dst, src + firstSrcPart, dstParts); 2433 2434 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2435 tcShiftRight (dst, dstParts, shift); 2436 2437 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2438 in DST. If this is less that srcBits, append the rest, else 2439 clear the high bits. */ 2440 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2441 if (n < srcBits) { 2442 WordType mask = lowBitMask (srcBits - n); 2443 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2444 << n % APINT_BITS_PER_WORD); 2445 } else if (n > srcBits) { 2446 if (srcBits % APINT_BITS_PER_WORD) 2447 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2448 } 2449 2450 /* Clear high parts. */ 2451 while (dstParts < dstCount) 2452 dst[dstParts++] = 0; 2453 } 2454 2455 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2456 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2457 WordType c, unsigned parts) { 2458 assert(c <= 1); 2459 2460 for (unsigned i = 0; i < parts; i++) { 2461 WordType l = dst[i]; 2462 if (c) { 2463 dst[i] += rhs[i] + 1; 2464 c = (dst[i] <= l); 2465 } else { 2466 dst[i] += rhs[i]; 2467 c = (dst[i] < l); 2468 } 2469 } 2470 2471 return c; 2472 } 2473 2474 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2475 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2476 WordType c, unsigned parts) { 2477 assert(c <= 1); 2478 2479 for (unsigned i = 0; i < parts; i++) { 2480 WordType l = dst[i]; 2481 if (c) { 2482 dst[i] -= rhs[i] + 1; 2483 c = (dst[i] >= l); 2484 } else { 2485 dst[i] -= rhs[i]; 2486 c = (dst[i] > l); 2487 } 2488 } 2489 2490 return c; 2491 } 2492 2493 /* Negate a bignum in-place. */ 2494 void APInt::tcNegate(WordType *dst, unsigned parts) { 2495 tcComplement(dst, parts); 2496 tcIncrement(dst, parts); 2497 } 2498 2499 /* DST += SRC * MULTIPLIER + CARRY if add is true 2500 DST = SRC * MULTIPLIER + CARRY if add is false 2501 2502 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2503 they must start at the same point, i.e. DST == SRC. 2504 2505 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2506 returned. Otherwise DST is filled with the least significant 2507 DSTPARTS parts of the result, and if all of the omitted higher 2508 parts were zero return zero, otherwise overflow occurred and 2509 return one. */ 2510 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2511 WordType multiplier, WordType carry, 2512 unsigned srcParts, unsigned dstParts, 2513 bool add) { 2514 /* Otherwise our writes of DST kill our later reads of SRC. */ 2515 assert(dst <= src || dst >= src + srcParts); 2516 assert(dstParts <= srcParts + 1); 2517 2518 /* N loops; minimum of dstParts and srcParts. */ 2519 unsigned n = dstParts < srcParts ? dstParts: srcParts; 2520 2521 unsigned i; 2522 for (i = 0; i < n; i++) { 2523 WordType low, mid, high, srcPart; 2524 2525 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2526 2527 This cannot overflow, because 2528 2529 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2530 2531 which is less than n^2. */ 2532 2533 srcPart = src[i]; 2534 2535 if (multiplier == 0 || srcPart == 0) { 2536 low = carry; 2537 high = 0; 2538 } else { 2539 low = lowHalf(srcPart) * lowHalf(multiplier); 2540 high = highHalf(srcPart) * highHalf(multiplier); 2541 2542 mid = lowHalf(srcPart) * highHalf(multiplier); 2543 high += highHalf(mid); 2544 mid <<= APINT_BITS_PER_WORD / 2; 2545 if (low + mid < low) 2546 high++; 2547 low += mid; 2548 2549 mid = highHalf(srcPart) * lowHalf(multiplier); 2550 high += highHalf(mid); 2551 mid <<= APINT_BITS_PER_WORD / 2; 2552 if (low + mid < low) 2553 high++; 2554 low += mid; 2555 2556 /* Now add carry. */ 2557 if (low + carry < low) 2558 high++; 2559 low += carry; 2560 } 2561 2562 if (add) { 2563 /* And now DST[i], and store the new low part there. */ 2564 if (low + dst[i] < low) 2565 high++; 2566 dst[i] += low; 2567 } else 2568 dst[i] = low; 2569 2570 carry = high; 2571 } 2572 2573 if (i < dstParts) { 2574 /* Full multiplication, there is no overflow. */ 2575 assert(i + 1 == dstParts); 2576 dst[i] = carry; 2577 return 0; 2578 } else { 2579 /* We overflowed if there is carry. */ 2580 if (carry) 2581 return 1; 2582 2583 /* We would overflow if any significant unwritten parts would be 2584 non-zero. This is true if any remaining src parts are non-zero 2585 and the multiplier is non-zero. */ 2586 if (multiplier) 2587 for (; i < srcParts; i++) 2588 if (src[i]) 2589 return 1; 2590 2591 /* We fitted in the narrow destination. */ 2592 return 0; 2593 } 2594 } 2595 2596 /* DST = LHS * RHS, where DST has the same width as the operands and 2597 is filled with the least significant parts of the result. Returns 2598 one if overflow occurred, otherwise zero. DST must be disjoint 2599 from both operands. */ 2600 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2601 const WordType *rhs, unsigned parts) { 2602 assert(dst != lhs && dst != rhs); 2603 2604 int overflow = 0; 2605 tcSet(dst, 0, parts); 2606 2607 for (unsigned i = 0; i < parts; i++) 2608 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2609 parts - i, true); 2610 2611 return overflow; 2612 } 2613 2614 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2615 operands. No overflow occurs. DST must be disjoint from both 2616 operands. Returns the number of parts required to hold the 2617 result. */ 2618 unsigned APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2619 const WordType *rhs, unsigned lhsParts, 2620 unsigned rhsParts) { 2621 /* Put the narrower number on the LHS for less loops below. */ 2622 if (lhsParts > rhsParts) { 2623 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2624 } else { 2625 assert(dst != lhs && dst != rhs); 2626 2627 tcSet(dst, 0, rhsParts); 2628 2629 for (unsigned i = 0; i < lhsParts; i++) 2630 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2631 2632 unsigned n = lhsParts + rhsParts; 2633 2634 return n - (dst[n - 1] == 0); 2635 } 2636 } 2637 2638 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2639 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2640 set REMAINDER to the remainder, return zero. i.e. 2641 2642 OLD_LHS = RHS * LHS + REMAINDER 2643 2644 SCRATCH is a bignum of the same size as the operands and result for 2645 use by the routine; its contents need not be initialized and are 2646 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2647 */ 2648 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2649 WordType *remainder, WordType *srhs, 2650 unsigned parts) { 2651 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2652 2653 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2654 if (shiftCount == 0) 2655 return true; 2656 2657 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2658 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2659 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2660 2661 tcAssign(srhs, rhs, parts); 2662 tcShiftLeft(srhs, parts, shiftCount); 2663 tcAssign(remainder, lhs, parts); 2664 tcSet(lhs, 0, parts); 2665 2666 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2667 the total. */ 2668 for (;;) { 2669 int compare; 2670 2671 compare = tcCompare(remainder, srhs, parts); 2672 if (compare >= 0) { 2673 tcSubtract(remainder, srhs, 0, parts); 2674 lhs[n] |= mask; 2675 } 2676 2677 if (shiftCount == 0) 2678 break; 2679 shiftCount--; 2680 tcShiftRight(srhs, parts, 1); 2681 if ((mask >>= 1) == 0) { 2682 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2683 n--; 2684 } 2685 } 2686 2687 return false; 2688 } 2689 2690 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2691 There are no restrictions on COUNT. */ 2692 void APInt::tcShiftLeft(WordType *dst, unsigned parts, unsigned count) { 2693 if (count) { 2694 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2695 unsigned jump = count / APINT_BITS_PER_WORD; 2696 unsigned shift = count % APINT_BITS_PER_WORD; 2697 2698 while (parts > jump) { 2699 WordType part; 2700 2701 parts--; 2702 2703 /* dst[i] comes from the two parts src[i - jump] and, if we have 2704 an intra-part shift, src[i - jump - 1]. */ 2705 part = dst[parts - jump]; 2706 if (shift) { 2707 part <<= shift; 2708 if (parts >= jump + 1) 2709 part |= dst[parts - jump - 1] >> (APINT_BITS_PER_WORD - shift); 2710 } 2711 2712 dst[parts] = part; 2713 } 2714 2715 while (parts > 0) 2716 dst[--parts] = 0; 2717 } 2718 } 2719 2720 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2721 zero. There are no restrictions on COUNT. */ 2722 void APInt::tcShiftRight(WordType *dst, unsigned parts, unsigned count) { 2723 if (count) { 2724 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2725 unsigned jump = count / APINT_BITS_PER_WORD; 2726 unsigned shift = count % APINT_BITS_PER_WORD; 2727 2728 /* Perform the shift. This leaves the most significant COUNT bits 2729 of the result at zero. */ 2730 for (unsigned i = 0; i < parts; i++) { 2731 WordType part; 2732 2733 if (i + jump >= parts) { 2734 part = 0; 2735 } else { 2736 part = dst[i + jump]; 2737 if (shift) { 2738 part >>= shift; 2739 if (i + jump + 1 < parts) 2740 part |= dst[i + jump + 1] << (APINT_BITS_PER_WORD - shift); 2741 } 2742 } 2743 2744 dst[i] = part; 2745 } 2746 } 2747 } 2748 2749 /* Bitwise and of two bignums. */ 2750 void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) { 2751 for (unsigned i = 0; i < parts; i++) 2752 dst[i] &= rhs[i]; 2753 } 2754 2755 /* Bitwise inclusive or of two bignums. */ 2756 void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) { 2757 for (unsigned i = 0; i < parts; i++) 2758 dst[i] |= rhs[i]; 2759 } 2760 2761 /* Bitwise exclusive or of two bignums. */ 2762 void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) { 2763 for (unsigned i = 0; i < parts; i++) 2764 dst[i] ^= rhs[i]; 2765 } 2766 2767 /* Complement a bignum in-place. */ 2768 void APInt::tcComplement(WordType *dst, unsigned parts) { 2769 for (unsigned i = 0; i < parts; i++) 2770 dst[i] = ~dst[i]; 2771 } 2772 2773 /* Comparison (unsigned) of two bignums. */ 2774 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2775 unsigned parts) { 2776 while (parts) { 2777 parts--; 2778 if (lhs[parts] == rhs[parts]) 2779 continue; 2780 2781 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2782 } 2783 2784 return 0; 2785 } 2786 2787 /* Increment a bignum in-place, return the carry flag. */ 2788 APInt::WordType APInt::tcIncrement(WordType *dst, unsigned parts) { 2789 unsigned i; 2790 for (i = 0; i < parts; i++) 2791 if (++dst[i] != 0) 2792 break; 2793 2794 return i == parts; 2795 } 2796 2797 /* Decrement a bignum in-place, return the borrow flag. */ 2798 APInt::WordType APInt::tcDecrement(WordType *dst, unsigned parts) { 2799 for (unsigned i = 0; i < parts; i++) { 2800 // If the current word is non-zero, then the decrement has no effect on the 2801 // higher-order words of the integer and no borrow can occur. Exit early. 2802 if (dst[i]--) 2803 return 0; 2804 } 2805 // If every word was zero, then there is a borrow. 2806 return 1; 2807 } 2808 2809 2810 /* Set the least significant BITS bits of a bignum, clear the 2811 rest. */ 2812 void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts, 2813 unsigned bits) { 2814 unsigned i = 0; 2815 while (bits > APINT_BITS_PER_WORD) { 2816 dst[i++] = ~(WordType) 0; 2817 bits -= APINT_BITS_PER_WORD; 2818 } 2819 2820 if (bits) 2821 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits); 2822 2823 while (i < parts) 2824 dst[i++] = 0; 2825 } 2826