1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/MathExtras.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <cmath> 25 #include <cstdlib> 26 #include <cstring> 27 #include <limits> 28 using namespace llvm; 29 30 #define DEBUG_TYPE "apint" 31 32 /// A utility function for allocating memory, checking for allocation failures, 33 /// and ensuring the contents are zeroed. 34 inline static uint64_t* getClearedMemory(unsigned numWords) { 35 uint64_t * result = new uint64_t[numWords]; 36 assert(result && "APInt memory allocation fails!"); 37 memset(result, 0, numWords * sizeof(uint64_t)); 38 return result; 39 } 40 41 /// A utility function for allocating memory and checking for allocation 42 /// failure. The content is not zeroed. 43 inline static uint64_t* getMemory(unsigned numWords) { 44 uint64_t * result = new uint64_t[numWords]; 45 assert(result && "APInt memory allocation fails!"); 46 return result; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { 78 pVal = getClearedMemory(getNumWords()); 79 pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 pVal[i] = -1ULL; 83 } 84 85 void APInt::initSlowCase(const APInt& that) { 86 pVal = getMemory(getNumWords()); 87 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 88 } 89 90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 91 assert(BitWidth && "Bitwidth too small"); 92 assert(bigVal.data() && "Null pointer detected!"); 93 if (isSingleWord()) 94 VAL = bigVal[0]; 95 else { 96 // Get memory, cleared to 0 97 pVal = getClearedMemory(getNumWords()); 98 // Calculate the number of words to copy 99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 100 // Copy the words from bigVal to pVal 101 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 102 } 103 // Make sure unused high bits are cleared 104 clearUnusedBits(); 105 } 106 107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 108 : BitWidth(numBits), VAL(0) { 109 initFromArray(bigVal); 110 } 111 112 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 113 : BitWidth(numBits), VAL(0) { 114 initFromArray(makeArrayRef(bigVal, numWords)); 115 } 116 117 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 118 : BitWidth(numbits), VAL(0) { 119 assert(BitWidth && "Bitwidth too small"); 120 fromString(numbits, Str, radix); 121 } 122 123 APInt& APInt::AssignSlowCase(const APInt& RHS) { 124 // Don't do anything for X = X 125 if (this == &RHS) 126 return *this; 127 128 if (BitWidth == RHS.getBitWidth()) { 129 // assume same bit-width single-word case is already handled 130 assert(!isSingleWord()); 131 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 132 return *this; 133 } 134 135 if (isSingleWord()) { 136 // assume case where both are single words is already handled 137 assert(!RHS.isSingleWord()); 138 VAL = 0; 139 pVal = getMemory(RHS.getNumWords()); 140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 141 } else if (getNumWords() == RHS.getNumWords()) 142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 143 else if (RHS.isSingleWord()) { 144 delete [] pVal; 145 VAL = RHS.VAL; 146 } else { 147 delete [] pVal; 148 pVal = getMemory(RHS.getNumWords()); 149 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 150 } 151 BitWidth = RHS.BitWidth; 152 return clearUnusedBits(); 153 } 154 155 APInt& APInt::operator=(uint64_t RHS) { 156 if (isSingleWord()) 157 VAL = RHS; 158 else { 159 pVal[0] = RHS; 160 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 161 } 162 return clearUnusedBits(); 163 } 164 165 /// This method 'profiles' an APInt for use with FoldingSet. 166 void APInt::Profile(FoldingSetNodeID& ID) const { 167 ID.AddInteger(BitWidth); 168 169 if (isSingleWord()) { 170 ID.AddInteger(VAL); 171 return; 172 } 173 174 unsigned NumWords = getNumWords(); 175 for (unsigned i = 0; i < NumWords; ++i) 176 ID.AddInteger(pVal[i]); 177 } 178 179 /// This function adds a single "digit" integer, y, to the multiple 180 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 181 /// 1 is returned if there is a carry out, otherwise 0 is returned. 182 /// @returns the carry of the addition. 183 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 184 for (unsigned i = 0; i < len; ++i) { 185 dest[i] = y + x[i]; 186 if (dest[i] < y) 187 y = 1; // Carry one to next digit. 188 else { 189 y = 0; // No need to carry so exit early 190 break; 191 } 192 } 193 return y; 194 } 195 196 /// @brief Prefix increment operator. Increments the APInt by one. 197 APInt& APInt::operator++() { 198 if (isSingleWord()) 199 ++VAL; 200 else 201 add_1(pVal, pVal, getNumWords(), 1); 202 return clearUnusedBits(); 203 } 204 205 /// This function subtracts a single "digit" (64-bit word), y, from 206 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 207 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 208 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 209 /// In other words, if y > x then this function returns 1, otherwise 0. 210 /// @returns the borrow out of the subtraction 211 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 212 for (unsigned i = 0; i < len; ++i) { 213 uint64_t X = x[i]; 214 x[i] -= y; 215 if (y > X) 216 y = 1; // We have to "borrow 1" from next "digit" 217 else { 218 y = 0; // No need to borrow 219 break; // Remaining digits are unchanged so exit early 220 } 221 } 222 return bool(y); 223 } 224 225 /// @brief Prefix decrement operator. Decrements the APInt by one. 226 APInt& APInt::operator--() { 227 if (isSingleWord()) 228 --VAL; 229 else 230 sub_1(pVal, getNumWords(), 1); 231 return clearUnusedBits(); 232 } 233 234 /// This function adds the integer array x to the integer array Y and 235 /// places the result in dest. 236 /// @returns the carry out from the addition 237 /// @brief General addition of 64-bit integer arrays 238 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 239 unsigned len) { 240 bool carry = false; 241 for (unsigned i = 0; i< len; ++i) { 242 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 243 dest[i] = x[i] + y[i] + carry; 244 carry = dest[i] < limit || (carry && dest[i] == limit); 245 } 246 return carry; 247 } 248 249 /// Adds the RHS APint to this APInt. 250 /// @returns this, after addition of RHS. 251 /// @brief Addition assignment operator. 252 APInt& APInt::operator+=(const APInt& RHS) { 253 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 254 if (isSingleWord()) 255 VAL += RHS.VAL; 256 else { 257 add(pVal, pVal, RHS.pVal, getNumWords()); 258 } 259 return clearUnusedBits(); 260 } 261 262 /// Subtracts the integer array y from the integer array x 263 /// @returns returns the borrow out. 264 /// @brief Generalized subtraction of 64-bit integer arrays. 265 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 266 unsigned len) { 267 bool borrow = false; 268 for (unsigned i = 0; i < len; ++i) { 269 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 270 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 271 dest[i] = x_tmp - y[i]; 272 } 273 return borrow; 274 } 275 276 /// Subtracts the RHS APInt from this APInt 277 /// @returns this, after subtraction 278 /// @brief Subtraction assignment operator. 279 APInt& APInt::operator-=(const APInt& RHS) { 280 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 281 if (isSingleWord()) 282 VAL -= RHS.VAL; 283 else 284 sub(pVal, pVal, RHS.pVal, getNumWords()); 285 return clearUnusedBits(); 286 } 287 288 /// Multiplies an integer array, x, by a uint64_t integer and places the result 289 /// into dest. 290 /// @returns the carry out of the multiplication. 291 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 292 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 293 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 294 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 295 uint64_t carry = 0; 296 297 // For each digit of x. 298 for (unsigned i = 0; i < len; ++i) { 299 // Split x into high and low words 300 uint64_t lx = x[i] & 0xffffffffULL; 301 uint64_t hx = x[i] >> 32; 302 // hasCarry - A flag to indicate if there is a carry to the next digit. 303 // hasCarry == 0, no carry 304 // hasCarry == 1, has carry 305 // hasCarry == 2, no carry and the calculation result == 0. 306 uint8_t hasCarry = 0; 307 dest[i] = carry + lx * ly; 308 // Determine if the add above introduces carry. 309 hasCarry = (dest[i] < carry) ? 1 : 0; 310 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 311 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 312 // (2^32 - 1) + 2^32 = 2^64. 313 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 314 315 carry += (lx * hy) & 0xffffffffULL; 316 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 317 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 318 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 319 } 320 return carry; 321 } 322 323 /// Multiplies integer array x by integer array y and stores the result into 324 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 325 /// @brief Generalized multiplicate of integer arrays. 326 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 327 unsigned ylen) { 328 dest[xlen] = mul_1(dest, x, xlen, y[0]); 329 for (unsigned i = 1; i < ylen; ++i) { 330 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 331 uint64_t carry = 0, lx = 0, hx = 0; 332 for (unsigned j = 0; j < xlen; ++j) { 333 lx = x[j] & 0xffffffffULL; 334 hx = x[j] >> 32; 335 // hasCarry - A flag to indicate if has carry. 336 // hasCarry == 0, no carry 337 // hasCarry == 1, has carry 338 // hasCarry == 2, no carry and the calculation result == 0. 339 uint8_t hasCarry = 0; 340 uint64_t resul = carry + lx * ly; 341 hasCarry = (resul < carry) ? 1 : 0; 342 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 343 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 344 345 carry += (lx * hy) & 0xffffffffULL; 346 resul = (carry << 32) | (resul & 0xffffffffULL); 347 dest[i+j] += resul; 348 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 349 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 350 ((lx * hy) >> 32) + hx * hy; 351 } 352 dest[i+xlen] = carry; 353 } 354 } 355 356 APInt& APInt::operator*=(const APInt& RHS) { 357 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 358 if (isSingleWord()) { 359 VAL *= RHS.VAL; 360 clearUnusedBits(); 361 return *this; 362 } 363 364 // Get some bit facts about LHS and check for zero 365 unsigned lhsBits = getActiveBits(); 366 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 367 if (!lhsWords) 368 // 0 * X ===> 0 369 return *this; 370 371 // Get some bit facts about RHS and check for zero 372 unsigned rhsBits = RHS.getActiveBits(); 373 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 374 if (!rhsWords) { 375 // X * 0 ===> 0 376 clearAllBits(); 377 return *this; 378 } 379 380 // Allocate space for the result 381 unsigned destWords = rhsWords + lhsWords; 382 uint64_t *dest = getMemory(destWords); 383 384 // Perform the long multiply 385 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 386 387 // Copy result back into *this 388 clearAllBits(); 389 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 390 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 391 clearUnusedBits(); 392 393 // delete dest array and return 394 delete[] dest; 395 return *this; 396 } 397 398 APInt& APInt::operator&=(const APInt& RHS) { 399 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 400 if (isSingleWord()) { 401 VAL &= RHS.VAL; 402 return *this; 403 } 404 unsigned numWords = getNumWords(); 405 for (unsigned i = 0; i < numWords; ++i) 406 pVal[i] &= RHS.pVal[i]; 407 return *this; 408 } 409 410 APInt& APInt::operator|=(const APInt& RHS) { 411 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 412 if (isSingleWord()) { 413 VAL |= RHS.VAL; 414 return *this; 415 } 416 unsigned numWords = getNumWords(); 417 for (unsigned i = 0; i < numWords; ++i) 418 pVal[i] |= RHS.pVal[i]; 419 return *this; 420 } 421 422 APInt& APInt::operator^=(const APInt& RHS) { 423 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 424 if (isSingleWord()) { 425 VAL ^= RHS.VAL; 426 this->clearUnusedBits(); 427 return *this; 428 } 429 unsigned numWords = getNumWords(); 430 for (unsigned i = 0; i < numWords; ++i) 431 pVal[i] ^= RHS.pVal[i]; 432 return clearUnusedBits(); 433 } 434 435 APInt APInt::AndSlowCase(const APInt& RHS) const { 436 unsigned numWords = getNumWords(); 437 uint64_t* val = getMemory(numWords); 438 for (unsigned i = 0; i < numWords; ++i) 439 val[i] = pVal[i] & RHS.pVal[i]; 440 return APInt(val, getBitWidth()); 441 } 442 443 APInt APInt::OrSlowCase(const APInt& RHS) const { 444 unsigned numWords = getNumWords(); 445 uint64_t *val = getMemory(numWords); 446 for (unsigned i = 0; i < numWords; ++i) 447 val[i] = pVal[i] | RHS.pVal[i]; 448 return APInt(val, getBitWidth()); 449 } 450 451 APInt APInt::XorSlowCase(const APInt& RHS) const { 452 unsigned numWords = getNumWords(); 453 uint64_t *val = getMemory(numWords); 454 for (unsigned i = 0; i < numWords; ++i) 455 val[i] = pVal[i] ^ RHS.pVal[i]; 456 457 APInt Result(val, getBitWidth()); 458 // 0^0==1 so clear the high bits in case they got set. 459 Result.clearUnusedBits(); 460 return Result; 461 } 462 463 APInt APInt::operator*(const APInt& RHS) const { 464 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 465 if (isSingleWord()) 466 return APInt(BitWidth, VAL * RHS.VAL); 467 APInt Result(*this); 468 Result *= RHS; 469 return Result; 470 } 471 472 APInt APInt::operator+(const APInt& RHS) const { 473 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 474 if (isSingleWord()) 475 return APInt(BitWidth, VAL + RHS.VAL); 476 APInt Result(BitWidth, 0); 477 add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 478 Result.clearUnusedBits(); 479 return Result; 480 } 481 482 APInt APInt::operator-(const APInt& RHS) const { 483 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 484 if (isSingleWord()) 485 return APInt(BitWidth, VAL - RHS.VAL); 486 APInt Result(BitWidth, 0); 487 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 488 Result.clearUnusedBits(); 489 return Result; 490 } 491 492 bool APInt::EqualSlowCase(const APInt& RHS) const { 493 return std::equal(pVal, pVal + getNumWords(), RHS.pVal); 494 } 495 496 bool APInt::EqualSlowCase(uint64_t Val) const { 497 unsigned n = getActiveBits(); 498 if (n <= APINT_BITS_PER_WORD) 499 return pVal[0] == Val; 500 else 501 return false; 502 } 503 504 bool APInt::ult(const APInt& RHS) const { 505 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 506 if (isSingleWord()) 507 return VAL < RHS.VAL; 508 509 // Get active bit length of both operands 510 unsigned n1 = getActiveBits(); 511 unsigned n2 = RHS.getActiveBits(); 512 513 // If magnitude of LHS is less than RHS, return true. 514 if (n1 < n2) 515 return true; 516 517 // If magnitude of RHS is greather than LHS, return false. 518 if (n2 < n1) 519 return false; 520 521 // If they bot fit in a word, just compare the low order word 522 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 523 return pVal[0] < RHS.pVal[0]; 524 525 // Otherwise, compare all words 526 unsigned topWord = whichWord(std::max(n1,n2)-1); 527 for (int i = topWord; i >= 0; --i) { 528 if (pVal[i] > RHS.pVal[i]) 529 return false; 530 if (pVal[i] < RHS.pVal[i]) 531 return true; 532 } 533 return false; 534 } 535 536 bool APInt::slt(const APInt& RHS) const { 537 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 538 if (isSingleWord()) { 539 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); 540 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); 541 return lhsSext < rhsSext; 542 } 543 544 APInt lhs(*this); 545 APInt rhs(RHS); 546 bool lhsNeg = isNegative(); 547 bool rhsNeg = rhs.isNegative(); 548 if (lhsNeg) { 549 // Sign bit is set so perform two's complement to make it positive 550 lhs.flipAllBits(); 551 ++lhs; 552 } 553 if (rhsNeg) { 554 // Sign bit is set so perform two's complement to make it positive 555 rhs.flipAllBits(); 556 ++rhs; 557 } 558 559 // Now we have unsigned values to compare so do the comparison if necessary 560 // based on the negativeness of the values. 561 if (lhsNeg) 562 if (rhsNeg) 563 return lhs.ugt(rhs); 564 else 565 return true; 566 else if (rhsNeg) 567 return false; 568 else 569 return lhs.ult(rhs); 570 } 571 572 void APInt::setBit(unsigned bitPosition) { 573 if (isSingleWord()) 574 VAL |= maskBit(bitPosition); 575 else 576 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 577 } 578 579 /// Set the given bit to 0 whose position is given as "bitPosition". 580 /// @brief Set a given bit to 0. 581 void APInt::clearBit(unsigned bitPosition) { 582 if (isSingleWord()) 583 VAL &= ~maskBit(bitPosition); 584 else 585 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 586 } 587 588 /// @brief Toggle every bit to its opposite value. 589 590 /// Toggle a given bit to its opposite value whose position is given 591 /// as "bitPosition". 592 /// @brief Toggles a given bit to its opposite value. 593 void APInt::flipBit(unsigned bitPosition) { 594 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 595 if ((*this)[bitPosition]) clearBit(bitPosition); 596 else setBit(bitPosition); 597 } 598 599 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 600 assert(!str.empty() && "Invalid string length"); 601 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 602 radix == 36) && 603 "Radix should be 2, 8, 10, 16, or 36!"); 604 605 size_t slen = str.size(); 606 607 // Each computation below needs to know if it's negative. 608 StringRef::iterator p = str.begin(); 609 unsigned isNegative = *p == '-'; 610 if (*p == '-' || *p == '+') { 611 p++; 612 slen--; 613 assert(slen && "String is only a sign, needs a value."); 614 } 615 616 // For radixes of power-of-two values, the bits required is accurately and 617 // easily computed 618 if (radix == 2) 619 return slen + isNegative; 620 if (radix == 8) 621 return slen * 3 + isNegative; 622 if (radix == 16) 623 return slen * 4 + isNegative; 624 625 // FIXME: base 36 626 627 // This is grossly inefficient but accurate. We could probably do something 628 // with a computation of roughly slen*64/20 and then adjust by the value of 629 // the first few digits. But, I'm not sure how accurate that could be. 630 631 // Compute a sufficient number of bits that is always large enough but might 632 // be too large. This avoids the assertion in the constructor. This 633 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 634 // bits in that case. 635 unsigned sufficient 636 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 637 : (slen == 1 ? 7 : slen * 16/3); 638 639 // Convert to the actual binary value. 640 APInt tmp(sufficient, StringRef(p, slen), radix); 641 642 // Compute how many bits are required. If the log is infinite, assume we need 643 // just bit. 644 unsigned log = tmp.logBase2(); 645 if (log == (unsigned)-1) { 646 return isNegative + 1; 647 } else { 648 return isNegative + log + 1; 649 } 650 } 651 652 hash_code llvm::hash_value(const APInt &Arg) { 653 if (Arg.isSingleWord()) 654 return hash_combine(Arg.VAL); 655 656 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); 657 } 658 659 bool APInt::isSplat(unsigned SplatSizeInBits) const { 660 assert(getBitWidth() % SplatSizeInBits == 0 && 661 "SplatSizeInBits must divide width!"); 662 // We can check that all parts of an integer are equal by making use of a 663 // little trick: rotate and check if it's still the same value. 664 return *this == rotl(SplatSizeInBits); 665 } 666 667 /// This function returns the high "numBits" bits of this APInt. 668 APInt APInt::getHiBits(unsigned numBits) const { 669 return APIntOps::lshr(*this, BitWidth - numBits); 670 } 671 672 /// This function returns the low "numBits" bits of this APInt. 673 APInt APInt::getLoBits(unsigned numBits) const { 674 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 675 BitWidth - numBits); 676 } 677 678 unsigned APInt::countLeadingZerosSlowCase() const { 679 unsigned Count = 0; 680 for (int i = getNumWords()-1; i >= 0; --i) { 681 integerPart V = pVal[i]; 682 if (V == 0) 683 Count += APINT_BITS_PER_WORD; 684 else { 685 Count += llvm::countLeadingZeros(V); 686 break; 687 } 688 } 689 // Adjust for unused bits in the most significant word (they are zero). 690 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 691 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 692 return Count; 693 } 694 695 unsigned APInt::countLeadingOnes() const { 696 if (isSingleWord()) 697 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); 698 699 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 700 unsigned shift; 701 if (!highWordBits) { 702 highWordBits = APINT_BITS_PER_WORD; 703 shift = 0; 704 } else { 705 shift = APINT_BITS_PER_WORD - highWordBits; 706 } 707 int i = getNumWords() - 1; 708 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift); 709 if (Count == highWordBits) { 710 for (i--; i >= 0; --i) { 711 if (pVal[i] == -1ULL) 712 Count += APINT_BITS_PER_WORD; 713 else { 714 Count += llvm::countLeadingOnes(pVal[i]); 715 break; 716 } 717 } 718 } 719 return Count; 720 } 721 722 unsigned APInt::countTrailingZeros() const { 723 if (isSingleWord()) 724 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); 725 unsigned Count = 0; 726 unsigned i = 0; 727 for (; i < getNumWords() && pVal[i] == 0; ++i) 728 Count += APINT_BITS_PER_WORD; 729 if (i < getNumWords()) 730 Count += llvm::countTrailingZeros(pVal[i]); 731 return std::min(Count, BitWidth); 732 } 733 734 unsigned APInt::countTrailingOnesSlowCase() const { 735 unsigned Count = 0; 736 unsigned i = 0; 737 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 738 Count += APINT_BITS_PER_WORD; 739 if (i < getNumWords()) 740 Count += llvm::countTrailingOnes(pVal[i]); 741 return std::min(Count, BitWidth); 742 } 743 744 unsigned APInt::countPopulationSlowCase() const { 745 unsigned Count = 0; 746 for (unsigned i = 0; i < getNumWords(); ++i) 747 Count += llvm::countPopulation(pVal[i]); 748 return Count; 749 } 750 751 /// Perform a logical right-shift from Src to Dst, which must be equal or 752 /// non-overlapping, of Words words, by Shift, which must be less than 64. 753 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 754 unsigned Shift) { 755 uint64_t Carry = 0; 756 for (int I = Words - 1; I >= 0; --I) { 757 uint64_t Tmp = Src[I]; 758 Dst[I] = (Tmp >> Shift) | Carry; 759 Carry = Tmp << (64 - Shift); 760 } 761 } 762 763 APInt APInt::byteSwap() const { 764 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 765 if (BitWidth == 16) 766 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 767 if (BitWidth == 32) 768 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 769 if (BitWidth == 48) { 770 unsigned Tmp1 = unsigned(VAL >> 16); 771 Tmp1 = ByteSwap_32(Tmp1); 772 uint16_t Tmp2 = uint16_t(VAL); 773 Tmp2 = ByteSwap_16(Tmp2); 774 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 775 } 776 if (BitWidth == 64) 777 return APInt(BitWidth, ByteSwap_64(VAL)); 778 779 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 780 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 781 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 782 if (Result.BitWidth != BitWidth) { 783 lshrNear(Result.pVal, Result.pVal, getNumWords(), 784 Result.BitWidth - BitWidth); 785 Result.BitWidth = BitWidth; 786 } 787 return Result; 788 } 789 790 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 791 const APInt& API2) { 792 APInt A = API1, B = API2; 793 while (!!B) { 794 APInt T = B; 795 B = APIntOps::urem(A, B); 796 A = T; 797 } 798 return A; 799 } 800 801 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 802 union { 803 double D; 804 uint64_t I; 805 } T; 806 T.D = Double; 807 808 // Get the sign bit from the highest order bit 809 bool isNeg = T.I >> 63; 810 811 // Get the 11-bit exponent and adjust for the 1023 bit bias 812 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 813 814 // If the exponent is negative, the value is < 0 so just return 0. 815 if (exp < 0) 816 return APInt(width, 0u); 817 818 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 819 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 820 821 // If the exponent doesn't shift all bits out of the mantissa 822 if (exp < 52) 823 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 824 APInt(width, mantissa >> (52 - exp)); 825 826 // If the client didn't provide enough bits for us to shift the mantissa into 827 // then the result is undefined, just return 0 828 if (width <= exp - 52) 829 return APInt(width, 0); 830 831 // Otherwise, we have to shift the mantissa bits up to the right location 832 APInt Tmp(width, mantissa); 833 Tmp = Tmp.shl((unsigned)exp - 52); 834 return isNeg ? -Tmp : Tmp; 835 } 836 837 /// This function converts this APInt to a double. 838 /// The layout for double is as following (IEEE Standard 754): 839 /// -------------------------------------- 840 /// | Sign Exponent Fraction Bias | 841 /// |-------------------------------------- | 842 /// | 1[63] 11[62-52] 52[51-00] 1023 | 843 /// -------------------------------------- 844 double APInt::roundToDouble(bool isSigned) const { 845 846 // Handle the simple case where the value is contained in one uint64_t. 847 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 848 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 849 if (isSigned) { 850 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); 851 return double(sext); 852 } else 853 return double(getWord(0)); 854 } 855 856 // Determine if the value is negative. 857 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 858 859 // Construct the absolute value if we're negative. 860 APInt Tmp(isNeg ? -(*this) : (*this)); 861 862 // Figure out how many bits we're using. 863 unsigned n = Tmp.getActiveBits(); 864 865 // The exponent (without bias normalization) is just the number of bits 866 // we are using. Note that the sign bit is gone since we constructed the 867 // absolute value. 868 uint64_t exp = n; 869 870 // Return infinity for exponent overflow 871 if (exp > 1023) { 872 if (!isSigned || !isNeg) 873 return std::numeric_limits<double>::infinity(); 874 else 875 return -std::numeric_limits<double>::infinity(); 876 } 877 exp += 1023; // Increment for 1023 bias 878 879 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 880 // extract the high 52 bits from the correct words in pVal. 881 uint64_t mantissa; 882 unsigned hiWord = whichWord(n-1); 883 if (hiWord == 0) { 884 mantissa = Tmp.pVal[0]; 885 if (n > 52) 886 mantissa >>= n - 52; // shift down, we want the top 52 bits. 887 } else { 888 assert(hiWord > 0 && "huh?"); 889 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 890 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 891 mantissa = hibits | lobits; 892 } 893 894 // The leading bit of mantissa is implicit, so get rid of it. 895 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 896 union { 897 double D; 898 uint64_t I; 899 } T; 900 T.I = sign | (exp << 52) | mantissa; 901 return T.D; 902 } 903 904 // Truncate to new width. 905 APInt APInt::trunc(unsigned width) const { 906 assert(width < BitWidth && "Invalid APInt Truncate request"); 907 assert(width && "Can't truncate to 0 bits"); 908 909 if (width <= APINT_BITS_PER_WORD) 910 return APInt(width, getRawData()[0]); 911 912 APInt Result(getMemory(getNumWords(width)), width); 913 914 // Copy full words. 915 unsigned i; 916 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 917 Result.pVal[i] = pVal[i]; 918 919 // Truncate and copy any partial word. 920 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 921 if (bits != 0) 922 Result.pVal[i] = pVal[i] << bits >> bits; 923 924 return Result; 925 } 926 927 // Sign extend to a new width. 928 APInt APInt::sext(unsigned width) const { 929 assert(width > BitWidth && "Invalid APInt SignExtend request"); 930 931 if (width <= APINT_BITS_PER_WORD) { 932 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 933 val = (int64_t)val >> (width - BitWidth); 934 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 935 } 936 937 APInt Result(getMemory(getNumWords(width)), width); 938 939 // Copy full words. 940 unsigned i; 941 uint64_t word = 0; 942 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 943 word = getRawData()[i]; 944 Result.pVal[i] = word; 945 } 946 947 // Read and sign-extend any partial word. 948 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 949 if (bits != 0) 950 word = (int64_t)getRawData()[i] << bits >> bits; 951 else 952 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 953 954 // Write remaining full words. 955 for (; i != width / APINT_BITS_PER_WORD; i++) { 956 Result.pVal[i] = word; 957 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 958 } 959 960 // Write any partial word. 961 bits = (0 - width) % APINT_BITS_PER_WORD; 962 if (bits != 0) 963 Result.pVal[i] = word << bits >> bits; 964 965 return Result; 966 } 967 968 // Zero extend to a new width. 969 APInt APInt::zext(unsigned width) const { 970 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 971 972 if (width <= APINT_BITS_PER_WORD) 973 return APInt(width, VAL); 974 975 APInt Result(getMemory(getNumWords(width)), width); 976 977 // Copy words. 978 unsigned i; 979 for (i = 0; i != getNumWords(); i++) 980 Result.pVal[i] = getRawData()[i]; 981 982 // Zero remaining words. 983 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 984 985 return Result; 986 } 987 988 APInt APInt::zextOrTrunc(unsigned width) const { 989 if (BitWidth < width) 990 return zext(width); 991 if (BitWidth > width) 992 return trunc(width); 993 return *this; 994 } 995 996 APInt APInt::sextOrTrunc(unsigned width) const { 997 if (BitWidth < width) 998 return sext(width); 999 if (BitWidth > width) 1000 return trunc(width); 1001 return *this; 1002 } 1003 1004 APInt APInt::zextOrSelf(unsigned width) const { 1005 if (BitWidth < width) 1006 return zext(width); 1007 return *this; 1008 } 1009 1010 APInt APInt::sextOrSelf(unsigned width) const { 1011 if (BitWidth < width) 1012 return sext(width); 1013 return *this; 1014 } 1015 1016 /// Arithmetic right-shift this APInt by shiftAmt. 1017 /// @brief Arithmetic right-shift function. 1018 APInt APInt::ashr(const APInt &shiftAmt) const { 1019 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1020 } 1021 1022 /// Arithmetic right-shift this APInt by shiftAmt. 1023 /// @brief Arithmetic right-shift function. 1024 APInt APInt::ashr(unsigned shiftAmt) const { 1025 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1026 // Handle a degenerate case 1027 if (shiftAmt == 0) 1028 return *this; 1029 1030 // Handle single word shifts with built-in ashr 1031 if (isSingleWord()) { 1032 if (shiftAmt == BitWidth) 1033 return APInt(BitWidth, 0); // undefined 1034 else { 1035 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; 1036 return APInt(BitWidth, 1037 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); 1038 } 1039 } 1040 1041 // If all the bits were shifted out, the result is, technically, undefined. 1042 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1043 // issues in the algorithm below. 1044 if (shiftAmt == BitWidth) { 1045 if (isNegative()) 1046 return APInt(BitWidth, -1ULL, true); 1047 else 1048 return APInt(BitWidth, 0); 1049 } 1050 1051 // Create some space for the result. 1052 uint64_t * val = new uint64_t[getNumWords()]; 1053 1054 // Compute some values needed by the following shift algorithms 1055 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1056 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1057 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1058 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1059 if (bitsInWord == 0) 1060 bitsInWord = APINT_BITS_PER_WORD; 1061 1062 // If we are shifting whole words, just move whole words 1063 if (wordShift == 0) { 1064 // Move the words containing significant bits 1065 for (unsigned i = 0; i <= breakWord; ++i) 1066 val[i] = pVal[i+offset]; // move whole word 1067 1068 // Adjust the top significant word for sign bit fill, if negative 1069 if (isNegative()) 1070 if (bitsInWord < APINT_BITS_PER_WORD) 1071 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1072 } else { 1073 // Shift the low order words 1074 for (unsigned i = 0; i < breakWord; ++i) { 1075 // This combines the shifted corresponding word with the low bits from 1076 // the next word (shifted into this word's high bits). 1077 val[i] = (pVal[i+offset] >> wordShift) | 1078 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1079 } 1080 1081 // Shift the break word. In this case there are no bits from the next word 1082 // to include in this word. 1083 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1084 1085 // Deal with sign extension in the break word, and possibly the word before 1086 // it. 1087 if (isNegative()) { 1088 if (wordShift > bitsInWord) { 1089 if (breakWord > 0) 1090 val[breakWord-1] |= 1091 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1092 val[breakWord] |= ~0ULL; 1093 } else 1094 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1095 } 1096 } 1097 1098 // Remaining words are 0 or -1, just assign them. 1099 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1100 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1101 val[i] = fillValue; 1102 APInt Result(val, BitWidth); 1103 Result.clearUnusedBits(); 1104 return Result; 1105 } 1106 1107 /// Logical right-shift this APInt by shiftAmt. 1108 /// @brief Logical right-shift function. 1109 APInt APInt::lshr(const APInt &shiftAmt) const { 1110 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1111 } 1112 1113 /// Logical right-shift this APInt by shiftAmt. 1114 /// @brief Logical right-shift function. 1115 APInt APInt::lshr(unsigned shiftAmt) const { 1116 if (isSingleWord()) { 1117 if (shiftAmt >= BitWidth) 1118 return APInt(BitWidth, 0); 1119 else 1120 return APInt(BitWidth, this->VAL >> shiftAmt); 1121 } 1122 1123 // If all the bits were shifted out, the result is 0. This avoids issues 1124 // with shifting by the size of the integer type, which produces undefined 1125 // results. We define these "undefined results" to always be 0. 1126 if (shiftAmt >= BitWidth) 1127 return APInt(BitWidth, 0); 1128 1129 // If none of the bits are shifted out, the result is *this. This avoids 1130 // issues with shifting by the size of the integer type, which produces 1131 // undefined results in the code below. This is also an optimization. 1132 if (shiftAmt == 0) 1133 return *this; 1134 1135 // Create some space for the result. 1136 uint64_t * val = new uint64_t[getNumWords()]; 1137 1138 // If we are shifting less than a word, compute the shift with a simple carry 1139 if (shiftAmt < APINT_BITS_PER_WORD) { 1140 lshrNear(val, pVal, getNumWords(), shiftAmt); 1141 APInt Result(val, BitWidth); 1142 Result.clearUnusedBits(); 1143 return Result; 1144 } 1145 1146 // Compute some values needed by the remaining shift algorithms 1147 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1148 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1149 1150 // If we are shifting whole words, just move whole words 1151 if (wordShift == 0) { 1152 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1153 val[i] = pVal[i+offset]; 1154 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1155 val[i] = 0; 1156 APInt Result(val, BitWidth); 1157 Result.clearUnusedBits(); 1158 return Result; 1159 } 1160 1161 // Shift the low order words 1162 unsigned breakWord = getNumWords() - offset -1; 1163 for (unsigned i = 0; i < breakWord; ++i) 1164 val[i] = (pVal[i+offset] >> wordShift) | 1165 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1166 // Shift the break word. 1167 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1168 1169 // Remaining words are 0 1170 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1171 val[i] = 0; 1172 APInt Result(val, BitWidth); 1173 Result.clearUnusedBits(); 1174 return Result; 1175 } 1176 1177 /// Left-shift this APInt by shiftAmt. 1178 /// @brief Left-shift function. 1179 APInt APInt::shl(const APInt &shiftAmt) const { 1180 // It's undefined behavior in C to shift by BitWidth or greater. 1181 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1182 } 1183 1184 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1185 // If all the bits were shifted out, the result is 0. This avoids issues 1186 // with shifting by the size of the integer type, which produces undefined 1187 // results. We define these "undefined results" to always be 0. 1188 if (shiftAmt == BitWidth) 1189 return APInt(BitWidth, 0); 1190 1191 // If none of the bits are shifted out, the result is *this. This avoids a 1192 // lshr by the words size in the loop below which can produce incorrect 1193 // results. It also avoids the expensive computation below for a common case. 1194 if (shiftAmt == 0) 1195 return *this; 1196 1197 // Create some space for the result. 1198 uint64_t * val = new uint64_t[getNumWords()]; 1199 1200 // If we are shifting less than a word, do it the easy way 1201 if (shiftAmt < APINT_BITS_PER_WORD) { 1202 uint64_t carry = 0; 1203 for (unsigned i = 0; i < getNumWords(); i++) { 1204 val[i] = pVal[i] << shiftAmt | carry; 1205 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1206 } 1207 APInt Result(val, BitWidth); 1208 Result.clearUnusedBits(); 1209 return Result; 1210 } 1211 1212 // Compute some values needed by the remaining shift algorithms 1213 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1214 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1215 1216 // If we are shifting whole words, just move whole words 1217 if (wordShift == 0) { 1218 for (unsigned i = 0; i < offset; i++) 1219 val[i] = 0; 1220 for (unsigned i = offset; i < getNumWords(); i++) 1221 val[i] = pVal[i-offset]; 1222 APInt Result(val, BitWidth); 1223 Result.clearUnusedBits(); 1224 return Result; 1225 } 1226 1227 // Copy whole words from this to Result. 1228 unsigned i = getNumWords() - 1; 1229 for (; i > offset; --i) 1230 val[i] = pVal[i-offset] << wordShift | 1231 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1232 val[offset] = pVal[0] << wordShift; 1233 for (i = 0; i < offset; ++i) 1234 val[i] = 0; 1235 APInt Result(val, BitWidth); 1236 Result.clearUnusedBits(); 1237 return Result; 1238 } 1239 1240 APInt APInt::rotl(const APInt &rotateAmt) const { 1241 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1242 } 1243 1244 APInt APInt::rotl(unsigned rotateAmt) const { 1245 rotateAmt %= BitWidth; 1246 if (rotateAmt == 0) 1247 return *this; 1248 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1249 } 1250 1251 APInt APInt::rotr(const APInt &rotateAmt) const { 1252 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1253 } 1254 1255 APInt APInt::rotr(unsigned rotateAmt) const { 1256 rotateAmt %= BitWidth; 1257 if (rotateAmt == 0) 1258 return *this; 1259 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1260 } 1261 1262 // Square Root - this method computes and returns the square root of "this". 1263 // Three mechanisms are used for computation. For small values (<= 5 bits), 1264 // a table lookup is done. This gets some performance for common cases. For 1265 // values using less than 52 bits, the value is converted to double and then 1266 // the libc sqrt function is called. The result is rounded and then converted 1267 // back to a uint64_t which is then used to construct the result. Finally, 1268 // the Babylonian method for computing square roots is used. 1269 APInt APInt::sqrt() const { 1270 1271 // Determine the magnitude of the value. 1272 unsigned magnitude = getActiveBits(); 1273 1274 // Use a fast table for some small values. This also gets rid of some 1275 // rounding errors in libc sqrt for small values. 1276 if (magnitude <= 5) { 1277 static const uint8_t results[32] = { 1278 /* 0 */ 0, 1279 /* 1- 2 */ 1, 1, 1280 /* 3- 6 */ 2, 2, 2, 2, 1281 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1282 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1283 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1284 /* 31 */ 6 1285 }; 1286 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1287 } 1288 1289 // If the magnitude of the value fits in less than 52 bits (the precision of 1290 // an IEEE double precision floating point value), then we can use the 1291 // libc sqrt function which will probably use a hardware sqrt computation. 1292 // This should be faster than the algorithm below. 1293 if (magnitude < 52) { 1294 return APInt(BitWidth, 1295 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1296 } 1297 1298 // Okay, all the short cuts are exhausted. We must compute it. The following 1299 // is a classical Babylonian method for computing the square root. This code 1300 // was adapted to APInt from a wikipedia article on such computations. 1301 // See http://www.wikipedia.org/ and go to the page named 1302 // Calculate_an_integer_square_root. 1303 unsigned nbits = BitWidth, i = 4; 1304 APInt testy(BitWidth, 16); 1305 APInt x_old(BitWidth, 1); 1306 APInt x_new(BitWidth, 0); 1307 APInt two(BitWidth, 2); 1308 1309 // Select a good starting value using binary logarithms. 1310 for (;; i += 2, testy = testy.shl(2)) 1311 if (i >= nbits || this->ule(testy)) { 1312 x_old = x_old.shl(i / 2); 1313 break; 1314 } 1315 1316 // Use the Babylonian method to arrive at the integer square root: 1317 for (;;) { 1318 x_new = (this->udiv(x_old) + x_old).udiv(two); 1319 if (x_old.ule(x_new)) 1320 break; 1321 x_old = x_new; 1322 } 1323 1324 // Make sure we return the closest approximation 1325 // NOTE: The rounding calculation below is correct. It will produce an 1326 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1327 // determined to be a rounding issue with pari/gp as it begins to use a 1328 // floating point representation after 192 bits. There are no discrepancies 1329 // between this algorithm and pari/gp for bit widths < 192 bits. 1330 APInt square(x_old * x_old); 1331 APInt nextSquare((x_old + 1) * (x_old +1)); 1332 if (this->ult(square)) 1333 return x_old; 1334 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1335 APInt midpoint((nextSquare - square).udiv(two)); 1336 APInt offset(*this - square); 1337 if (offset.ult(midpoint)) 1338 return x_old; 1339 return x_old + 1; 1340 } 1341 1342 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1343 /// iterative extended Euclidean algorithm is used to solve for this value, 1344 /// however we simplify it to speed up calculating only the inverse, and take 1345 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1346 /// (potentially large) APInts around. 1347 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1348 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1349 1350 // Using the properties listed at the following web page (accessed 06/21/08): 1351 // http://www.numbertheory.org/php/euclid.html 1352 // (especially the properties numbered 3, 4 and 9) it can be proved that 1353 // BitWidth bits suffice for all the computations in the algorithm implemented 1354 // below. More precisely, this number of bits suffice if the multiplicative 1355 // inverse exists, but may not suffice for the general extended Euclidean 1356 // algorithm. 1357 1358 APInt r[2] = { modulo, *this }; 1359 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1360 APInt q(BitWidth, 0); 1361 1362 unsigned i; 1363 for (i = 0; r[i^1] != 0; i ^= 1) { 1364 // An overview of the math without the confusing bit-flipping: 1365 // q = r[i-2] / r[i-1] 1366 // r[i] = r[i-2] % r[i-1] 1367 // t[i] = t[i-2] - t[i-1] * q 1368 udivrem(r[i], r[i^1], q, r[i]); 1369 t[i] -= t[i^1] * q; 1370 } 1371 1372 // If this APInt and the modulo are not coprime, there is no multiplicative 1373 // inverse, so return 0. We check this by looking at the next-to-last 1374 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1375 // algorithm. 1376 if (r[i] != 1) 1377 return APInt(BitWidth, 0); 1378 1379 // The next-to-last t is the multiplicative inverse. However, we are 1380 // interested in a positive inverse. Calcuate a positive one from a negative 1381 // one if necessary. A simple addition of the modulo suffices because 1382 // abs(t[i]) is known to be less than *this/2 (see the link above). 1383 return t[i].isNegative() ? t[i] + modulo : t[i]; 1384 } 1385 1386 /// Calculate the magic numbers required to implement a signed integer division 1387 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1388 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1389 /// Warren, Jr., chapter 10. 1390 APInt::ms APInt::magic() const { 1391 const APInt& d = *this; 1392 unsigned p; 1393 APInt ad, anc, delta, q1, r1, q2, r2, t; 1394 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1395 struct ms mag; 1396 1397 ad = d.abs(); 1398 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1399 anc = t - 1 - t.urem(ad); // absolute value of nc 1400 p = d.getBitWidth() - 1; // initialize p 1401 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1402 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1403 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1404 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1405 do { 1406 p = p + 1; 1407 q1 = q1<<1; // update q1 = 2p/abs(nc) 1408 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1409 if (r1.uge(anc)) { // must be unsigned comparison 1410 q1 = q1 + 1; 1411 r1 = r1 - anc; 1412 } 1413 q2 = q2<<1; // update q2 = 2p/abs(d) 1414 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1415 if (r2.uge(ad)) { // must be unsigned comparison 1416 q2 = q2 + 1; 1417 r2 = r2 - ad; 1418 } 1419 delta = ad - r2; 1420 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1421 1422 mag.m = q2 + 1; 1423 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1424 mag.s = p - d.getBitWidth(); // resulting shift 1425 return mag; 1426 } 1427 1428 /// Calculate the magic numbers required to implement an unsigned integer 1429 /// division by a constant as a sequence of multiplies, adds and shifts. 1430 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1431 /// S. Warren, Jr., chapter 10. 1432 /// LeadingZeros can be used to simplify the calculation if the upper bits 1433 /// of the divided value are known zero. 1434 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1435 const APInt& d = *this; 1436 unsigned p; 1437 APInt nc, delta, q1, r1, q2, r2; 1438 struct mu magu; 1439 magu.a = 0; // initialize "add" indicator 1440 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1441 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1442 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1443 1444 nc = allOnes - (allOnes - d).urem(d); 1445 p = d.getBitWidth() - 1; // initialize p 1446 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1447 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1448 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1449 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1450 do { 1451 p = p + 1; 1452 if (r1.uge(nc - r1)) { 1453 q1 = q1 + q1 + 1; // update q1 1454 r1 = r1 + r1 - nc; // update r1 1455 } 1456 else { 1457 q1 = q1+q1; // update q1 1458 r1 = r1+r1; // update r1 1459 } 1460 if ((r2 + 1).uge(d - r2)) { 1461 if (q2.uge(signedMax)) magu.a = 1; 1462 q2 = q2+q2 + 1; // update q2 1463 r2 = r2+r2 + 1 - d; // update r2 1464 } 1465 else { 1466 if (q2.uge(signedMin)) magu.a = 1; 1467 q2 = q2+q2; // update q2 1468 r2 = r2+r2 + 1; // update r2 1469 } 1470 delta = d - 1 - r2; 1471 } while (p < d.getBitWidth()*2 && 1472 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1473 magu.m = q2 + 1; // resulting magic number 1474 magu.s = p - d.getBitWidth(); // resulting shift 1475 return magu; 1476 } 1477 1478 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1479 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1480 /// variables here have the same names as in the algorithm. Comments explain 1481 /// the algorithm and any deviation from it. 1482 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1483 unsigned m, unsigned n) { 1484 assert(u && "Must provide dividend"); 1485 assert(v && "Must provide divisor"); 1486 assert(q && "Must provide quotient"); 1487 assert(u != v && u != q && v != q && "Must use different memory"); 1488 assert(n>1 && "n must be > 1"); 1489 1490 // b denotes the base of the number system. In our case b is 2^32. 1491 LLVM_CONSTEXPR uint64_t b = uint64_t(1) << 32; 1492 1493 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1494 DEBUG(dbgs() << "KnuthDiv: original:"); 1495 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1496 DEBUG(dbgs() << " by"); 1497 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1498 DEBUG(dbgs() << '\n'); 1499 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1500 // u and v by d. Note that we have taken Knuth's advice here to use a power 1501 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1502 // 2 allows us to shift instead of multiply and it is easy to determine the 1503 // shift amount from the leading zeros. We are basically normalizing the u 1504 // and v so that its high bits are shifted to the top of v's range without 1505 // overflow. Note that this can require an extra word in u so that u must 1506 // be of length m+n+1. 1507 unsigned shift = countLeadingZeros(v[n-1]); 1508 unsigned v_carry = 0; 1509 unsigned u_carry = 0; 1510 if (shift) { 1511 for (unsigned i = 0; i < m+n; ++i) { 1512 unsigned u_tmp = u[i] >> (32 - shift); 1513 u[i] = (u[i] << shift) | u_carry; 1514 u_carry = u_tmp; 1515 } 1516 for (unsigned i = 0; i < n; ++i) { 1517 unsigned v_tmp = v[i] >> (32 - shift); 1518 v[i] = (v[i] << shift) | v_carry; 1519 v_carry = v_tmp; 1520 } 1521 } 1522 u[m+n] = u_carry; 1523 1524 DEBUG(dbgs() << "KnuthDiv: normal:"); 1525 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1526 DEBUG(dbgs() << " by"); 1527 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1528 DEBUG(dbgs() << '\n'); 1529 1530 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1531 int j = m; 1532 do { 1533 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1534 // D3. [Calculate q'.]. 1535 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1536 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1537 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1538 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1539 // on v[n-2] determines at high speed most of the cases in which the trial 1540 // value qp is one too large, and it eliminates all cases where qp is two 1541 // too large. 1542 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1543 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1544 uint64_t qp = dividend / v[n-1]; 1545 uint64_t rp = dividend % v[n-1]; 1546 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1547 qp--; 1548 rp += v[n-1]; 1549 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1550 qp--; 1551 } 1552 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1553 1554 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1555 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1556 // consists of a simple multiplication by a one-place number, combined with 1557 // a subtraction. 1558 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1559 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1560 // true value plus b**(n+1), namely as the b's complement of 1561 // the true value, and a "borrow" to the left should be remembered. 1562 int64_t borrow = 0; 1563 for (unsigned i = 0; i < n; ++i) { 1564 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1565 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; 1566 u[j+i] = (unsigned)subres; 1567 borrow = (p >> 32) - (subres >> 32); 1568 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] 1569 << ", borrow = " << borrow << '\n'); 1570 } 1571 bool isNeg = u[j+n] < borrow; 1572 u[j+n] -= (unsigned)borrow; 1573 1574 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1575 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1576 DEBUG(dbgs() << '\n'); 1577 1578 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1579 // negative, go to step D6; otherwise go on to step D7. 1580 q[j] = (unsigned)qp; 1581 if (isNeg) { 1582 // D6. [Add back]. The probability that this step is necessary is very 1583 // small, on the order of only 2/b. Make sure that test data accounts for 1584 // this possibility. Decrease q[j] by 1 1585 q[j]--; 1586 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1587 // A carry will occur to the left of u[j+n], and it should be ignored 1588 // since it cancels with the borrow that occurred in D4. 1589 bool carry = false; 1590 for (unsigned i = 0; i < n; i++) { 1591 unsigned limit = std::min(u[j+i],v[i]); 1592 u[j+i] += v[i] + carry; 1593 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1594 } 1595 u[j+n] += carry; 1596 } 1597 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1598 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1599 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1600 1601 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1602 } while (--j >= 0); 1603 1604 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1605 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1606 DEBUG(dbgs() << '\n'); 1607 1608 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1609 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1610 // compute the remainder (urem uses this). 1611 if (r) { 1612 // The value d is expressed by the "shift" value above since we avoided 1613 // multiplication by d by using a shift left. So, all we have to do is 1614 // shift right here. In order to mak 1615 if (shift) { 1616 unsigned carry = 0; 1617 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1618 for (int i = n-1; i >= 0; i--) { 1619 r[i] = (u[i] >> shift) | carry; 1620 carry = u[i] << (32 - shift); 1621 DEBUG(dbgs() << " " << r[i]); 1622 } 1623 } else { 1624 for (int i = n-1; i >= 0; i--) { 1625 r[i] = u[i]; 1626 DEBUG(dbgs() << " " << r[i]); 1627 } 1628 } 1629 DEBUG(dbgs() << '\n'); 1630 } 1631 DEBUG(dbgs() << '\n'); 1632 } 1633 1634 void APInt::divide(const APInt LHS, unsigned lhsWords, 1635 const APInt &RHS, unsigned rhsWords, 1636 APInt *Quotient, APInt *Remainder) 1637 { 1638 assert(lhsWords >= rhsWords && "Fractional result"); 1639 1640 // First, compose the values into an array of 32-bit words instead of 1641 // 64-bit words. This is a necessity of both the "short division" algorithm 1642 // and the Knuth "classical algorithm" which requires there to be native 1643 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1644 // can't use 64-bit operands here because we don't have native results of 1645 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1646 // work on large-endian machines. 1647 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1648 unsigned n = rhsWords * 2; 1649 unsigned m = (lhsWords * 2) - n; 1650 1651 // Allocate space for the temporary values we need either on the stack, if 1652 // it will fit, or on the heap if it won't. 1653 unsigned SPACE[128]; 1654 unsigned *U = nullptr; 1655 unsigned *V = nullptr; 1656 unsigned *Q = nullptr; 1657 unsigned *R = nullptr; 1658 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1659 U = &SPACE[0]; 1660 V = &SPACE[m+n+1]; 1661 Q = &SPACE[(m+n+1) + n]; 1662 if (Remainder) 1663 R = &SPACE[(m+n+1) + n + (m+n)]; 1664 } else { 1665 U = new unsigned[m + n + 1]; 1666 V = new unsigned[n]; 1667 Q = new unsigned[m+n]; 1668 if (Remainder) 1669 R = new unsigned[n]; 1670 } 1671 1672 // Initialize the dividend 1673 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1674 for (unsigned i = 0; i < lhsWords; ++i) { 1675 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1676 U[i * 2] = (unsigned)(tmp & mask); 1677 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1678 } 1679 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1680 1681 // Initialize the divisor 1682 memset(V, 0, (n)*sizeof(unsigned)); 1683 for (unsigned i = 0; i < rhsWords; ++i) { 1684 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1685 V[i * 2] = (unsigned)(tmp & mask); 1686 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1687 } 1688 1689 // initialize the quotient and remainder 1690 memset(Q, 0, (m+n) * sizeof(unsigned)); 1691 if (Remainder) 1692 memset(R, 0, n * sizeof(unsigned)); 1693 1694 // Now, adjust m and n for the Knuth division. n is the number of words in 1695 // the divisor. m is the number of words by which the dividend exceeds the 1696 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1697 // contain any zero words or the Knuth algorithm fails. 1698 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1699 n--; 1700 m++; 1701 } 1702 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1703 m--; 1704 1705 // If we're left with only a single word for the divisor, Knuth doesn't work 1706 // so we implement the short division algorithm here. This is much simpler 1707 // and faster because we are certain that we can divide a 64-bit quantity 1708 // by a 32-bit quantity at hardware speed and short division is simply a 1709 // series of such operations. This is just like doing short division but we 1710 // are using base 2^32 instead of base 10. 1711 assert(n != 0 && "Divide by zero?"); 1712 if (n == 1) { 1713 unsigned divisor = V[0]; 1714 unsigned remainder = 0; 1715 for (int i = m+n-1; i >= 0; i--) { 1716 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1717 if (partial_dividend == 0) { 1718 Q[i] = 0; 1719 remainder = 0; 1720 } else if (partial_dividend < divisor) { 1721 Q[i] = 0; 1722 remainder = (unsigned)partial_dividend; 1723 } else if (partial_dividend == divisor) { 1724 Q[i] = 1; 1725 remainder = 0; 1726 } else { 1727 Q[i] = (unsigned)(partial_dividend / divisor); 1728 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1729 } 1730 } 1731 if (R) 1732 R[0] = remainder; 1733 } else { 1734 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1735 // case n > 1. 1736 KnuthDiv(U, V, Q, R, m, n); 1737 } 1738 1739 // If the caller wants the quotient 1740 if (Quotient) { 1741 // Set up the Quotient value's memory. 1742 if (Quotient->BitWidth != LHS.BitWidth) { 1743 if (Quotient->isSingleWord()) 1744 Quotient->VAL = 0; 1745 else 1746 delete [] Quotient->pVal; 1747 Quotient->BitWidth = LHS.BitWidth; 1748 if (!Quotient->isSingleWord()) 1749 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1750 } else 1751 Quotient->clearAllBits(); 1752 1753 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1754 // order words. 1755 // This case is currently dead as all users of divide() handle trivial cases 1756 // earlier. 1757 if (lhsWords == 1) { 1758 uint64_t tmp = 1759 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1760 if (Quotient->isSingleWord()) 1761 Quotient->VAL = tmp; 1762 else 1763 Quotient->pVal[0] = tmp; 1764 } else { 1765 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1766 for (unsigned i = 0; i < lhsWords; ++i) 1767 Quotient->pVal[i] = 1768 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1769 } 1770 } 1771 1772 // If the caller wants the remainder 1773 if (Remainder) { 1774 // Set up the Remainder value's memory. 1775 if (Remainder->BitWidth != RHS.BitWidth) { 1776 if (Remainder->isSingleWord()) 1777 Remainder->VAL = 0; 1778 else 1779 delete [] Remainder->pVal; 1780 Remainder->BitWidth = RHS.BitWidth; 1781 if (!Remainder->isSingleWord()) 1782 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1783 } else 1784 Remainder->clearAllBits(); 1785 1786 // The remainder is in R. Reconstitute the remainder into Remainder's low 1787 // order words. 1788 if (rhsWords == 1) { 1789 uint64_t tmp = 1790 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1791 if (Remainder->isSingleWord()) 1792 Remainder->VAL = tmp; 1793 else 1794 Remainder->pVal[0] = tmp; 1795 } else { 1796 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1797 for (unsigned i = 0; i < rhsWords; ++i) 1798 Remainder->pVal[i] = 1799 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1800 } 1801 } 1802 1803 // Clean up the memory we allocated. 1804 if (U != &SPACE[0]) { 1805 delete [] U; 1806 delete [] V; 1807 delete [] Q; 1808 delete [] R; 1809 } 1810 } 1811 1812 APInt APInt::udiv(const APInt& RHS) const { 1813 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1814 1815 // First, deal with the easy case 1816 if (isSingleWord()) { 1817 assert(RHS.VAL != 0 && "Divide by zero?"); 1818 return APInt(BitWidth, VAL / RHS.VAL); 1819 } 1820 1821 // Get some facts about the LHS and RHS number of bits and words 1822 unsigned rhsBits = RHS.getActiveBits(); 1823 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1824 assert(rhsWords && "Divided by zero???"); 1825 unsigned lhsBits = this->getActiveBits(); 1826 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1827 1828 // Deal with some degenerate cases 1829 if (!lhsWords) 1830 // 0 / X ===> 0 1831 return APInt(BitWidth, 0); 1832 else if (lhsWords < rhsWords || this->ult(RHS)) { 1833 // X / Y ===> 0, iff X < Y 1834 return APInt(BitWidth, 0); 1835 } else if (*this == RHS) { 1836 // X / X ===> 1 1837 return APInt(BitWidth, 1); 1838 } else if (lhsWords == 1 && rhsWords == 1) { 1839 // All high words are zero, just use native divide 1840 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1841 } 1842 1843 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1844 APInt Quotient(1,0); // to hold result. 1845 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); 1846 return Quotient; 1847 } 1848 1849 APInt APInt::sdiv(const APInt &RHS) const { 1850 if (isNegative()) { 1851 if (RHS.isNegative()) 1852 return (-(*this)).udiv(-RHS); 1853 return -((-(*this)).udiv(RHS)); 1854 } 1855 if (RHS.isNegative()) 1856 return -(this->udiv(-RHS)); 1857 return this->udiv(RHS); 1858 } 1859 1860 APInt APInt::urem(const APInt& RHS) const { 1861 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1862 if (isSingleWord()) { 1863 assert(RHS.VAL != 0 && "Remainder by zero?"); 1864 return APInt(BitWidth, VAL % RHS.VAL); 1865 } 1866 1867 // Get some facts about the LHS 1868 unsigned lhsBits = getActiveBits(); 1869 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1870 1871 // Get some facts about the RHS 1872 unsigned rhsBits = RHS.getActiveBits(); 1873 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1874 assert(rhsWords && "Performing remainder operation by zero ???"); 1875 1876 // Check the degenerate cases 1877 if (lhsWords == 0) { 1878 // 0 % Y ===> 0 1879 return APInt(BitWidth, 0); 1880 } else if (lhsWords < rhsWords || this->ult(RHS)) { 1881 // X % Y ===> X, iff X < Y 1882 return *this; 1883 } else if (*this == RHS) { 1884 // X % X == 0; 1885 return APInt(BitWidth, 0); 1886 } else if (lhsWords == 1) { 1887 // All high words are zero, just use native remainder 1888 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 1889 } 1890 1891 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1892 APInt Remainder(1,0); 1893 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); 1894 return Remainder; 1895 } 1896 1897 APInt APInt::srem(const APInt &RHS) const { 1898 if (isNegative()) { 1899 if (RHS.isNegative()) 1900 return -((-(*this)).urem(-RHS)); 1901 return -((-(*this)).urem(RHS)); 1902 } 1903 if (RHS.isNegative()) 1904 return this->urem(-RHS); 1905 return this->urem(RHS); 1906 } 1907 1908 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1909 APInt &Quotient, APInt &Remainder) { 1910 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1911 1912 // First, deal with the easy case 1913 if (LHS.isSingleWord()) { 1914 assert(RHS.VAL != 0 && "Divide by zero?"); 1915 uint64_t QuotVal = LHS.VAL / RHS.VAL; 1916 uint64_t RemVal = LHS.VAL % RHS.VAL; 1917 Quotient = APInt(LHS.BitWidth, QuotVal); 1918 Remainder = APInt(LHS.BitWidth, RemVal); 1919 return; 1920 } 1921 1922 // Get some size facts about the dividend and divisor 1923 unsigned lhsBits = LHS.getActiveBits(); 1924 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1925 unsigned rhsBits = RHS.getActiveBits(); 1926 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1927 1928 // Check the degenerate cases 1929 if (lhsWords == 0) { 1930 Quotient = 0; // 0 / Y ===> 0 1931 Remainder = 0; // 0 % Y ===> 0 1932 return; 1933 } 1934 1935 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1936 Remainder = LHS; // X % Y ===> X, iff X < Y 1937 Quotient = 0; // X / Y ===> 0, iff X < Y 1938 return; 1939 } 1940 1941 if (LHS == RHS) { 1942 Quotient = 1; // X / X ===> 1 1943 Remainder = 0; // X % X ===> 0; 1944 return; 1945 } 1946 1947 if (lhsWords == 1 && rhsWords == 1) { 1948 // There is only one word to consider so use the native versions. 1949 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 1950 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 1951 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 1952 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 1953 return; 1954 } 1955 1956 // Okay, lets do it the long way 1957 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 1958 } 1959 1960 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1961 APInt &Quotient, APInt &Remainder) { 1962 if (LHS.isNegative()) { 1963 if (RHS.isNegative()) 1964 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1965 else { 1966 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1967 Quotient = -Quotient; 1968 } 1969 Remainder = -Remainder; 1970 } else if (RHS.isNegative()) { 1971 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1972 Quotient = -Quotient; 1973 } else { 1974 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1975 } 1976 } 1977 1978 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1979 APInt Res = *this+RHS; 1980 Overflow = isNonNegative() == RHS.isNonNegative() && 1981 Res.isNonNegative() != isNonNegative(); 1982 return Res; 1983 } 1984 1985 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1986 APInt Res = *this+RHS; 1987 Overflow = Res.ult(RHS); 1988 return Res; 1989 } 1990 1991 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1992 APInt Res = *this - RHS; 1993 Overflow = isNonNegative() != RHS.isNonNegative() && 1994 Res.isNonNegative() != isNonNegative(); 1995 return Res; 1996 } 1997 1998 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1999 APInt Res = *this-RHS; 2000 Overflow = Res.ugt(*this); 2001 return Res; 2002 } 2003 2004 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2005 // MININT/-1 --> overflow. 2006 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2007 return sdiv(RHS); 2008 } 2009 2010 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2011 APInt Res = *this * RHS; 2012 2013 if (*this != 0 && RHS != 0) 2014 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2015 else 2016 Overflow = false; 2017 return Res; 2018 } 2019 2020 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2021 APInt Res = *this * RHS; 2022 2023 if (*this != 0 && RHS != 0) 2024 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2025 else 2026 Overflow = false; 2027 return Res; 2028 } 2029 2030 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 2031 Overflow = ShAmt.uge(getBitWidth()); 2032 if (Overflow) 2033 return APInt(BitWidth, 0); 2034 2035 if (isNonNegative()) // Don't allow sign change. 2036 Overflow = ShAmt.uge(countLeadingZeros()); 2037 else 2038 Overflow = ShAmt.uge(countLeadingOnes()); 2039 2040 return *this << ShAmt; 2041 } 2042 2043 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2044 Overflow = ShAmt.uge(getBitWidth()); 2045 if (Overflow) 2046 return APInt(BitWidth, 0); 2047 2048 Overflow = ShAmt.ugt(countLeadingZeros()); 2049 2050 return *this << ShAmt; 2051 } 2052 2053 2054 2055 2056 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2057 // Check our assumptions here 2058 assert(!str.empty() && "Invalid string length"); 2059 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2060 radix == 36) && 2061 "Radix should be 2, 8, 10, 16, or 36!"); 2062 2063 StringRef::iterator p = str.begin(); 2064 size_t slen = str.size(); 2065 bool isNeg = *p == '-'; 2066 if (*p == '-' || *p == '+') { 2067 p++; 2068 slen--; 2069 assert(slen && "String is only a sign, needs a value."); 2070 } 2071 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2072 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2073 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2074 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2075 "Insufficient bit width"); 2076 2077 // Allocate memory 2078 if (!isSingleWord()) 2079 pVal = getClearedMemory(getNumWords()); 2080 2081 // Figure out if we can shift instead of multiply 2082 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2083 2084 // Set up an APInt for the digit to add outside the loop so we don't 2085 // constantly construct/destruct it. 2086 APInt apdigit(getBitWidth(), 0); 2087 APInt apradix(getBitWidth(), radix); 2088 2089 // Enter digit traversal loop 2090 for (StringRef::iterator e = str.end(); p != e; ++p) { 2091 unsigned digit = getDigit(*p, radix); 2092 assert(digit < radix && "Invalid character in digit string"); 2093 2094 // Shift or multiply the value by the radix 2095 if (slen > 1) { 2096 if (shift) 2097 *this <<= shift; 2098 else 2099 *this *= apradix; 2100 } 2101 2102 // Add in the digit we just interpreted 2103 if (apdigit.isSingleWord()) 2104 apdigit.VAL = digit; 2105 else 2106 apdigit.pVal[0] = digit; 2107 *this += apdigit; 2108 } 2109 // If its negative, put it in two's complement form 2110 if (isNeg) { 2111 --(*this); 2112 this->flipAllBits(); 2113 } 2114 } 2115 2116 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2117 bool Signed, bool formatAsCLiteral) const { 2118 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2119 Radix == 36) && 2120 "Radix should be 2, 8, 10, 16, or 36!"); 2121 2122 const char *Prefix = ""; 2123 if (formatAsCLiteral) { 2124 switch (Radix) { 2125 case 2: 2126 // Binary literals are a non-standard extension added in gcc 4.3: 2127 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2128 Prefix = "0b"; 2129 break; 2130 case 8: 2131 Prefix = "0"; 2132 break; 2133 case 10: 2134 break; // No prefix 2135 case 16: 2136 Prefix = "0x"; 2137 break; 2138 default: 2139 llvm_unreachable("Invalid radix!"); 2140 } 2141 } 2142 2143 // First, check for a zero value and just short circuit the logic below. 2144 if (*this == 0) { 2145 while (*Prefix) { 2146 Str.push_back(*Prefix); 2147 ++Prefix; 2148 }; 2149 Str.push_back('0'); 2150 return; 2151 } 2152 2153 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2154 2155 if (isSingleWord()) { 2156 char Buffer[65]; 2157 char *BufPtr = Buffer+65; 2158 2159 uint64_t N; 2160 if (!Signed) { 2161 N = getZExtValue(); 2162 } else { 2163 int64_t I = getSExtValue(); 2164 if (I >= 0) { 2165 N = I; 2166 } else { 2167 Str.push_back('-'); 2168 N = -(uint64_t)I; 2169 } 2170 } 2171 2172 while (*Prefix) { 2173 Str.push_back(*Prefix); 2174 ++Prefix; 2175 }; 2176 2177 while (N) { 2178 *--BufPtr = Digits[N % Radix]; 2179 N /= Radix; 2180 } 2181 Str.append(BufPtr, Buffer+65); 2182 return; 2183 } 2184 2185 APInt Tmp(*this); 2186 2187 if (Signed && isNegative()) { 2188 // They want to print the signed version and it is a negative value 2189 // Flip the bits and add one to turn it into the equivalent positive 2190 // value and put a '-' in the result. 2191 Tmp.flipAllBits(); 2192 ++Tmp; 2193 Str.push_back('-'); 2194 } 2195 2196 while (*Prefix) { 2197 Str.push_back(*Prefix); 2198 ++Prefix; 2199 }; 2200 2201 // We insert the digits backward, then reverse them to get the right order. 2202 unsigned StartDig = Str.size(); 2203 2204 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2205 // because the number of bits per digit (1, 3 and 4 respectively) divides 2206 // equaly. We just shift until the value is zero. 2207 if (Radix == 2 || Radix == 8 || Radix == 16) { 2208 // Just shift tmp right for each digit width until it becomes zero 2209 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2210 unsigned MaskAmt = Radix - 1; 2211 2212 while (Tmp != 0) { 2213 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2214 Str.push_back(Digits[Digit]); 2215 Tmp = Tmp.lshr(ShiftAmt); 2216 } 2217 } else { 2218 APInt divisor(Radix == 10? 4 : 8, Radix); 2219 while (Tmp != 0) { 2220 APInt APdigit(1, 0); 2221 APInt tmp2(Tmp.getBitWidth(), 0); 2222 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2223 &APdigit); 2224 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2225 assert(Digit < Radix && "divide failed"); 2226 Str.push_back(Digits[Digit]); 2227 Tmp = tmp2; 2228 } 2229 } 2230 2231 // Reverse the digits before returning. 2232 std::reverse(Str.begin()+StartDig, Str.end()); 2233 } 2234 2235 /// Returns the APInt as a std::string. Note that this is an inefficient method. 2236 /// It is better to pass in a SmallVector/SmallString to the methods above. 2237 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2238 SmallString<40> S; 2239 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2240 return S.str(); 2241 } 2242 2243 2244 LLVM_DUMP_METHOD void APInt::dump() const { 2245 SmallString<40> S, U; 2246 this->toStringUnsigned(U); 2247 this->toStringSigned(S); 2248 dbgs() << "APInt(" << BitWidth << "b, " 2249 << U << "u " << S << "s)"; 2250 } 2251 2252 void APInt::print(raw_ostream &OS, bool isSigned) const { 2253 SmallString<40> S; 2254 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2255 OS << S; 2256 } 2257 2258 // This implements a variety of operations on a representation of 2259 // arbitrary precision, two's-complement, bignum integer values. 2260 2261 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2262 // and unrestricting assumption. 2263 static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!"); 2264 2265 /* Some handy functions local to this file. */ 2266 namespace { 2267 2268 /* Returns the integer part with the least significant BITS set. 2269 BITS cannot be zero. */ 2270 static inline integerPart 2271 lowBitMask(unsigned int bits) 2272 { 2273 assert(bits != 0 && bits <= integerPartWidth); 2274 2275 return ~(integerPart) 0 >> (integerPartWidth - bits); 2276 } 2277 2278 /* Returns the value of the lower half of PART. */ 2279 static inline integerPart 2280 lowHalf(integerPart part) 2281 { 2282 return part & lowBitMask(integerPartWidth / 2); 2283 } 2284 2285 /* Returns the value of the upper half of PART. */ 2286 static inline integerPart 2287 highHalf(integerPart part) 2288 { 2289 return part >> (integerPartWidth / 2); 2290 } 2291 2292 /* Returns the bit number of the most significant set bit of a part. 2293 If the input number has no bits set -1U is returned. */ 2294 static unsigned int 2295 partMSB(integerPart value) 2296 { 2297 return findLastSet(value, ZB_Max); 2298 } 2299 2300 /* Returns the bit number of the least significant set bit of a 2301 part. If the input number has no bits set -1U is returned. */ 2302 static unsigned int 2303 partLSB(integerPart value) 2304 { 2305 return findFirstSet(value, ZB_Max); 2306 } 2307 } 2308 2309 /* Sets the least significant part of a bignum to the input value, and 2310 zeroes out higher parts. */ 2311 void 2312 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2313 { 2314 unsigned int i; 2315 2316 assert(parts > 0); 2317 2318 dst[0] = part; 2319 for (i = 1; i < parts; i++) 2320 dst[i] = 0; 2321 } 2322 2323 /* Assign one bignum to another. */ 2324 void 2325 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2326 { 2327 unsigned int i; 2328 2329 for (i = 0; i < parts; i++) 2330 dst[i] = src[i]; 2331 } 2332 2333 /* Returns true if a bignum is zero, false otherwise. */ 2334 bool 2335 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2336 { 2337 unsigned int i; 2338 2339 for (i = 0; i < parts; i++) 2340 if (src[i]) 2341 return false; 2342 2343 return true; 2344 } 2345 2346 /* Extract the given bit of a bignum; returns 0 or 1. */ 2347 int 2348 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2349 { 2350 return (parts[bit / integerPartWidth] & 2351 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2352 } 2353 2354 /* Set the given bit of a bignum. */ 2355 void 2356 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2357 { 2358 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2359 } 2360 2361 /* Clears the given bit of a bignum. */ 2362 void 2363 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2364 { 2365 parts[bit / integerPartWidth] &= 2366 ~((integerPart) 1 << (bit % integerPartWidth)); 2367 } 2368 2369 /* Returns the bit number of the least significant set bit of a 2370 number. If the input number has no bits set -1U is returned. */ 2371 unsigned int 2372 APInt::tcLSB(const integerPart *parts, unsigned int n) 2373 { 2374 unsigned int i, lsb; 2375 2376 for (i = 0; i < n; i++) { 2377 if (parts[i] != 0) { 2378 lsb = partLSB(parts[i]); 2379 2380 return lsb + i * integerPartWidth; 2381 } 2382 } 2383 2384 return -1U; 2385 } 2386 2387 /* Returns the bit number of the most significant set bit of a number. 2388 If the input number has no bits set -1U is returned. */ 2389 unsigned int 2390 APInt::tcMSB(const integerPart *parts, unsigned int n) 2391 { 2392 unsigned int msb; 2393 2394 do { 2395 --n; 2396 2397 if (parts[n] != 0) { 2398 msb = partMSB(parts[n]); 2399 2400 return msb + n * integerPartWidth; 2401 } 2402 } while (n); 2403 2404 return -1U; 2405 } 2406 2407 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2408 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2409 the least significant bit of DST. All high bits above srcBITS in 2410 DST are zero-filled. */ 2411 void 2412 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2413 unsigned int srcBits, unsigned int srcLSB) 2414 { 2415 unsigned int firstSrcPart, dstParts, shift, n; 2416 2417 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2418 assert(dstParts <= dstCount); 2419 2420 firstSrcPart = srcLSB / integerPartWidth; 2421 tcAssign (dst, src + firstSrcPart, dstParts); 2422 2423 shift = srcLSB % integerPartWidth; 2424 tcShiftRight (dst, dstParts, shift); 2425 2426 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2427 in DST. If this is less that srcBits, append the rest, else 2428 clear the high bits. */ 2429 n = dstParts * integerPartWidth - shift; 2430 if (n < srcBits) { 2431 integerPart mask = lowBitMask (srcBits - n); 2432 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2433 << n % integerPartWidth); 2434 } else if (n > srcBits) { 2435 if (srcBits % integerPartWidth) 2436 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2437 } 2438 2439 /* Clear high parts. */ 2440 while (dstParts < dstCount) 2441 dst[dstParts++] = 0; 2442 } 2443 2444 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2445 integerPart 2446 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2447 integerPart c, unsigned int parts) 2448 { 2449 unsigned int i; 2450 2451 assert(c <= 1); 2452 2453 for (i = 0; i < parts; i++) { 2454 integerPart l; 2455 2456 l = dst[i]; 2457 if (c) { 2458 dst[i] += rhs[i] + 1; 2459 c = (dst[i] <= l); 2460 } else { 2461 dst[i] += rhs[i]; 2462 c = (dst[i] < l); 2463 } 2464 } 2465 2466 return c; 2467 } 2468 2469 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2470 integerPart 2471 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2472 integerPart c, unsigned int parts) 2473 { 2474 unsigned int i; 2475 2476 assert(c <= 1); 2477 2478 for (i = 0; i < parts; i++) { 2479 integerPart l; 2480 2481 l = dst[i]; 2482 if (c) { 2483 dst[i] -= rhs[i] + 1; 2484 c = (dst[i] >= l); 2485 } else { 2486 dst[i] -= rhs[i]; 2487 c = (dst[i] > l); 2488 } 2489 } 2490 2491 return c; 2492 } 2493 2494 /* Negate a bignum in-place. */ 2495 void 2496 APInt::tcNegate(integerPart *dst, unsigned int parts) 2497 { 2498 tcComplement(dst, parts); 2499 tcIncrement(dst, parts); 2500 } 2501 2502 /* DST += SRC * MULTIPLIER + CARRY if add is true 2503 DST = SRC * MULTIPLIER + CARRY if add is false 2504 2505 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2506 they must start at the same point, i.e. DST == SRC. 2507 2508 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2509 returned. Otherwise DST is filled with the least significant 2510 DSTPARTS parts of the result, and if all of the omitted higher 2511 parts were zero return zero, otherwise overflow occurred and 2512 return one. */ 2513 int 2514 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2515 integerPart multiplier, integerPart carry, 2516 unsigned int srcParts, unsigned int dstParts, 2517 bool add) 2518 { 2519 unsigned int i, n; 2520 2521 /* Otherwise our writes of DST kill our later reads of SRC. */ 2522 assert(dst <= src || dst >= src + srcParts); 2523 assert(dstParts <= srcParts + 1); 2524 2525 /* N loops; minimum of dstParts and srcParts. */ 2526 n = dstParts < srcParts ? dstParts: srcParts; 2527 2528 for (i = 0; i < n; i++) { 2529 integerPart low, mid, high, srcPart; 2530 2531 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2532 2533 This cannot overflow, because 2534 2535 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2536 2537 which is less than n^2. */ 2538 2539 srcPart = src[i]; 2540 2541 if (multiplier == 0 || srcPart == 0) { 2542 low = carry; 2543 high = 0; 2544 } else { 2545 low = lowHalf(srcPart) * lowHalf(multiplier); 2546 high = highHalf(srcPart) * highHalf(multiplier); 2547 2548 mid = lowHalf(srcPart) * highHalf(multiplier); 2549 high += highHalf(mid); 2550 mid <<= integerPartWidth / 2; 2551 if (low + mid < low) 2552 high++; 2553 low += mid; 2554 2555 mid = highHalf(srcPart) * lowHalf(multiplier); 2556 high += highHalf(mid); 2557 mid <<= integerPartWidth / 2; 2558 if (low + mid < low) 2559 high++; 2560 low += mid; 2561 2562 /* Now add carry. */ 2563 if (low + carry < low) 2564 high++; 2565 low += carry; 2566 } 2567 2568 if (add) { 2569 /* And now DST[i], and store the new low part there. */ 2570 if (low + dst[i] < low) 2571 high++; 2572 dst[i] += low; 2573 } else 2574 dst[i] = low; 2575 2576 carry = high; 2577 } 2578 2579 if (i < dstParts) { 2580 /* Full multiplication, there is no overflow. */ 2581 assert(i + 1 == dstParts); 2582 dst[i] = carry; 2583 return 0; 2584 } else { 2585 /* We overflowed if there is carry. */ 2586 if (carry) 2587 return 1; 2588 2589 /* We would overflow if any significant unwritten parts would be 2590 non-zero. This is true if any remaining src parts are non-zero 2591 and the multiplier is non-zero. */ 2592 if (multiplier) 2593 for (; i < srcParts; i++) 2594 if (src[i]) 2595 return 1; 2596 2597 /* We fitted in the narrow destination. */ 2598 return 0; 2599 } 2600 } 2601 2602 /* DST = LHS * RHS, where DST has the same width as the operands and 2603 is filled with the least significant parts of the result. Returns 2604 one if overflow occurred, otherwise zero. DST must be disjoint 2605 from both operands. */ 2606 int 2607 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2608 const integerPart *rhs, unsigned int parts) 2609 { 2610 unsigned int i; 2611 int overflow; 2612 2613 assert(dst != lhs && dst != rhs); 2614 2615 overflow = 0; 2616 tcSet(dst, 0, parts); 2617 2618 for (i = 0; i < parts; i++) 2619 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2620 parts - i, true); 2621 2622 return overflow; 2623 } 2624 2625 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2626 operands. No overflow occurs. DST must be disjoint from both 2627 operands. Returns the number of parts required to hold the 2628 result. */ 2629 unsigned int 2630 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2631 const integerPart *rhs, unsigned int lhsParts, 2632 unsigned int rhsParts) 2633 { 2634 /* Put the narrower number on the LHS for less loops below. */ 2635 if (lhsParts > rhsParts) { 2636 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2637 } else { 2638 unsigned int n; 2639 2640 assert(dst != lhs && dst != rhs); 2641 2642 tcSet(dst, 0, rhsParts); 2643 2644 for (n = 0; n < lhsParts; n++) 2645 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2646 2647 n = lhsParts + rhsParts; 2648 2649 return n - (dst[n - 1] == 0); 2650 } 2651 } 2652 2653 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2654 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2655 set REMAINDER to the remainder, return zero. i.e. 2656 2657 OLD_LHS = RHS * LHS + REMAINDER 2658 2659 SCRATCH is a bignum of the same size as the operands and result for 2660 use by the routine; its contents need not be initialized and are 2661 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2662 */ 2663 int 2664 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2665 integerPart *remainder, integerPart *srhs, 2666 unsigned int parts) 2667 { 2668 unsigned int n, shiftCount; 2669 integerPart mask; 2670 2671 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2672 2673 shiftCount = tcMSB(rhs, parts) + 1; 2674 if (shiftCount == 0) 2675 return true; 2676 2677 shiftCount = parts * integerPartWidth - shiftCount; 2678 n = shiftCount / integerPartWidth; 2679 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2680 2681 tcAssign(srhs, rhs, parts); 2682 tcShiftLeft(srhs, parts, shiftCount); 2683 tcAssign(remainder, lhs, parts); 2684 tcSet(lhs, 0, parts); 2685 2686 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2687 the total. */ 2688 for (;;) { 2689 int compare; 2690 2691 compare = tcCompare(remainder, srhs, parts); 2692 if (compare >= 0) { 2693 tcSubtract(remainder, srhs, 0, parts); 2694 lhs[n] |= mask; 2695 } 2696 2697 if (shiftCount == 0) 2698 break; 2699 shiftCount--; 2700 tcShiftRight(srhs, parts, 1); 2701 if ((mask >>= 1) == 0) { 2702 mask = (integerPart) 1 << (integerPartWidth - 1); 2703 n--; 2704 } 2705 } 2706 2707 return false; 2708 } 2709 2710 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2711 There are no restrictions on COUNT. */ 2712 void 2713 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2714 { 2715 if (count) { 2716 unsigned int jump, shift; 2717 2718 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2719 jump = count / integerPartWidth; 2720 shift = count % integerPartWidth; 2721 2722 while (parts > jump) { 2723 integerPart part; 2724 2725 parts--; 2726 2727 /* dst[i] comes from the two parts src[i - jump] and, if we have 2728 an intra-part shift, src[i - jump - 1]. */ 2729 part = dst[parts - jump]; 2730 if (shift) { 2731 part <<= shift; 2732 if (parts >= jump + 1) 2733 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2734 } 2735 2736 dst[parts] = part; 2737 } 2738 2739 while (parts > 0) 2740 dst[--parts] = 0; 2741 } 2742 } 2743 2744 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2745 zero. There are no restrictions on COUNT. */ 2746 void 2747 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2748 { 2749 if (count) { 2750 unsigned int i, jump, shift; 2751 2752 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2753 jump = count / integerPartWidth; 2754 shift = count % integerPartWidth; 2755 2756 /* Perform the shift. This leaves the most significant COUNT bits 2757 of the result at zero. */ 2758 for (i = 0; i < parts; i++) { 2759 integerPart part; 2760 2761 if (i + jump >= parts) { 2762 part = 0; 2763 } else { 2764 part = dst[i + jump]; 2765 if (shift) { 2766 part >>= shift; 2767 if (i + jump + 1 < parts) 2768 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2769 } 2770 } 2771 2772 dst[i] = part; 2773 } 2774 } 2775 } 2776 2777 /* Bitwise and of two bignums. */ 2778 void 2779 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2780 { 2781 unsigned int i; 2782 2783 for (i = 0; i < parts; i++) 2784 dst[i] &= rhs[i]; 2785 } 2786 2787 /* Bitwise inclusive or of two bignums. */ 2788 void 2789 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2790 { 2791 unsigned int i; 2792 2793 for (i = 0; i < parts; i++) 2794 dst[i] |= rhs[i]; 2795 } 2796 2797 /* Bitwise exclusive or of two bignums. */ 2798 void 2799 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2800 { 2801 unsigned int i; 2802 2803 for (i = 0; i < parts; i++) 2804 dst[i] ^= rhs[i]; 2805 } 2806 2807 /* Complement a bignum in-place. */ 2808 void 2809 APInt::tcComplement(integerPart *dst, unsigned int parts) 2810 { 2811 unsigned int i; 2812 2813 for (i = 0; i < parts; i++) 2814 dst[i] = ~dst[i]; 2815 } 2816 2817 /* Comparison (unsigned) of two bignums. */ 2818 int 2819 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2820 unsigned int parts) 2821 { 2822 while (parts) { 2823 parts--; 2824 if (lhs[parts] == rhs[parts]) 2825 continue; 2826 2827 if (lhs[parts] > rhs[parts]) 2828 return 1; 2829 else 2830 return -1; 2831 } 2832 2833 return 0; 2834 } 2835 2836 /* Increment a bignum in-place, return the carry flag. */ 2837 integerPart 2838 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2839 { 2840 unsigned int i; 2841 2842 for (i = 0; i < parts; i++) 2843 if (++dst[i] != 0) 2844 break; 2845 2846 return i == parts; 2847 } 2848 2849 /* Decrement a bignum in-place, return the borrow flag. */ 2850 integerPart 2851 APInt::tcDecrement(integerPart *dst, unsigned int parts) { 2852 for (unsigned int i = 0; i < parts; i++) { 2853 // If the current word is non-zero, then the decrement has no effect on the 2854 // higher-order words of the integer and no borrow can occur. Exit early. 2855 if (dst[i]--) 2856 return 0; 2857 } 2858 // If every word was zero, then there is a borrow. 2859 return 1; 2860 } 2861 2862 2863 /* Set the least significant BITS bits of a bignum, clear the 2864 rest. */ 2865 void 2866 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2867 unsigned int bits) 2868 { 2869 unsigned int i; 2870 2871 i = 0; 2872 while (bits > integerPartWidth) { 2873 dst[i++] = ~(integerPart) 0; 2874 bits -= integerPartWidth; 2875 } 2876 2877 if (bits) 2878 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2879 2880 while (i < parts) 2881 dst[i++] = 0; 2882 } 2883