1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <cmath> 28 #include <cstring> 29 using namespace llvm; 30 31 #define DEBUG_TYPE "apint" 32 33 /// A utility function for allocating memory, checking for allocation failures, 34 /// and ensuring the contents are zeroed. 35 inline static uint64_t* getClearedMemory(unsigned numWords) { 36 uint64_t *result = new uint64_t[numWords]; 37 memset(result, 0, numWords * sizeof(uint64_t)); 38 return result; 39 } 40 41 /// A utility function for allocating memory and checking for allocation 42 /// failure. The content is not zeroed. 43 inline static uint64_t* getMemory(unsigned numWords) { 44 return new uint64_t[numWords]; 45 } 46 47 /// A utility function that converts a character to a digit. 48 inline static unsigned getDigit(char cdigit, uint8_t radix) { 49 unsigned r; 50 51 if (radix == 16 || radix == 36) { 52 r = cdigit - '0'; 53 if (r <= 9) 54 return r; 55 56 r = cdigit - 'A'; 57 if (r <= radix - 11U) 58 return r + 10; 59 60 r = cdigit - 'a'; 61 if (r <= radix - 11U) 62 return r + 10; 63 64 radix = 10; 65 } 66 67 r = cdigit - '0'; 68 if (r < radix) 69 return r; 70 71 return -1U; 72 } 73 74 75 void APInt::initSlowCase(uint64_t val, bool isSigned) { 76 U.pVal = getClearedMemory(getNumWords()); 77 U.pVal[0] = val; 78 if (isSigned && int64_t(val) < 0) 79 for (unsigned i = 1; i < getNumWords(); ++i) 80 U.pVal[i] = WORDTYPE_MAX; 81 clearUnusedBits(); 82 } 83 84 void APInt::initSlowCase(const APInt& that) { 85 U.pVal = getMemory(getNumWords()); 86 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 87 } 88 89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 90 assert(bigVal.data() && "Null pointer detected!"); 91 if (isSingleWord()) 92 U.VAL = bigVal[0]; 93 else { 94 // Get memory, cleared to 0 95 U.pVal = getClearedMemory(getNumWords()); 96 // Calculate the number of words to copy 97 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 98 // Copy the words from bigVal to pVal 99 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 100 } 101 // Make sure unused high bits are cleared 102 clearUnusedBits(); 103 } 104 105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 106 initFromArray(bigVal); 107 } 108 109 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 110 : BitWidth(numBits) { 111 initFromArray(makeArrayRef(bigVal, numWords)); 112 } 113 114 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 115 : BitWidth(numbits) { 116 fromString(numbits, Str, radix); 117 } 118 119 void APInt::reallocate(unsigned NewBitWidth) { 120 // If the number of words is the same we can just change the width and stop. 121 if (getNumWords() == getNumWords(NewBitWidth)) { 122 BitWidth = NewBitWidth; 123 return; 124 } 125 126 // If we have an allocation, delete it. 127 if (!isSingleWord()) 128 delete [] U.pVal; 129 130 // Update BitWidth. 131 BitWidth = NewBitWidth; 132 133 // If we are supposed to have an allocation, create it. 134 if (!isSingleWord()) 135 U.pVal = getMemory(getNumWords()); 136 } 137 138 void APInt::assignSlowCase(const APInt &RHS) { 139 // Don't do anything for X = X 140 if (this == &RHS) 141 return; 142 143 // Adjust the bit width and handle allocations as necessary. 144 reallocate(RHS.getBitWidth()); 145 146 // Copy the data. 147 if (isSingleWord()) 148 U.VAL = RHS.U.VAL; 149 else 150 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 151 } 152 153 /// This method 'profiles' an APInt for use with FoldingSet. 154 void APInt::Profile(FoldingSetNodeID& ID) const { 155 ID.AddInteger(BitWidth); 156 157 if (isSingleWord()) { 158 ID.AddInteger(U.VAL); 159 return; 160 } 161 162 unsigned NumWords = getNumWords(); 163 for (unsigned i = 0; i < NumWords; ++i) 164 ID.AddInteger(U.pVal[i]); 165 } 166 167 /// Prefix increment operator. Increments the APInt by one. 168 APInt& APInt::operator++() { 169 if (isSingleWord()) 170 ++U.VAL; 171 else 172 tcIncrement(U.pVal, getNumWords()); 173 return clearUnusedBits(); 174 } 175 176 /// Prefix decrement operator. Decrements the APInt by one. 177 APInt& APInt::operator--() { 178 if (isSingleWord()) 179 --U.VAL; 180 else 181 tcDecrement(U.pVal, getNumWords()); 182 return clearUnusedBits(); 183 } 184 185 /// Adds the RHS APInt to this APInt. 186 /// @returns this, after addition of RHS. 187 /// Addition assignment operator. 188 APInt& APInt::operator+=(const APInt& RHS) { 189 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 190 if (isSingleWord()) 191 U.VAL += RHS.U.VAL; 192 else 193 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 194 return clearUnusedBits(); 195 } 196 197 APInt& APInt::operator+=(uint64_t RHS) { 198 if (isSingleWord()) 199 U.VAL += RHS; 200 else 201 tcAddPart(U.pVal, RHS, getNumWords()); 202 return clearUnusedBits(); 203 } 204 205 /// Subtracts the RHS APInt from this APInt 206 /// @returns this, after subtraction 207 /// Subtraction assignment operator. 208 APInt& APInt::operator-=(const APInt& RHS) { 209 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 210 if (isSingleWord()) 211 U.VAL -= RHS.U.VAL; 212 else 213 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 214 return clearUnusedBits(); 215 } 216 217 APInt& APInt::operator-=(uint64_t RHS) { 218 if (isSingleWord()) 219 U.VAL -= RHS; 220 else 221 tcSubtractPart(U.pVal, RHS, getNumWords()); 222 return clearUnusedBits(); 223 } 224 225 APInt APInt::operator*(const APInt& RHS) const { 226 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 227 if (isSingleWord()) 228 return APInt(BitWidth, U.VAL * RHS.U.VAL); 229 230 APInt Result(getMemory(getNumWords()), getBitWidth()); 231 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 232 Result.clearUnusedBits(); 233 return Result; 234 } 235 236 void APInt::andAssignSlowCase(const APInt &RHS) { 237 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 238 for (size_t i = 0, e = getNumWords(); i != e; ++i) 239 dst[i] &= rhs[i]; 240 } 241 242 void APInt::orAssignSlowCase(const APInt &RHS) { 243 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 244 for (size_t i = 0, e = getNumWords(); i != e; ++i) 245 dst[i] |= rhs[i]; 246 } 247 248 void APInt::xorAssignSlowCase(const APInt &RHS) { 249 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 250 for (size_t i = 0, e = getNumWords(); i != e; ++i) 251 dst[i] ^= rhs[i]; 252 } 253 254 APInt &APInt::operator*=(const APInt &RHS) { 255 *this = *this * RHS; 256 return *this; 257 } 258 259 APInt& APInt::operator*=(uint64_t RHS) { 260 if (isSingleWord()) { 261 U.VAL *= RHS; 262 } else { 263 unsigned NumWords = getNumWords(); 264 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 265 } 266 return clearUnusedBits(); 267 } 268 269 bool APInt::equalSlowCase(const APInt &RHS) const { 270 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 271 } 272 273 int APInt::compare(const APInt& RHS) const { 274 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 275 if (isSingleWord()) 276 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 277 278 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 279 } 280 281 int APInt::compareSigned(const APInt& RHS) const { 282 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 283 if (isSingleWord()) { 284 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 285 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 286 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 287 } 288 289 bool lhsNeg = isNegative(); 290 bool rhsNeg = RHS.isNegative(); 291 292 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 293 if (lhsNeg != rhsNeg) 294 return lhsNeg ? -1 : 1; 295 296 // Otherwise we can just use an unsigned comparison, because even negative 297 // numbers compare correctly this way if both have the same signed-ness. 298 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 299 } 300 301 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 302 unsigned loWord = whichWord(loBit); 303 unsigned hiWord = whichWord(hiBit); 304 305 // Create an initial mask for the low word with zeros below loBit. 306 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 307 308 // If hiBit is not aligned, we need a high mask. 309 unsigned hiShiftAmt = whichBit(hiBit); 310 if (hiShiftAmt != 0) { 311 // Create a high mask with zeros above hiBit. 312 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 313 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 314 // set the bits in hiWord. 315 if (hiWord == loWord) 316 loMask &= hiMask; 317 else 318 U.pVal[hiWord] |= hiMask; 319 } 320 // Apply the mask to the low word. 321 U.pVal[loWord] |= loMask; 322 323 // Fill any words between loWord and hiWord with all ones. 324 for (unsigned word = loWord + 1; word < hiWord; ++word) 325 U.pVal[word] = WORDTYPE_MAX; 326 } 327 328 // Complement a bignum in-place. 329 static void tcComplement(APInt::WordType *dst, unsigned parts) { 330 for (unsigned i = 0; i < parts; i++) 331 dst[i] = ~dst[i]; 332 } 333 334 /// Toggle every bit to its opposite value. 335 void APInt::flipAllBitsSlowCase() { 336 tcComplement(U.pVal, getNumWords()); 337 clearUnusedBits(); 338 } 339 340 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 341 /// equivalent to: 342 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) 343 /// In the slow case, we know the result is large. 344 APInt APInt::concatSlowCase(const APInt &NewLSB) const { 345 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 346 APInt Result = NewLSB.zextOrSelf(NewWidth); 347 Result.insertBits(*this, NewLSB.getBitWidth()); 348 return Result; 349 } 350 351 /// Toggle a given bit to its opposite value whose position is given 352 /// as "bitPosition". 353 /// Toggles a given bit to its opposite value. 354 void APInt::flipBit(unsigned bitPosition) { 355 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 356 setBitVal(bitPosition, !(*this)[bitPosition]); 357 } 358 359 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 360 unsigned subBitWidth = subBits.getBitWidth(); 361 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); 362 363 // inserting no bits is a noop. 364 if (subBitWidth == 0) 365 return; 366 367 // Insertion is a direct copy. 368 if (subBitWidth == BitWidth) { 369 *this = subBits; 370 return; 371 } 372 373 // Single word result can be done as a direct bitmask. 374 if (isSingleWord()) { 375 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 376 U.VAL &= ~(mask << bitPosition); 377 U.VAL |= (subBits.U.VAL << bitPosition); 378 return; 379 } 380 381 unsigned loBit = whichBit(bitPosition); 382 unsigned loWord = whichWord(bitPosition); 383 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 384 385 // Insertion within a single word can be done as a direct bitmask. 386 if (loWord == hi1Word) { 387 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 388 U.pVal[loWord] &= ~(mask << loBit); 389 U.pVal[loWord] |= (subBits.U.VAL << loBit); 390 return; 391 } 392 393 // Insert on word boundaries. 394 if (loBit == 0) { 395 // Direct copy whole words. 396 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 397 memcpy(U.pVal + loWord, subBits.getRawData(), 398 numWholeSubWords * APINT_WORD_SIZE); 399 400 // Mask+insert remaining bits. 401 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 402 if (remainingBits != 0) { 403 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 404 U.pVal[hi1Word] &= ~mask; 405 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 406 } 407 return; 408 } 409 410 // General case - set/clear individual bits in dst based on src. 411 // TODO - there is scope for optimization here, but at the moment this code 412 // path is barely used so prefer readability over performance. 413 for (unsigned i = 0; i != subBitWidth; ++i) 414 setBitVal(bitPosition + i, subBits[i]); 415 } 416 417 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 418 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 419 subBits &= maskBits; 420 if (isSingleWord()) { 421 U.VAL &= ~(maskBits << bitPosition); 422 U.VAL |= subBits << bitPosition; 423 return; 424 } 425 426 unsigned loBit = whichBit(bitPosition); 427 unsigned loWord = whichWord(bitPosition); 428 unsigned hiWord = whichWord(bitPosition + numBits - 1); 429 if (loWord == hiWord) { 430 U.pVal[loWord] &= ~(maskBits << loBit); 431 U.pVal[loWord] |= subBits << loBit; 432 return; 433 } 434 435 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 436 unsigned wordBits = 8 * sizeof(WordType); 437 U.pVal[loWord] &= ~(maskBits << loBit); 438 U.pVal[loWord] |= subBits << loBit; 439 440 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 441 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 442 } 443 444 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 445 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 446 "Illegal bit extraction"); 447 448 if (isSingleWord()) 449 return APInt(numBits, U.VAL >> bitPosition); 450 451 unsigned loBit = whichBit(bitPosition); 452 unsigned loWord = whichWord(bitPosition); 453 unsigned hiWord = whichWord(bitPosition + numBits - 1); 454 455 // Single word result extracting bits from a single word source. 456 if (loWord == hiWord) 457 return APInt(numBits, U.pVal[loWord] >> loBit); 458 459 // Extracting bits that start on a source word boundary can be done 460 // as a fast memory copy. 461 if (loBit == 0) 462 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 463 464 // General case - shift + copy source words directly into place. 465 APInt Result(numBits, 0); 466 unsigned NumSrcWords = getNumWords(); 467 unsigned NumDstWords = Result.getNumWords(); 468 469 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 470 for (unsigned word = 0; word < NumDstWords; ++word) { 471 uint64_t w0 = U.pVal[loWord + word]; 472 uint64_t w1 = 473 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 474 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 475 } 476 477 return Result.clearUnusedBits(); 478 } 479 480 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 481 unsigned bitPosition) const { 482 assert(numBits > 0 && "Can't extract zero bits"); 483 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 484 "Illegal bit extraction"); 485 assert(numBits <= 64 && "Illegal bit extraction"); 486 487 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 488 if (isSingleWord()) 489 return (U.VAL >> bitPosition) & maskBits; 490 491 unsigned loBit = whichBit(bitPosition); 492 unsigned loWord = whichWord(bitPosition); 493 unsigned hiWord = whichWord(bitPosition + numBits - 1); 494 if (loWord == hiWord) 495 return (U.pVal[loWord] >> loBit) & maskBits; 496 497 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 498 unsigned wordBits = 8 * sizeof(WordType); 499 uint64_t retBits = U.pVal[loWord] >> loBit; 500 retBits |= U.pVal[hiWord] << (wordBits - loBit); 501 retBits &= maskBits; 502 return retBits; 503 } 504 505 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { 506 assert(!Str.empty() && "Invalid string length"); 507 size_t StrLen = Str.size(); 508 509 // Each computation below needs to know if it's negative. 510 unsigned IsNegative = false; 511 if (Str[0] == '-' || Str[0] == '+') { 512 IsNegative = Str[0] == '-'; 513 StrLen--; 514 assert(StrLen && "String is only a sign, needs a value."); 515 } 516 517 // For radixes of power-of-two values, the bits required is accurately and 518 // easily computed. 519 if (Radix == 2) 520 return StrLen + IsNegative; 521 if (Radix == 8) 522 return StrLen * 3 + IsNegative; 523 if (Radix == 16) 524 return StrLen * 4 + IsNegative; 525 526 // Compute a sufficient number of bits that is always large enough but might 527 // be too large. This avoids the assertion in the constructor. This 528 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 529 // bits in that case. 530 if (Radix == 10) 531 return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; 532 533 assert(Radix == 36); 534 return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; 535 } 536 537 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 538 // Compute a sufficient number of bits that is always large enough but might 539 // be too large. 540 unsigned sufficient = getSufficientBitsNeeded(str, radix); 541 542 // For bases 2, 8, and 16, the sufficient number of bits is exact and we can 543 // return the value directly. For bases 10 and 36, we need to do extra work. 544 if (radix == 2 || radix == 8 || radix == 16) 545 return sufficient; 546 547 // This is grossly inefficient but accurate. We could probably do something 548 // with a computation of roughly slen*64/20 and then adjust by the value of 549 // the first few digits. But, I'm not sure how accurate that could be. 550 size_t slen = str.size(); 551 552 // Each computation below needs to know if it's negative. 553 StringRef::iterator p = str.begin(); 554 unsigned isNegative = *p == '-'; 555 if (*p == '-' || *p == '+') { 556 p++; 557 slen--; 558 assert(slen && "String is only a sign, needs a value."); 559 } 560 561 562 // Convert to the actual binary value. 563 APInt tmp(sufficient, StringRef(p, slen), radix); 564 565 // Compute how many bits are required. If the log is infinite, assume we need 566 // just bit. If the log is exact and value is negative, then the value is 567 // MinSignedValue with (log + 1) bits. 568 unsigned log = tmp.logBase2(); 569 if (log == (unsigned)-1) { 570 return isNegative + 1; 571 } else if (isNegative && tmp.isPowerOf2()) { 572 return isNegative + log; 573 } else { 574 return isNegative + log + 1; 575 } 576 } 577 578 hash_code llvm::hash_value(const APInt &Arg) { 579 if (Arg.isSingleWord()) 580 return hash_combine(Arg.BitWidth, Arg.U.VAL); 581 582 return hash_combine( 583 Arg.BitWidth, 584 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 585 } 586 587 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) { 588 return static_cast<unsigned>(hash_value(Key)); 589 } 590 591 bool APInt::isSplat(unsigned SplatSizeInBits) const { 592 assert(getBitWidth() % SplatSizeInBits == 0 && 593 "SplatSizeInBits must divide width!"); 594 // We can check that all parts of an integer are equal by making use of a 595 // little trick: rotate and check if it's still the same value. 596 return *this == rotl(SplatSizeInBits); 597 } 598 599 /// This function returns the high "numBits" bits of this APInt. 600 APInt APInt::getHiBits(unsigned numBits) const { 601 return this->lshr(BitWidth - numBits); 602 } 603 604 /// This function returns the low "numBits" bits of this APInt. 605 APInt APInt::getLoBits(unsigned numBits) const { 606 APInt Result(getLowBitsSet(BitWidth, numBits)); 607 Result &= *this; 608 return Result; 609 } 610 611 /// Return a value containing V broadcasted over NewLen bits. 612 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 613 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 614 615 APInt Val = V.zextOrSelf(NewLen); 616 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 617 Val |= Val << I; 618 619 return Val; 620 } 621 622 unsigned APInt::countLeadingZerosSlowCase() const { 623 unsigned Count = 0; 624 for (int i = getNumWords()-1; i >= 0; --i) { 625 uint64_t V = U.pVal[i]; 626 if (V == 0) 627 Count += APINT_BITS_PER_WORD; 628 else { 629 Count += llvm::countLeadingZeros(V); 630 break; 631 } 632 } 633 // Adjust for unused bits in the most significant word (they are zero). 634 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 635 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 636 return Count; 637 } 638 639 unsigned APInt::countLeadingOnesSlowCase() const { 640 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 641 unsigned shift; 642 if (!highWordBits) { 643 highWordBits = APINT_BITS_PER_WORD; 644 shift = 0; 645 } else { 646 shift = APINT_BITS_PER_WORD - highWordBits; 647 } 648 int i = getNumWords() - 1; 649 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 650 if (Count == highWordBits) { 651 for (i--; i >= 0; --i) { 652 if (U.pVal[i] == WORDTYPE_MAX) 653 Count += APINT_BITS_PER_WORD; 654 else { 655 Count += llvm::countLeadingOnes(U.pVal[i]); 656 break; 657 } 658 } 659 } 660 return Count; 661 } 662 663 unsigned APInt::countTrailingZerosSlowCase() const { 664 unsigned Count = 0; 665 unsigned i = 0; 666 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 667 Count += APINT_BITS_PER_WORD; 668 if (i < getNumWords()) 669 Count += llvm::countTrailingZeros(U.pVal[i]); 670 return std::min(Count, BitWidth); 671 } 672 673 unsigned APInt::countTrailingOnesSlowCase() const { 674 unsigned Count = 0; 675 unsigned i = 0; 676 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 677 Count += APINT_BITS_PER_WORD; 678 if (i < getNumWords()) 679 Count += llvm::countTrailingOnes(U.pVal[i]); 680 assert(Count <= BitWidth); 681 return Count; 682 } 683 684 unsigned APInt::countPopulationSlowCase() const { 685 unsigned Count = 0; 686 for (unsigned i = 0; i < getNumWords(); ++i) 687 Count += llvm::countPopulation(U.pVal[i]); 688 return Count; 689 } 690 691 bool APInt::intersectsSlowCase(const APInt &RHS) const { 692 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 693 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 694 return true; 695 696 return false; 697 } 698 699 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 700 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 701 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 702 return false; 703 704 return true; 705 } 706 707 APInt APInt::byteSwap() const { 708 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 709 if (BitWidth == 16) 710 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 711 if (BitWidth == 32) 712 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 713 if (BitWidth <= 64) { 714 uint64_t Tmp1 = ByteSwap_64(U.VAL); 715 Tmp1 >>= (64 - BitWidth); 716 return APInt(BitWidth, Tmp1); 717 } 718 719 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 720 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 721 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 722 if (Result.BitWidth != BitWidth) { 723 Result.lshrInPlace(Result.BitWidth - BitWidth); 724 Result.BitWidth = BitWidth; 725 } 726 return Result; 727 } 728 729 APInt APInt::reverseBits() const { 730 switch (BitWidth) { 731 case 64: 732 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 733 case 32: 734 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 735 case 16: 736 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 737 case 8: 738 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 739 case 0: 740 return *this; 741 default: 742 break; 743 } 744 745 APInt Val(*this); 746 APInt Reversed(BitWidth, 0); 747 unsigned S = BitWidth; 748 749 for (; Val != 0; Val.lshrInPlace(1)) { 750 Reversed <<= 1; 751 Reversed |= Val[0]; 752 --S; 753 } 754 755 Reversed <<= S; 756 return Reversed; 757 } 758 759 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 760 // Fast-path a common case. 761 if (A == B) return A; 762 763 // Corner cases: if either operand is zero, the other is the gcd. 764 if (!A) return B; 765 if (!B) return A; 766 767 // Count common powers of 2 and remove all other powers of 2. 768 unsigned Pow2; 769 { 770 unsigned Pow2_A = A.countTrailingZeros(); 771 unsigned Pow2_B = B.countTrailingZeros(); 772 if (Pow2_A > Pow2_B) { 773 A.lshrInPlace(Pow2_A - Pow2_B); 774 Pow2 = Pow2_B; 775 } else if (Pow2_B > Pow2_A) { 776 B.lshrInPlace(Pow2_B - Pow2_A); 777 Pow2 = Pow2_A; 778 } else { 779 Pow2 = Pow2_A; 780 } 781 } 782 783 // Both operands are odd multiples of 2^Pow_2: 784 // 785 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 786 // 787 // This is a modified version of Stein's algorithm, taking advantage of 788 // efficient countTrailingZeros(). 789 while (A != B) { 790 if (A.ugt(B)) { 791 A -= B; 792 A.lshrInPlace(A.countTrailingZeros() - Pow2); 793 } else { 794 B -= A; 795 B.lshrInPlace(B.countTrailingZeros() - Pow2); 796 } 797 } 798 799 return A; 800 } 801 802 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 803 uint64_t I = bit_cast<uint64_t>(Double); 804 805 // Get the sign bit from the highest order bit 806 bool isNeg = I >> 63; 807 808 // Get the 11-bit exponent and adjust for the 1023 bit bias 809 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 810 811 // If the exponent is negative, the value is < 0 so just return 0. 812 if (exp < 0) 813 return APInt(width, 0u); 814 815 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 816 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 817 818 // If the exponent doesn't shift all bits out of the mantissa 819 if (exp < 52) 820 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 821 APInt(width, mantissa >> (52 - exp)); 822 823 // If the client didn't provide enough bits for us to shift the mantissa into 824 // then the result is undefined, just return 0 825 if (width <= exp - 52) 826 return APInt(width, 0); 827 828 // Otherwise, we have to shift the mantissa bits up to the right location 829 APInt Tmp(width, mantissa); 830 Tmp <<= (unsigned)exp - 52; 831 return isNeg ? -Tmp : Tmp; 832 } 833 834 /// This function converts this APInt to a double. 835 /// The layout for double is as following (IEEE Standard 754): 836 /// -------------------------------------- 837 /// | Sign Exponent Fraction Bias | 838 /// |-------------------------------------- | 839 /// | 1[63] 11[62-52] 52[51-00] 1023 | 840 /// -------------------------------------- 841 double APInt::roundToDouble(bool isSigned) const { 842 843 // Handle the simple case where the value is contained in one uint64_t. 844 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 845 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 846 if (isSigned) { 847 int64_t sext = SignExtend64(getWord(0), BitWidth); 848 return double(sext); 849 } else 850 return double(getWord(0)); 851 } 852 853 // Determine if the value is negative. 854 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 855 856 // Construct the absolute value if we're negative. 857 APInt Tmp(isNeg ? -(*this) : (*this)); 858 859 // Figure out how many bits we're using. 860 unsigned n = Tmp.getActiveBits(); 861 862 // The exponent (without bias normalization) is just the number of bits 863 // we are using. Note that the sign bit is gone since we constructed the 864 // absolute value. 865 uint64_t exp = n; 866 867 // Return infinity for exponent overflow 868 if (exp > 1023) { 869 if (!isSigned || !isNeg) 870 return std::numeric_limits<double>::infinity(); 871 else 872 return -std::numeric_limits<double>::infinity(); 873 } 874 exp += 1023; // Increment for 1023 bias 875 876 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 877 // extract the high 52 bits from the correct words in pVal. 878 uint64_t mantissa; 879 unsigned hiWord = whichWord(n-1); 880 if (hiWord == 0) { 881 mantissa = Tmp.U.pVal[0]; 882 if (n > 52) 883 mantissa >>= n - 52; // shift down, we want the top 52 bits. 884 } else { 885 assert(hiWord > 0 && "huh?"); 886 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 887 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 888 mantissa = hibits | lobits; 889 } 890 891 // The leading bit of mantissa is implicit, so get rid of it. 892 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 893 uint64_t I = sign | (exp << 52) | mantissa; 894 return bit_cast<double>(I); 895 } 896 897 // Truncate to new width. 898 APInt APInt::trunc(unsigned width) const { 899 assert(width < BitWidth && "Invalid APInt Truncate request"); 900 901 if (width <= APINT_BITS_PER_WORD) 902 return APInt(width, getRawData()[0]); 903 904 APInt Result(getMemory(getNumWords(width)), width); 905 906 // Copy full words. 907 unsigned i; 908 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 909 Result.U.pVal[i] = U.pVal[i]; 910 911 // Truncate and copy any partial word. 912 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 913 if (bits != 0) 914 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 915 916 return Result; 917 } 918 919 // Truncate to new width with unsigned saturation. 920 APInt APInt::truncUSat(unsigned width) const { 921 assert(width < BitWidth && "Invalid APInt Truncate request"); 922 923 // Can we just losslessly truncate it? 924 if (isIntN(width)) 925 return trunc(width); 926 // If not, then just return the new limit. 927 return APInt::getMaxValue(width); 928 } 929 930 // Truncate to new width with signed saturation. 931 APInt APInt::truncSSat(unsigned width) const { 932 assert(width < BitWidth && "Invalid APInt Truncate request"); 933 934 // Can we just losslessly truncate it? 935 if (isSignedIntN(width)) 936 return trunc(width); 937 // If not, then just return the new limits. 938 return isNegative() ? APInt::getSignedMinValue(width) 939 : APInt::getSignedMaxValue(width); 940 } 941 942 // Sign extend to a new width. 943 APInt APInt::sext(unsigned Width) const { 944 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 945 946 if (Width <= APINT_BITS_PER_WORD) 947 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 948 949 APInt Result(getMemory(getNumWords(Width)), Width); 950 951 // Copy words. 952 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 953 954 // Sign extend the last word since there may be unused bits in the input. 955 Result.U.pVal[getNumWords() - 1] = 956 SignExtend64(Result.U.pVal[getNumWords() - 1], 957 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 958 959 // Fill with sign bits. 960 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 961 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 962 Result.clearUnusedBits(); 963 return Result; 964 } 965 966 // Zero extend to a new width. 967 APInt APInt::zext(unsigned width) const { 968 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 969 970 if (width <= APINT_BITS_PER_WORD) 971 return APInt(width, U.VAL); 972 973 APInt Result(getMemory(getNumWords(width)), width); 974 975 // Copy words. 976 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 977 978 // Zero remaining words. 979 std::memset(Result.U.pVal + getNumWords(), 0, 980 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 981 982 return Result; 983 } 984 985 APInt APInt::zextOrTrunc(unsigned width) const { 986 if (BitWidth < width) 987 return zext(width); 988 if (BitWidth > width) 989 return trunc(width); 990 return *this; 991 } 992 993 APInt APInt::sextOrTrunc(unsigned width) const { 994 if (BitWidth < width) 995 return sext(width); 996 if (BitWidth > width) 997 return trunc(width); 998 return *this; 999 } 1000 1001 APInt APInt::truncOrSelf(unsigned width) const { 1002 if (BitWidth > width) 1003 return trunc(width); 1004 return *this; 1005 } 1006 1007 APInt APInt::zextOrSelf(unsigned width) const { 1008 if (BitWidth < width) 1009 return zext(width); 1010 return *this; 1011 } 1012 1013 APInt APInt::sextOrSelf(unsigned width) const { 1014 if (BitWidth < width) 1015 return sext(width); 1016 return *this; 1017 } 1018 1019 /// Arithmetic right-shift this APInt by shiftAmt. 1020 /// Arithmetic right-shift function. 1021 void APInt::ashrInPlace(const APInt &shiftAmt) { 1022 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1023 } 1024 1025 /// Arithmetic right-shift this APInt by shiftAmt. 1026 /// Arithmetic right-shift function. 1027 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1028 // Don't bother performing a no-op shift. 1029 if (!ShiftAmt) 1030 return; 1031 1032 // Save the original sign bit for later. 1033 bool Negative = isNegative(); 1034 1035 // WordShift is the inter-part shift; BitShift is intra-part shift. 1036 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1037 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1038 1039 unsigned WordsToMove = getNumWords() - WordShift; 1040 if (WordsToMove != 0) { 1041 // Sign extend the last word to fill in the unused bits. 1042 U.pVal[getNumWords() - 1] = SignExtend64( 1043 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1044 1045 // Fastpath for moving by whole words. 1046 if (BitShift == 0) { 1047 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1048 } else { 1049 // Move the words containing significant bits. 1050 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1051 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1052 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1053 1054 // Handle the last word which has no high bits to copy. 1055 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1056 // Sign extend one more time. 1057 U.pVal[WordsToMove - 1] = 1058 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1059 } 1060 } 1061 1062 // Fill in the remainder based on the original sign. 1063 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1064 WordShift * APINT_WORD_SIZE); 1065 clearUnusedBits(); 1066 } 1067 1068 /// Logical right-shift this APInt by shiftAmt. 1069 /// Logical right-shift function. 1070 void APInt::lshrInPlace(const APInt &shiftAmt) { 1071 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1072 } 1073 1074 /// Logical right-shift this APInt by shiftAmt. 1075 /// Logical right-shift function. 1076 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1077 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1078 } 1079 1080 /// Left-shift this APInt by shiftAmt. 1081 /// Left-shift function. 1082 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1083 // It's undefined behavior in C to shift by BitWidth or greater. 1084 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1085 return *this; 1086 } 1087 1088 void APInt::shlSlowCase(unsigned ShiftAmt) { 1089 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1090 clearUnusedBits(); 1091 } 1092 1093 // Calculate the rotate amount modulo the bit width. 1094 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1095 if (LLVM_UNLIKELY(BitWidth == 0)) 1096 return 0; 1097 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1098 APInt rot = rotateAmt; 1099 if (rotBitWidth < BitWidth) { 1100 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1101 // e.g. APInt(1, 32) would give APInt(1, 0). 1102 rot = rotateAmt.zext(BitWidth); 1103 } 1104 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1105 return rot.getLimitedValue(BitWidth); 1106 } 1107 1108 APInt APInt::rotl(const APInt &rotateAmt) const { 1109 return rotl(rotateModulo(BitWidth, rotateAmt)); 1110 } 1111 1112 APInt APInt::rotl(unsigned rotateAmt) const { 1113 if (LLVM_UNLIKELY(BitWidth == 0)) 1114 return *this; 1115 rotateAmt %= BitWidth; 1116 if (rotateAmt == 0) 1117 return *this; 1118 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1119 } 1120 1121 APInt APInt::rotr(const APInt &rotateAmt) const { 1122 return rotr(rotateModulo(BitWidth, rotateAmt)); 1123 } 1124 1125 APInt APInt::rotr(unsigned rotateAmt) const { 1126 if (BitWidth == 0) 1127 return *this; 1128 rotateAmt %= BitWidth; 1129 if (rotateAmt == 0) 1130 return *this; 1131 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1132 } 1133 1134 /// \returns the nearest log base 2 of this APInt. Ties round up. 1135 /// 1136 /// NOTE: When we have a BitWidth of 1, we define: 1137 /// 1138 /// log2(0) = UINT32_MAX 1139 /// log2(1) = 0 1140 /// 1141 /// to get around any mathematical concerns resulting from 1142 /// referencing 2 in a space where 2 does no exist. 1143 unsigned APInt::nearestLogBase2() const { 1144 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1145 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1146 // UINT32_MAX. 1147 if (BitWidth == 1) 1148 return U.VAL - 1; 1149 1150 // Handle the zero case. 1151 if (isZero()) 1152 return UINT32_MAX; 1153 1154 // The non-zero case is handled by computing: 1155 // 1156 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1157 // 1158 // where x[i] is referring to the value of the ith bit of x. 1159 unsigned lg = logBase2(); 1160 return lg + unsigned((*this)[lg - 1]); 1161 } 1162 1163 // Square Root - this method computes and returns the square root of "this". 1164 // Three mechanisms are used for computation. For small values (<= 5 bits), 1165 // a table lookup is done. This gets some performance for common cases. For 1166 // values using less than 52 bits, the value is converted to double and then 1167 // the libc sqrt function is called. The result is rounded and then converted 1168 // back to a uint64_t which is then used to construct the result. Finally, 1169 // the Babylonian method for computing square roots is used. 1170 APInt APInt::sqrt() const { 1171 1172 // Determine the magnitude of the value. 1173 unsigned magnitude = getActiveBits(); 1174 1175 // Use a fast table for some small values. This also gets rid of some 1176 // rounding errors in libc sqrt for small values. 1177 if (magnitude <= 5) { 1178 static const uint8_t results[32] = { 1179 /* 0 */ 0, 1180 /* 1- 2 */ 1, 1, 1181 /* 3- 6 */ 2, 2, 2, 2, 1182 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1183 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1184 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1185 /* 31 */ 6 1186 }; 1187 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1188 } 1189 1190 // If the magnitude of the value fits in less than 52 bits (the precision of 1191 // an IEEE double precision floating point value), then we can use the 1192 // libc sqrt function which will probably use a hardware sqrt computation. 1193 // This should be faster than the algorithm below. 1194 if (magnitude < 52) { 1195 return APInt(BitWidth, 1196 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1197 : U.pVal[0]))))); 1198 } 1199 1200 // Okay, all the short cuts are exhausted. We must compute it. The following 1201 // is a classical Babylonian method for computing the square root. This code 1202 // was adapted to APInt from a wikipedia article on such computations. 1203 // See http://www.wikipedia.org/ and go to the page named 1204 // Calculate_an_integer_square_root. 1205 unsigned nbits = BitWidth, i = 4; 1206 APInt testy(BitWidth, 16); 1207 APInt x_old(BitWidth, 1); 1208 APInt x_new(BitWidth, 0); 1209 APInt two(BitWidth, 2); 1210 1211 // Select a good starting value using binary logarithms. 1212 for (;; i += 2, testy = testy.shl(2)) 1213 if (i >= nbits || this->ule(testy)) { 1214 x_old = x_old.shl(i / 2); 1215 break; 1216 } 1217 1218 // Use the Babylonian method to arrive at the integer square root: 1219 for (;;) { 1220 x_new = (this->udiv(x_old) + x_old).udiv(two); 1221 if (x_old.ule(x_new)) 1222 break; 1223 x_old = x_new; 1224 } 1225 1226 // Make sure we return the closest approximation 1227 // NOTE: The rounding calculation below is correct. It will produce an 1228 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1229 // determined to be a rounding issue with pari/gp as it begins to use a 1230 // floating point representation after 192 bits. There are no discrepancies 1231 // between this algorithm and pari/gp for bit widths < 192 bits. 1232 APInt square(x_old * x_old); 1233 APInt nextSquare((x_old + 1) * (x_old +1)); 1234 if (this->ult(square)) 1235 return x_old; 1236 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1237 APInt midpoint((nextSquare - square).udiv(two)); 1238 APInt offset(*this - square); 1239 if (offset.ult(midpoint)) 1240 return x_old; 1241 return x_old + 1; 1242 } 1243 1244 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1245 /// iterative extended Euclidean algorithm is used to solve for this value, 1246 /// however we simplify it to speed up calculating only the inverse, and take 1247 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1248 /// (potentially large) APInts around. 1249 /// WARNING: a value of '0' may be returned, 1250 /// signifying that no multiplicative inverse exists! 1251 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1252 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1253 1254 // Using the properties listed at the following web page (accessed 06/21/08): 1255 // http://www.numbertheory.org/php/euclid.html 1256 // (especially the properties numbered 3, 4 and 9) it can be proved that 1257 // BitWidth bits suffice for all the computations in the algorithm implemented 1258 // below. More precisely, this number of bits suffice if the multiplicative 1259 // inverse exists, but may not suffice for the general extended Euclidean 1260 // algorithm. 1261 1262 APInt r[2] = { modulo, *this }; 1263 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1264 APInt q(BitWidth, 0); 1265 1266 unsigned i; 1267 for (i = 0; r[i^1] != 0; i ^= 1) { 1268 // An overview of the math without the confusing bit-flipping: 1269 // q = r[i-2] / r[i-1] 1270 // r[i] = r[i-2] % r[i-1] 1271 // t[i] = t[i-2] - t[i-1] * q 1272 udivrem(r[i], r[i^1], q, r[i]); 1273 t[i] -= t[i^1] * q; 1274 } 1275 1276 // If this APInt and the modulo are not coprime, there is no multiplicative 1277 // inverse, so return 0. We check this by looking at the next-to-last 1278 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1279 // algorithm. 1280 if (r[i] != 1) 1281 return APInt(BitWidth, 0); 1282 1283 // The next-to-last t is the multiplicative inverse. However, we are 1284 // interested in a positive inverse. Calculate a positive one from a negative 1285 // one if necessary. A simple addition of the modulo suffices because 1286 // abs(t[i]) is known to be less than *this/2 (see the link above). 1287 if (t[i].isNegative()) 1288 t[i] += modulo; 1289 1290 return std::move(t[i]); 1291 } 1292 1293 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1294 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1295 /// variables here have the same names as in the algorithm. Comments explain 1296 /// the algorithm and any deviation from it. 1297 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1298 unsigned m, unsigned n) { 1299 assert(u && "Must provide dividend"); 1300 assert(v && "Must provide divisor"); 1301 assert(q && "Must provide quotient"); 1302 assert(u != v && u != q && v != q && "Must use different memory"); 1303 assert(n>1 && "n must be > 1"); 1304 1305 // b denotes the base of the number system. In our case b is 2^32. 1306 const uint64_t b = uint64_t(1) << 32; 1307 1308 // The DEBUG macros here tend to be spam in the debug output if you're not 1309 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1310 #ifdef KNUTH_DEBUG 1311 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1312 #else 1313 #define DEBUG_KNUTH(X) do {} while(false) 1314 #endif 1315 1316 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1317 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1318 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1319 DEBUG_KNUTH(dbgs() << " by"); 1320 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1321 DEBUG_KNUTH(dbgs() << '\n'); 1322 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1323 // u and v by d. Note that we have taken Knuth's advice here to use a power 1324 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1325 // 2 allows us to shift instead of multiply and it is easy to determine the 1326 // shift amount from the leading zeros. We are basically normalizing the u 1327 // and v so that its high bits are shifted to the top of v's range without 1328 // overflow. Note that this can require an extra word in u so that u must 1329 // be of length m+n+1. 1330 unsigned shift = countLeadingZeros(v[n-1]); 1331 uint32_t v_carry = 0; 1332 uint32_t u_carry = 0; 1333 if (shift) { 1334 for (unsigned i = 0; i < m+n; ++i) { 1335 uint32_t u_tmp = u[i] >> (32 - shift); 1336 u[i] = (u[i] << shift) | u_carry; 1337 u_carry = u_tmp; 1338 } 1339 for (unsigned i = 0; i < n; ++i) { 1340 uint32_t v_tmp = v[i] >> (32 - shift); 1341 v[i] = (v[i] << shift) | v_carry; 1342 v_carry = v_tmp; 1343 } 1344 } 1345 u[m+n] = u_carry; 1346 1347 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1348 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1349 DEBUG_KNUTH(dbgs() << " by"); 1350 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1351 DEBUG_KNUTH(dbgs() << '\n'); 1352 1353 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1354 int j = m; 1355 do { 1356 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1357 // D3. [Calculate q'.]. 1358 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1359 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1360 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1361 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1362 // on v[n-2] determines at high speed most of the cases in which the trial 1363 // value qp is one too large, and it eliminates all cases where qp is two 1364 // too large. 1365 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1366 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1367 uint64_t qp = dividend / v[n-1]; 1368 uint64_t rp = dividend % v[n-1]; 1369 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1370 qp--; 1371 rp += v[n-1]; 1372 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1373 qp--; 1374 } 1375 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1376 1377 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1378 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1379 // consists of a simple multiplication by a one-place number, combined with 1380 // a subtraction. 1381 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1382 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1383 // true value plus b**(n+1), namely as the b's complement of 1384 // the true value, and a "borrow" to the left should be remembered. 1385 int64_t borrow = 0; 1386 for (unsigned i = 0; i < n; ++i) { 1387 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1388 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1389 u[j+i] = Lo_32(subres); 1390 borrow = Hi_32(p) - Hi_32(subres); 1391 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1392 << ", borrow = " << borrow << '\n'); 1393 } 1394 bool isNeg = u[j+n] < borrow; 1395 u[j+n] -= Lo_32(borrow); 1396 1397 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1398 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1399 DEBUG_KNUTH(dbgs() << '\n'); 1400 1401 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1402 // negative, go to step D6; otherwise go on to step D7. 1403 q[j] = Lo_32(qp); 1404 if (isNeg) { 1405 // D6. [Add back]. The probability that this step is necessary is very 1406 // small, on the order of only 2/b. Make sure that test data accounts for 1407 // this possibility. Decrease q[j] by 1 1408 q[j]--; 1409 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1410 // A carry will occur to the left of u[j+n], and it should be ignored 1411 // since it cancels with the borrow that occurred in D4. 1412 bool carry = false; 1413 for (unsigned i = 0; i < n; i++) { 1414 uint32_t limit = std::min(u[j+i],v[i]); 1415 u[j+i] += v[i] + carry; 1416 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1417 } 1418 u[j+n] += carry; 1419 } 1420 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1421 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1422 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1423 1424 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1425 } while (--j >= 0); 1426 1427 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1428 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1429 DEBUG_KNUTH(dbgs() << '\n'); 1430 1431 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1432 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1433 // compute the remainder (urem uses this). 1434 if (r) { 1435 // The value d is expressed by the "shift" value above since we avoided 1436 // multiplication by d by using a shift left. So, all we have to do is 1437 // shift right here. 1438 if (shift) { 1439 uint32_t carry = 0; 1440 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1441 for (int i = n-1; i >= 0; i--) { 1442 r[i] = (u[i] >> shift) | carry; 1443 carry = u[i] << (32 - shift); 1444 DEBUG_KNUTH(dbgs() << " " << r[i]); 1445 } 1446 } else { 1447 for (int i = n-1; i >= 0; i--) { 1448 r[i] = u[i]; 1449 DEBUG_KNUTH(dbgs() << " " << r[i]); 1450 } 1451 } 1452 DEBUG_KNUTH(dbgs() << '\n'); 1453 } 1454 DEBUG_KNUTH(dbgs() << '\n'); 1455 } 1456 1457 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1458 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1459 assert(lhsWords >= rhsWords && "Fractional result"); 1460 1461 // First, compose the values into an array of 32-bit words instead of 1462 // 64-bit words. This is a necessity of both the "short division" algorithm 1463 // and the Knuth "classical algorithm" which requires there to be native 1464 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1465 // can't use 64-bit operands here because we don't have native results of 1466 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1467 // work on large-endian machines. 1468 unsigned n = rhsWords * 2; 1469 unsigned m = (lhsWords * 2) - n; 1470 1471 // Allocate space for the temporary values we need either on the stack, if 1472 // it will fit, or on the heap if it won't. 1473 uint32_t SPACE[128]; 1474 uint32_t *U = nullptr; 1475 uint32_t *V = nullptr; 1476 uint32_t *Q = nullptr; 1477 uint32_t *R = nullptr; 1478 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1479 U = &SPACE[0]; 1480 V = &SPACE[m+n+1]; 1481 Q = &SPACE[(m+n+1) + n]; 1482 if (Remainder) 1483 R = &SPACE[(m+n+1) + n + (m+n)]; 1484 } else { 1485 U = new uint32_t[m + n + 1]; 1486 V = new uint32_t[n]; 1487 Q = new uint32_t[m+n]; 1488 if (Remainder) 1489 R = new uint32_t[n]; 1490 } 1491 1492 // Initialize the dividend 1493 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1494 for (unsigned i = 0; i < lhsWords; ++i) { 1495 uint64_t tmp = LHS[i]; 1496 U[i * 2] = Lo_32(tmp); 1497 U[i * 2 + 1] = Hi_32(tmp); 1498 } 1499 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1500 1501 // Initialize the divisor 1502 memset(V, 0, (n)*sizeof(uint32_t)); 1503 for (unsigned i = 0; i < rhsWords; ++i) { 1504 uint64_t tmp = RHS[i]; 1505 V[i * 2] = Lo_32(tmp); 1506 V[i * 2 + 1] = Hi_32(tmp); 1507 } 1508 1509 // initialize the quotient and remainder 1510 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1511 if (Remainder) 1512 memset(R, 0, n * sizeof(uint32_t)); 1513 1514 // Now, adjust m and n for the Knuth division. n is the number of words in 1515 // the divisor. m is the number of words by which the dividend exceeds the 1516 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1517 // contain any zero words or the Knuth algorithm fails. 1518 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1519 n--; 1520 m++; 1521 } 1522 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1523 m--; 1524 1525 // If we're left with only a single word for the divisor, Knuth doesn't work 1526 // so we implement the short division algorithm here. This is much simpler 1527 // and faster because we are certain that we can divide a 64-bit quantity 1528 // by a 32-bit quantity at hardware speed and short division is simply a 1529 // series of such operations. This is just like doing short division but we 1530 // are using base 2^32 instead of base 10. 1531 assert(n != 0 && "Divide by zero?"); 1532 if (n == 1) { 1533 uint32_t divisor = V[0]; 1534 uint32_t remainder = 0; 1535 for (int i = m; i >= 0; i--) { 1536 uint64_t partial_dividend = Make_64(remainder, U[i]); 1537 if (partial_dividend == 0) { 1538 Q[i] = 0; 1539 remainder = 0; 1540 } else if (partial_dividend < divisor) { 1541 Q[i] = 0; 1542 remainder = Lo_32(partial_dividend); 1543 } else if (partial_dividend == divisor) { 1544 Q[i] = 1; 1545 remainder = 0; 1546 } else { 1547 Q[i] = Lo_32(partial_dividend / divisor); 1548 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1549 } 1550 } 1551 if (R) 1552 R[0] = remainder; 1553 } else { 1554 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1555 // case n > 1. 1556 KnuthDiv(U, V, Q, R, m, n); 1557 } 1558 1559 // If the caller wants the quotient 1560 if (Quotient) { 1561 for (unsigned i = 0; i < lhsWords; ++i) 1562 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1563 } 1564 1565 // If the caller wants the remainder 1566 if (Remainder) { 1567 for (unsigned i = 0; i < rhsWords; ++i) 1568 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1569 } 1570 1571 // Clean up the memory we allocated. 1572 if (U != &SPACE[0]) { 1573 delete [] U; 1574 delete [] V; 1575 delete [] Q; 1576 delete [] R; 1577 } 1578 } 1579 1580 APInt APInt::udiv(const APInt &RHS) const { 1581 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1582 1583 // First, deal with the easy case 1584 if (isSingleWord()) { 1585 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1586 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1587 } 1588 1589 // Get some facts about the LHS and RHS number of bits and words 1590 unsigned lhsWords = getNumWords(getActiveBits()); 1591 unsigned rhsBits = RHS.getActiveBits(); 1592 unsigned rhsWords = getNumWords(rhsBits); 1593 assert(rhsWords && "Divided by zero???"); 1594 1595 // Deal with some degenerate cases 1596 if (!lhsWords) 1597 // 0 / X ===> 0 1598 return APInt(BitWidth, 0); 1599 if (rhsBits == 1) 1600 // X / 1 ===> X 1601 return *this; 1602 if (lhsWords < rhsWords || this->ult(RHS)) 1603 // X / Y ===> 0, iff X < Y 1604 return APInt(BitWidth, 0); 1605 if (*this == RHS) 1606 // X / X ===> 1 1607 return APInt(BitWidth, 1); 1608 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1609 // All high words are zero, just use native divide 1610 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1611 1612 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1613 APInt Quotient(BitWidth, 0); // to hold result. 1614 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1615 return Quotient; 1616 } 1617 1618 APInt APInt::udiv(uint64_t RHS) const { 1619 assert(RHS != 0 && "Divide by zero?"); 1620 1621 // First, deal with the easy case 1622 if (isSingleWord()) 1623 return APInt(BitWidth, U.VAL / RHS); 1624 1625 // Get some facts about the LHS words. 1626 unsigned lhsWords = getNumWords(getActiveBits()); 1627 1628 // Deal with some degenerate cases 1629 if (!lhsWords) 1630 // 0 / X ===> 0 1631 return APInt(BitWidth, 0); 1632 if (RHS == 1) 1633 // X / 1 ===> X 1634 return *this; 1635 if (this->ult(RHS)) 1636 // X / Y ===> 0, iff X < Y 1637 return APInt(BitWidth, 0); 1638 if (*this == RHS) 1639 // X / X ===> 1 1640 return APInt(BitWidth, 1); 1641 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1642 // All high words are zero, just use native divide 1643 return APInt(BitWidth, this->U.pVal[0] / RHS); 1644 1645 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1646 APInt Quotient(BitWidth, 0); // to hold result. 1647 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1648 return Quotient; 1649 } 1650 1651 APInt APInt::sdiv(const APInt &RHS) const { 1652 if (isNegative()) { 1653 if (RHS.isNegative()) 1654 return (-(*this)).udiv(-RHS); 1655 return -((-(*this)).udiv(RHS)); 1656 } 1657 if (RHS.isNegative()) 1658 return -(this->udiv(-RHS)); 1659 return this->udiv(RHS); 1660 } 1661 1662 APInt APInt::sdiv(int64_t RHS) const { 1663 if (isNegative()) { 1664 if (RHS < 0) 1665 return (-(*this)).udiv(-RHS); 1666 return -((-(*this)).udiv(RHS)); 1667 } 1668 if (RHS < 0) 1669 return -(this->udiv(-RHS)); 1670 return this->udiv(RHS); 1671 } 1672 1673 APInt APInt::urem(const APInt &RHS) const { 1674 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1675 if (isSingleWord()) { 1676 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1677 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1678 } 1679 1680 // Get some facts about the LHS 1681 unsigned lhsWords = getNumWords(getActiveBits()); 1682 1683 // Get some facts about the RHS 1684 unsigned rhsBits = RHS.getActiveBits(); 1685 unsigned rhsWords = getNumWords(rhsBits); 1686 assert(rhsWords && "Performing remainder operation by zero ???"); 1687 1688 // Check the degenerate cases 1689 if (lhsWords == 0) 1690 // 0 % Y ===> 0 1691 return APInt(BitWidth, 0); 1692 if (rhsBits == 1) 1693 // X % 1 ===> 0 1694 return APInt(BitWidth, 0); 1695 if (lhsWords < rhsWords || this->ult(RHS)) 1696 // X % Y ===> X, iff X < Y 1697 return *this; 1698 if (*this == RHS) 1699 // X % X == 0; 1700 return APInt(BitWidth, 0); 1701 if (lhsWords == 1) 1702 // All high words are zero, just use native remainder 1703 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1704 1705 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1706 APInt Remainder(BitWidth, 0); 1707 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1708 return Remainder; 1709 } 1710 1711 uint64_t APInt::urem(uint64_t RHS) const { 1712 assert(RHS != 0 && "Remainder by zero?"); 1713 1714 if (isSingleWord()) 1715 return U.VAL % RHS; 1716 1717 // Get some facts about the LHS 1718 unsigned lhsWords = getNumWords(getActiveBits()); 1719 1720 // Check the degenerate cases 1721 if (lhsWords == 0) 1722 // 0 % Y ===> 0 1723 return 0; 1724 if (RHS == 1) 1725 // X % 1 ===> 0 1726 return 0; 1727 if (this->ult(RHS)) 1728 // X % Y ===> X, iff X < Y 1729 return getZExtValue(); 1730 if (*this == RHS) 1731 // X % X == 0; 1732 return 0; 1733 if (lhsWords == 1) 1734 // All high words are zero, just use native remainder 1735 return U.pVal[0] % RHS; 1736 1737 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1738 uint64_t Remainder; 1739 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1740 return Remainder; 1741 } 1742 1743 APInt APInt::srem(const APInt &RHS) const { 1744 if (isNegative()) { 1745 if (RHS.isNegative()) 1746 return -((-(*this)).urem(-RHS)); 1747 return -((-(*this)).urem(RHS)); 1748 } 1749 if (RHS.isNegative()) 1750 return this->urem(-RHS); 1751 return this->urem(RHS); 1752 } 1753 1754 int64_t APInt::srem(int64_t RHS) const { 1755 if (isNegative()) { 1756 if (RHS < 0) 1757 return -((-(*this)).urem(-RHS)); 1758 return -((-(*this)).urem(RHS)); 1759 } 1760 if (RHS < 0) 1761 return this->urem(-RHS); 1762 return this->urem(RHS); 1763 } 1764 1765 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1766 APInt &Quotient, APInt &Remainder) { 1767 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1768 unsigned BitWidth = LHS.BitWidth; 1769 1770 // First, deal with the easy case 1771 if (LHS.isSingleWord()) { 1772 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1773 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1774 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1775 Quotient = APInt(BitWidth, QuotVal); 1776 Remainder = APInt(BitWidth, RemVal); 1777 return; 1778 } 1779 1780 // Get some size facts about the dividend and divisor 1781 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1782 unsigned rhsBits = RHS.getActiveBits(); 1783 unsigned rhsWords = getNumWords(rhsBits); 1784 assert(rhsWords && "Performing divrem operation by zero ???"); 1785 1786 // Check the degenerate cases 1787 if (lhsWords == 0) { 1788 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1789 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1790 return; 1791 } 1792 1793 if (rhsBits == 1) { 1794 Quotient = LHS; // X / 1 ===> X 1795 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1796 } 1797 1798 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1799 Remainder = LHS; // X % Y ===> X, iff X < Y 1800 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1801 return; 1802 } 1803 1804 if (LHS == RHS) { 1805 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1806 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1807 return; 1808 } 1809 1810 // Make sure there is enough space to hold the results. 1811 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1812 // change the size. This is necessary if Quotient or Remainder is aliased 1813 // with LHS or RHS. 1814 Quotient.reallocate(BitWidth); 1815 Remainder.reallocate(BitWidth); 1816 1817 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1818 // There is only one word to consider so use the native versions. 1819 uint64_t lhsValue = LHS.U.pVal[0]; 1820 uint64_t rhsValue = RHS.U.pVal[0]; 1821 Quotient = lhsValue / rhsValue; 1822 Remainder = lhsValue % rhsValue; 1823 return; 1824 } 1825 1826 // Okay, lets do it the long way 1827 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1828 Remainder.U.pVal); 1829 // Clear the rest of the Quotient and Remainder. 1830 std::memset(Quotient.U.pVal + lhsWords, 0, 1831 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1832 std::memset(Remainder.U.pVal + rhsWords, 0, 1833 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1834 } 1835 1836 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1837 uint64_t &Remainder) { 1838 assert(RHS != 0 && "Divide by zero?"); 1839 unsigned BitWidth = LHS.BitWidth; 1840 1841 // First, deal with the easy case 1842 if (LHS.isSingleWord()) { 1843 uint64_t QuotVal = LHS.U.VAL / RHS; 1844 Remainder = LHS.U.VAL % RHS; 1845 Quotient = APInt(BitWidth, QuotVal); 1846 return; 1847 } 1848 1849 // Get some size facts about the dividend and divisor 1850 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1851 1852 // Check the degenerate cases 1853 if (lhsWords == 0) { 1854 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1855 Remainder = 0; // 0 % Y ===> 0 1856 return; 1857 } 1858 1859 if (RHS == 1) { 1860 Quotient = LHS; // X / 1 ===> X 1861 Remainder = 0; // X % 1 ===> 0 1862 return; 1863 } 1864 1865 if (LHS.ult(RHS)) { 1866 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1867 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1868 return; 1869 } 1870 1871 if (LHS == RHS) { 1872 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1873 Remainder = 0; // X % X ===> 0; 1874 return; 1875 } 1876 1877 // Make sure there is enough space to hold the results. 1878 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1879 // change the size. This is necessary if Quotient is aliased with LHS. 1880 Quotient.reallocate(BitWidth); 1881 1882 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1883 // There is only one word to consider so use the native versions. 1884 uint64_t lhsValue = LHS.U.pVal[0]; 1885 Quotient = lhsValue / RHS; 1886 Remainder = lhsValue % RHS; 1887 return; 1888 } 1889 1890 // Okay, lets do it the long way 1891 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1892 // Clear the rest of the Quotient. 1893 std::memset(Quotient.U.pVal + lhsWords, 0, 1894 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1895 } 1896 1897 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1898 APInt &Quotient, APInt &Remainder) { 1899 if (LHS.isNegative()) { 1900 if (RHS.isNegative()) 1901 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1902 else { 1903 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1904 Quotient.negate(); 1905 } 1906 Remainder.negate(); 1907 } else if (RHS.isNegative()) { 1908 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1909 Quotient.negate(); 1910 } else { 1911 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1912 } 1913 } 1914 1915 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1916 APInt &Quotient, int64_t &Remainder) { 1917 uint64_t R = Remainder; 1918 if (LHS.isNegative()) { 1919 if (RHS < 0) 1920 APInt::udivrem(-LHS, -RHS, Quotient, R); 1921 else { 1922 APInt::udivrem(-LHS, RHS, Quotient, R); 1923 Quotient.negate(); 1924 } 1925 R = -R; 1926 } else if (RHS < 0) { 1927 APInt::udivrem(LHS, -RHS, Quotient, R); 1928 Quotient.negate(); 1929 } else { 1930 APInt::udivrem(LHS, RHS, Quotient, R); 1931 } 1932 Remainder = R; 1933 } 1934 1935 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1936 APInt Res = *this+RHS; 1937 Overflow = isNonNegative() == RHS.isNonNegative() && 1938 Res.isNonNegative() != isNonNegative(); 1939 return Res; 1940 } 1941 1942 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1943 APInt Res = *this+RHS; 1944 Overflow = Res.ult(RHS); 1945 return Res; 1946 } 1947 1948 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1949 APInt Res = *this - RHS; 1950 Overflow = isNonNegative() != RHS.isNonNegative() && 1951 Res.isNonNegative() != isNonNegative(); 1952 return Res; 1953 } 1954 1955 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1956 APInt Res = *this-RHS; 1957 Overflow = Res.ugt(*this); 1958 return Res; 1959 } 1960 1961 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1962 // MININT/-1 --> overflow. 1963 Overflow = isMinSignedValue() && RHS.isAllOnes(); 1964 return sdiv(RHS); 1965 } 1966 1967 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1968 APInt Res = *this * RHS; 1969 1970 if (RHS != 0) 1971 Overflow = Res.sdiv(RHS) != *this || 1972 (isMinSignedValue() && RHS.isAllOnes()); 1973 else 1974 Overflow = false; 1975 return Res; 1976 } 1977 1978 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1979 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { 1980 Overflow = true; 1981 return *this * RHS; 1982 } 1983 1984 APInt Res = lshr(1) * RHS; 1985 Overflow = Res.isNegative(); 1986 Res <<= 1; 1987 if ((*this)[0]) { 1988 Res += RHS; 1989 if (Res.ult(RHS)) 1990 Overflow = true; 1991 } 1992 return Res; 1993 } 1994 1995 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1996 Overflow = ShAmt.uge(getBitWidth()); 1997 if (Overflow) 1998 return APInt(BitWidth, 0); 1999 2000 if (isNonNegative()) // Don't allow sign change. 2001 Overflow = ShAmt.uge(countLeadingZeros()); 2002 else 2003 Overflow = ShAmt.uge(countLeadingOnes()); 2004 2005 return *this << ShAmt; 2006 } 2007 2008 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2009 Overflow = ShAmt.uge(getBitWidth()); 2010 if (Overflow) 2011 return APInt(BitWidth, 0); 2012 2013 Overflow = ShAmt.ugt(countLeadingZeros()); 2014 2015 return *this << ShAmt; 2016 } 2017 2018 APInt APInt::sadd_sat(const APInt &RHS) const { 2019 bool Overflow; 2020 APInt Res = sadd_ov(RHS, Overflow); 2021 if (!Overflow) 2022 return Res; 2023 2024 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2025 : APInt::getSignedMaxValue(BitWidth); 2026 } 2027 2028 APInt APInt::uadd_sat(const APInt &RHS) const { 2029 bool Overflow; 2030 APInt Res = uadd_ov(RHS, Overflow); 2031 if (!Overflow) 2032 return Res; 2033 2034 return APInt::getMaxValue(BitWidth); 2035 } 2036 2037 APInt APInt::ssub_sat(const APInt &RHS) const { 2038 bool Overflow; 2039 APInt Res = ssub_ov(RHS, Overflow); 2040 if (!Overflow) 2041 return Res; 2042 2043 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2044 : APInt::getSignedMaxValue(BitWidth); 2045 } 2046 2047 APInt APInt::usub_sat(const APInt &RHS) const { 2048 bool Overflow; 2049 APInt Res = usub_ov(RHS, Overflow); 2050 if (!Overflow) 2051 return Res; 2052 2053 return APInt(BitWidth, 0); 2054 } 2055 2056 APInt APInt::smul_sat(const APInt &RHS) const { 2057 bool Overflow; 2058 APInt Res = smul_ov(RHS, Overflow); 2059 if (!Overflow) 2060 return Res; 2061 2062 // The result is negative if one and only one of inputs is negative. 2063 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2064 2065 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2066 : APInt::getSignedMaxValue(BitWidth); 2067 } 2068 2069 APInt APInt::umul_sat(const APInt &RHS) const { 2070 bool Overflow; 2071 APInt Res = umul_ov(RHS, Overflow); 2072 if (!Overflow) 2073 return Res; 2074 2075 return APInt::getMaxValue(BitWidth); 2076 } 2077 2078 APInt APInt::sshl_sat(const APInt &RHS) const { 2079 bool Overflow; 2080 APInt Res = sshl_ov(RHS, Overflow); 2081 if (!Overflow) 2082 return Res; 2083 2084 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2085 : APInt::getSignedMaxValue(BitWidth); 2086 } 2087 2088 APInt APInt::ushl_sat(const APInt &RHS) const { 2089 bool Overflow; 2090 APInt Res = ushl_ov(RHS, Overflow); 2091 if (!Overflow) 2092 return Res; 2093 2094 return APInt::getMaxValue(BitWidth); 2095 } 2096 2097 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2098 // Check our assumptions here 2099 assert(!str.empty() && "Invalid string length"); 2100 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2101 radix == 36) && 2102 "Radix should be 2, 8, 10, 16, or 36!"); 2103 2104 StringRef::iterator p = str.begin(); 2105 size_t slen = str.size(); 2106 bool isNeg = *p == '-'; 2107 if (*p == '-' || *p == '+') { 2108 p++; 2109 slen--; 2110 assert(slen && "String is only a sign, needs a value."); 2111 } 2112 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2113 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2114 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2115 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2116 "Insufficient bit width"); 2117 2118 // Allocate memory if needed 2119 if (isSingleWord()) 2120 U.VAL = 0; 2121 else 2122 U.pVal = getClearedMemory(getNumWords()); 2123 2124 // Figure out if we can shift instead of multiply 2125 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2126 2127 // Enter digit traversal loop 2128 for (StringRef::iterator e = str.end(); p != e; ++p) { 2129 unsigned digit = getDigit(*p, radix); 2130 assert(digit < radix && "Invalid character in digit string"); 2131 2132 // Shift or multiply the value by the radix 2133 if (slen > 1) { 2134 if (shift) 2135 *this <<= shift; 2136 else 2137 *this *= radix; 2138 } 2139 2140 // Add in the digit we just interpreted 2141 *this += digit; 2142 } 2143 // If its negative, put it in two's complement form 2144 if (isNeg) 2145 this->negate(); 2146 } 2147 2148 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2149 bool Signed, bool formatAsCLiteral) const { 2150 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2151 Radix == 36) && 2152 "Radix should be 2, 8, 10, 16, or 36!"); 2153 2154 const char *Prefix = ""; 2155 if (formatAsCLiteral) { 2156 switch (Radix) { 2157 case 2: 2158 // Binary literals are a non-standard extension added in gcc 4.3: 2159 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2160 Prefix = "0b"; 2161 break; 2162 case 8: 2163 Prefix = "0"; 2164 break; 2165 case 10: 2166 break; // No prefix 2167 case 16: 2168 Prefix = "0x"; 2169 break; 2170 default: 2171 llvm_unreachable("Invalid radix!"); 2172 } 2173 } 2174 2175 // First, check for a zero value and just short circuit the logic below. 2176 if (isZero()) { 2177 while (*Prefix) { 2178 Str.push_back(*Prefix); 2179 ++Prefix; 2180 }; 2181 Str.push_back('0'); 2182 return; 2183 } 2184 2185 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2186 2187 if (isSingleWord()) { 2188 char Buffer[65]; 2189 char *BufPtr = std::end(Buffer); 2190 2191 uint64_t N; 2192 if (!Signed) { 2193 N = getZExtValue(); 2194 } else { 2195 int64_t I = getSExtValue(); 2196 if (I >= 0) { 2197 N = I; 2198 } else { 2199 Str.push_back('-'); 2200 N = -(uint64_t)I; 2201 } 2202 } 2203 2204 while (*Prefix) { 2205 Str.push_back(*Prefix); 2206 ++Prefix; 2207 }; 2208 2209 while (N) { 2210 *--BufPtr = Digits[N % Radix]; 2211 N /= Radix; 2212 } 2213 Str.append(BufPtr, std::end(Buffer)); 2214 return; 2215 } 2216 2217 APInt Tmp(*this); 2218 2219 if (Signed && isNegative()) { 2220 // They want to print the signed version and it is a negative value 2221 // Flip the bits and add one to turn it into the equivalent positive 2222 // value and put a '-' in the result. 2223 Tmp.negate(); 2224 Str.push_back('-'); 2225 } 2226 2227 while (*Prefix) { 2228 Str.push_back(*Prefix); 2229 ++Prefix; 2230 }; 2231 2232 // We insert the digits backward, then reverse them to get the right order. 2233 unsigned StartDig = Str.size(); 2234 2235 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2236 // because the number of bits per digit (1, 3 and 4 respectively) divides 2237 // equally. We just shift until the value is zero. 2238 if (Radix == 2 || Radix == 8 || Radix == 16) { 2239 // Just shift tmp right for each digit width until it becomes zero 2240 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2241 unsigned MaskAmt = Radix - 1; 2242 2243 while (Tmp.getBoolValue()) { 2244 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2245 Str.push_back(Digits[Digit]); 2246 Tmp.lshrInPlace(ShiftAmt); 2247 } 2248 } else { 2249 while (Tmp.getBoolValue()) { 2250 uint64_t Digit; 2251 udivrem(Tmp, Radix, Tmp, Digit); 2252 assert(Digit < Radix && "divide failed"); 2253 Str.push_back(Digits[Digit]); 2254 } 2255 } 2256 2257 // Reverse the digits before returning. 2258 std::reverse(Str.begin()+StartDig, Str.end()); 2259 } 2260 2261 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2262 LLVM_DUMP_METHOD void APInt::dump() const { 2263 SmallString<40> S, U; 2264 this->toStringUnsigned(U); 2265 this->toStringSigned(S); 2266 dbgs() << "APInt(" << BitWidth << "b, " 2267 << U << "u " << S << "s)\n"; 2268 } 2269 #endif 2270 2271 void APInt::print(raw_ostream &OS, bool isSigned) const { 2272 SmallString<40> S; 2273 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2274 OS << S; 2275 } 2276 2277 // This implements a variety of operations on a representation of 2278 // arbitrary precision, two's-complement, bignum integer values. 2279 2280 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2281 // and unrestricting assumption. 2282 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2283 "Part width must be divisible by 2!"); 2284 2285 // Returns the integer part with the least significant BITS set. 2286 // BITS cannot be zero. 2287 static inline APInt::WordType lowBitMask(unsigned bits) { 2288 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2289 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2290 } 2291 2292 /// Returns the value of the lower half of PART. 2293 static inline APInt::WordType lowHalf(APInt::WordType part) { 2294 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2295 } 2296 2297 /// Returns the value of the upper half of PART. 2298 static inline APInt::WordType highHalf(APInt::WordType part) { 2299 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2300 } 2301 2302 /// Returns the bit number of the most significant set bit of a part. 2303 /// If the input number has no bits set -1U is returned. 2304 static unsigned partMSB(APInt::WordType value) { 2305 return findLastSet(value, ZB_Max); 2306 } 2307 2308 /// Returns the bit number of the least significant set bit of a part. If the 2309 /// input number has no bits set -1U is returned. 2310 static unsigned partLSB(APInt::WordType value) { 2311 return findFirstSet(value, ZB_Max); 2312 } 2313 2314 /// Sets the least significant part of a bignum to the input value, and zeroes 2315 /// out higher parts. 2316 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2317 assert(parts > 0); 2318 dst[0] = part; 2319 for (unsigned i = 1; i < parts; i++) 2320 dst[i] = 0; 2321 } 2322 2323 /// Assign one bignum to another. 2324 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2325 for (unsigned i = 0; i < parts; i++) 2326 dst[i] = src[i]; 2327 } 2328 2329 /// Returns true if a bignum is zero, false otherwise. 2330 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2331 for (unsigned i = 0; i < parts; i++) 2332 if (src[i]) 2333 return false; 2334 2335 return true; 2336 } 2337 2338 /// Extract the given bit of a bignum; returns 0 or 1. 2339 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2340 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2341 } 2342 2343 /// Set the given bit of a bignum. 2344 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2345 parts[whichWord(bit)] |= maskBit(bit); 2346 } 2347 2348 /// Clears the given bit of a bignum. 2349 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2350 parts[whichWord(bit)] &= ~maskBit(bit); 2351 } 2352 2353 /// Returns the bit number of the least significant set bit of a number. If the 2354 /// input number has no bits set -1U is returned. 2355 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2356 for (unsigned i = 0; i < n; i++) { 2357 if (parts[i] != 0) { 2358 unsigned lsb = partLSB(parts[i]); 2359 return lsb + i * APINT_BITS_PER_WORD; 2360 } 2361 } 2362 2363 return -1U; 2364 } 2365 2366 /// Returns the bit number of the most significant set bit of a number. 2367 /// If the input number has no bits set -1U is returned. 2368 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2369 do { 2370 --n; 2371 2372 if (parts[n] != 0) { 2373 unsigned msb = partMSB(parts[n]); 2374 2375 return msb + n * APINT_BITS_PER_WORD; 2376 } 2377 } while (n); 2378 2379 return -1U; 2380 } 2381 2382 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2383 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2384 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2385 /// */ 2386 void 2387 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2388 unsigned srcBits, unsigned srcLSB) { 2389 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2390 assert(dstParts <= dstCount); 2391 2392 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2393 tcAssign(dst, src + firstSrcPart, dstParts); 2394 2395 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2396 tcShiftRight(dst, dstParts, shift); 2397 2398 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2399 // in DST. If this is less that srcBits, append the rest, else 2400 // clear the high bits. 2401 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2402 if (n < srcBits) { 2403 WordType mask = lowBitMask (srcBits - n); 2404 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2405 << n % APINT_BITS_PER_WORD); 2406 } else if (n > srcBits) { 2407 if (srcBits % APINT_BITS_PER_WORD) 2408 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2409 } 2410 2411 // Clear high parts. 2412 while (dstParts < dstCount) 2413 dst[dstParts++] = 0; 2414 } 2415 2416 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2417 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2418 WordType c, unsigned parts) { 2419 assert(c <= 1); 2420 2421 for (unsigned i = 0; i < parts; i++) { 2422 WordType l = dst[i]; 2423 if (c) { 2424 dst[i] += rhs[i] + 1; 2425 c = (dst[i] <= l); 2426 } else { 2427 dst[i] += rhs[i]; 2428 c = (dst[i] < l); 2429 } 2430 } 2431 2432 return c; 2433 } 2434 2435 /// This function adds a single "word" integer, src, to the multiple 2436 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2437 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2438 /// @returns the carry of the addition. 2439 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2440 unsigned parts) { 2441 for (unsigned i = 0; i < parts; ++i) { 2442 dst[i] += src; 2443 if (dst[i] >= src) 2444 return 0; // No need to carry so exit early. 2445 src = 1; // Carry one to next digit. 2446 } 2447 2448 return 1; 2449 } 2450 2451 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2452 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2453 WordType c, unsigned parts) { 2454 assert(c <= 1); 2455 2456 for (unsigned i = 0; i < parts; i++) { 2457 WordType l = dst[i]; 2458 if (c) { 2459 dst[i] -= rhs[i] + 1; 2460 c = (dst[i] >= l); 2461 } else { 2462 dst[i] -= rhs[i]; 2463 c = (dst[i] > l); 2464 } 2465 } 2466 2467 return c; 2468 } 2469 2470 /// This function subtracts a single "word" (64-bit word), src, from 2471 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2472 /// no further borrowing is needed or it runs out of "words" in dst. The result 2473 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2474 /// exhausted. In other words, if src > dst then this function returns 1, 2475 /// otherwise 0. 2476 /// @returns the borrow out of the subtraction 2477 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2478 unsigned parts) { 2479 for (unsigned i = 0; i < parts; ++i) { 2480 WordType Dst = dst[i]; 2481 dst[i] -= src; 2482 if (src <= Dst) 2483 return 0; // No need to borrow so exit early. 2484 src = 1; // We have to "borrow 1" from next "word" 2485 } 2486 2487 return 1; 2488 } 2489 2490 /// Negate a bignum in-place. 2491 void APInt::tcNegate(WordType *dst, unsigned parts) { 2492 tcComplement(dst, parts); 2493 tcIncrement(dst, parts); 2494 } 2495 2496 /// DST += SRC * MULTIPLIER + CARRY if add is true 2497 /// DST = SRC * MULTIPLIER + CARRY if add is false 2498 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2499 /// they must start at the same point, i.e. DST == SRC. 2500 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2501 /// returned. Otherwise DST is filled with the least significant 2502 /// DSTPARTS parts of the result, and if all of the omitted higher 2503 /// parts were zero return zero, otherwise overflow occurred and 2504 /// return one. 2505 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2506 WordType multiplier, WordType carry, 2507 unsigned srcParts, unsigned dstParts, 2508 bool add) { 2509 // Otherwise our writes of DST kill our later reads of SRC. 2510 assert(dst <= src || dst >= src + srcParts); 2511 assert(dstParts <= srcParts + 1); 2512 2513 // N loops; minimum of dstParts and srcParts. 2514 unsigned n = std::min(dstParts, srcParts); 2515 2516 for (unsigned i = 0; i < n; i++) { 2517 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2518 // This cannot overflow, because: 2519 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2520 // which is less than n^2. 2521 WordType srcPart = src[i]; 2522 WordType low, mid, high; 2523 if (multiplier == 0 || srcPart == 0) { 2524 low = carry; 2525 high = 0; 2526 } else { 2527 low = lowHalf(srcPart) * lowHalf(multiplier); 2528 high = highHalf(srcPart) * highHalf(multiplier); 2529 2530 mid = lowHalf(srcPart) * highHalf(multiplier); 2531 high += highHalf(mid); 2532 mid <<= APINT_BITS_PER_WORD / 2; 2533 if (low + mid < low) 2534 high++; 2535 low += mid; 2536 2537 mid = highHalf(srcPart) * lowHalf(multiplier); 2538 high += highHalf(mid); 2539 mid <<= APINT_BITS_PER_WORD / 2; 2540 if (low + mid < low) 2541 high++; 2542 low += mid; 2543 2544 // Now add carry. 2545 if (low + carry < low) 2546 high++; 2547 low += carry; 2548 } 2549 2550 if (add) { 2551 // And now DST[i], and store the new low part there. 2552 if (low + dst[i] < low) 2553 high++; 2554 dst[i] += low; 2555 } else 2556 dst[i] = low; 2557 2558 carry = high; 2559 } 2560 2561 if (srcParts < dstParts) { 2562 // Full multiplication, there is no overflow. 2563 assert(srcParts + 1 == dstParts); 2564 dst[srcParts] = carry; 2565 return 0; 2566 } 2567 2568 // We overflowed if there is carry. 2569 if (carry) 2570 return 1; 2571 2572 // We would overflow if any significant unwritten parts would be 2573 // non-zero. This is true if any remaining src parts are non-zero 2574 // and the multiplier is non-zero. 2575 if (multiplier) 2576 for (unsigned i = dstParts; i < srcParts; i++) 2577 if (src[i]) 2578 return 1; 2579 2580 // We fitted in the narrow destination. 2581 return 0; 2582 } 2583 2584 /// DST = LHS * RHS, where DST has the same width as the operands and 2585 /// is filled with the least significant parts of the result. Returns 2586 /// one if overflow occurred, otherwise zero. DST must be disjoint 2587 /// from both operands. 2588 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2589 const WordType *rhs, unsigned parts) { 2590 assert(dst != lhs && dst != rhs); 2591 2592 int overflow = 0; 2593 tcSet(dst, 0, parts); 2594 2595 for (unsigned i = 0; i < parts; i++) 2596 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2597 parts - i, true); 2598 2599 return overflow; 2600 } 2601 2602 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2603 /// operands. No overflow occurs. DST must be disjoint from both operands. 2604 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2605 const WordType *rhs, unsigned lhsParts, 2606 unsigned rhsParts) { 2607 // Put the narrower number on the LHS for less loops below. 2608 if (lhsParts > rhsParts) 2609 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2610 2611 assert(dst != lhs && dst != rhs); 2612 2613 tcSet(dst, 0, rhsParts); 2614 2615 for (unsigned i = 0; i < lhsParts; i++) 2616 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2617 } 2618 2619 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2620 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2621 // set REMAINDER to the remainder, return zero. i.e. 2622 // 2623 // OLD_LHS = RHS * LHS + REMAINDER 2624 // 2625 // SCRATCH is a bignum of the same size as the operands and result for 2626 // use by the routine; its contents need not be initialized and are 2627 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2628 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2629 WordType *remainder, WordType *srhs, 2630 unsigned parts) { 2631 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2632 2633 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2634 if (shiftCount == 0) 2635 return true; 2636 2637 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2638 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2639 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2640 2641 tcAssign(srhs, rhs, parts); 2642 tcShiftLeft(srhs, parts, shiftCount); 2643 tcAssign(remainder, lhs, parts); 2644 tcSet(lhs, 0, parts); 2645 2646 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2647 // total. 2648 for (;;) { 2649 int compare = tcCompare(remainder, srhs, parts); 2650 if (compare >= 0) { 2651 tcSubtract(remainder, srhs, 0, parts); 2652 lhs[n] |= mask; 2653 } 2654 2655 if (shiftCount == 0) 2656 break; 2657 shiftCount--; 2658 tcShiftRight(srhs, parts, 1); 2659 if ((mask >>= 1) == 0) { 2660 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2661 n--; 2662 } 2663 } 2664 2665 return false; 2666 } 2667 2668 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2669 /// no restrictions on Count. 2670 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2671 // Don't bother performing a no-op shift. 2672 if (!Count) 2673 return; 2674 2675 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2676 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2677 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2678 2679 // Fastpath for moving by whole words. 2680 if (BitShift == 0) { 2681 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2682 } else { 2683 while (Words-- > WordShift) { 2684 Dst[Words] = Dst[Words - WordShift] << BitShift; 2685 if (Words > WordShift) 2686 Dst[Words] |= 2687 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2688 } 2689 } 2690 2691 // Fill in the remainder with 0s. 2692 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2693 } 2694 2695 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2696 /// are no restrictions on Count. 2697 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2698 // Don't bother performing a no-op shift. 2699 if (!Count) 2700 return; 2701 2702 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2703 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2704 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2705 2706 unsigned WordsToMove = Words - WordShift; 2707 // Fastpath for moving by whole words. 2708 if (BitShift == 0) { 2709 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2710 } else { 2711 for (unsigned i = 0; i != WordsToMove; ++i) { 2712 Dst[i] = Dst[i + WordShift] >> BitShift; 2713 if (i + 1 != WordsToMove) 2714 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2715 } 2716 } 2717 2718 // Fill in the remainder with 0s. 2719 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2720 } 2721 2722 // Comparison (unsigned) of two bignums. 2723 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2724 unsigned parts) { 2725 while (parts) { 2726 parts--; 2727 if (lhs[parts] != rhs[parts]) 2728 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2729 } 2730 2731 return 0; 2732 } 2733 2734 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2735 APInt::Rounding RM) { 2736 // Currently udivrem always rounds down. 2737 switch (RM) { 2738 case APInt::Rounding::DOWN: 2739 case APInt::Rounding::TOWARD_ZERO: 2740 return A.udiv(B); 2741 case APInt::Rounding::UP: { 2742 APInt Quo, Rem; 2743 APInt::udivrem(A, B, Quo, Rem); 2744 if (Rem.isZero()) 2745 return Quo; 2746 return Quo + 1; 2747 } 2748 } 2749 llvm_unreachable("Unknown APInt::Rounding enum"); 2750 } 2751 2752 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2753 APInt::Rounding RM) { 2754 switch (RM) { 2755 case APInt::Rounding::DOWN: 2756 case APInt::Rounding::UP: { 2757 APInt Quo, Rem; 2758 APInt::sdivrem(A, B, Quo, Rem); 2759 if (Rem.isZero()) 2760 return Quo; 2761 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2762 // We want to check whether the non-integer part of the mathematical value 2763 // is negative or not. If the non-integer part is negative, we need to round 2764 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2765 // already rounded down. 2766 if (RM == APInt::Rounding::DOWN) { 2767 if (Rem.isNegative() != B.isNegative()) 2768 return Quo - 1; 2769 return Quo; 2770 } 2771 if (Rem.isNegative() != B.isNegative()) 2772 return Quo; 2773 return Quo + 1; 2774 } 2775 // Currently sdiv rounds towards zero. 2776 case APInt::Rounding::TOWARD_ZERO: 2777 return A.sdiv(B); 2778 } 2779 llvm_unreachable("Unknown APInt::Rounding enum"); 2780 } 2781 2782 Optional<APInt> 2783 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2784 unsigned RangeWidth) { 2785 unsigned CoeffWidth = A.getBitWidth(); 2786 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2787 assert(RangeWidth <= CoeffWidth && 2788 "Value range width should be less than coefficient width"); 2789 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2790 2791 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2792 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2793 2794 // Identify 0 as a (non)solution immediately. 2795 if (C.sextOrTrunc(RangeWidth).isZero()) { 2796 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2797 return APInt(CoeffWidth, 0); 2798 } 2799 2800 // The result of APInt arithmetic has the same bit width as the operands, 2801 // so it can actually lose high bits. A product of two n-bit integers needs 2802 // 2n-1 bits to represent the full value. 2803 // The operation done below (on quadratic coefficients) that can produce 2804 // the largest value is the evaluation of the equation during bisection, 2805 // which needs 3 times the bitwidth of the coefficient, so the total number 2806 // of required bits is 3n. 2807 // 2808 // The purpose of this extension is to simulate the set Z of all integers, 2809 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2810 // and negative numbers (not so much in a modulo arithmetic). The method 2811 // used to solve the equation is based on the standard formula for real 2812 // numbers, and uses the concepts of "positive" and "negative" with their 2813 // usual meanings. 2814 CoeffWidth *= 3; 2815 A = A.sext(CoeffWidth); 2816 B = B.sext(CoeffWidth); 2817 C = C.sext(CoeffWidth); 2818 2819 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2820 // the bit width has increased. 2821 if (A.isNegative()) { 2822 A.negate(); 2823 B.negate(); 2824 C.negate(); 2825 } 2826 2827 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2828 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2829 // and R = 2^BitWidth. 2830 // Since we're trying not only to find exact solutions, but also values 2831 // that "wrap around", such a set will always have a solution, i.e. an x 2832 // that satisfies at least one of the equations, or such that |q(x)| 2833 // exceeds kR, while |q(x-1)| for the same k does not. 2834 // 2835 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2836 // positive solution n (in the above sense), and also such that the n 2837 // will be the least among all solutions corresponding to k = 0, 1, ... 2838 // (more precisely, the least element in the set 2839 // { n(k) | k is such that a solution n(k) exists }). 2840 // 2841 // Consider the parabola (over real numbers) that corresponds to the 2842 // quadratic equation. Since A > 0, the arms of the parabola will point 2843 // up. Picking different values of k will shift it up and down by R. 2844 // 2845 // We want to shift the parabola in such a way as to reduce the problem 2846 // of solving q(x) = kR to solving shifted_q(x) = 0. 2847 // (The interesting solutions are the ceilings of the real number 2848 // solutions.) 2849 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2850 APInt TwoA = 2 * A; 2851 APInt SqrB = B * B; 2852 bool PickLow; 2853 2854 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2855 assert(A.isStrictlyPositive()); 2856 APInt T = V.abs().urem(A); 2857 if (T.isZero()) 2858 return V; 2859 return V.isNegative() ? V+T : V+(A-T); 2860 }; 2861 2862 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2863 // iff B is positive. 2864 if (B.isNonNegative()) { 2865 // If B >= 0, the vertex it at a negative location (or at 0), so in 2866 // order to have a non-negative solution we need to pick k that makes 2867 // C-kR negative. To satisfy all the requirements for the solution 2868 // that we are looking for, it needs to be closest to 0 of all k. 2869 C = C.srem(R); 2870 if (C.isStrictlyPositive()) 2871 C -= R; 2872 // Pick the greater solution. 2873 PickLow = false; 2874 } else { 2875 // If B < 0, the vertex is at a positive location. For any solution 2876 // to exist, the discriminant must be non-negative. This means that 2877 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2878 // lower bound on values of k: kR >= C - B^2/4A. 2879 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2880 // Round LowkR up (towards +inf) to the nearest kR. 2881 LowkR = RoundUp(LowkR, R); 2882 2883 // If there exists k meeting the condition above, and such that 2884 // C-kR > 0, there will be two positive real number solutions of 2885 // q(x) = kR. Out of all such values of k, pick the one that makes 2886 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2887 // In other words, find maximum k such that LowkR <= kR < C. 2888 if (C.sgt(LowkR)) { 2889 // If LowkR < C, then such a k is guaranteed to exist because 2890 // LowkR itself is a multiple of R. 2891 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2892 // Pick the smaller solution. 2893 PickLow = true; 2894 } else { 2895 // If C-kR < 0 for all potential k's, it means that one solution 2896 // will be negative, while the other will be positive. The positive 2897 // solution will shift towards 0 if the parabola is moved up. 2898 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2899 // to 0, or in other words, out of all parabolas that have solutions, 2900 // pick the one that is the farthest "up"). 2901 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2902 C -= LowkR; 2903 // Pick the greater solution. 2904 PickLow = false; 2905 } 2906 } 2907 2908 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2909 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2910 2911 APInt D = SqrB - 4*A*C; 2912 assert(D.isNonNegative() && "Negative discriminant"); 2913 APInt SQ = D.sqrt(); 2914 2915 APInt Q = SQ * SQ; 2916 bool InexactSQ = Q != D; 2917 // The calculated SQ may actually be greater than the exact (non-integer) 2918 // value. If that's the case, decrement SQ to get a value that is lower. 2919 if (Q.sgt(D)) 2920 SQ -= 1; 2921 2922 APInt X; 2923 APInt Rem; 2924 2925 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2926 // When using the quadratic formula directly, the calculated low root 2927 // may be greater than the exact one, since we would be subtracting SQ. 2928 // To make sure that the calculated root is not greater than the exact 2929 // one, subtract SQ+1 when calculating the low root (for inexact value 2930 // of SQ). 2931 if (PickLow) 2932 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2933 else 2934 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2935 2936 // The updated coefficients should be such that the (exact) solution is 2937 // positive. Since APInt division rounds towards 0, the calculated one 2938 // can be 0, but cannot be negative. 2939 assert(X.isNonNegative() && "Solution should be non-negative"); 2940 2941 if (!InexactSQ && Rem.isZero()) { 2942 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2943 return X; 2944 } 2945 2946 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2947 // The exact value of the square root of D should be between SQ and SQ+1. 2948 // This implies that the solution should be between that corresponding to 2949 // SQ (i.e. X) and that corresponding to SQ+1. 2950 // 2951 // The calculated X cannot be greater than the exact (real) solution. 2952 // Actually it must be strictly less than the exact solution, while 2953 // X+1 will be greater than or equal to it. 2954 2955 APInt VX = (A*X + B)*X + C; 2956 APInt VY = VX + TwoA*X + A + B; 2957 bool SignChange = 2958 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 2959 // If the sign did not change between X and X+1, X is not a valid solution. 2960 // This could happen when the actual (exact) roots don't have an integer 2961 // between them, so they would both be contained between X and X+1. 2962 if (!SignChange) { 2963 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2964 return None; 2965 } 2966 2967 X += 1; 2968 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2969 return X; 2970 } 2971 2972 Optional<unsigned> 2973 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2974 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2975 if (A == B) 2976 return llvm::None; 2977 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); 2978 } 2979 2980 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) { 2981 unsigned OldBitWidth = A.getBitWidth(); 2982 assert((((OldBitWidth % NewBitWidth) == 0) || 2983 ((NewBitWidth % OldBitWidth) == 0)) && 2984 "One size should be a multiple of the other one. " 2985 "Can't do fractional scaling."); 2986 2987 // Check for matching bitwidths. 2988 if (OldBitWidth == NewBitWidth) 2989 return A; 2990 2991 APInt NewA = APInt::getZero(NewBitWidth); 2992 2993 // Check for null input. 2994 if (A.isZero()) 2995 return NewA; 2996 2997 if (NewBitWidth > OldBitWidth) { 2998 // Repeat bits. 2999 unsigned Scale = NewBitWidth / OldBitWidth; 3000 for (unsigned i = 0; i != OldBitWidth; ++i) 3001 if (A[i]) 3002 NewA.setBits(i * Scale, (i + 1) * Scale); 3003 } else { 3004 // Merge bits - if any old bit is set, then set scale equivalent new bit. 3005 unsigned Scale = OldBitWidth / NewBitWidth; 3006 for (unsigned i = 0; i != NewBitWidth; ++i) 3007 if (!A.extractBits(Scale, i * Scale).isZero()) 3008 NewA.setBit(i); 3009 } 3010 3011 return NewA; 3012 } 3013 3014 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 3015 /// with the integer held in IntVal. 3016 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 3017 unsigned StoreBytes) { 3018 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 3019 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 3020 3021 if (sys::IsLittleEndianHost) { 3022 // Little-endian host - the source is ordered from LSB to MSB. Order the 3023 // destination from LSB to MSB: Do a straight copy. 3024 memcpy(Dst, Src, StoreBytes); 3025 } else { 3026 // Big-endian host - the source is an array of 64 bit words ordered from 3027 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 3028 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 3029 while (StoreBytes > sizeof(uint64_t)) { 3030 StoreBytes -= sizeof(uint64_t); 3031 // May not be aligned so use memcpy. 3032 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 3033 Src += sizeof(uint64_t); 3034 } 3035 3036 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 3037 } 3038 } 3039 3040 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 3041 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 3042 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 3043 unsigned LoadBytes) { 3044 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 3045 uint8_t *Dst = reinterpret_cast<uint8_t *>( 3046 const_cast<uint64_t *>(IntVal.getRawData())); 3047 3048 if (sys::IsLittleEndianHost) 3049 // Little-endian host - the destination must be ordered from LSB to MSB. 3050 // The source is ordered from LSB to MSB: Do a straight copy. 3051 memcpy(Dst, Src, LoadBytes); 3052 else { 3053 // Big-endian - the destination is an array of 64 bit words ordered from 3054 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 3055 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 3056 // a word. 3057 while (LoadBytes > sizeof(uint64_t)) { 3058 LoadBytes -= sizeof(uint64_t); 3059 // May not be aligned so use memcpy. 3060 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 3061 Dst += sizeof(uint64_t); 3062 } 3063 3064 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3065 } 3066 } 3067