1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <cstring>
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "apint"
32 
33 /// A utility function for allocating memory, checking for allocation failures,
34 /// and ensuring the contents are zeroed.
35 inline static uint64_t* getClearedMemory(unsigned numWords) {
36   uint64_t *result = new uint64_t[numWords];
37   memset(result, 0, numWords * sizeof(uint64_t));
38   return result;
39 }
40 
41 /// A utility function for allocating memory and checking for allocation
42 /// failure.  The content is not zeroed.
43 inline static uint64_t* getMemory(unsigned numWords) {
44   return new uint64_t[numWords];
45 }
46 
47 /// A utility function that converts a character to a digit.
48 inline static unsigned getDigit(char cdigit, uint8_t radix) {
49   unsigned r;
50 
51   if (radix == 16 || radix == 36) {
52     r = cdigit - '0';
53     if (r <= 9)
54       return r;
55 
56     r = cdigit - 'A';
57     if (r <= radix - 11U)
58       return r + 10;
59 
60     r = cdigit - 'a';
61     if (r <= radix - 11U)
62       return r + 10;
63 
64     radix = 10;
65   }
66 
67   r = cdigit - '0';
68   if (r < radix)
69     return r;
70 
71   return -1U;
72 }
73 
74 
75 void APInt::initSlowCase(uint64_t val, bool isSigned) {
76   U.pVal = getClearedMemory(getNumWords());
77   U.pVal[0] = val;
78   if (isSigned && int64_t(val) < 0)
79     for (unsigned i = 1; i < getNumWords(); ++i)
80       U.pVal[i] = WORDTYPE_MAX;
81   clearUnusedBits();
82 }
83 
84 void APInt::initSlowCase(const APInt& that) {
85   U.pVal = getMemory(getNumWords());
86   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
87 }
88 
89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
90   assert(bigVal.data() && "Null pointer detected!");
91   if (isSingleWord())
92     U.VAL = bigVal[0];
93   else {
94     // Get memory, cleared to 0
95     U.pVal = getClearedMemory(getNumWords());
96     // Calculate the number of words to copy
97     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
98     // Copy the words from bigVal to pVal
99     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
100   }
101   // Make sure unused high bits are cleared
102   clearUnusedBits();
103 }
104 
105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
106   initFromArray(bigVal);
107 }
108 
109 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
110     : BitWidth(numBits) {
111   initFromArray(makeArrayRef(bigVal, numWords));
112 }
113 
114 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
115     : BitWidth(numbits) {
116   fromString(numbits, Str, radix);
117 }
118 
119 void APInt::reallocate(unsigned NewBitWidth) {
120   // If the number of words is the same we can just change the width and stop.
121   if (getNumWords() == getNumWords(NewBitWidth)) {
122     BitWidth = NewBitWidth;
123     return;
124   }
125 
126   // If we have an allocation, delete it.
127   if (!isSingleWord())
128     delete [] U.pVal;
129 
130   // Update BitWidth.
131   BitWidth = NewBitWidth;
132 
133   // If we are supposed to have an allocation, create it.
134   if (!isSingleWord())
135     U.pVal = getMemory(getNumWords());
136 }
137 
138 void APInt::assignSlowCase(const APInt &RHS) {
139   // Don't do anything for X = X
140   if (this == &RHS)
141     return;
142 
143   // Adjust the bit width and handle allocations as necessary.
144   reallocate(RHS.getBitWidth());
145 
146   // Copy the data.
147   if (isSingleWord())
148     U.VAL = RHS.U.VAL;
149   else
150     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
151 }
152 
153 /// This method 'profiles' an APInt for use with FoldingSet.
154 void APInt::Profile(FoldingSetNodeID& ID) const {
155   ID.AddInteger(BitWidth);
156 
157   if (isSingleWord()) {
158     ID.AddInteger(U.VAL);
159     return;
160   }
161 
162   unsigned NumWords = getNumWords();
163   for (unsigned i = 0; i < NumWords; ++i)
164     ID.AddInteger(U.pVal[i]);
165 }
166 
167 /// Prefix increment operator. Increments the APInt by one.
168 APInt& APInt::operator++() {
169   if (isSingleWord())
170     ++U.VAL;
171   else
172     tcIncrement(U.pVal, getNumWords());
173   return clearUnusedBits();
174 }
175 
176 /// Prefix decrement operator. Decrements the APInt by one.
177 APInt& APInt::operator--() {
178   if (isSingleWord())
179     --U.VAL;
180   else
181     tcDecrement(U.pVal, getNumWords());
182   return clearUnusedBits();
183 }
184 
185 /// Adds the RHS APInt to this APInt.
186 /// @returns this, after addition of RHS.
187 /// Addition assignment operator.
188 APInt& APInt::operator+=(const APInt& RHS) {
189   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
190   if (isSingleWord())
191     U.VAL += RHS.U.VAL;
192   else
193     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
194   return clearUnusedBits();
195 }
196 
197 APInt& APInt::operator+=(uint64_t RHS) {
198   if (isSingleWord())
199     U.VAL += RHS;
200   else
201     tcAddPart(U.pVal, RHS, getNumWords());
202   return clearUnusedBits();
203 }
204 
205 /// Subtracts the RHS APInt from this APInt
206 /// @returns this, after subtraction
207 /// Subtraction assignment operator.
208 APInt& APInt::operator-=(const APInt& RHS) {
209   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
210   if (isSingleWord())
211     U.VAL -= RHS.U.VAL;
212   else
213     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
214   return clearUnusedBits();
215 }
216 
217 APInt& APInt::operator-=(uint64_t RHS) {
218   if (isSingleWord())
219     U.VAL -= RHS;
220   else
221     tcSubtractPart(U.pVal, RHS, getNumWords());
222   return clearUnusedBits();
223 }
224 
225 APInt APInt::operator*(const APInt& RHS) const {
226   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
227   if (isSingleWord())
228     return APInt(BitWidth, U.VAL * RHS.U.VAL);
229 
230   APInt Result(getMemory(getNumWords()), getBitWidth());
231   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
232   Result.clearUnusedBits();
233   return Result;
234 }
235 
236 void APInt::andAssignSlowCase(const APInt &RHS) {
237   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
238   for (size_t i = 0, e = getNumWords(); i != e; ++i)
239     dst[i] &= rhs[i];
240 }
241 
242 void APInt::orAssignSlowCase(const APInt &RHS) {
243   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
244   for (size_t i = 0, e = getNumWords(); i != e; ++i)
245     dst[i] |= rhs[i];
246 }
247 
248 void APInt::xorAssignSlowCase(const APInt &RHS) {
249   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
250   for (size_t i = 0, e = getNumWords(); i != e; ++i)
251     dst[i] ^= rhs[i];
252 }
253 
254 APInt &APInt::operator*=(const APInt &RHS) {
255   *this = *this * RHS;
256   return *this;
257 }
258 
259 APInt& APInt::operator*=(uint64_t RHS) {
260   if (isSingleWord()) {
261     U.VAL *= RHS;
262   } else {
263     unsigned NumWords = getNumWords();
264     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265   }
266   return clearUnusedBits();
267 }
268 
269 bool APInt::equalSlowCase(const APInt &RHS) const {
270   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
271 }
272 
273 int APInt::compare(const APInt& RHS) const {
274   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
275   if (isSingleWord())
276     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
277 
278   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
279 }
280 
281 int APInt::compareSigned(const APInt& RHS) const {
282   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
283   if (isSingleWord()) {
284     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
286     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
287   }
288 
289   bool lhsNeg = isNegative();
290   bool rhsNeg = RHS.isNegative();
291 
292   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293   if (lhsNeg != rhsNeg)
294     return lhsNeg ? -1 : 1;
295 
296   // Otherwise we can just use an unsigned comparison, because even negative
297   // numbers compare correctly this way if both have the same signed-ness.
298   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
299 }
300 
301 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302   unsigned loWord = whichWord(loBit);
303   unsigned hiWord = whichWord(hiBit);
304 
305   // Create an initial mask for the low word with zeros below loBit.
306   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
307 
308   // If hiBit is not aligned, we need a high mask.
309   unsigned hiShiftAmt = whichBit(hiBit);
310   if (hiShiftAmt != 0) {
311     // Create a high mask with zeros above hiBit.
312     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
313     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314     // set the bits in hiWord.
315     if (hiWord == loWord)
316       loMask &= hiMask;
317     else
318       U.pVal[hiWord] |= hiMask;
319   }
320   // Apply the mask to the low word.
321   U.pVal[loWord] |= loMask;
322 
323   // Fill any words between loWord and hiWord with all ones.
324   for (unsigned word = loWord + 1; word < hiWord; ++word)
325     U.pVal[word] = WORDTYPE_MAX;
326 }
327 
328 // Complement a bignum in-place.
329 static void tcComplement(APInt::WordType *dst, unsigned parts) {
330   for (unsigned i = 0; i < parts; i++)
331     dst[i] = ~dst[i];
332 }
333 
334 /// Toggle every bit to its opposite value.
335 void APInt::flipAllBitsSlowCase() {
336   tcComplement(U.pVal, getNumWords());
337   clearUnusedBits();
338 }
339 
340 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
341 /// equivalent to:
342 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
343 /// In the slow case, we know the result is large.
344 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
345   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
346   APInt Result = NewLSB.zextOrSelf(NewWidth);
347   Result.insertBits(*this, NewLSB.getBitWidth());
348   return Result;
349 }
350 
351 /// Toggle a given bit to its opposite value whose position is given
352 /// as "bitPosition".
353 /// Toggles a given bit to its opposite value.
354 void APInt::flipBit(unsigned bitPosition) {
355   assert(bitPosition < BitWidth && "Out of the bit-width range!");
356   setBitVal(bitPosition, !(*this)[bitPosition]);
357 }
358 
359 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
360   unsigned subBitWidth = subBits.getBitWidth();
361   assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
362 
363   // inserting no bits is a noop.
364   if (subBitWidth == 0)
365     return;
366 
367   // Insertion is a direct copy.
368   if (subBitWidth == BitWidth) {
369     *this = subBits;
370     return;
371   }
372 
373   // Single word result can be done as a direct bitmask.
374   if (isSingleWord()) {
375     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
376     U.VAL &= ~(mask << bitPosition);
377     U.VAL |= (subBits.U.VAL << bitPosition);
378     return;
379   }
380 
381   unsigned loBit = whichBit(bitPosition);
382   unsigned loWord = whichWord(bitPosition);
383   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
384 
385   // Insertion within a single word can be done as a direct bitmask.
386   if (loWord == hi1Word) {
387     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
388     U.pVal[loWord] &= ~(mask << loBit);
389     U.pVal[loWord] |= (subBits.U.VAL << loBit);
390     return;
391   }
392 
393   // Insert on word boundaries.
394   if (loBit == 0) {
395     // Direct copy whole words.
396     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
397     memcpy(U.pVal + loWord, subBits.getRawData(),
398            numWholeSubWords * APINT_WORD_SIZE);
399 
400     // Mask+insert remaining bits.
401     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
402     if (remainingBits != 0) {
403       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
404       U.pVal[hi1Word] &= ~mask;
405       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
406     }
407     return;
408   }
409 
410   // General case - set/clear individual bits in dst based on src.
411   // TODO - there is scope for optimization here, but at the moment this code
412   // path is barely used so prefer readability over performance.
413   for (unsigned i = 0; i != subBitWidth; ++i)
414     setBitVal(bitPosition + i, subBits[i]);
415 }
416 
417 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
418   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
419   subBits &= maskBits;
420   if (isSingleWord()) {
421     U.VAL &= ~(maskBits << bitPosition);
422     U.VAL |= subBits << bitPosition;
423     return;
424   }
425 
426   unsigned loBit = whichBit(bitPosition);
427   unsigned loWord = whichWord(bitPosition);
428   unsigned hiWord = whichWord(bitPosition + numBits - 1);
429   if (loWord == hiWord) {
430     U.pVal[loWord] &= ~(maskBits << loBit);
431     U.pVal[loWord] |= subBits << loBit;
432     return;
433   }
434 
435   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
436   unsigned wordBits = 8 * sizeof(WordType);
437   U.pVal[loWord] &= ~(maskBits << loBit);
438   U.pVal[loWord] |= subBits << loBit;
439 
440   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
441   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
442 }
443 
444 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
445   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
446          "Illegal bit extraction");
447 
448   if (isSingleWord())
449     return APInt(numBits, U.VAL >> bitPosition);
450 
451   unsigned loBit = whichBit(bitPosition);
452   unsigned loWord = whichWord(bitPosition);
453   unsigned hiWord = whichWord(bitPosition + numBits - 1);
454 
455   // Single word result extracting bits from a single word source.
456   if (loWord == hiWord)
457     return APInt(numBits, U.pVal[loWord] >> loBit);
458 
459   // Extracting bits that start on a source word boundary can be done
460   // as a fast memory copy.
461   if (loBit == 0)
462     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
463 
464   // General case - shift + copy source words directly into place.
465   APInt Result(numBits, 0);
466   unsigned NumSrcWords = getNumWords();
467   unsigned NumDstWords = Result.getNumWords();
468 
469   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
470   for (unsigned word = 0; word < NumDstWords; ++word) {
471     uint64_t w0 = U.pVal[loWord + word];
472     uint64_t w1 =
473         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
474     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
475   }
476 
477   return Result.clearUnusedBits();
478 }
479 
480 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
481                                        unsigned bitPosition) const {
482   assert(numBits > 0 && "Can't extract zero bits");
483   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
484          "Illegal bit extraction");
485   assert(numBits <= 64 && "Illegal bit extraction");
486 
487   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
488   if (isSingleWord())
489     return (U.VAL >> bitPosition) & maskBits;
490 
491   unsigned loBit = whichBit(bitPosition);
492   unsigned loWord = whichWord(bitPosition);
493   unsigned hiWord = whichWord(bitPosition + numBits - 1);
494   if (loWord == hiWord)
495     return (U.pVal[loWord] >> loBit) & maskBits;
496 
497   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
498   unsigned wordBits = 8 * sizeof(WordType);
499   uint64_t retBits = U.pVal[loWord] >> loBit;
500   retBits |= U.pVal[hiWord] << (wordBits - loBit);
501   retBits &= maskBits;
502   return retBits;
503 }
504 
505 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
506   assert(!Str.empty() && "Invalid string length");
507   size_t StrLen = Str.size();
508 
509   // Each computation below needs to know if it's negative.
510   unsigned IsNegative = false;
511   if (Str[0] == '-' || Str[0] == '+') {
512     IsNegative = Str[0] == '-';
513     StrLen--;
514     assert(StrLen && "String is only a sign, needs a value.");
515   }
516 
517   // For radixes of power-of-two values, the bits required is accurately and
518   // easily computed.
519   if (Radix == 2)
520     return StrLen + IsNegative;
521   if (Radix == 8)
522     return StrLen * 3 + IsNegative;
523   if (Radix == 16)
524     return StrLen * 4 + IsNegative;
525 
526   // Compute a sufficient number of bits that is always large enough but might
527   // be too large. This avoids the assertion in the constructor. This
528   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
529   // bits in that case.
530   if (Radix == 10)
531     return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
532 
533   assert(Radix == 36);
534   return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
535 }
536 
537 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
538   // Compute a sufficient number of bits that is always large enough but might
539   // be too large.
540   unsigned sufficient = getSufficientBitsNeeded(str, radix);
541 
542   // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
543   // return the value directly. For bases 10 and 36, we need to do extra work.
544   if (radix == 2 || radix == 8 || radix == 16)
545     return sufficient;
546 
547   // This is grossly inefficient but accurate. We could probably do something
548   // with a computation of roughly slen*64/20 and then adjust by the value of
549   // the first few digits. But, I'm not sure how accurate that could be.
550   size_t slen = str.size();
551 
552   // Each computation below needs to know if it's negative.
553   StringRef::iterator p = str.begin();
554   unsigned isNegative = *p == '-';
555   if (*p == '-' || *p == '+') {
556     p++;
557     slen--;
558     assert(slen && "String is only a sign, needs a value.");
559   }
560 
561 
562   // Convert to the actual binary value.
563   APInt tmp(sufficient, StringRef(p, slen), radix);
564 
565   // Compute how many bits are required. If the log is infinite, assume we need
566   // just bit. If the log is exact and value is negative, then the value is
567   // MinSignedValue with (log + 1) bits.
568   unsigned log = tmp.logBase2();
569   if (log == (unsigned)-1) {
570     return isNegative + 1;
571   } else if (isNegative && tmp.isPowerOf2()) {
572     return isNegative + log;
573   } else {
574     return isNegative + log + 1;
575   }
576 }
577 
578 hash_code llvm::hash_value(const APInt &Arg) {
579   if (Arg.isSingleWord())
580     return hash_combine(Arg.BitWidth, Arg.U.VAL);
581 
582   return hash_combine(
583       Arg.BitWidth,
584       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
585 }
586 
587 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
588   return static_cast<unsigned>(hash_value(Key));
589 }
590 
591 bool APInt::isSplat(unsigned SplatSizeInBits) const {
592   assert(getBitWidth() % SplatSizeInBits == 0 &&
593          "SplatSizeInBits must divide width!");
594   // We can check that all parts of an integer are equal by making use of a
595   // little trick: rotate and check if it's still the same value.
596   return *this == rotl(SplatSizeInBits);
597 }
598 
599 /// This function returns the high "numBits" bits of this APInt.
600 APInt APInt::getHiBits(unsigned numBits) const {
601   return this->lshr(BitWidth - numBits);
602 }
603 
604 /// This function returns the low "numBits" bits of this APInt.
605 APInt APInt::getLoBits(unsigned numBits) const {
606   APInt Result(getLowBitsSet(BitWidth, numBits));
607   Result &= *this;
608   return Result;
609 }
610 
611 /// Return a value containing V broadcasted over NewLen bits.
612 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
613   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
614 
615   APInt Val = V.zextOrSelf(NewLen);
616   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
617     Val |= Val << I;
618 
619   return Val;
620 }
621 
622 unsigned APInt::countLeadingZerosSlowCase() const {
623   unsigned Count = 0;
624   for (int i = getNumWords()-1; i >= 0; --i) {
625     uint64_t V = U.pVal[i];
626     if (V == 0)
627       Count += APINT_BITS_PER_WORD;
628     else {
629       Count += llvm::countLeadingZeros(V);
630       break;
631     }
632   }
633   // Adjust for unused bits in the most significant word (they are zero).
634   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
635   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
636   return Count;
637 }
638 
639 unsigned APInt::countLeadingOnesSlowCase() const {
640   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
641   unsigned shift;
642   if (!highWordBits) {
643     highWordBits = APINT_BITS_PER_WORD;
644     shift = 0;
645   } else {
646     shift = APINT_BITS_PER_WORD - highWordBits;
647   }
648   int i = getNumWords() - 1;
649   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
650   if (Count == highWordBits) {
651     for (i--; i >= 0; --i) {
652       if (U.pVal[i] == WORDTYPE_MAX)
653         Count += APINT_BITS_PER_WORD;
654       else {
655         Count += llvm::countLeadingOnes(U.pVal[i]);
656         break;
657       }
658     }
659   }
660   return Count;
661 }
662 
663 unsigned APInt::countTrailingZerosSlowCase() const {
664   unsigned Count = 0;
665   unsigned i = 0;
666   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
667     Count += APINT_BITS_PER_WORD;
668   if (i < getNumWords())
669     Count += llvm::countTrailingZeros(U.pVal[i]);
670   return std::min(Count, BitWidth);
671 }
672 
673 unsigned APInt::countTrailingOnesSlowCase() const {
674   unsigned Count = 0;
675   unsigned i = 0;
676   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
677     Count += APINT_BITS_PER_WORD;
678   if (i < getNumWords())
679     Count += llvm::countTrailingOnes(U.pVal[i]);
680   assert(Count <= BitWidth);
681   return Count;
682 }
683 
684 unsigned APInt::countPopulationSlowCase() const {
685   unsigned Count = 0;
686   for (unsigned i = 0; i < getNumWords(); ++i)
687     Count += llvm::countPopulation(U.pVal[i]);
688   return Count;
689 }
690 
691 bool APInt::intersectsSlowCase(const APInt &RHS) const {
692   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
693     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
694       return true;
695 
696   return false;
697 }
698 
699 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
700   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
702       return false;
703 
704   return true;
705 }
706 
707 APInt APInt::byteSwap() const {
708   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
709   if (BitWidth == 16)
710     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
711   if (BitWidth == 32)
712     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
713   if (BitWidth <= 64) {
714     uint64_t Tmp1 = ByteSwap_64(U.VAL);
715     Tmp1 >>= (64 - BitWidth);
716     return APInt(BitWidth, Tmp1);
717   }
718 
719   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
720   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
721     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
722   if (Result.BitWidth != BitWidth) {
723     Result.lshrInPlace(Result.BitWidth - BitWidth);
724     Result.BitWidth = BitWidth;
725   }
726   return Result;
727 }
728 
729 APInt APInt::reverseBits() const {
730   switch (BitWidth) {
731   case 64:
732     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
733   case 32:
734     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
735   case 16:
736     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
737   case 8:
738     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
739   case 0:
740     return *this;
741   default:
742     break;
743   }
744 
745   APInt Val(*this);
746   APInt Reversed(BitWidth, 0);
747   unsigned S = BitWidth;
748 
749   for (; Val != 0; Val.lshrInPlace(1)) {
750     Reversed <<= 1;
751     Reversed |= Val[0];
752     --S;
753   }
754 
755   Reversed <<= S;
756   return Reversed;
757 }
758 
759 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
760   // Fast-path a common case.
761   if (A == B) return A;
762 
763   // Corner cases: if either operand is zero, the other is the gcd.
764   if (!A) return B;
765   if (!B) return A;
766 
767   // Count common powers of 2 and remove all other powers of 2.
768   unsigned Pow2;
769   {
770     unsigned Pow2_A = A.countTrailingZeros();
771     unsigned Pow2_B = B.countTrailingZeros();
772     if (Pow2_A > Pow2_B) {
773       A.lshrInPlace(Pow2_A - Pow2_B);
774       Pow2 = Pow2_B;
775     } else if (Pow2_B > Pow2_A) {
776       B.lshrInPlace(Pow2_B - Pow2_A);
777       Pow2 = Pow2_A;
778     } else {
779       Pow2 = Pow2_A;
780     }
781   }
782 
783   // Both operands are odd multiples of 2^Pow_2:
784   //
785   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
786   //
787   // This is a modified version of Stein's algorithm, taking advantage of
788   // efficient countTrailingZeros().
789   while (A != B) {
790     if (A.ugt(B)) {
791       A -= B;
792       A.lshrInPlace(A.countTrailingZeros() - Pow2);
793     } else {
794       B -= A;
795       B.lshrInPlace(B.countTrailingZeros() - Pow2);
796     }
797   }
798 
799   return A;
800 }
801 
802 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
803   uint64_t I = bit_cast<uint64_t>(Double);
804 
805   // Get the sign bit from the highest order bit
806   bool isNeg = I >> 63;
807 
808   // Get the 11-bit exponent and adjust for the 1023 bit bias
809   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
810 
811   // If the exponent is negative, the value is < 0 so just return 0.
812   if (exp < 0)
813     return APInt(width, 0u);
814 
815   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
816   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
817 
818   // If the exponent doesn't shift all bits out of the mantissa
819   if (exp < 52)
820     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
821                     APInt(width, mantissa >> (52 - exp));
822 
823   // If the client didn't provide enough bits for us to shift the mantissa into
824   // then the result is undefined, just return 0
825   if (width <= exp - 52)
826     return APInt(width, 0);
827 
828   // Otherwise, we have to shift the mantissa bits up to the right location
829   APInt Tmp(width, mantissa);
830   Tmp <<= (unsigned)exp - 52;
831   return isNeg ? -Tmp : Tmp;
832 }
833 
834 /// This function converts this APInt to a double.
835 /// The layout for double is as following (IEEE Standard 754):
836 ///  --------------------------------------
837 /// |  Sign    Exponent    Fraction    Bias |
838 /// |-------------------------------------- |
839 /// |  1[63]   11[62-52]   52[51-00]   1023 |
840 ///  --------------------------------------
841 double APInt::roundToDouble(bool isSigned) const {
842 
843   // Handle the simple case where the value is contained in one uint64_t.
844   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
845   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
846     if (isSigned) {
847       int64_t sext = SignExtend64(getWord(0), BitWidth);
848       return double(sext);
849     } else
850       return double(getWord(0));
851   }
852 
853   // Determine if the value is negative.
854   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
855 
856   // Construct the absolute value if we're negative.
857   APInt Tmp(isNeg ? -(*this) : (*this));
858 
859   // Figure out how many bits we're using.
860   unsigned n = Tmp.getActiveBits();
861 
862   // The exponent (without bias normalization) is just the number of bits
863   // we are using. Note that the sign bit is gone since we constructed the
864   // absolute value.
865   uint64_t exp = n;
866 
867   // Return infinity for exponent overflow
868   if (exp > 1023) {
869     if (!isSigned || !isNeg)
870       return std::numeric_limits<double>::infinity();
871     else
872       return -std::numeric_limits<double>::infinity();
873   }
874   exp += 1023; // Increment for 1023 bias
875 
876   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
877   // extract the high 52 bits from the correct words in pVal.
878   uint64_t mantissa;
879   unsigned hiWord = whichWord(n-1);
880   if (hiWord == 0) {
881     mantissa = Tmp.U.pVal[0];
882     if (n > 52)
883       mantissa >>= n - 52; // shift down, we want the top 52 bits.
884   } else {
885     assert(hiWord > 0 && "huh?");
886     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
887     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
888     mantissa = hibits | lobits;
889   }
890 
891   // The leading bit of mantissa is implicit, so get rid of it.
892   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
893   uint64_t I = sign | (exp << 52) | mantissa;
894   return bit_cast<double>(I);
895 }
896 
897 // Truncate to new width.
898 APInt APInt::trunc(unsigned width) const {
899   assert(width < BitWidth && "Invalid APInt Truncate request");
900 
901   if (width <= APINT_BITS_PER_WORD)
902     return APInt(width, getRawData()[0]);
903 
904   APInt Result(getMemory(getNumWords(width)), width);
905 
906   // Copy full words.
907   unsigned i;
908   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
909     Result.U.pVal[i] = U.pVal[i];
910 
911   // Truncate and copy any partial word.
912   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
913   if (bits != 0)
914     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
915 
916   return Result;
917 }
918 
919 // Truncate to new width with unsigned saturation.
920 APInt APInt::truncUSat(unsigned width) const {
921   assert(width < BitWidth && "Invalid APInt Truncate request");
922 
923   // Can we just losslessly truncate it?
924   if (isIntN(width))
925     return trunc(width);
926   // If not, then just return the new limit.
927   return APInt::getMaxValue(width);
928 }
929 
930 // Truncate to new width with signed saturation.
931 APInt APInt::truncSSat(unsigned width) const {
932   assert(width < BitWidth && "Invalid APInt Truncate request");
933 
934   // Can we just losslessly truncate it?
935   if (isSignedIntN(width))
936     return trunc(width);
937   // If not, then just return the new limits.
938   return isNegative() ? APInt::getSignedMinValue(width)
939                       : APInt::getSignedMaxValue(width);
940 }
941 
942 // Sign extend to a new width.
943 APInt APInt::sext(unsigned Width) const {
944   assert(Width > BitWidth && "Invalid APInt SignExtend request");
945 
946   if (Width <= APINT_BITS_PER_WORD)
947     return APInt(Width, SignExtend64(U.VAL, BitWidth));
948 
949   APInt Result(getMemory(getNumWords(Width)), Width);
950 
951   // Copy words.
952   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
953 
954   // Sign extend the last word since there may be unused bits in the input.
955   Result.U.pVal[getNumWords() - 1] =
956       SignExtend64(Result.U.pVal[getNumWords() - 1],
957                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
958 
959   // Fill with sign bits.
960   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
961               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
962   Result.clearUnusedBits();
963   return Result;
964 }
965 
966 //  Zero extend to a new width.
967 APInt APInt::zext(unsigned width) const {
968   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
969 
970   if (width <= APINT_BITS_PER_WORD)
971     return APInt(width, U.VAL);
972 
973   APInt Result(getMemory(getNumWords(width)), width);
974 
975   // Copy words.
976   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
977 
978   // Zero remaining words.
979   std::memset(Result.U.pVal + getNumWords(), 0,
980               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
981 
982   return Result;
983 }
984 
985 APInt APInt::zextOrTrunc(unsigned width) const {
986   if (BitWidth < width)
987     return zext(width);
988   if (BitWidth > width)
989     return trunc(width);
990   return *this;
991 }
992 
993 APInt APInt::sextOrTrunc(unsigned width) const {
994   if (BitWidth < width)
995     return sext(width);
996   if (BitWidth > width)
997     return trunc(width);
998   return *this;
999 }
1000 
1001 APInt APInt::truncOrSelf(unsigned width) const {
1002   if (BitWidth > width)
1003     return trunc(width);
1004   return *this;
1005 }
1006 
1007 APInt APInt::zextOrSelf(unsigned width) const {
1008   if (BitWidth < width)
1009     return zext(width);
1010   return *this;
1011 }
1012 
1013 APInt APInt::sextOrSelf(unsigned width) const {
1014   if (BitWidth < width)
1015     return sext(width);
1016   return *this;
1017 }
1018 
1019 /// Arithmetic right-shift this APInt by shiftAmt.
1020 /// Arithmetic right-shift function.
1021 void APInt::ashrInPlace(const APInt &shiftAmt) {
1022   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1023 }
1024 
1025 /// Arithmetic right-shift this APInt by shiftAmt.
1026 /// Arithmetic right-shift function.
1027 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1028   // Don't bother performing a no-op shift.
1029   if (!ShiftAmt)
1030     return;
1031 
1032   // Save the original sign bit for later.
1033   bool Negative = isNegative();
1034 
1035   // WordShift is the inter-part shift; BitShift is intra-part shift.
1036   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1037   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1038 
1039   unsigned WordsToMove = getNumWords() - WordShift;
1040   if (WordsToMove != 0) {
1041     // Sign extend the last word to fill in the unused bits.
1042     U.pVal[getNumWords() - 1] = SignExtend64(
1043         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1044 
1045     // Fastpath for moving by whole words.
1046     if (BitShift == 0) {
1047       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1048     } else {
1049       // Move the words containing significant bits.
1050       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1051         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1052                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1053 
1054       // Handle the last word which has no high bits to copy.
1055       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1056       // Sign extend one more time.
1057       U.pVal[WordsToMove - 1] =
1058           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1059     }
1060   }
1061 
1062   // Fill in the remainder based on the original sign.
1063   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1064               WordShift * APINT_WORD_SIZE);
1065   clearUnusedBits();
1066 }
1067 
1068 /// Logical right-shift this APInt by shiftAmt.
1069 /// Logical right-shift function.
1070 void APInt::lshrInPlace(const APInt &shiftAmt) {
1071   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1072 }
1073 
1074 /// Logical right-shift this APInt by shiftAmt.
1075 /// Logical right-shift function.
1076 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1077   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1078 }
1079 
1080 /// Left-shift this APInt by shiftAmt.
1081 /// Left-shift function.
1082 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1083   // It's undefined behavior in C to shift by BitWidth or greater.
1084   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1085   return *this;
1086 }
1087 
1088 void APInt::shlSlowCase(unsigned ShiftAmt) {
1089   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1090   clearUnusedBits();
1091 }
1092 
1093 // Calculate the rotate amount modulo the bit width.
1094 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1095   if (LLVM_UNLIKELY(BitWidth == 0))
1096     return 0;
1097   unsigned rotBitWidth = rotateAmt.getBitWidth();
1098   APInt rot = rotateAmt;
1099   if (rotBitWidth < BitWidth) {
1100     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1101     // e.g. APInt(1, 32) would give APInt(1, 0).
1102     rot = rotateAmt.zext(BitWidth);
1103   }
1104   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1105   return rot.getLimitedValue(BitWidth);
1106 }
1107 
1108 APInt APInt::rotl(const APInt &rotateAmt) const {
1109   return rotl(rotateModulo(BitWidth, rotateAmt));
1110 }
1111 
1112 APInt APInt::rotl(unsigned rotateAmt) const {
1113   if (LLVM_UNLIKELY(BitWidth == 0))
1114     return *this;
1115   rotateAmt %= BitWidth;
1116   if (rotateAmt == 0)
1117     return *this;
1118   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1119 }
1120 
1121 APInt APInt::rotr(const APInt &rotateAmt) const {
1122   return rotr(rotateModulo(BitWidth, rotateAmt));
1123 }
1124 
1125 APInt APInt::rotr(unsigned rotateAmt) const {
1126   if (BitWidth == 0)
1127     return *this;
1128   rotateAmt %= BitWidth;
1129   if (rotateAmt == 0)
1130     return *this;
1131   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1132 }
1133 
1134 /// \returns the nearest log base 2 of this APInt. Ties round up.
1135 ///
1136 /// NOTE: When we have a BitWidth of 1, we define:
1137 ///
1138 ///   log2(0) = UINT32_MAX
1139 ///   log2(1) = 0
1140 ///
1141 /// to get around any mathematical concerns resulting from
1142 /// referencing 2 in a space where 2 does no exist.
1143 unsigned APInt::nearestLogBase2() const {
1144   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1145   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1146   // UINT32_MAX.
1147   if (BitWidth == 1)
1148     return U.VAL - 1;
1149 
1150   // Handle the zero case.
1151   if (isZero())
1152     return UINT32_MAX;
1153 
1154   // The non-zero case is handled by computing:
1155   //
1156   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1157   //
1158   // where x[i] is referring to the value of the ith bit of x.
1159   unsigned lg = logBase2();
1160   return lg + unsigned((*this)[lg - 1]);
1161 }
1162 
1163 // Square Root - this method computes and returns the square root of "this".
1164 // Three mechanisms are used for computation. For small values (<= 5 bits),
1165 // a table lookup is done. This gets some performance for common cases. For
1166 // values using less than 52 bits, the value is converted to double and then
1167 // the libc sqrt function is called. The result is rounded and then converted
1168 // back to a uint64_t which is then used to construct the result. Finally,
1169 // the Babylonian method for computing square roots is used.
1170 APInt APInt::sqrt() const {
1171 
1172   // Determine the magnitude of the value.
1173   unsigned magnitude = getActiveBits();
1174 
1175   // Use a fast table for some small values. This also gets rid of some
1176   // rounding errors in libc sqrt for small values.
1177   if (magnitude <= 5) {
1178     static const uint8_t results[32] = {
1179       /*     0 */ 0,
1180       /*  1- 2 */ 1, 1,
1181       /*  3- 6 */ 2, 2, 2, 2,
1182       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1183       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1184       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1185       /*    31 */ 6
1186     };
1187     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1188   }
1189 
1190   // If the magnitude of the value fits in less than 52 bits (the precision of
1191   // an IEEE double precision floating point value), then we can use the
1192   // libc sqrt function which will probably use a hardware sqrt computation.
1193   // This should be faster than the algorithm below.
1194   if (magnitude < 52) {
1195     return APInt(BitWidth,
1196                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1197                                                                : U.pVal[0])))));
1198   }
1199 
1200   // Okay, all the short cuts are exhausted. We must compute it. The following
1201   // is a classical Babylonian method for computing the square root. This code
1202   // was adapted to APInt from a wikipedia article on such computations.
1203   // See http://www.wikipedia.org/ and go to the page named
1204   // Calculate_an_integer_square_root.
1205   unsigned nbits = BitWidth, i = 4;
1206   APInt testy(BitWidth, 16);
1207   APInt x_old(BitWidth, 1);
1208   APInt x_new(BitWidth, 0);
1209   APInt two(BitWidth, 2);
1210 
1211   // Select a good starting value using binary logarithms.
1212   for (;; i += 2, testy = testy.shl(2))
1213     if (i >= nbits || this->ule(testy)) {
1214       x_old = x_old.shl(i / 2);
1215       break;
1216     }
1217 
1218   // Use the Babylonian method to arrive at the integer square root:
1219   for (;;) {
1220     x_new = (this->udiv(x_old) + x_old).udiv(two);
1221     if (x_old.ule(x_new))
1222       break;
1223     x_old = x_new;
1224   }
1225 
1226   // Make sure we return the closest approximation
1227   // NOTE: The rounding calculation below is correct. It will produce an
1228   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1229   // determined to be a rounding issue with pari/gp as it begins to use a
1230   // floating point representation after 192 bits. There are no discrepancies
1231   // between this algorithm and pari/gp for bit widths < 192 bits.
1232   APInt square(x_old * x_old);
1233   APInt nextSquare((x_old + 1) * (x_old +1));
1234   if (this->ult(square))
1235     return x_old;
1236   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1237   APInt midpoint((nextSquare - square).udiv(two));
1238   APInt offset(*this - square);
1239   if (offset.ult(midpoint))
1240     return x_old;
1241   return x_old + 1;
1242 }
1243 
1244 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1245 /// iterative extended Euclidean algorithm is used to solve for this value,
1246 /// however we simplify it to speed up calculating only the inverse, and take
1247 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1248 /// (potentially large) APInts around.
1249 /// WARNING: a value of '0' may be returned,
1250 ///          signifying that no multiplicative inverse exists!
1251 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1252   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1253 
1254   // Using the properties listed at the following web page (accessed 06/21/08):
1255   //   http://www.numbertheory.org/php/euclid.html
1256   // (especially the properties numbered 3, 4 and 9) it can be proved that
1257   // BitWidth bits suffice for all the computations in the algorithm implemented
1258   // below. More precisely, this number of bits suffice if the multiplicative
1259   // inverse exists, but may not suffice for the general extended Euclidean
1260   // algorithm.
1261 
1262   APInt r[2] = { modulo, *this };
1263   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1264   APInt q(BitWidth, 0);
1265 
1266   unsigned i;
1267   for (i = 0; r[i^1] != 0; i ^= 1) {
1268     // An overview of the math without the confusing bit-flipping:
1269     // q = r[i-2] / r[i-1]
1270     // r[i] = r[i-2] % r[i-1]
1271     // t[i] = t[i-2] - t[i-1] * q
1272     udivrem(r[i], r[i^1], q, r[i]);
1273     t[i] -= t[i^1] * q;
1274   }
1275 
1276   // If this APInt and the modulo are not coprime, there is no multiplicative
1277   // inverse, so return 0. We check this by looking at the next-to-last
1278   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1279   // algorithm.
1280   if (r[i] != 1)
1281     return APInt(BitWidth, 0);
1282 
1283   // The next-to-last t is the multiplicative inverse.  However, we are
1284   // interested in a positive inverse. Calculate a positive one from a negative
1285   // one if necessary. A simple addition of the modulo suffices because
1286   // abs(t[i]) is known to be less than *this/2 (see the link above).
1287   if (t[i].isNegative())
1288     t[i] += modulo;
1289 
1290   return std::move(t[i]);
1291 }
1292 
1293 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1294 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1295 /// variables here have the same names as in the algorithm. Comments explain
1296 /// the algorithm and any deviation from it.
1297 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1298                      unsigned m, unsigned n) {
1299   assert(u && "Must provide dividend");
1300   assert(v && "Must provide divisor");
1301   assert(q && "Must provide quotient");
1302   assert(u != v && u != q && v != q && "Must use different memory");
1303   assert(n>1 && "n must be > 1");
1304 
1305   // b denotes the base of the number system. In our case b is 2^32.
1306   const uint64_t b = uint64_t(1) << 32;
1307 
1308 // The DEBUG macros here tend to be spam in the debug output if you're not
1309 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1310 #ifdef KNUTH_DEBUG
1311 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1312 #else
1313 #define DEBUG_KNUTH(X) do {} while(false)
1314 #endif
1315 
1316   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1317   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1318   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1319   DEBUG_KNUTH(dbgs() << " by");
1320   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1321   DEBUG_KNUTH(dbgs() << '\n');
1322   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1323   // u and v by d. Note that we have taken Knuth's advice here to use a power
1324   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1325   // 2 allows us to shift instead of multiply and it is easy to determine the
1326   // shift amount from the leading zeros.  We are basically normalizing the u
1327   // and v so that its high bits are shifted to the top of v's range without
1328   // overflow. Note that this can require an extra word in u so that u must
1329   // be of length m+n+1.
1330   unsigned shift = countLeadingZeros(v[n-1]);
1331   uint32_t v_carry = 0;
1332   uint32_t u_carry = 0;
1333   if (shift) {
1334     for (unsigned i = 0; i < m+n; ++i) {
1335       uint32_t u_tmp = u[i] >> (32 - shift);
1336       u[i] = (u[i] << shift) | u_carry;
1337       u_carry = u_tmp;
1338     }
1339     for (unsigned i = 0; i < n; ++i) {
1340       uint32_t v_tmp = v[i] >> (32 - shift);
1341       v[i] = (v[i] << shift) | v_carry;
1342       v_carry = v_tmp;
1343     }
1344   }
1345   u[m+n] = u_carry;
1346 
1347   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1348   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1349   DEBUG_KNUTH(dbgs() << " by");
1350   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1351   DEBUG_KNUTH(dbgs() << '\n');
1352 
1353   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1354   int j = m;
1355   do {
1356     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1357     // D3. [Calculate q'.].
1358     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1359     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1360     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1361     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1362     // on v[n-2] determines at high speed most of the cases in which the trial
1363     // value qp is one too large, and it eliminates all cases where qp is two
1364     // too large.
1365     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1366     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1367     uint64_t qp = dividend / v[n-1];
1368     uint64_t rp = dividend % v[n-1];
1369     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1370       qp--;
1371       rp += v[n-1];
1372       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1373         qp--;
1374     }
1375     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1376 
1377     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1378     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1379     // consists of a simple multiplication by a one-place number, combined with
1380     // a subtraction.
1381     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1382     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1383     // true value plus b**(n+1), namely as the b's complement of
1384     // the true value, and a "borrow" to the left should be remembered.
1385     int64_t borrow = 0;
1386     for (unsigned i = 0; i < n; ++i) {
1387       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1388       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1389       u[j+i] = Lo_32(subres);
1390       borrow = Hi_32(p) - Hi_32(subres);
1391       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1392                         << ", borrow = " << borrow << '\n');
1393     }
1394     bool isNeg = u[j+n] < borrow;
1395     u[j+n] -= Lo_32(borrow);
1396 
1397     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1398     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1399     DEBUG_KNUTH(dbgs() << '\n');
1400 
1401     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1402     // negative, go to step D6; otherwise go on to step D7.
1403     q[j] = Lo_32(qp);
1404     if (isNeg) {
1405       // D6. [Add back]. The probability that this step is necessary is very
1406       // small, on the order of only 2/b. Make sure that test data accounts for
1407       // this possibility. Decrease q[j] by 1
1408       q[j]--;
1409       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1410       // A carry will occur to the left of u[j+n], and it should be ignored
1411       // since it cancels with the borrow that occurred in D4.
1412       bool carry = false;
1413       for (unsigned i = 0; i < n; i++) {
1414         uint32_t limit = std::min(u[j+i],v[i]);
1415         u[j+i] += v[i] + carry;
1416         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1417       }
1418       u[j+n] += carry;
1419     }
1420     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1421     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1422     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1423 
1424     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1425   } while (--j >= 0);
1426 
1427   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1428   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1429   DEBUG_KNUTH(dbgs() << '\n');
1430 
1431   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1432   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1433   // compute the remainder (urem uses this).
1434   if (r) {
1435     // The value d is expressed by the "shift" value above since we avoided
1436     // multiplication by d by using a shift left. So, all we have to do is
1437     // shift right here.
1438     if (shift) {
1439       uint32_t carry = 0;
1440       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1441       for (int i = n-1; i >= 0; i--) {
1442         r[i] = (u[i] >> shift) | carry;
1443         carry = u[i] << (32 - shift);
1444         DEBUG_KNUTH(dbgs() << " " << r[i]);
1445       }
1446     } else {
1447       for (int i = n-1; i >= 0; i--) {
1448         r[i] = u[i];
1449         DEBUG_KNUTH(dbgs() << " " << r[i]);
1450       }
1451     }
1452     DEBUG_KNUTH(dbgs() << '\n');
1453   }
1454   DEBUG_KNUTH(dbgs() << '\n');
1455 }
1456 
1457 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1458                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1459   assert(lhsWords >= rhsWords && "Fractional result");
1460 
1461   // First, compose the values into an array of 32-bit words instead of
1462   // 64-bit words. This is a necessity of both the "short division" algorithm
1463   // and the Knuth "classical algorithm" which requires there to be native
1464   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1465   // can't use 64-bit operands here because we don't have native results of
1466   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1467   // work on large-endian machines.
1468   unsigned n = rhsWords * 2;
1469   unsigned m = (lhsWords * 2) - n;
1470 
1471   // Allocate space for the temporary values we need either on the stack, if
1472   // it will fit, or on the heap if it won't.
1473   uint32_t SPACE[128];
1474   uint32_t *U = nullptr;
1475   uint32_t *V = nullptr;
1476   uint32_t *Q = nullptr;
1477   uint32_t *R = nullptr;
1478   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1479     U = &SPACE[0];
1480     V = &SPACE[m+n+1];
1481     Q = &SPACE[(m+n+1) + n];
1482     if (Remainder)
1483       R = &SPACE[(m+n+1) + n + (m+n)];
1484   } else {
1485     U = new uint32_t[m + n + 1];
1486     V = new uint32_t[n];
1487     Q = new uint32_t[m+n];
1488     if (Remainder)
1489       R = new uint32_t[n];
1490   }
1491 
1492   // Initialize the dividend
1493   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1494   for (unsigned i = 0; i < lhsWords; ++i) {
1495     uint64_t tmp = LHS[i];
1496     U[i * 2] = Lo_32(tmp);
1497     U[i * 2 + 1] = Hi_32(tmp);
1498   }
1499   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1500 
1501   // Initialize the divisor
1502   memset(V, 0, (n)*sizeof(uint32_t));
1503   for (unsigned i = 0; i < rhsWords; ++i) {
1504     uint64_t tmp = RHS[i];
1505     V[i * 2] = Lo_32(tmp);
1506     V[i * 2 + 1] = Hi_32(tmp);
1507   }
1508 
1509   // initialize the quotient and remainder
1510   memset(Q, 0, (m+n) * sizeof(uint32_t));
1511   if (Remainder)
1512     memset(R, 0, n * sizeof(uint32_t));
1513 
1514   // Now, adjust m and n for the Knuth division. n is the number of words in
1515   // the divisor. m is the number of words by which the dividend exceeds the
1516   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1517   // contain any zero words or the Knuth algorithm fails.
1518   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1519     n--;
1520     m++;
1521   }
1522   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1523     m--;
1524 
1525   // If we're left with only a single word for the divisor, Knuth doesn't work
1526   // so we implement the short division algorithm here. This is much simpler
1527   // and faster because we are certain that we can divide a 64-bit quantity
1528   // by a 32-bit quantity at hardware speed and short division is simply a
1529   // series of such operations. This is just like doing short division but we
1530   // are using base 2^32 instead of base 10.
1531   assert(n != 0 && "Divide by zero?");
1532   if (n == 1) {
1533     uint32_t divisor = V[0];
1534     uint32_t remainder = 0;
1535     for (int i = m; i >= 0; i--) {
1536       uint64_t partial_dividend = Make_64(remainder, U[i]);
1537       if (partial_dividend == 0) {
1538         Q[i] = 0;
1539         remainder = 0;
1540       } else if (partial_dividend < divisor) {
1541         Q[i] = 0;
1542         remainder = Lo_32(partial_dividend);
1543       } else if (partial_dividend == divisor) {
1544         Q[i] = 1;
1545         remainder = 0;
1546       } else {
1547         Q[i] = Lo_32(partial_dividend / divisor);
1548         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1549       }
1550     }
1551     if (R)
1552       R[0] = remainder;
1553   } else {
1554     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1555     // case n > 1.
1556     KnuthDiv(U, V, Q, R, m, n);
1557   }
1558 
1559   // If the caller wants the quotient
1560   if (Quotient) {
1561     for (unsigned i = 0; i < lhsWords; ++i)
1562       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1563   }
1564 
1565   // If the caller wants the remainder
1566   if (Remainder) {
1567     for (unsigned i = 0; i < rhsWords; ++i)
1568       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1569   }
1570 
1571   // Clean up the memory we allocated.
1572   if (U != &SPACE[0]) {
1573     delete [] U;
1574     delete [] V;
1575     delete [] Q;
1576     delete [] R;
1577   }
1578 }
1579 
1580 APInt APInt::udiv(const APInt &RHS) const {
1581   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1582 
1583   // First, deal with the easy case
1584   if (isSingleWord()) {
1585     assert(RHS.U.VAL != 0 && "Divide by zero?");
1586     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1587   }
1588 
1589   // Get some facts about the LHS and RHS number of bits and words
1590   unsigned lhsWords = getNumWords(getActiveBits());
1591   unsigned rhsBits  = RHS.getActiveBits();
1592   unsigned rhsWords = getNumWords(rhsBits);
1593   assert(rhsWords && "Divided by zero???");
1594 
1595   // Deal with some degenerate cases
1596   if (!lhsWords)
1597     // 0 / X ===> 0
1598     return APInt(BitWidth, 0);
1599   if (rhsBits == 1)
1600     // X / 1 ===> X
1601     return *this;
1602   if (lhsWords < rhsWords || this->ult(RHS))
1603     // X / Y ===> 0, iff X < Y
1604     return APInt(BitWidth, 0);
1605   if (*this == RHS)
1606     // X / X ===> 1
1607     return APInt(BitWidth, 1);
1608   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1609     // All high words are zero, just use native divide
1610     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1611 
1612   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1613   APInt Quotient(BitWidth, 0); // to hold result.
1614   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1615   return Quotient;
1616 }
1617 
1618 APInt APInt::udiv(uint64_t RHS) const {
1619   assert(RHS != 0 && "Divide by zero?");
1620 
1621   // First, deal with the easy case
1622   if (isSingleWord())
1623     return APInt(BitWidth, U.VAL / RHS);
1624 
1625   // Get some facts about the LHS words.
1626   unsigned lhsWords = getNumWords(getActiveBits());
1627 
1628   // Deal with some degenerate cases
1629   if (!lhsWords)
1630     // 0 / X ===> 0
1631     return APInt(BitWidth, 0);
1632   if (RHS == 1)
1633     // X / 1 ===> X
1634     return *this;
1635   if (this->ult(RHS))
1636     // X / Y ===> 0, iff X < Y
1637     return APInt(BitWidth, 0);
1638   if (*this == RHS)
1639     // X / X ===> 1
1640     return APInt(BitWidth, 1);
1641   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1642     // All high words are zero, just use native divide
1643     return APInt(BitWidth, this->U.pVal[0] / RHS);
1644 
1645   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1646   APInt Quotient(BitWidth, 0); // to hold result.
1647   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1648   return Quotient;
1649 }
1650 
1651 APInt APInt::sdiv(const APInt &RHS) const {
1652   if (isNegative()) {
1653     if (RHS.isNegative())
1654       return (-(*this)).udiv(-RHS);
1655     return -((-(*this)).udiv(RHS));
1656   }
1657   if (RHS.isNegative())
1658     return -(this->udiv(-RHS));
1659   return this->udiv(RHS);
1660 }
1661 
1662 APInt APInt::sdiv(int64_t RHS) const {
1663   if (isNegative()) {
1664     if (RHS < 0)
1665       return (-(*this)).udiv(-RHS);
1666     return -((-(*this)).udiv(RHS));
1667   }
1668   if (RHS < 0)
1669     return -(this->udiv(-RHS));
1670   return this->udiv(RHS);
1671 }
1672 
1673 APInt APInt::urem(const APInt &RHS) const {
1674   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1675   if (isSingleWord()) {
1676     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1677     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1678   }
1679 
1680   // Get some facts about the LHS
1681   unsigned lhsWords = getNumWords(getActiveBits());
1682 
1683   // Get some facts about the RHS
1684   unsigned rhsBits = RHS.getActiveBits();
1685   unsigned rhsWords = getNumWords(rhsBits);
1686   assert(rhsWords && "Performing remainder operation by zero ???");
1687 
1688   // Check the degenerate cases
1689   if (lhsWords == 0)
1690     // 0 % Y ===> 0
1691     return APInt(BitWidth, 0);
1692   if (rhsBits == 1)
1693     // X % 1 ===> 0
1694     return APInt(BitWidth, 0);
1695   if (lhsWords < rhsWords || this->ult(RHS))
1696     // X % Y ===> X, iff X < Y
1697     return *this;
1698   if (*this == RHS)
1699     // X % X == 0;
1700     return APInt(BitWidth, 0);
1701   if (lhsWords == 1)
1702     // All high words are zero, just use native remainder
1703     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1704 
1705   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1706   APInt Remainder(BitWidth, 0);
1707   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1708   return Remainder;
1709 }
1710 
1711 uint64_t APInt::urem(uint64_t RHS) const {
1712   assert(RHS != 0 && "Remainder by zero?");
1713 
1714   if (isSingleWord())
1715     return U.VAL % RHS;
1716 
1717   // Get some facts about the LHS
1718   unsigned lhsWords = getNumWords(getActiveBits());
1719 
1720   // Check the degenerate cases
1721   if (lhsWords == 0)
1722     // 0 % Y ===> 0
1723     return 0;
1724   if (RHS == 1)
1725     // X % 1 ===> 0
1726     return 0;
1727   if (this->ult(RHS))
1728     // X % Y ===> X, iff X < Y
1729     return getZExtValue();
1730   if (*this == RHS)
1731     // X % X == 0;
1732     return 0;
1733   if (lhsWords == 1)
1734     // All high words are zero, just use native remainder
1735     return U.pVal[0] % RHS;
1736 
1737   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1738   uint64_t Remainder;
1739   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1740   return Remainder;
1741 }
1742 
1743 APInt APInt::srem(const APInt &RHS) const {
1744   if (isNegative()) {
1745     if (RHS.isNegative())
1746       return -((-(*this)).urem(-RHS));
1747     return -((-(*this)).urem(RHS));
1748   }
1749   if (RHS.isNegative())
1750     return this->urem(-RHS);
1751   return this->urem(RHS);
1752 }
1753 
1754 int64_t APInt::srem(int64_t RHS) const {
1755   if (isNegative()) {
1756     if (RHS < 0)
1757       return -((-(*this)).urem(-RHS));
1758     return -((-(*this)).urem(RHS));
1759   }
1760   if (RHS < 0)
1761     return this->urem(-RHS);
1762   return this->urem(RHS);
1763 }
1764 
1765 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1766                     APInt &Quotient, APInt &Remainder) {
1767   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1768   unsigned BitWidth = LHS.BitWidth;
1769 
1770   // First, deal with the easy case
1771   if (LHS.isSingleWord()) {
1772     assert(RHS.U.VAL != 0 && "Divide by zero?");
1773     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1774     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1775     Quotient = APInt(BitWidth, QuotVal);
1776     Remainder = APInt(BitWidth, RemVal);
1777     return;
1778   }
1779 
1780   // Get some size facts about the dividend and divisor
1781   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1782   unsigned rhsBits  = RHS.getActiveBits();
1783   unsigned rhsWords = getNumWords(rhsBits);
1784   assert(rhsWords && "Performing divrem operation by zero ???");
1785 
1786   // Check the degenerate cases
1787   if (lhsWords == 0) {
1788     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1789     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1790     return;
1791   }
1792 
1793   if (rhsBits == 1) {
1794     Quotient = LHS;                   // X / 1 ===> X
1795     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1796   }
1797 
1798   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1799     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1800     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1801     return;
1802   }
1803 
1804   if (LHS == RHS) {
1805     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1806     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1807     return;
1808   }
1809 
1810   // Make sure there is enough space to hold the results.
1811   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1812   // change the size. This is necessary if Quotient or Remainder is aliased
1813   // with LHS or RHS.
1814   Quotient.reallocate(BitWidth);
1815   Remainder.reallocate(BitWidth);
1816 
1817   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1818     // There is only one word to consider so use the native versions.
1819     uint64_t lhsValue = LHS.U.pVal[0];
1820     uint64_t rhsValue = RHS.U.pVal[0];
1821     Quotient = lhsValue / rhsValue;
1822     Remainder = lhsValue % rhsValue;
1823     return;
1824   }
1825 
1826   // Okay, lets do it the long way
1827   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1828          Remainder.U.pVal);
1829   // Clear the rest of the Quotient and Remainder.
1830   std::memset(Quotient.U.pVal + lhsWords, 0,
1831               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1832   std::memset(Remainder.U.pVal + rhsWords, 0,
1833               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1834 }
1835 
1836 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1837                     uint64_t &Remainder) {
1838   assert(RHS != 0 && "Divide by zero?");
1839   unsigned BitWidth = LHS.BitWidth;
1840 
1841   // First, deal with the easy case
1842   if (LHS.isSingleWord()) {
1843     uint64_t QuotVal = LHS.U.VAL / RHS;
1844     Remainder = LHS.U.VAL % RHS;
1845     Quotient = APInt(BitWidth, QuotVal);
1846     return;
1847   }
1848 
1849   // Get some size facts about the dividend and divisor
1850   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1851 
1852   // Check the degenerate cases
1853   if (lhsWords == 0) {
1854     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1855     Remainder = 0;                    // 0 % Y ===> 0
1856     return;
1857   }
1858 
1859   if (RHS == 1) {
1860     Quotient = LHS;                   // X / 1 ===> X
1861     Remainder = 0;                    // X % 1 ===> 0
1862     return;
1863   }
1864 
1865   if (LHS.ult(RHS)) {
1866     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1867     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1868     return;
1869   }
1870 
1871   if (LHS == RHS) {
1872     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1873     Remainder = 0;                    // X % X ===> 0;
1874     return;
1875   }
1876 
1877   // Make sure there is enough space to hold the results.
1878   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1879   // change the size. This is necessary if Quotient is aliased with LHS.
1880   Quotient.reallocate(BitWidth);
1881 
1882   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1883     // There is only one word to consider so use the native versions.
1884     uint64_t lhsValue = LHS.U.pVal[0];
1885     Quotient = lhsValue / RHS;
1886     Remainder = lhsValue % RHS;
1887     return;
1888   }
1889 
1890   // Okay, lets do it the long way
1891   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1892   // Clear the rest of the Quotient.
1893   std::memset(Quotient.U.pVal + lhsWords, 0,
1894               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1895 }
1896 
1897 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1898                     APInt &Quotient, APInt &Remainder) {
1899   if (LHS.isNegative()) {
1900     if (RHS.isNegative())
1901       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1902     else {
1903       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1904       Quotient.negate();
1905     }
1906     Remainder.negate();
1907   } else if (RHS.isNegative()) {
1908     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1909     Quotient.negate();
1910   } else {
1911     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1912   }
1913 }
1914 
1915 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1916                     APInt &Quotient, int64_t &Remainder) {
1917   uint64_t R = Remainder;
1918   if (LHS.isNegative()) {
1919     if (RHS < 0)
1920       APInt::udivrem(-LHS, -RHS, Quotient, R);
1921     else {
1922       APInt::udivrem(-LHS, RHS, Quotient, R);
1923       Quotient.negate();
1924     }
1925     R = -R;
1926   } else if (RHS < 0) {
1927     APInt::udivrem(LHS, -RHS, Quotient, R);
1928     Quotient.negate();
1929   } else {
1930     APInt::udivrem(LHS, RHS, Quotient, R);
1931   }
1932   Remainder = R;
1933 }
1934 
1935 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1936   APInt Res = *this+RHS;
1937   Overflow = isNonNegative() == RHS.isNonNegative() &&
1938              Res.isNonNegative() != isNonNegative();
1939   return Res;
1940 }
1941 
1942 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1943   APInt Res = *this+RHS;
1944   Overflow = Res.ult(RHS);
1945   return Res;
1946 }
1947 
1948 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1949   APInt Res = *this - RHS;
1950   Overflow = isNonNegative() != RHS.isNonNegative() &&
1951              Res.isNonNegative() != isNonNegative();
1952   return Res;
1953 }
1954 
1955 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1956   APInt Res = *this-RHS;
1957   Overflow = Res.ugt(*this);
1958   return Res;
1959 }
1960 
1961 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1962   // MININT/-1  -->  overflow.
1963   Overflow = isMinSignedValue() && RHS.isAllOnes();
1964   return sdiv(RHS);
1965 }
1966 
1967 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1968   APInt Res = *this * RHS;
1969 
1970   if (RHS != 0)
1971     Overflow = Res.sdiv(RHS) != *this ||
1972                (isMinSignedValue() && RHS.isAllOnes());
1973   else
1974     Overflow = false;
1975   return Res;
1976 }
1977 
1978 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1979   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1980     Overflow = true;
1981     return *this * RHS;
1982   }
1983 
1984   APInt Res = lshr(1) * RHS;
1985   Overflow = Res.isNegative();
1986   Res <<= 1;
1987   if ((*this)[0]) {
1988     Res += RHS;
1989     if (Res.ult(RHS))
1990       Overflow = true;
1991   }
1992   return Res;
1993 }
1994 
1995 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1996   Overflow = ShAmt.uge(getBitWidth());
1997   if (Overflow)
1998     return APInt(BitWidth, 0);
1999 
2000   if (isNonNegative()) // Don't allow sign change.
2001     Overflow = ShAmt.uge(countLeadingZeros());
2002   else
2003     Overflow = ShAmt.uge(countLeadingOnes());
2004 
2005   return *this << ShAmt;
2006 }
2007 
2008 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2009   Overflow = ShAmt.uge(getBitWidth());
2010   if (Overflow)
2011     return APInt(BitWidth, 0);
2012 
2013   Overflow = ShAmt.ugt(countLeadingZeros());
2014 
2015   return *this << ShAmt;
2016 }
2017 
2018 APInt APInt::sadd_sat(const APInt &RHS) const {
2019   bool Overflow;
2020   APInt Res = sadd_ov(RHS, Overflow);
2021   if (!Overflow)
2022     return Res;
2023 
2024   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2025                       : APInt::getSignedMaxValue(BitWidth);
2026 }
2027 
2028 APInt APInt::uadd_sat(const APInt &RHS) const {
2029   bool Overflow;
2030   APInt Res = uadd_ov(RHS, Overflow);
2031   if (!Overflow)
2032     return Res;
2033 
2034   return APInt::getMaxValue(BitWidth);
2035 }
2036 
2037 APInt APInt::ssub_sat(const APInt &RHS) const {
2038   bool Overflow;
2039   APInt Res = ssub_ov(RHS, Overflow);
2040   if (!Overflow)
2041     return Res;
2042 
2043   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2044                       : APInt::getSignedMaxValue(BitWidth);
2045 }
2046 
2047 APInt APInt::usub_sat(const APInt &RHS) const {
2048   bool Overflow;
2049   APInt Res = usub_ov(RHS, Overflow);
2050   if (!Overflow)
2051     return Res;
2052 
2053   return APInt(BitWidth, 0);
2054 }
2055 
2056 APInt APInt::smul_sat(const APInt &RHS) const {
2057   bool Overflow;
2058   APInt Res = smul_ov(RHS, Overflow);
2059   if (!Overflow)
2060     return Res;
2061 
2062   // The result is negative if one and only one of inputs is negative.
2063   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2064 
2065   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2066                        : APInt::getSignedMaxValue(BitWidth);
2067 }
2068 
2069 APInt APInt::umul_sat(const APInt &RHS) const {
2070   bool Overflow;
2071   APInt Res = umul_ov(RHS, Overflow);
2072   if (!Overflow)
2073     return Res;
2074 
2075   return APInt::getMaxValue(BitWidth);
2076 }
2077 
2078 APInt APInt::sshl_sat(const APInt &RHS) const {
2079   bool Overflow;
2080   APInt Res = sshl_ov(RHS, Overflow);
2081   if (!Overflow)
2082     return Res;
2083 
2084   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2085                       : APInt::getSignedMaxValue(BitWidth);
2086 }
2087 
2088 APInt APInt::ushl_sat(const APInt &RHS) const {
2089   bool Overflow;
2090   APInt Res = ushl_ov(RHS, Overflow);
2091   if (!Overflow)
2092     return Res;
2093 
2094   return APInt::getMaxValue(BitWidth);
2095 }
2096 
2097 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2098   // Check our assumptions here
2099   assert(!str.empty() && "Invalid string length");
2100   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2101           radix == 36) &&
2102          "Radix should be 2, 8, 10, 16, or 36!");
2103 
2104   StringRef::iterator p = str.begin();
2105   size_t slen = str.size();
2106   bool isNeg = *p == '-';
2107   if (*p == '-' || *p == '+') {
2108     p++;
2109     slen--;
2110     assert(slen && "String is only a sign, needs a value.");
2111   }
2112   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2113   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2114   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2115   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2116          "Insufficient bit width");
2117 
2118   // Allocate memory if needed
2119   if (isSingleWord())
2120     U.VAL = 0;
2121   else
2122     U.pVal = getClearedMemory(getNumWords());
2123 
2124   // Figure out if we can shift instead of multiply
2125   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2126 
2127   // Enter digit traversal loop
2128   for (StringRef::iterator e = str.end(); p != e; ++p) {
2129     unsigned digit = getDigit(*p, radix);
2130     assert(digit < radix && "Invalid character in digit string");
2131 
2132     // Shift or multiply the value by the radix
2133     if (slen > 1) {
2134       if (shift)
2135         *this <<= shift;
2136       else
2137         *this *= radix;
2138     }
2139 
2140     // Add in the digit we just interpreted
2141     *this += digit;
2142   }
2143   // If its negative, put it in two's complement form
2144   if (isNeg)
2145     this->negate();
2146 }
2147 
2148 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2149                      bool Signed, bool formatAsCLiteral) const {
2150   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2151           Radix == 36) &&
2152          "Radix should be 2, 8, 10, 16, or 36!");
2153 
2154   const char *Prefix = "";
2155   if (formatAsCLiteral) {
2156     switch (Radix) {
2157       case 2:
2158         // Binary literals are a non-standard extension added in gcc 4.3:
2159         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2160         Prefix = "0b";
2161         break;
2162       case 8:
2163         Prefix = "0";
2164         break;
2165       case 10:
2166         break; // No prefix
2167       case 16:
2168         Prefix = "0x";
2169         break;
2170       default:
2171         llvm_unreachable("Invalid radix!");
2172     }
2173   }
2174 
2175   // First, check for a zero value and just short circuit the logic below.
2176   if (isZero()) {
2177     while (*Prefix) {
2178       Str.push_back(*Prefix);
2179       ++Prefix;
2180     };
2181     Str.push_back('0');
2182     return;
2183   }
2184 
2185   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2186 
2187   if (isSingleWord()) {
2188     char Buffer[65];
2189     char *BufPtr = std::end(Buffer);
2190 
2191     uint64_t N;
2192     if (!Signed) {
2193       N = getZExtValue();
2194     } else {
2195       int64_t I = getSExtValue();
2196       if (I >= 0) {
2197         N = I;
2198       } else {
2199         Str.push_back('-');
2200         N = -(uint64_t)I;
2201       }
2202     }
2203 
2204     while (*Prefix) {
2205       Str.push_back(*Prefix);
2206       ++Prefix;
2207     };
2208 
2209     while (N) {
2210       *--BufPtr = Digits[N % Radix];
2211       N /= Radix;
2212     }
2213     Str.append(BufPtr, std::end(Buffer));
2214     return;
2215   }
2216 
2217   APInt Tmp(*this);
2218 
2219   if (Signed && isNegative()) {
2220     // They want to print the signed version and it is a negative value
2221     // Flip the bits and add one to turn it into the equivalent positive
2222     // value and put a '-' in the result.
2223     Tmp.negate();
2224     Str.push_back('-');
2225   }
2226 
2227   while (*Prefix) {
2228     Str.push_back(*Prefix);
2229     ++Prefix;
2230   };
2231 
2232   // We insert the digits backward, then reverse them to get the right order.
2233   unsigned StartDig = Str.size();
2234 
2235   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2236   // because the number of bits per digit (1, 3 and 4 respectively) divides
2237   // equally.  We just shift until the value is zero.
2238   if (Radix == 2 || Radix == 8 || Radix == 16) {
2239     // Just shift tmp right for each digit width until it becomes zero
2240     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2241     unsigned MaskAmt = Radix - 1;
2242 
2243     while (Tmp.getBoolValue()) {
2244       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2245       Str.push_back(Digits[Digit]);
2246       Tmp.lshrInPlace(ShiftAmt);
2247     }
2248   } else {
2249     while (Tmp.getBoolValue()) {
2250       uint64_t Digit;
2251       udivrem(Tmp, Radix, Tmp, Digit);
2252       assert(Digit < Radix && "divide failed");
2253       Str.push_back(Digits[Digit]);
2254     }
2255   }
2256 
2257   // Reverse the digits before returning.
2258   std::reverse(Str.begin()+StartDig, Str.end());
2259 }
2260 
2261 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2262 LLVM_DUMP_METHOD void APInt::dump() const {
2263   SmallString<40> S, U;
2264   this->toStringUnsigned(U);
2265   this->toStringSigned(S);
2266   dbgs() << "APInt(" << BitWidth << "b, "
2267          << U << "u " << S << "s)\n";
2268 }
2269 #endif
2270 
2271 void APInt::print(raw_ostream &OS, bool isSigned) const {
2272   SmallString<40> S;
2273   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2274   OS << S;
2275 }
2276 
2277 // This implements a variety of operations on a representation of
2278 // arbitrary precision, two's-complement, bignum integer values.
2279 
2280 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2281 // and unrestricting assumption.
2282 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2283               "Part width must be divisible by 2!");
2284 
2285 // Returns the integer part with the least significant BITS set.
2286 // BITS cannot be zero.
2287 static inline APInt::WordType lowBitMask(unsigned bits) {
2288   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2289   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2290 }
2291 
2292 /// Returns the value of the lower half of PART.
2293 static inline APInt::WordType lowHalf(APInt::WordType part) {
2294   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2295 }
2296 
2297 /// Returns the value of the upper half of PART.
2298 static inline APInt::WordType highHalf(APInt::WordType part) {
2299   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2300 }
2301 
2302 /// Returns the bit number of the most significant set bit of a part.
2303 /// If the input number has no bits set -1U is returned.
2304 static unsigned partMSB(APInt::WordType value) {
2305   return findLastSet(value, ZB_Max);
2306 }
2307 
2308 /// Returns the bit number of the least significant set bit of a part.  If the
2309 /// input number has no bits set -1U is returned.
2310 static unsigned partLSB(APInt::WordType value) {
2311   return findFirstSet(value, ZB_Max);
2312 }
2313 
2314 /// Sets the least significant part of a bignum to the input value, and zeroes
2315 /// out higher parts.
2316 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2317   assert(parts > 0);
2318   dst[0] = part;
2319   for (unsigned i = 1; i < parts; i++)
2320     dst[i] = 0;
2321 }
2322 
2323 /// Assign one bignum to another.
2324 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2325   for (unsigned i = 0; i < parts; i++)
2326     dst[i] = src[i];
2327 }
2328 
2329 /// Returns true if a bignum is zero, false otherwise.
2330 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2331   for (unsigned i = 0; i < parts; i++)
2332     if (src[i])
2333       return false;
2334 
2335   return true;
2336 }
2337 
2338 /// Extract the given bit of a bignum; returns 0 or 1.
2339 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2340   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2341 }
2342 
2343 /// Set the given bit of a bignum.
2344 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2345   parts[whichWord(bit)] |= maskBit(bit);
2346 }
2347 
2348 /// Clears the given bit of a bignum.
2349 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2350   parts[whichWord(bit)] &= ~maskBit(bit);
2351 }
2352 
2353 /// Returns the bit number of the least significant set bit of a number.  If the
2354 /// input number has no bits set -1U is returned.
2355 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2356   for (unsigned i = 0; i < n; i++) {
2357     if (parts[i] != 0) {
2358       unsigned lsb = partLSB(parts[i]);
2359       return lsb + i * APINT_BITS_PER_WORD;
2360     }
2361   }
2362 
2363   return -1U;
2364 }
2365 
2366 /// Returns the bit number of the most significant set bit of a number.
2367 /// If the input number has no bits set -1U is returned.
2368 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2369   do {
2370     --n;
2371 
2372     if (parts[n] != 0) {
2373       unsigned msb = partMSB(parts[n]);
2374 
2375       return msb + n * APINT_BITS_PER_WORD;
2376     }
2377   } while (n);
2378 
2379   return -1U;
2380 }
2381 
2382 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2383 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2384 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2385 /// */
2386 void
2387 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2388                  unsigned srcBits, unsigned srcLSB) {
2389   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2390   assert(dstParts <= dstCount);
2391 
2392   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2393   tcAssign(dst, src + firstSrcPart, dstParts);
2394 
2395   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2396   tcShiftRight(dst, dstParts, shift);
2397 
2398   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2399   // in DST.  If this is less that srcBits, append the rest, else
2400   // clear the high bits.
2401   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2402   if (n < srcBits) {
2403     WordType mask = lowBitMask (srcBits - n);
2404     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2405                           << n % APINT_BITS_PER_WORD);
2406   } else if (n > srcBits) {
2407     if (srcBits % APINT_BITS_PER_WORD)
2408       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2409   }
2410 
2411   // Clear high parts.
2412   while (dstParts < dstCount)
2413     dst[dstParts++] = 0;
2414 }
2415 
2416 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2417 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2418                              WordType c, unsigned parts) {
2419   assert(c <= 1);
2420 
2421   for (unsigned i = 0; i < parts; i++) {
2422     WordType l = dst[i];
2423     if (c) {
2424       dst[i] += rhs[i] + 1;
2425       c = (dst[i] <= l);
2426     } else {
2427       dst[i] += rhs[i];
2428       c = (dst[i] < l);
2429     }
2430   }
2431 
2432   return c;
2433 }
2434 
2435 /// This function adds a single "word" integer, src, to the multiple
2436 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2437 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2438 /// @returns the carry of the addition.
2439 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2440                                  unsigned parts) {
2441   for (unsigned i = 0; i < parts; ++i) {
2442     dst[i] += src;
2443     if (dst[i] >= src)
2444       return 0; // No need to carry so exit early.
2445     src = 1; // Carry one to next digit.
2446   }
2447 
2448   return 1;
2449 }
2450 
2451 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2452 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2453                                   WordType c, unsigned parts) {
2454   assert(c <= 1);
2455 
2456   for (unsigned i = 0; i < parts; i++) {
2457     WordType l = dst[i];
2458     if (c) {
2459       dst[i] -= rhs[i] + 1;
2460       c = (dst[i] >= l);
2461     } else {
2462       dst[i] -= rhs[i];
2463       c = (dst[i] > l);
2464     }
2465   }
2466 
2467   return c;
2468 }
2469 
2470 /// This function subtracts a single "word" (64-bit word), src, from
2471 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2472 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2473 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2474 /// exhausted. In other words, if src > dst then this function returns 1,
2475 /// otherwise 0.
2476 /// @returns the borrow out of the subtraction
2477 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2478                                       unsigned parts) {
2479   for (unsigned i = 0; i < parts; ++i) {
2480     WordType Dst = dst[i];
2481     dst[i] -= src;
2482     if (src <= Dst)
2483       return 0; // No need to borrow so exit early.
2484     src = 1; // We have to "borrow 1" from next "word"
2485   }
2486 
2487   return 1;
2488 }
2489 
2490 /// Negate a bignum in-place.
2491 void APInt::tcNegate(WordType *dst, unsigned parts) {
2492   tcComplement(dst, parts);
2493   tcIncrement(dst, parts);
2494 }
2495 
2496 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2497 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2498 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2499 /// they must start at the same point, i.e. DST == SRC.
2500 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2501 /// returned.  Otherwise DST is filled with the least significant
2502 /// DSTPARTS parts of the result, and if all of the omitted higher
2503 /// parts were zero return zero, otherwise overflow occurred and
2504 /// return one.
2505 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2506                           WordType multiplier, WordType carry,
2507                           unsigned srcParts, unsigned dstParts,
2508                           bool add) {
2509   // Otherwise our writes of DST kill our later reads of SRC.
2510   assert(dst <= src || dst >= src + srcParts);
2511   assert(dstParts <= srcParts + 1);
2512 
2513   // N loops; minimum of dstParts and srcParts.
2514   unsigned n = std::min(dstParts, srcParts);
2515 
2516   for (unsigned i = 0; i < n; i++) {
2517     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2518     // This cannot overflow, because:
2519     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2520     // which is less than n^2.
2521     WordType srcPart = src[i];
2522     WordType low, mid, high;
2523     if (multiplier == 0 || srcPart == 0) {
2524       low = carry;
2525       high = 0;
2526     } else {
2527       low = lowHalf(srcPart) * lowHalf(multiplier);
2528       high = highHalf(srcPart) * highHalf(multiplier);
2529 
2530       mid = lowHalf(srcPart) * highHalf(multiplier);
2531       high += highHalf(mid);
2532       mid <<= APINT_BITS_PER_WORD / 2;
2533       if (low + mid < low)
2534         high++;
2535       low += mid;
2536 
2537       mid = highHalf(srcPart) * lowHalf(multiplier);
2538       high += highHalf(mid);
2539       mid <<= APINT_BITS_PER_WORD / 2;
2540       if (low + mid < low)
2541         high++;
2542       low += mid;
2543 
2544       // Now add carry.
2545       if (low + carry < low)
2546         high++;
2547       low += carry;
2548     }
2549 
2550     if (add) {
2551       // And now DST[i], and store the new low part there.
2552       if (low + dst[i] < low)
2553         high++;
2554       dst[i] += low;
2555     } else
2556       dst[i] = low;
2557 
2558     carry = high;
2559   }
2560 
2561   if (srcParts < dstParts) {
2562     // Full multiplication, there is no overflow.
2563     assert(srcParts + 1 == dstParts);
2564     dst[srcParts] = carry;
2565     return 0;
2566   }
2567 
2568   // We overflowed if there is carry.
2569   if (carry)
2570     return 1;
2571 
2572   // We would overflow if any significant unwritten parts would be
2573   // non-zero.  This is true if any remaining src parts are non-zero
2574   // and the multiplier is non-zero.
2575   if (multiplier)
2576     for (unsigned i = dstParts; i < srcParts; i++)
2577       if (src[i])
2578         return 1;
2579 
2580   // We fitted in the narrow destination.
2581   return 0;
2582 }
2583 
2584 /// DST = LHS * RHS, where DST has the same width as the operands and
2585 /// is filled with the least significant parts of the result.  Returns
2586 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2587 /// from both operands.
2588 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2589                       const WordType *rhs, unsigned parts) {
2590   assert(dst != lhs && dst != rhs);
2591 
2592   int overflow = 0;
2593   tcSet(dst, 0, parts);
2594 
2595   for (unsigned i = 0; i < parts; i++)
2596     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2597                                parts - i, true);
2598 
2599   return overflow;
2600 }
2601 
2602 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2603 /// operands. No overflow occurs. DST must be disjoint from both operands.
2604 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2605                            const WordType *rhs, unsigned lhsParts,
2606                            unsigned rhsParts) {
2607   // Put the narrower number on the LHS for less loops below.
2608   if (lhsParts > rhsParts)
2609     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2610 
2611   assert(dst != lhs && dst != rhs);
2612 
2613   tcSet(dst, 0, rhsParts);
2614 
2615   for (unsigned i = 0; i < lhsParts; i++)
2616     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2617 }
2618 
2619 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2620 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2621 // set REMAINDER to the remainder, return zero.  i.e.
2622 //
2623 //   OLD_LHS = RHS * LHS + REMAINDER
2624 //
2625 // SCRATCH is a bignum of the same size as the operands and result for
2626 // use by the routine; its contents need not be initialized and are
2627 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2628 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2629                     WordType *remainder, WordType *srhs,
2630                     unsigned parts) {
2631   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2632 
2633   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2634   if (shiftCount == 0)
2635     return true;
2636 
2637   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2638   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2639   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2640 
2641   tcAssign(srhs, rhs, parts);
2642   tcShiftLeft(srhs, parts, shiftCount);
2643   tcAssign(remainder, lhs, parts);
2644   tcSet(lhs, 0, parts);
2645 
2646   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2647   // total.
2648   for (;;) {
2649     int compare = tcCompare(remainder, srhs, parts);
2650     if (compare >= 0) {
2651       tcSubtract(remainder, srhs, 0, parts);
2652       lhs[n] |= mask;
2653     }
2654 
2655     if (shiftCount == 0)
2656       break;
2657     shiftCount--;
2658     tcShiftRight(srhs, parts, 1);
2659     if ((mask >>= 1) == 0) {
2660       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2661       n--;
2662     }
2663   }
2664 
2665   return false;
2666 }
2667 
2668 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2669 /// no restrictions on Count.
2670 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2671   // Don't bother performing a no-op shift.
2672   if (!Count)
2673     return;
2674 
2675   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2676   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2677   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2678 
2679   // Fastpath for moving by whole words.
2680   if (BitShift == 0) {
2681     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2682   } else {
2683     while (Words-- > WordShift) {
2684       Dst[Words] = Dst[Words - WordShift] << BitShift;
2685       if (Words > WordShift)
2686         Dst[Words] |=
2687           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2688     }
2689   }
2690 
2691   // Fill in the remainder with 0s.
2692   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2693 }
2694 
2695 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2696 /// are no restrictions on Count.
2697 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2698   // Don't bother performing a no-op shift.
2699   if (!Count)
2700     return;
2701 
2702   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2703   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2704   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2705 
2706   unsigned WordsToMove = Words - WordShift;
2707   // Fastpath for moving by whole words.
2708   if (BitShift == 0) {
2709     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2710   } else {
2711     for (unsigned i = 0; i != WordsToMove; ++i) {
2712       Dst[i] = Dst[i + WordShift] >> BitShift;
2713       if (i + 1 != WordsToMove)
2714         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2715     }
2716   }
2717 
2718   // Fill in the remainder with 0s.
2719   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2720 }
2721 
2722 // Comparison (unsigned) of two bignums.
2723 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2724                      unsigned parts) {
2725   while (parts) {
2726     parts--;
2727     if (lhs[parts] != rhs[parts])
2728       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2729   }
2730 
2731   return 0;
2732 }
2733 
2734 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2735                                    APInt::Rounding RM) {
2736   // Currently udivrem always rounds down.
2737   switch (RM) {
2738   case APInt::Rounding::DOWN:
2739   case APInt::Rounding::TOWARD_ZERO:
2740     return A.udiv(B);
2741   case APInt::Rounding::UP: {
2742     APInt Quo, Rem;
2743     APInt::udivrem(A, B, Quo, Rem);
2744     if (Rem.isZero())
2745       return Quo;
2746     return Quo + 1;
2747   }
2748   }
2749   llvm_unreachable("Unknown APInt::Rounding enum");
2750 }
2751 
2752 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2753                                    APInt::Rounding RM) {
2754   switch (RM) {
2755   case APInt::Rounding::DOWN:
2756   case APInt::Rounding::UP: {
2757     APInt Quo, Rem;
2758     APInt::sdivrem(A, B, Quo, Rem);
2759     if (Rem.isZero())
2760       return Quo;
2761     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2762     // We want to check whether the non-integer part of the mathematical value
2763     // is negative or not. If the non-integer part is negative, we need to round
2764     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2765     // already rounded down.
2766     if (RM == APInt::Rounding::DOWN) {
2767       if (Rem.isNegative() != B.isNegative())
2768         return Quo - 1;
2769       return Quo;
2770     }
2771     if (Rem.isNegative() != B.isNegative())
2772       return Quo;
2773     return Quo + 1;
2774   }
2775   // Currently sdiv rounds towards zero.
2776   case APInt::Rounding::TOWARD_ZERO:
2777     return A.sdiv(B);
2778   }
2779   llvm_unreachable("Unknown APInt::Rounding enum");
2780 }
2781 
2782 Optional<APInt>
2783 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2784                                            unsigned RangeWidth) {
2785   unsigned CoeffWidth = A.getBitWidth();
2786   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2787   assert(RangeWidth <= CoeffWidth &&
2788          "Value range width should be less than coefficient width");
2789   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2790 
2791   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2792                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2793 
2794   // Identify 0 as a (non)solution immediately.
2795   if (C.sextOrTrunc(RangeWidth).isZero()) {
2796     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2797     return APInt(CoeffWidth, 0);
2798   }
2799 
2800   // The result of APInt arithmetic has the same bit width as the operands,
2801   // so it can actually lose high bits. A product of two n-bit integers needs
2802   // 2n-1 bits to represent the full value.
2803   // The operation done below (on quadratic coefficients) that can produce
2804   // the largest value is the evaluation of the equation during bisection,
2805   // which needs 3 times the bitwidth of the coefficient, so the total number
2806   // of required bits is 3n.
2807   //
2808   // The purpose of this extension is to simulate the set Z of all integers,
2809   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2810   // and negative numbers (not so much in a modulo arithmetic). The method
2811   // used to solve the equation is based on the standard formula for real
2812   // numbers, and uses the concepts of "positive" and "negative" with their
2813   // usual meanings.
2814   CoeffWidth *= 3;
2815   A = A.sext(CoeffWidth);
2816   B = B.sext(CoeffWidth);
2817   C = C.sext(CoeffWidth);
2818 
2819   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2820   // the bit width has increased.
2821   if (A.isNegative()) {
2822     A.negate();
2823     B.negate();
2824     C.negate();
2825   }
2826 
2827   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2828   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2829   // and R = 2^BitWidth.
2830   // Since we're trying not only to find exact solutions, but also values
2831   // that "wrap around", such a set will always have a solution, i.e. an x
2832   // that satisfies at least one of the equations, or such that |q(x)|
2833   // exceeds kR, while |q(x-1)| for the same k does not.
2834   //
2835   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2836   // positive solution n (in the above sense), and also such that the n
2837   // will be the least among all solutions corresponding to k = 0, 1, ...
2838   // (more precisely, the least element in the set
2839   //   { n(k) | k is such that a solution n(k) exists }).
2840   //
2841   // Consider the parabola (over real numbers) that corresponds to the
2842   // quadratic equation. Since A > 0, the arms of the parabola will point
2843   // up. Picking different values of k will shift it up and down by R.
2844   //
2845   // We want to shift the parabola in such a way as to reduce the problem
2846   // of solving q(x) = kR to solving shifted_q(x) = 0.
2847   // (The interesting solutions are the ceilings of the real number
2848   // solutions.)
2849   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2850   APInt TwoA = 2 * A;
2851   APInt SqrB = B * B;
2852   bool PickLow;
2853 
2854   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2855     assert(A.isStrictlyPositive());
2856     APInt T = V.abs().urem(A);
2857     if (T.isZero())
2858       return V;
2859     return V.isNegative() ? V+T : V+(A-T);
2860   };
2861 
2862   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2863   // iff B is positive.
2864   if (B.isNonNegative()) {
2865     // If B >= 0, the vertex it at a negative location (or at 0), so in
2866     // order to have a non-negative solution we need to pick k that makes
2867     // C-kR negative. To satisfy all the requirements for the solution
2868     // that we are looking for, it needs to be closest to 0 of all k.
2869     C = C.srem(R);
2870     if (C.isStrictlyPositive())
2871       C -= R;
2872     // Pick the greater solution.
2873     PickLow = false;
2874   } else {
2875     // If B < 0, the vertex is at a positive location. For any solution
2876     // to exist, the discriminant must be non-negative. This means that
2877     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2878     // lower bound on values of k: kR >= C - B^2/4A.
2879     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2880     // Round LowkR up (towards +inf) to the nearest kR.
2881     LowkR = RoundUp(LowkR, R);
2882 
2883     // If there exists k meeting the condition above, and such that
2884     // C-kR > 0, there will be two positive real number solutions of
2885     // q(x) = kR. Out of all such values of k, pick the one that makes
2886     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2887     // In other words, find maximum k such that LowkR <= kR < C.
2888     if (C.sgt(LowkR)) {
2889       // If LowkR < C, then such a k is guaranteed to exist because
2890       // LowkR itself is a multiple of R.
2891       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2892       // Pick the smaller solution.
2893       PickLow = true;
2894     } else {
2895       // If C-kR < 0 for all potential k's, it means that one solution
2896       // will be negative, while the other will be positive. The positive
2897       // solution will shift towards 0 if the parabola is moved up.
2898       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2899       // to 0, or in other words, out of all parabolas that have solutions,
2900       // pick the one that is the farthest "up").
2901       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2902       C -= LowkR;
2903       // Pick the greater solution.
2904       PickLow = false;
2905     }
2906   }
2907 
2908   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2909                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2910 
2911   APInt D = SqrB - 4*A*C;
2912   assert(D.isNonNegative() && "Negative discriminant");
2913   APInt SQ = D.sqrt();
2914 
2915   APInt Q = SQ * SQ;
2916   bool InexactSQ = Q != D;
2917   // The calculated SQ may actually be greater than the exact (non-integer)
2918   // value. If that's the case, decrement SQ to get a value that is lower.
2919   if (Q.sgt(D))
2920     SQ -= 1;
2921 
2922   APInt X;
2923   APInt Rem;
2924 
2925   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2926   // When using the quadratic formula directly, the calculated low root
2927   // may be greater than the exact one, since we would be subtracting SQ.
2928   // To make sure that the calculated root is not greater than the exact
2929   // one, subtract SQ+1 when calculating the low root (for inexact value
2930   // of SQ).
2931   if (PickLow)
2932     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2933   else
2934     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2935 
2936   // The updated coefficients should be such that the (exact) solution is
2937   // positive. Since APInt division rounds towards 0, the calculated one
2938   // can be 0, but cannot be negative.
2939   assert(X.isNonNegative() && "Solution should be non-negative");
2940 
2941   if (!InexactSQ && Rem.isZero()) {
2942     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2943     return X;
2944   }
2945 
2946   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2947   // The exact value of the square root of D should be between SQ and SQ+1.
2948   // This implies that the solution should be between that corresponding to
2949   // SQ (i.e. X) and that corresponding to SQ+1.
2950   //
2951   // The calculated X cannot be greater than the exact (real) solution.
2952   // Actually it must be strictly less than the exact solution, while
2953   // X+1 will be greater than or equal to it.
2954 
2955   APInt VX = (A*X + B)*X + C;
2956   APInt VY = VX + TwoA*X + A + B;
2957   bool SignChange =
2958       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2959   // If the sign did not change between X and X+1, X is not a valid solution.
2960   // This could happen when the actual (exact) roots don't have an integer
2961   // between them, so they would both be contained between X and X+1.
2962   if (!SignChange) {
2963     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2964     return None;
2965   }
2966 
2967   X += 1;
2968   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2969   return X;
2970 }
2971 
2972 Optional<unsigned>
2973 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2974   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2975   if (A == B)
2976     return llvm::None;
2977   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
2978 }
2979 
2980 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) {
2981   unsigned OldBitWidth = A.getBitWidth();
2982   assert((((OldBitWidth % NewBitWidth) == 0) ||
2983           ((NewBitWidth % OldBitWidth) == 0)) &&
2984          "One size should be a multiple of the other one. "
2985          "Can't do fractional scaling.");
2986 
2987   // Check for matching bitwidths.
2988   if (OldBitWidth == NewBitWidth)
2989     return A;
2990 
2991   APInt NewA = APInt::getZero(NewBitWidth);
2992 
2993   // Check for null input.
2994   if (A.isZero())
2995     return NewA;
2996 
2997   if (NewBitWidth > OldBitWidth) {
2998     // Repeat bits.
2999     unsigned Scale = NewBitWidth / OldBitWidth;
3000     for (unsigned i = 0; i != OldBitWidth; ++i)
3001       if (A[i])
3002         NewA.setBits(i * Scale, (i + 1) * Scale);
3003   } else {
3004     // Merge bits - if any old bit is set, then set scale equivalent new bit.
3005     unsigned Scale = OldBitWidth / NewBitWidth;
3006     for (unsigned i = 0; i != NewBitWidth; ++i)
3007       if (!A.extractBits(Scale, i * Scale).isZero())
3008         NewA.setBit(i);
3009   }
3010 
3011   return NewA;
3012 }
3013 
3014 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3015 /// with the integer held in IntVal.
3016 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3017                             unsigned StoreBytes) {
3018   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3019   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3020 
3021   if (sys::IsLittleEndianHost) {
3022     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3023     // destination from LSB to MSB: Do a straight copy.
3024     memcpy(Dst, Src, StoreBytes);
3025   } else {
3026     // Big-endian host - the source is an array of 64 bit words ordered from
3027     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3028     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3029     while (StoreBytes > sizeof(uint64_t)) {
3030       StoreBytes -= sizeof(uint64_t);
3031       // May not be aligned so use memcpy.
3032       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3033       Src += sizeof(uint64_t);
3034     }
3035 
3036     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3037   }
3038 }
3039 
3040 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3041 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3042 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3043                              unsigned LoadBytes) {
3044   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3045   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3046                    const_cast<uint64_t *>(IntVal.getRawData()));
3047 
3048   if (sys::IsLittleEndianHost)
3049     // Little-endian host - the destination must be ordered from LSB to MSB.
3050     // The source is ordered from LSB to MSB: Do a straight copy.
3051     memcpy(Dst, Src, LoadBytes);
3052   else {
3053     // Big-endian - the destination is an array of 64 bit words ordered from
3054     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3055     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3056     // a word.
3057     while (LoadBytes > sizeof(uint64_t)) {
3058       LoadBytes -= sizeof(uint64_t);
3059       // May not be aligned so use memcpy.
3060       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3061       Dst += sizeof(uint64_t);
3062     }
3063 
3064     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3065   }
3066 }
3067