1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a class to represent arbitrary precision integer 10 // constant values and provide a variety of arithmetic operations on them. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/Optional.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/bit.h" 22 #include "llvm/Config/llvm-config.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <climits> 28 #include <cmath> 29 #include <cstdlib> 30 #include <cstring> 31 using namespace llvm; 32 33 #define DEBUG_TYPE "apint" 34 35 /// A utility function for allocating memory, checking for allocation failures, 36 /// and ensuring the contents are zeroed. 37 inline static uint64_t* getClearedMemory(unsigned numWords) { 38 uint64_t *result = new uint64_t[numWords]; 39 memset(result, 0, numWords * sizeof(uint64_t)); 40 return result; 41 } 42 43 /// A utility function for allocating memory and checking for allocation 44 /// failure. The content is not zeroed. 45 inline static uint64_t* getMemory(unsigned numWords) { 46 return new uint64_t[numWords]; 47 } 48 49 /// A utility function that converts a character to a digit. 50 inline static unsigned getDigit(char cdigit, uint8_t radix) { 51 unsigned r; 52 53 if (radix == 16 || radix == 36) { 54 r = cdigit - '0'; 55 if (r <= 9) 56 return r; 57 58 r = cdigit - 'A'; 59 if (r <= radix - 11U) 60 return r + 10; 61 62 r = cdigit - 'a'; 63 if (r <= radix - 11U) 64 return r + 10; 65 66 radix = 10; 67 } 68 69 r = cdigit - '0'; 70 if (r < radix) 71 return r; 72 73 return -1U; 74 } 75 76 77 void APInt::initSlowCase(uint64_t val, bool isSigned) { 78 U.pVal = getClearedMemory(getNumWords()); 79 U.pVal[0] = val; 80 if (isSigned && int64_t(val) < 0) 81 for (unsigned i = 1; i < getNumWords(); ++i) 82 U.pVal[i] = WORDTYPE_MAX; 83 clearUnusedBits(); 84 } 85 86 void APInt::initSlowCase(const APInt& that) { 87 U.pVal = getMemory(getNumWords()); 88 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 89 } 90 91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 92 assert(BitWidth && "Bitwidth too small"); 93 assert(bigVal.data() && "Null pointer detected!"); 94 if (isSingleWord()) 95 U.VAL = bigVal[0]; 96 else { 97 // Get memory, cleared to 0 98 U.pVal = getClearedMemory(getNumWords()); 99 // Calculate the number of words to copy 100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 101 // Copy the words from bigVal to pVal 102 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 103 } 104 // Make sure unused high bits are cleared 105 clearUnusedBits(); 106 } 107 108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 109 : BitWidth(numBits) { 110 initFromArray(bigVal); 111 } 112 113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 114 : BitWidth(numBits) { 115 initFromArray(makeArrayRef(bigVal, numWords)); 116 } 117 118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 119 : BitWidth(numbits) { 120 assert(BitWidth && "Bitwidth too small"); 121 fromString(numbits, Str, radix); 122 } 123 124 void APInt::reallocate(unsigned NewBitWidth) { 125 // If the number of words is the same we can just change the width and stop. 126 if (getNumWords() == getNumWords(NewBitWidth)) { 127 BitWidth = NewBitWidth; 128 return; 129 } 130 131 // If we have an allocation, delete it. 132 if (!isSingleWord()) 133 delete [] U.pVal; 134 135 // Update BitWidth. 136 BitWidth = NewBitWidth; 137 138 // If we are supposed to have an allocation, create it. 139 if (!isSingleWord()) 140 U.pVal = getMemory(getNumWords()); 141 } 142 143 void APInt::AssignSlowCase(const APInt& RHS) { 144 // Don't do anything for X = X 145 if (this == &RHS) 146 return; 147 148 // Adjust the bit width and handle allocations as necessary. 149 reallocate(RHS.getBitWidth()); 150 151 // Copy the data. 152 if (isSingleWord()) 153 U.VAL = RHS.U.VAL; 154 else 155 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 156 } 157 158 /// This method 'profiles' an APInt for use with FoldingSet. 159 void APInt::Profile(FoldingSetNodeID& ID) const { 160 ID.AddInteger(BitWidth); 161 162 if (isSingleWord()) { 163 ID.AddInteger(U.VAL); 164 return; 165 } 166 167 unsigned NumWords = getNumWords(); 168 for (unsigned i = 0; i < NumWords; ++i) 169 ID.AddInteger(U.pVal[i]); 170 } 171 172 /// Prefix increment operator. Increments the APInt by one. 173 APInt& APInt::operator++() { 174 if (isSingleWord()) 175 ++U.VAL; 176 else 177 tcIncrement(U.pVal, getNumWords()); 178 return clearUnusedBits(); 179 } 180 181 /// Prefix decrement operator. Decrements the APInt by one. 182 APInt& APInt::operator--() { 183 if (isSingleWord()) 184 --U.VAL; 185 else 186 tcDecrement(U.pVal, getNumWords()); 187 return clearUnusedBits(); 188 } 189 190 /// Adds the RHS APInt to this APInt. 191 /// @returns this, after addition of RHS. 192 /// Addition assignment operator. 193 APInt& APInt::operator+=(const APInt& RHS) { 194 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 195 if (isSingleWord()) 196 U.VAL += RHS.U.VAL; 197 else 198 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 199 return clearUnusedBits(); 200 } 201 202 APInt& APInt::operator+=(uint64_t RHS) { 203 if (isSingleWord()) 204 U.VAL += RHS; 205 else 206 tcAddPart(U.pVal, RHS, getNumWords()); 207 return clearUnusedBits(); 208 } 209 210 /// Subtracts the RHS APInt from this APInt 211 /// @returns this, after subtraction 212 /// Subtraction assignment operator. 213 APInt& APInt::operator-=(const APInt& RHS) { 214 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 215 if (isSingleWord()) 216 U.VAL -= RHS.U.VAL; 217 else 218 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 219 return clearUnusedBits(); 220 } 221 222 APInt& APInt::operator-=(uint64_t RHS) { 223 if (isSingleWord()) 224 U.VAL -= RHS; 225 else 226 tcSubtractPart(U.pVal, RHS, getNumWords()); 227 return clearUnusedBits(); 228 } 229 230 APInt APInt::operator*(const APInt& RHS) const { 231 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 232 if (isSingleWord()) 233 return APInt(BitWidth, U.VAL * RHS.U.VAL); 234 235 APInt Result(getMemory(getNumWords()), getBitWidth()); 236 237 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 238 239 Result.clearUnusedBits(); 240 return Result; 241 } 242 243 void APInt::AndAssignSlowCase(const APInt &RHS) { 244 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 245 for (size_t i = 0, e = getNumWords(); i != e; ++i) 246 dst[i] &= rhs[i]; 247 } 248 249 void APInt::OrAssignSlowCase(const APInt &RHS) { 250 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 251 for (size_t i = 0, e = getNumWords(); i != e; ++i) 252 dst[i] |= rhs[i]; 253 } 254 255 void APInt::XorAssignSlowCase(const APInt &RHS) { 256 WordType *dst = U.pVal, *rhs = RHS.U.pVal; 257 for (size_t i = 0, e = getNumWords(); i != e; ++i) 258 dst[i] ^= rhs[i]; 259 } 260 261 APInt& APInt::operator*=(const APInt& RHS) { 262 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 263 *this = *this * RHS; 264 return *this; 265 } 266 267 APInt& APInt::operator*=(uint64_t RHS) { 268 if (isSingleWord()) { 269 U.VAL *= RHS; 270 } else { 271 unsigned NumWords = getNumWords(); 272 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 273 } 274 return clearUnusedBits(); 275 } 276 277 bool APInt::EqualSlowCase(const APInt& RHS) const { 278 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 279 } 280 281 int APInt::compare(const APInt& RHS) const { 282 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 283 if (isSingleWord()) 284 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 285 286 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 287 } 288 289 int APInt::compareSigned(const APInt& RHS) const { 290 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 291 if (isSingleWord()) { 292 int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 293 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 294 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 295 } 296 297 bool lhsNeg = isNegative(); 298 bool rhsNeg = RHS.isNegative(); 299 300 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 301 if (lhsNeg != rhsNeg) 302 return lhsNeg ? -1 : 1; 303 304 // Otherwise we can just use an unsigned comparison, because even negative 305 // numbers compare correctly this way if both have the same signed-ness. 306 return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 307 } 308 309 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 310 unsigned loWord = whichWord(loBit); 311 unsigned hiWord = whichWord(hiBit); 312 313 // Create an initial mask for the low word with zeros below loBit. 314 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 315 316 // If hiBit is not aligned, we need a high mask. 317 unsigned hiShiftAmt = whichBit(hiBit); 318 if (hiShiftAmt != 0) { 319 // Create a high mask with zeros above hiBit. 320 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 321 // If loWord and hiWord are equal, then we combine the masks. Otherwise, 322 // set the bits in hiWord. 323 if (hiWord == loWord) 324 loMask &= hiMask; 325 else 326 U.pVal[hiWord] |= hiMask; 327 } 328 // Apply the mask to the low word. 329 U.pVal[loWord] |= loMask; 330 331 // Fill any words between loWord and hiWord with all ones. 332 for (unsigned word = loWord + 1; word < hiWord; ++word) 333 U.pVal[word] = WORDTYPE_MAX; 334 } 335 336 // Complement a bignum in-place. 337 static void tcComplement(APInt::WordType *dst, unsigned parts) { 338 for (unsigned i = 0; i < parts; i++) 339 dst[i] = ~dst[i]; 340 } 341 342 /// Toggle every bit to its opposite value. 343 void APInt::flipAllBitsSlowCase() { 344 tcComplement(U.pVal, getNumWords()); 345 clearUnusedBits(); 346 } 347 348 /// Toggle a given bit to its opposite value whose position is given 349 /// as "bitPosition". 350 /// Toggles a given bit to its opposite value. 351 void APInt::flipBit(unsigned bitPosition) { 352 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 353 setBitVal(bitPosition, !(*this)[bitPosition]); 354 } 355 356 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 357 unsigned subBitWidth = subBits.getBitWidth(); 358 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && 359 "Illegal bit insertion"); 360 361 // Insertion is a direct copy. 362 if (subBitWidth == BitWidth) { 363 *this = subBits; 364 return; 365 } 366 367 // Single word result can be done as a direct bitmask. 368 if (isSingleWord()) { 369 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 370 U.VAL &= ~(mask << bitPosition); 371 U.VAL |= (subBits.U.VAL << bitPosition); 372 return; 373 } 374 375 unsigned loBit = whichBit(bitPosition); 376 unsigned loWord = whichWord(bitPosition); 377 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 378 379 // Insertion within a single word can be done as a direct bitmask. 380 if (loWord == hi1Word) { 381 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 382 U.pVal[loWord] &= ~(mask << loBit); 383 U.pVal[loWord] |= (subBits.U.VAL << loBit); 384 return; 385 } 386 387 // Insert on word boundaries. 388 if (loBit == 0) { 389 // Direct copy whole words. 390 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 391 memcpy(U.pVal + loWord, subBits.getRawData(), 392 numWholeSubWords * APINT_WORD_SIZE); 393 394 // Mask+insert remaining bits. 395 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 396 if (remainingBits != 0) { 397 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 398 U.pVal[hi1Word] &= ~mask; 399 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 400 } 401 return; 402 } 403 404 // General case - set/clear individual bits in dst based on src. 405 // TODO - there is scope for optimization here, but at the moment this code 406 // path is barely used so prefer readability over performance. 407 for (unsigned i = 0; i != subBitWidth; ++i) 408 setBitVal(bitPosition + i, subBits[i]); 409 } 410 411 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 412 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 413 subBits &= maskBits; 414 if (isSingleWord()) { 415 U.VAL &= ~(maskBits << bitPosition); 416 U.VAL |= subBits << bitPosition; 417 return; 418 } 419 420 unsigned loBit = whichBit(bitPosition); 421 unsigned loWord = whichWord(bitPosition); 422 unsigned hiWord = whichWord(bitPosition + numBits - 1); 423 if (loWord == hiWord) { 424 U.pVal[loWord] &= ~(maskBits << loBit); 425 U.pVal[loWord] |= subBits << loBit; 426 return; 427 } 428 429 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 430 unsigned wordBits = 8 * sizeof(WordType); 431 U.pVal[loWord] &= ~(maskBits << loBit); 432 U.pVal[loWord] |= subBits << loBit; 433 434 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 435 U.pVal[hiWord] |= subBits >> (wordBits - loBit); 436 } 437 438 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 439 assert(numBits > 0 && "Can't extract zero bits"); 440 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 441 "Illegal bit extraction"); 442 443 if (isSingleWord()) 444 return APInt(numBits, U.VAL >> bitPosition); 445 446 unsigned loBit = whichBit(bitPosition); 447 unsigned loWord = whichWord(bitPosition); 448 unsigned hiWord = whichWord(bitPosition + numBits - 1); 449 450 // Single word result extracting bits from a single word source. 451 if (loWord == hiWord) 452 return APInt(numBits, U.pVal[loWord] >> loBit); 453 454 // Extracting bits that start on a source word boundary can be done 455 // as a fast memory copy. 456 if (loBit == 0) 457 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 458 459 // General case - shift + copy source words directly into place. 460 APInt Result(numBits, 0); 461 unsigned NumSrcWords = getNumWords(); 462 unsigned NumDstWords = Result.getNumWords(); 463 464 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 465 for (unsigned word = 0; word < NumDstWords; ++word) { 466 uint64_t w0 = U.pVal[loWord + word]; 467 uint64_t w1 = 468 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 469 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 470 } 471 472 return Result.clearUnusedBits(); 473 } 474 475 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 476 unsigned bitPosition) const { 477 assert(numBits > 0 && "Can't extract zero bits"); 478 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 479 "Illegal bit extraction"); 480 assert(numBits <= 64 && "Illegal bit extraction"); 481 482 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 483 if (isSingleWord()) 484 return (U.VAL >> bitPosition) & maskBits; 485 486 unsigned loBit = whichBit(bitPosition); 487 unsigned loWord = whichWord(bitPosition); 488 unsigned hiWord = whichWord(bitPosition + numBits - 1); 489 if (loWord == hiWord) 490 return (U.pVal[loWord] >> loBit) & maskBits; 491 492 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 493 unsigned wordBits = 8 * sizeof(WordType); 494 uint64_t retBits = U.pVal[loWord] >> loBit; 495 retBits |= U.pVal[hiWord] << (wordBits - loBit); 496 retBits &= maskBits; 497 return retBits; 498 } 499 500 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 501 assert(!str.empty() && "Invalid string length"); 502 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 503 radix == 36) && 504 "Radix should be 2, 8, 10, 16, or 36!"); 505 506 size_t slen = str.size(); 507 508 // Each computation below needs to know if it's negative. 509 StringRef::iterator p = str.begin(); 510 unsigned isNegative = *p == '-'; 511 if (*p == '-' || *p == '+') { 512 p++; 513 slen--; 514 assert(slen && "String is only a sign, needs a value."); 515 } 516 517 // For radixes of power-of-two values, the bits required is accurately and 518 // easily computed 519 if (radix == 2) 520 return slen + isNegative; 521 if (radix == 8) 522 return slen * 3 + isNegative; 523 if (radix == 16) 524 return slen * 4 + isNegative; 525 526 // FIXME: base 36 527 528 // This is grossly inefficient but accurate. We could probably do something 529 // with a computation of roughly slen*64/20 and then adjust by the value of 530 // the first few digits. But, I'm not sure how accurate that could be. 531 532 // Compute a sufficient number of bits that is always large enough but might 533 // be too large. This avoids the assertion in the constructor. This 534 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 535 // bits in that case. 536 unsigned sufficient 537 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 538 : (slen == 1 ? 7 : slen * 16/3); 539 540 // Convert to the actual binary value. 541 APInt tmp(sufficient, StringRef(p, slen), radix); 542 543 // Compute how many bits are required. If the log is infinite, assume we need 544 // just bit. If the log is exact and value is negative, then the value is 545 // MinSignedValue with (log + 1) bits. 546 unsigned log = tmp.logBase2(); 547 if (log == (unsigned)-1) { 548 return isNegative + 1; 549 } else if (isNegative && tmp.isPowerOf2()) { 550 return isNegative + log; 551 } else { 552 return isNegative + log + 1; 553 } 554 } 555 556 hash_code llvm::hash_value(const APInt &Arg) { 557 if (Arg.isSingleWord()) 558 return hash_combine(Arg.BitWidth, Arg.U.VAL); 559 560 return hash_combine( 561 Arg.BitWidth, 562 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 563 } 564 565 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) { 566 return static_cast<unsigned>(hash_value(Key)); 567 } 568 569 bool APInt::isSplat(unsigned SplatSizeInBits) const { 570 assert(getBitWidth() % SplatSizeInBits == 0 && 571 "SplatSizeInBits must divide width!"); 572 // We can check that all parts of an integer are equal by making use of a 573 // little trick: rotate and check if it's still the same value. 574 return *this == rotl(SplatSizeInBits); 575 } 576 577 /// This function returns the high "numBits" bits of this APInt. 578 APInt APInt::getHiBits(unsigned numBits) const { 579 return this->lshr(BitWidth - numBits); 580 } 581 582 /// This function returns the low "numBits" bits of this APInt. 583 APInt APInt::getLoBits(unsigned numBits) const { 584 APInt Result(getLowBitsSet(BitWidth, numBits)); 585 Result &= *this; 586 return Result; 587 } 588 589 /// Return a value containing V broadcasted over NewLen bits. 590 APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 591 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 592 593 APInt Val = V.zextOrSelf(NewLen); 594 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 595 Val |= Val << I; 596 597 return Val; 598 } 599 600 unsigned APInt::countLeadingZerosSlowCase() const { 601 unsigned Count = 0; 602 for (int i = getNumWords()-1; i >= 0; --i) { 603 uint64_t V = U.pVal[i]; 604 if (V == 0) 605 Count += APINT_BITS_PER_WORD; 606 else { 607 Count += llvm::countLeadingZeros(V); 608 break; 609 } 610 } 611 // Adjust for unused bits in the most significant word (they are zero). 612 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 613 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 614 return Count; 615 } 616 617 unsigned APInt::countLeadingOnesSlowCase() const { 618 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 619 unsigned shift; 620 if (!highWordBits) { 621 highWordBits = APINT_BITS_PER_WORD; 622 shift = 0; 623 } else { 624 shift = APINT_BITS_PER_WORD - highWordBits; 625 } 626 int i = getNumWords() - 1; 627 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift); 628 if (Count == highWordBits) { 629 for (i--; i >= 0; --i) { 630 if (U.pVal[i] == WORDTYPE_MAX) 631 Count += APINT_BITS_PER_WORD; 632 else { 633 Count += llvm::countLeadingOnes(U.pVal[i]); 634 break; 635 } 636 } 637 } 638 return Count; 639 } 640 641 unsigned APInt::countTrailingZerosSlowCase() const { 642 unsigned Count = 0; 643 unsigned i = 0; 644 for (; i < getNumWords() && U.pVal[i] == 0; ++i) 645 Count += APINT_BITS_PER_WORD; 646 if (i < getNumWords()) 647 Count += llvm::countTrailingZeros(U.pVal[i]); 648 return std::min(Count, BitWidth); 649 } 650 651 unsigned APInt::countTrailingOnesSlowCase() const { 652 unsigned Count = 0; 653 unsigned i = 0; 654 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 655 Count += APINT_BITS_PER_WORD; 656 if (i < getNumWords()) 657 Count += llvm::countTrailingOnes(U.pVal[i]); 658 assert(Count <= BitWidth); 659 return Count; 660 } 661 662 unsigned APInt::countPopulationSlowCase() const { 663 unsigned Count = 0; 664 for (unsigned i = 0; i < getNumWords(); ++i) 665 Count += llvm::countPopulation(U.pVal[i]); 666 return Count; 667 } 668 669 bool APInt::intersectsSlowCase(const APInt &RHS) const { 670 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 671 if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 672 return true; 673 674 return false; 675 } 676 677 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 678 for (unsigned i = 0, e = getNumWords(); i != e; ++i) 679 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 680 return false; 681 682 return true; 683 } 684 685 APInt APInt::byteSwap() const { 686 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 687 if (BitWidth == 16) 688 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL))); 689 if (BitWidth == 32) 690 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL))); 691 if (BitWidth <= 64) { 692 uint64_t Tmp1 = ByteSwap_64(U.VAL); 693 Tmp1 >>= (64 - BitWidth); 694 return APInt(BitWidth, Tmp1); 695 } 696 697 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 698 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 699 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]); 700 if (Result.BitWidth != BitWidth) { 701 Result.lshrInPlace(Result.BitWidth - BitWidth); 702 Result.BitWidth = BitWidth; 703 } 704 return Result; 705 } 706 707 APInt APInt::reverseBits() const { 708 switch (BitWidth) { 709 case 64: 710 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 711 case 32: 712 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 713 case 16: 714 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 715 case 8: 716 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 717 default: 718 break; 719 } 720 721 APInt Val(*this); 722 APInt Reversed(BitWidth, 0); 723 unsigned S = BitWidth; 724 725 for (; Val != 0; Val.lshrInPlace(1)) { 726 Reversed <<= 1; 727 Reversed |= Val[0]; 728 --S; 729 } 730 731 Reversed <<= S; 732 return Reversed; 733 } 734 735 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 736 // Fast-path a common case. 737 if (A == B) return A; 738 739 // Corner cases: if either operand is zero, the other is the gcd. 740 if (!A) return B; 741 if (!B) return A; 742 743 // Count common powers of 2 and remove all other powers of 2. 744 unsigned Pow2; 745 { 746 unsigned Pow2_A = A.countTrailingZeros(); 747 unsigned Pow2_B = B.countTrailingZeros(); 748 if (Pow2_A > Pow2_B) { 749 A.lshrInPlace(Pow2_A - Pow2_B); 750 Pow2 = Pow2_B; 751 } else if (Pow2_B > Pow2_A) { 752 B.lshrInPlace(Pow2_B - Pow2_A); 753 Pow2 = Pow2_A; 754 } else { 755 Pow2 = Pow2_A; 756 } 757 } 758 759 // Both operands are odd multiples of 2^Pow_2: 760 // 761 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 762 // 763 // This is a modified version of Stein's algorithm, taking advantage of 764 // efficient countTrailingZeros(). 765 while (A != B) { 766 if (A.ugt(B)) { 767 A -= B; 768 A.lshrInPlace(A.countTrailingZeros() - Pow2); 769 } else { 770 B -= A; 771 B.lshrInPlace(B.countTrailingZeros() - Pow2); 772 } 773 } 774 775 return A; 776 } 777 778 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 779 uint64_t I = bit_cast<uint64_t>(Double); 780 781 // Get the sign bit from the highest order bit 782 bool isNeg = I >> 63; 783 784 // Get the 11-bit exponent and adjust for the 1023 bit bias 785 int64_t exp = ((I >> 52) & 0x7ff) - 1023; 786 787 // If the exponent is negative, the value is < 0 so just return 0. 788 if (exp < 0) 789 return APInt(width, 0u); 790 791 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 792 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 793 794 // If the exponent doesn't shift all bits out of the mantissa 795 if (exp < 52) 796 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 797 APInt(width, mantissa >> (52 - exp)); 798 799 // If the client didn't provide enough bits for us to shift the mantissa into 800 // then the result is undefined, just return 0 801 if (width <= exp - 52) 802 return APInt(width, 0); 803 804 // Otherwise, we have to shift the mantissa bits up to the right location 805 APInt Tmp(width, mantissa); 806 Tmp <<= (unsigned)exp - 52; 807 return isNeg ? -Tmp : Tmp; 808 } 809 810 /// This function converts this APInt to a double. 811 /// The layout for double is as following (IEEE Standard 754): 812 /// -------------------------------------- 813 /// | Sign Exponent Fraction Bias | 814 /// |-------------------------------------- | 815 /// | 1[63] 11[62-52] 52[51-00] 1023 | 816 /// -------------------------------------- 817 double APInt::roundToDouble(bool isSigned) const { 818 819 // Handle the simple case where the value is contained in one uint64_t. 820 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 821 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 822 if (isSigned) { 823 int64_t sext = SignExtend64(getWord(0), BitWidth); 824 return double(sext); 825 } else 826 return double(getWord(0)); 827 } 828 829 // Determine if the value is negative. 830 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 831 832 // Construct the absolute value if we're negative. 833 APInt Tmp(isNeg ? -(*this) : (*this)); 834 835 // Figure out how many bits we're using. 836 unsigned n = Tmp.getActiveBits(); 837 838 // The exponent (without bias normalization) is just the number of bits 839 // we are using. Note that the sign bit is gone since we constructed the 840 // absolute value. 841 uint64_t exp = n; 842 843 // Return infinity for exponent overflow 844 if (exp > 1023) { 845 if (!isSigned || !isNeg) 846 return std::numeric_limits<double>::infinity(); 847 else 848 return -std::numeric_limits<double>::infinity(); 849 } 850 exp += 1023; // Increment for 1023 bias 851 852 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 853 // extract the high 52 bits from the correct words in pVal. 854 uint64_t mantissa; 855 unsigned hiWord = whichWord(n-1); 856 if (hiWord == 0) { 857 mantissa = Tmp.U.pVal[0]; 858 if (n > 52) 859 mantissa >>= n - 52; // shift down, we want the top 52 bits. 860 } else { 861 assert(hiWord > 0 && "huh?"); 862 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 863 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 864 mantissa = hibits | lobits; 865 } 866 867 // The leading bit of mantissa is implicit, so get rid of it. 868 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 869 uint64_t I = sign | (exp << 52) | mantissa; 870 return bit_cast<double>(I); 871 } 872 873 // Truncate to new width. 874 APInt APInt::trunc(unsigned width) const { 875 assert(width < BitWidth && "Invalid APInt Truncate request"); 876 assert(width && "Can't truncate to 0 bits"); 877 878 if (width <= APINT_BITS_PER_WORD) 879 return APInt(width, getRawData()[0]); 880 881 APInt Result(getMemory(getNumWords(width)), width); 882 883 // Copy full words. 884 unsigned i; 885 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 886 Result.U.pVal[i] = U.pVal[i]; 887 888 // Truncate and copy any partial word. 889 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 890 if (bits != 0) 891 Result.U.pVal[i] = U.pVal[i] << bits >> bits; 892 893 return Result; 894 } 895 896 // Truncate to new width with unsigned saturation. 897 APInt APInt::truncUSat(unsigned width) const { 898 assert(width < BitWidth && "Invalid APInt Truncate request"); 899 assert(width && "Can't truncate to 0 bits"); 900 901 // Can we just losslessly truncate it? 902 if (isIntN(width)) 903 return trunc(width); 904 // If not, then just return the new limit. 905 return APInt::getMaxValue(width); 906 } 907 908 // Truncate to new width with signed saturation. 909 APInt APInt::truncSSat(unsigned width) const { 910 assert(width < BitWidth && "Invalid APInt Truncate request"); 911 assert(width && "Can't truncate to 0 bits"); 912 913 // Can we just losslessly truncate it? 914 if (isSignedIntN(width)) 915 return trunc(width); 916 // If not, then just return the new limits. 917 return isNegative() ? APInt::getSignedMinValue(width) 918 : APInt::getSignedMaxValue(width); 919 } 920 921 // Sign extend to a new width. 922 APInt APInt::sext(unsigned Width) const { 923 assert(Width > BitWidth && "Invalid APInt SignExtend request"); 924 925 if (Width <= APINT_BITS_PER_WORD) 926 return APInt(Width, SignExtend64(U.VAL, BitWidth)); 927 928 APInt Result(getMemory(getNumWords(Width)), Width); 929 930 // Copy words. 931 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 932 933 // Sign extend the last word since there may be unused bits in the input. 934 Result.U.pVal[getNumWords() - 1] = 935 SignExtend64(Result.U.pVal[getNumWords() - 1], 936 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 937 938 // Fill with sign bits. 939 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 940 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 941 Result.clearUnusedBits(); 942 return Result; 943 } 944 945 // Zero extend to a new width. 946 APInt APInt::zext(unsigned width) const { 947 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 948 949 if (width <= APINT_BITS_PER_WORD) 950 return APInt(width, U.VAL); 951 952 APInt Result(getMemory(getNumWords(width)), width); 953 954 // Copy words. 955 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 956 957 // Zero remaining words. 958 std::memset(Result.U.pVal + getNumWords(), 0, 959 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 960 961 return Result; 962 } 963 964 APInt APInt::zextOrTrunc(unsigned width) const { 965 if (BitWidth < width) 966 return zext(width); 967 if (BitWidth > width) 968 return trunc(width); 969 return *this; 970 } 971 972 APInt APInt::sextOrTrunc(unsigned width) const { 973 if (BitWidth < width) 974 return sext(width); 975 if (BitWidth > width) 976 return trunc(width); 977 return *this; 978 } 979 980 APInt APInt::truncOrSelf(unsigned width) const { 981 if (BitWidth > width) 982 return trunc(width); 983 return *this; 984 } 985 986 APInt APInt::zextOrSelf(unsigned width) const { 987 if (BitWidth < width) 988 return zext(width); 989 return *this; 990 } 991 992 APInt APInt::sextOrSelf(unsigned width) const { 993 if (BitWidth < width) 994 return sext(width); 995 return *this; 996 } 997 998 /// Arithmetic right-shift this APInt by shiftAmt. 999 /// Arithmetic right-shift function. 1000 void APInt::ashrInPlace(const APInt &shiftAmt) { 1001 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1002 } 1003 1004 /// Arithmetic right-shift this APInt by shiftAmt. 1005 /// Arithmetic right-shift function. 1006 void APInt::ashrSlowCase(unsigned ShiftAmt) { 1007 // Don't bother performing a no-op shift. 1008 if (!ShiftAmt) 1009 return; 1010 1011 // Save the original sign bit for later. 1012 bool Negative = isNegative(); 1013 1014 // WordShift is the inter-part shift; BitShift is intra-part shift. 1015 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 1016 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 1017 1018 unsigned WordsToMove = getNumWords() - WordShift; 1019 if (WordsToMove != 0) { 1020 // Sign extend the last word to fill in the unused bits. 1021 U.pVal[getNumWords() - 1] = SignExtend64( 1022 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 1023 1024 // Fastpath for moving by whole words. 1025 if (BitShift == 0) { 1026 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 1027 } else { 1028 // Move the words containing significant bits. 1029 for (unsigned i = 0; i != WordsToMove - 1; ++i) 1030 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 1031 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 1032 1033 // Handle the last word which has no high bits to copy. 1034 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 1035 // Sign extend one more time. 1036 U.pVal[WordsToMove - 1] = 1037 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 1038 } 1039 } 1040 1041 // Fill in the remainder based on the original sign. 1042 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 1043 WordShift * APINT_WORD_SIZE); 1044 clearUnusedBits(); 1045 } 1046 1047 /// Logical right-shift this APInt by shiftAmt. 1048 /// Logical right-shift function. 1049 void APInt::lshrInPlace(const APInt &shiftAmt) { 1050 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1051 } 1052 1053 /// Logical right-shift this APInt by shiftAmt. 1054 /// Logical right-shift function. 1055 void APInt::lshrSlowCase(unsigned ShiftAmt) { 1056 tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 1057 } 1058 1059 /// Left-shift this APInt by shiftAmt. 1060 /// Left-shift function. 1061 APInt &APInt::operator<<=(const APInt &shiftAmt) { 1062 // It's undefined behavior in C to shift by BitWidth or greater. 1063 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 1064 return *this; 1065 } 1066 1067 void APInt::shlSlowCase(unsigned ShiftAmt) { 1068 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 1069 clearUnusedBits(); 1070 } 1071 1072 // Calculate the rotate amount modulo the bit width. 1073 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1074 unsigned rotBitWidth = rotateAmt.getBitWidth(); 1075 APInt rot = rotateAmt; 1076 if (rotBitWidth < BitWidth) { 1077 // Extend the rotate APInt, so that the urem doesn't divide by 0. 1078 // e.g. APInt(1, 32) would give APInt(1, 0). 1079 rot = rotateAmt.zext(BitWidth); 1080 } 1081 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 1082 return rot.getLimitedValue(BitWidth); 1083 } 1084 1085 APInt APInt::rotl(const APInt &rotateAmt) const { 1086 return rotl(rotateModulo(BitWidth, rotateAmt)); 1087 } 1088 1089 APInt APInt::rotl(unsigned rotateAmt) const { 1090 rotateAmt %= BitWidth; 1091 if (rotateAmt == 0) 1092 return *this; 1093 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1094 } 1095 1096 APInt APInt::rotr(const APInt &rotateAmt) const { 1097 return rotr(rotateModulo(BitWidth, rotateAmt)); 1098 } 1099 1100 APInt APInt::rotr(unsigned rotateAmt) const { 1101 rotateAmt %= BitWidth; 1102 if (rotateAmt == 0) 1103 return *this; 1104 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1105 } 1106 1107 /// \returns the nearest log base 2 of this APInt. Ties round up. 1108 /// 1109 /// NOTE: When we have a BitWidth of 1, we define: 1110 /// 1111 /// log2(0) = UINT32_MAX 1112 /// log2(1) = 0 1113 /// 1114 /// to get around any mathematical concerns resulting from 1115 /// referencing 2 in a space where 2 does no exist. 1116 unsigned APInt::nearestLogBase2() const { 1117 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1118 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1119 // UINT32_MAX. 1120 if (BitWidth == 1) 1121 return U.VAL - 1; 1122 1123 // Handle the zero case. 1124 if (isNullValue()) 1125 return UINT32_MAX; 1126 1127 // The non-zero case is handled by computing: 1128 // 1129 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1130 // 1131 // where x[i] is referring to the value of the ith bit of x. 1132 unsigned lg = logBase2(); 1133 return lg + unsigned((*this)[lg - 1]); 1134 } 1135 1136 // Square Root - this method computes and returns the square root of "this". 1137 // Three mechanisms are used for computation. For small values (<= 5 bits), 1138 // a table lookup is done. This gets some performance for common cases. For 1139 // values using less than 52 bits, the value is converted to double and then 1140 // the libc sqrt function is called. The result is rounded and then converted 1141 // back to a uint64_t which is then used to construct the result. Finally, 1142 // the Babylonian method for computing square roots is used. 1143 APInt APInt::sqrt() const { 1144 1145 // Determine the magnitude of the value. 1146 unsigned magnitude = getActiveBits(); 1147 1148 // Use a fast table for some small values. This also gets rid of some 1149 // rounding errors in libc sqrt for small values. 1150 if (magnitude <= 5) { 1151 static const uint8_t results[32] = { 1152 /* 0 */ 0, 1153 /* 1- 2 */ 1, 1, 1154 /* 3- 6 */ 2, 2, 2, 2, 1155 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1156 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1157 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1158 /* 31 */ 6 1159 }; 1160 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 1161 } 1162 1163 // If the magnitude of the value fits in less than 52 bits (the precision of 1164 // an IEEE double precision floating point value), then we can use the 1165 // libc sqrt function which will probably use a hardware sqrt computation. 1166 // This should be faster than the algorithm below. 1167 if (magnitude < 52) { 1168 return APInt(BitWidth, 1169 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 1170 : U.pVal[0]))))); 1171 } 1172 1173 // Okay, all the short cuts are exhausted. We must compute it. The following 1174 // is a classical Babylonian method for computing the square root. This code 1175 // was adapted to APInt from a wikipedia article on such computations. 1176 // See http://www.wikipedia.org/ and go to the page named 1177 // Calculate_an_integer_square_root. 1178 unsigned nbits = BitWidth, i = 4; 1179 APInt testy(BitWidth, 16); 1180 APInt x_old(BitWidth, 1); 1181 APInt x_new(BitWidth, 0); 1182 APInt two(BitWidth, 2); 1183 1184 // Select a good starting value using binary logarithms. 1185 for (;; i += 2, testy = testy.shl(2)) 1186 if (i >= nbits || this->ule(testy)) { 1187 x_old = x_old.shl(i / 2); 1188 break; 1189 } 1190 1191 // Use the Babylonian method to arrive at the integer square root: 1192 for (;;) { 1193 x_new = (this->udiv(x_old) + x_old).udiv(two); 1194 if (x_old.ule(x_new)) 1195 break; 1196 x_old = x_new; 1197 } 1198 1199 // Make sure we return the closest approximation 1200 // NOTE: The rounding calculation below is correct. It will produce an 1201 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1202 // determined to be a rounding issue with pari/gp as it begins to use a 1203 // floating point representation after 192 bits. There are no discrepancies 1204 // between this algorithm and pari/gp for bit widths < 192 bits. 1205 APInt square(x_old * x_old); 1206 APInt nextSquare((x_old + 1) * (x_old +1)); 1207 if (this->ult(square)) 1208 return x_old; 1209 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1210 APInt midpoint((nextSquare - square).udiv(two)); 1211 APInt offset(*this - square); 1212 if (offset.ult(midpoint)) 1213 return x_old; 1214 return x_old + 1; 1215 } 1216 1217 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1218 /// iterative extended Euclidean algorithm is used to solve for this value, 1219 /// however we simplify it to speed up calculating only the inverse, and take 1220 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1221 /// (potentially large) APInts around. 1222 /// WARNING: a value of '0' may be returned, 1223 /// signifying that no multiplicative inverse exists! 1224 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1225 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1226 1227 // Using the properties listed at the following web page (accessed 06/21/08): 1228 // http://www.numbertheory.org/php/euclid.html 1229 // (especially the properties numbered 3, 4 and 9) it can be proved that 1230 // BitWidth bits suffice for all the computations in the algorithm implemented 1231 // below. More precisely, this number of bits suffice if the multiplicative 1232 // inverse exists, but may not suffice for the general extended Euclidean 1233 // algorithm. 1234 1235 APInt r[2] = { modulo, *this }; 1236 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1237 APInt q(BitWidth, 0); 1238 1239 unsigned i; 1240 for (i = 0; r[i^1] != 0; i ^= 1) { 1241 // An overview of the math without the confusing bit-flipping: 1242 // q = r[i-2] / r[i-1] 1243 // r[i] = r[i-2] % r[i-1] 1244 // t[i] = t[i-2] - t[i-1] * q 1245 udivrem(r[i], r[i^1], q, r[i]); 1246 t[i] -= t[i^1] * q; 1247 } 1248 1249 // If this APInt and the modulo are not coprime, there is no multiplicative 1250 // inverse, so return 0. We check this by looking at the next-to-last 1251 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1252 // algorithm. 1253 if (r[i] != 1) 1254 return APInt(BitWidth, 0); 1255 1256 // The next-to-last t is the multiplicative inverse. However, we are 1257 // interested in a positive inverse. Calculate a positive one from a negative 1258 // one if necessary. A simple addition of the modulo suffices because 1259 // abs(t[i]) is known to be less than *this/2 (see the link above). 1260 if (t[i].isNegative()) 1261 t[i] += modulo; 1262 1263 return std::move(t[i]); 1264 } 1265 1266 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1267 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1268 /// variables here have the same names as in the algorithm. Comments explain 1269 /// the algorithm and any deviation from it. 1270 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 1271 unsigned m, unsigned n) { 1272 assert(u && "Must provide dividend"); 1273 assert(v && "Must provide divisor"); 1274 assert(q && "Must provide quotient"); 1275 assert(u != v && u != q && v != q && "Must use different memory"); 1276 assert(n>1 && "n must be > 1"); 1277 1278 // b denotes the base of the number system. In our case b is 2^32. 1279 const uint64_t b = uint64_t(1) << 32; 1280 1281 // The DEBUG macros here tend to be spam in the debug output if you're not 1282 // debugging this code. Disable them unless KNUTH_DEBUG is defined. 1283 #ifdef KNUTH_DEBUG 1284 #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 1285 #else 1286 #define DEBUG_KNUTH(X) do {} while(false) 1287 #endif 1288 1289 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1290 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 1291 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1292 DEBUG_KNUTH(dbgs() << " by"); 1293 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1294 DEBUG_KNUTH(dbgs() << '\n'); 1295 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1296 // u and v by d. Note that we have taken Knuth's advice here to use a power 1297 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1298 // 2 allows us to shift instead of multiply and it is easy to determine the 1299 // shift amount from the leading zeros. We are basically normalizing the u 1300 // and v so that its high bits are shifted to the top of v's range without 1301 // overflow. Note that this can require an extra word in u so that u must 1302 // be of length m+n+1. 1303 unsigned shift = countLeadingZeros(v[n-1]); 1304 uint32_t v_carry = 0; 1305 uint32_t u_carry = 0; 1306 if (shift) { 1307 for (unsigned i = 0; i < m+n; ++i) { 1308 uint32_t u_tmp = u[i] >> (32 - shift); 1309 u[i] = (u[i] << shift) | u_carry; 1310 u_carry = u_tmp; 1311 } 1312 for (unsigned i = 0; i < n; ++i) { 1313 uint32_t v_tmp = v[i] >> (32 - shift); 1314 v[i] = (v[i] << shift) | v_carry; 1315 v_carry = v_tmp; 1316 } 1317 } 1318 u[m+n] = u_carry; 1319 1320 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 1321 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1322 DEBUG_KNUTH(dbgs() << " by"); 1323 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 1324 DEBUG_KNUTH(dbgs() << '\n'); 1325 1326 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1327 int j = m; 1328 do { 1329 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1330 // D3. [Calculate q'.]. 1331 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1332 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1333 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1334 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 1335 // on v[n-2] determines at high speed most of the cases in which the trial 1336 // value qp is one too large, and it eliminates all cases where qp is two 1337 // too large. 1338 uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 1339 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1340 uint64_t qp = dividend / v[n-1]; 1341 uint64_t rp = dividend % v[n-1]; 1342 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1343 qp--; 1344 rp += v[n-1]; 1345 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1346 qp--; 1347 } 1348 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1349 1350 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1351 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1352 // consists of a simple multiplication by a one-place number, combined with 1353 // a subtraction. 1354 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1355 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1356 // true value plus b**(n+1), namely as the b's complement of 1357 // the true value, and a "borrow" to the left should be remembered. 1358 int64_t borrow = 0; 1359 for (unsigned i = 0; i < n; ++i) { 1360 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1361 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 1362 u[j+i] = Lo_32(subres); 1363 borrow = Hi_32(p) - Hi_32(subres); 1364 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 1365 << ", borrow = " << borrow << '\n'); 1366 } 1367 bool isNeg = u[j+n] < borrow; 1368 u[j+n] -= Lo_32(borrow); 1369 1370 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 1371 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1372 DEBUG_KNUTH(dbgs() << '\n'); 1373 1374 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1375 // negative, go to step D6; otherwise go on to step D7. 1376 q[j] = Lo_32(qp); 1377 if (isNeg) { 1378 // D6. [Add back]. The probability that this step is necessary is very 1379 // small, on the order of only 2/b. Make sure that test data accounts for 1380 // this possibility. Decrease q[j] by 1 1381 q[j]--; 1382 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1383 // A carry will occur to the left of u[j+n], and it should be ignored 1384 // since it cancels with the borrow that occurred in D4. 1385 bool carry = false; 1386 for (unsigned i = 0; i < n; i++) { 1387 uint32_t limit = std::min(u[j+i],v[i]); 1388 u[j+i] += v[i] + carry; 1389 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1390 } 1391 u[j+n] += carry; 1392 } 1393 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 1394 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 1395 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1396 1397 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1398 } while (--j >= 0); 1399 1400 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 1401 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 1402 DEBUG_KNUTH(dbgs() << '\n'); 1403 1404 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1405 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1406 // compute the remainder (urem uses this). 1407 if (r) { 1408 // The value d is expressed by the "shift" value above since we avoided 1409 // multiplication by d by using a shift left. So, all we have to do is 1410 // shift right here. 1411 if (shift) { 1412 uint32_t carry = 0; 1413 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 1414 for (int i = n-1; i >= 0; i--) { 1415 r[i] = (u[i] >> shift) | carry; 1416 carry = u[i] << (32 - shift); 1417 DEBUG_KNUTH(dbgs() << " " << r[i]); 1418 } 1419 } else { 1420 for (int i = n-1; i >= 0; i--) { 1421 r[i] = u[i]; 1422 DEBUG_KNUTH(dbgs() << " " << r[i]); 1423 } 1424 } 1425 DEBUG_KNUTH(dbgs() << '\n'); 1426 } 1427 DEBUG_KNUTH(dbgs() << '\n'); 1428 } 1429 1430 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 1431 unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 1432 assert(lhsWords >= rhsWords && "Fractional result"); 1433 1434 // First, compose the values into an array of 32-bit words instead of 1435 // 64-bit words. This is a necessity of both the "short division" algorithm 1436 // and the Knuth "classical algorithm" which requires there to be native 1437 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1438 // can't use 64-bit operands here because we don't have native results of 1439 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1440 // work on large-endian machines. 1441 unsigned n = rhsWords * 2; 1442 unsigned m = (lhsWords * 2) - n; 1443 1444 // Allocate space for the temporary values we need either on the stack, if 1445 // it will fit, or on the heap if it won't. 1446 uint32_t SPACE[128]; 1447 uint32_t *U = nullptr; 1448 uint32_t *V = nullptr; 1449 uint32_t *Q = nullptr; 1450 uint32_t *R = nullptr; 1451 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1452 U = &SPACE[0]; 1453 V = &SPACE[m+n+1]; 1454 Q = &SPACE[(m+n+1) + n]; 1455 if (Remainder) 1456 R = &SPACE[(m+n+1) + n + (m+n)]; 1457 } else { 1458 U = new uint32_t[m + n + 1]; 1459 V = new uint32_t[n]; 1460 Q = new uint32_t[m+n]; 1461 if (Remainder) 1462 R = new uint32_t[n]; 1463 } 1464 1465 // Initialize the dividend 1466 memset(U, 0, (m+n+1)*sizeof(uint32_t)); 1467 for (unsigned i = 0; i < lhsWords; ++i) { 1468 uint64_t tmp = LHS[i]; 1469 U[i * 2] = Lo_32(tmp); 1470 U[i * 2 + 1] = Hi_32(tmp); 1471 } 1472 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1473 1474 // Initialize the divisor 1475 memset(V, 0, (n)*sizeof(uint32_t)); 1476 for (unsigned i = 0; i < rhsWords; ++i) { 1477 uint64_t tmp = RHS[i]; 1478 V[i * 2] = Lo_32(tmp); 1479 V[i * 2 + 1] = Hi_32(tmp); 1480 } 1481 1482 // initialize the quotient and remainder 1483 memset(Q, 0, (m+n) * sizeof(uint32_t)); 1484 if (Remainder) 1485 memset(R, 0, n * sizeof(uint32_t)); 1486 1487 // Now, adjust m and n for the Knuth division. n is the number of words in 1488 // the divisor. m is the number of words by which the dividend exceeds the 1489 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1490 // contain any zero words or the Knuth algorithm fails. 1491 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1492 n--; 1493 m++; 1494 } 1495 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1496 m--; 1497 1498 // If we're left with only a single word for the divisor, Knuth doesn't work 1499 // so we implement the short division algorithm here. This is much simpler 1500 // and faster because we are certain that we can divide a 64-bit quantity 1501 // by a 32-bit quantity at hardware speed and short division is simply a 1502 // series of such operations. This is just like doing short division but we 1503 // are using base 2^32 instead of base 10. 1504 assert(n != 0 && "Divide by zero?"); 1505 if (n == 1) { 1506 uint32_t divisor = V[0]; 1507 uint32_t remainder = 0; 1508 for (int i = m; i >= 0; i--) { 1509 uint64_t partial_dividend = Make_64(remainder, U[i]); 1510 if (partial_dividend == 0) { 1511 Q[i] = 0; 1512 remainder = 0; 1513 } else if (partial_dividend < divisor) { 1514 Q[i] = 0; 1515 remainder = Lo_32(partial_dividend); 1516 } else if (partial_dividend == divisor) { 1517 Q[i] = 1; 1518 remainder = 0; 1519 } else { 1520 Q[i] = Lo_32(partial_dividend / divisor); 1521 remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 1522 } 1523 } 1524 if (R) 1525 R[0] = remainder; 1526 } else { 1527 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1528 // case n > 1. 1529 KnuthDiv(U, V, Q, R, m, n); 1530 } 1531 1532 // If the caller wants the quotient 1533 if (Quotient) { 1534 for (unsigned i = 0; i < lhsWords; ++i) 1535 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 1536 } 1537 1538 // If the caller wants the remainder 1539 if (Remainder) { 1540 for (unsigned i = 0; i < rhsWords; ++i) 1541 Remainder[i] = Make_64(R[i*2+1], R[i*2]); 1542 } 1543 1544 // Clean up the memory we allocated. 1545 if (U != &SPACE[0]) { 1546 delete [] U; 1547 delete [] V; 1548 delete [] Q; 1549 delete [] R; 1550 } 1551 } 1552 1553 APInt APInt::udiv(const APInt &RHS) const { 1554 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1555 1556 // First, deal with the easy case 1557 if (isSingleWord()) { 1558 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1559 return APInt(BitWidth, U.VAL / RHS.U.VAL); 1560 } 1561 1562 // Get some facts about the LHS and RHS number of bits and words 1563 unsigned lhsWords = getNumWords(getActiveBits()); 1564 unsigned rhsBits = RHS.getActiveBits(); 1565 unsigned rhsWords = getNumWords(rhsBits); 1566 assert(rhsWords && "Divided by zero???"); 1567 1568 // Deal with some degenerate cases 1569 if (!lhsWords) 1570 // 0 / X ===> 0 1571 return APInt(BitWidth, 0); 1572 if (rhsBits == 1) 1573 // X / 1 ===> X 1574 return *this; 1575 if (lhsWords < rhsWords || this->ult(RHS)) 1576 // X / Y ===> 0, iff X < Y 1577 return APInt(BitWidth, 0); 1578 if (*this == RHS) 1579 // X / X ===> 1 1580 return APInt(BitWidth, 1); 1581 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1582 // All high words are zero, just use native divide 1583 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 1584 1585 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1586 APInt Quotient(BitWidth, 0); // to hold result. 1587 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 1588 return Quotient; 1589 } 1590 1591 APInt APInt::udiv(uint64_t RHS) const { 1592 assert(RHS != 0 && "Divide by zero?"); 1593 1594 // First, deal with the easy case 1595 if (isSingleWord()) 1596 return APInt(BitWidth, U.VAL / RHS); 1597 1598 // Get some facts about the LHS words. 1599 unsigned lhsWords = getNumWords(getActiveBits()); 1600 1601 // Deal with some degenerate cases 1602 if (!lhsWords) 1603 // 0 / X ===> 0 1604 return APInt(BitWidth, 0); 1605 if (RHS == 1) 1606 // X / 1 ===> X 1607 return *this; 1608 if (this->ult(RHS)) 1609 // X / Y ===> 0, iff X < Y 1610 return APInt(BitWidth, 0); 1611 if (*this == RHS) 1612 // X / X ===> 1 1613 return APInt(BitWidth, 1); 1614 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 1615 // All high words are zero, just use native divide 1616 return APInt(BitWidth, this->U.pVal[0] / RHS); 1617 1618 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1619 APInt Quotient(BitWidth, 0); // to hold result. 1620 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 1621 return Quotient; 1622 } 1623 1624 APInt APInt::sdiv(const APInt &RHS) const { 1625 if (isNegative()) { 1626 if (RHS.isNegative()) 1627 return (-(*this)).udiv(-RHS); 1628 return -((-(*this)).udiv(RHS)); 1629 } 1630 if (RHS.isNegative()) 1631 return -(this->udiv(-RHS)); 1632 return this->udiv(RHS); 1633 } 1634 1635 APInt APInt::sdiv(int64_t RHS) const { 1636 if (isNegative()) { 1637 if (RHS < 0) 1638 return (-(*this)).udiv(-RHS); 1639 return -((-(*this)).udiv(RHS)); 1640 } 1641 if (RHS < 0) 1642 return -(this->udiv(-RHS)); 1643 return this->udiv(RHS); 1644 } 1645 1646 APInt APInt::urem(const APInt &RHS) const { 1647 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1648 if (isSingleWord()) { 1649 assert(RHS.U.VAL != 0 && "Remainder by zero?"); 1650 return APInt(BitWidth, U.VAL % RHS.U.VAL); 1651 } 1652 1653 // Get some facts about the LHS 1654 unsigned lhsWords = getNumWords(getActiveBits()); 1655 1656 // Get some facts about the RHS 1657 unsigned rhsBits = RHS.getActiveBits(); 1658 unsigned rhsWords = getNumWords(rhsBits); 1659 assert(rhsWords && "Performing remainder operation by zero ???"); 1660 1661 // Check the degenerate cases 1662 if (lhsWords == 0) 1663 // 0 % Y ===> 0 1664 return APInt(BitWidth, 0); 1665 if (rhsBits == 1) 1666 // X % 1 ===> 0 1667 return APInt(BitWidth, 0); 1668 if (lhsWords < rhsWords || this->ult(RHS)) 1669 // X % Y ===> X, iff X < Y 1670 return *this; 1671 if (*this == RHS) 1672 // X % X == 0; 1673 return APInt(BitWidth, 0); 1674 if (lhsWords == 1) 1675 // All high words are zero, just use native remainder 1676 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 1677 1678 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1679 APInt Remainder(BitWidth, 0); 1680 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 1681 return Remainder; 1682 } 1683 1684 uint64_t APInt::urem(uint64_t RHS) const { 1685 assert(RHS != 0 && "Remainder by zero?"); 1686 1687 if (isSingleWord()) 1688 return U.VAL % RHS; 1689 1690 // Get some facts about the LHS 1691 unsigned lhsWords = getNumWords(getActiveBits()); 1692 1693 // Check the degenerate cases 1694 if (lhsWords == 0) 1695 // 0 % Y ===> 0 1696 return 0; 1697 if (RHS == 1) 1698 // X % 1 ===> 0 1699 return 0; 1700 if (this->ult(RHS)) 1701 // X % Y ===> X, iff X < Y 1702 return getZExtValue(); 1703 if (*this == RHS) 1704 // X % X == 0; 1705 return 0; 1706 if (lhsWords == 1) 1707 // All high words are zero, just use native remainder 1708 return U.pVal[0] % RHS; 1709 1710 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1711 uint64_t Remainder; 1712 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 1713 return Remainder; 1714 } 1715 1716 APInt APInt::srem(const APInt &RHS) const { 1717 if (isNegative()) { 1718 if (RHS.isNegative()) 1719 return -((-(*this)).urem(-RHS)); 1720 return -((-(*this)).urem(RHS)); 1721 } 1722 if (RHS.isNegative()) 1723 return this->urem(-RHS); 1724 return this->urem(RHS); 1725 } 1726 1727 int64_t APInt::srem(int64_t RHS) const { 1728 if (isNegative()) { 1729 if (RHS < 0) 1730 return -((-(*this)).urem(-RHS)); 1731 return -((-(*this)).urem(RHS)); 1732 } 1733 if (RHS < 0) 1734 return this->urem(-RHS); 1735 return this->urem(RHS); 1736 } 1737 1738 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1739 APInt &Quotient, APInt &Remainder) { 1740 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1741 unsigned BitWidth = LHS.BitWidth; 1742 1743 // First, deal with the easy case 1744 if (LHS.isSingleWord()) { 1745 assert(RHS.U.VAL != 0 && "Divide by zero?"); 1746 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 1747 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 1748 Quotient = APInt(BitWidth, QuotVal); 1749 Remainder = APInt(BitWidth, RemVal); 1750 return; 1751 } 1752 1753 // Get some size facts about the dividend and divisor 1754 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1755 unsigned rhsBits = RHS.getActiveBits(); 1756 unsigned rhsWords = getNumWords(rhsBits); 1757 assert(rhsWords && "Performing divrem operation by zero ???"); 1758 1759 // Check the degenerate cases 1760 if (lhsWords == 0) { 1761 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1762 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 1763 return; 1764 } 1765 1766 if (rhsBits == 1) { 1767 Quotient = LHS; // X / 1 ===> X 1768 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 1769 } 1770 1771 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1772 Remainder = LHS; // X % Y ===> X, iff X < Y 1773 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1774 return; 1775 } 1776 1777 if (LHS == RHS) { 1778 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1779 Remainder = APInt(BitWidth, 0); // X % X ===> 0; 1780 return; 1781 } 1782 1783 // Make sure there is enough space to hold the results. 1784 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1785 // change the size. This is necessary if Quotient or Remainder is aliased 1786 // with LHS or RHS. 1787 Quotient.reallocate(BitWidth); 1788 Remainder.reallocate(BitWidth); 1789 1790 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1791 // There is only one word to consider so use the native versions. 1792 uint64_t lhsValue = LHS.U.pVal[0]; 1793 uint64_t rhsValue = RHS.U.pVal[0]; 1794 Quotient = lhsValue / rhsValue; 1795 Remainder = lhsValue % rhsValue; 1796 return; 1797 } 1798 1799 // Okay, lets do it the long way 1800 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 1801 Remainder.U.pVal); 1802 // Clear the rest of the Quotient and Remainder. 1803 std::memset(Quotient.U.pVal + lhsWords, 0, 1804 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1805 std::memset(Remainder.U.pVal + rhsWords, 0, 1806 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 1807 } 1808 1809 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1810 uint64_t &Remainder) { 1811 assert(RHS != 0 && "Divide by zero?"); 1812 unsigned BitWidth = LHS.BitWidth; 1813 1814 // First, deal with the easy case 1815 if (LHS.isSingleWord()) { 1816 uint64_t QuotVal = LHS.U.VAL / RHS; 1817 Remainder = LHS.U.VAL % RHS; 1818 Quotient = APInt(BitWidth, QuotVal); 1819 return; 1820 } 1821 1822 // Get some size facts about the dividend and divisor 1823 unsigned lhsWords = getNumWords(LHS.getActiveBits()); 1824 1825 // Check the degenerate cases 1826 if (lhsWords == 0) { 1827 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 1828 Remainder = 0; // 0 % Y ===> 0 1829 return; 1830 } 1831 1832 if (RHS == 1) { 1833 Quotient = LHS; // X / 1 ===> X 1834 Remainder = 0; // X % 1 ===> 0 1835 return; 1836 } 1837 1838 if (LHS.ult(RHS)) { 1839 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 1840 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 1841 return; 1842 } 1843 1844 if (LHS == RHS) { 1845 Quotient = APInt(BitWidth, 1); // X / X ===> 1 1846 Remainder = 0; // X % X ===> 0; 1847 return; 1848 } 1849 1850 // Make sure there is enough space to hold the results. 1851 // NOTE: This assumes that reallocate won't affect any bits if it doesn't 1852 // change the size. This is necessary if Quotient is aliased with LHS. 1853 Quotient.reallocate(BitWidth); 1854 1855 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 1856 // There is only one word to consider so use the native versions. 1857 uint64_t lhsValue = LHS.U.pVal[0]; 1858 Quotient = lhsValue / RHS; 1859 Remainder = lhsValue % RHS; 1860 return; 1861 } 1862 1863 // Okay, lets do it the long way 1864 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 1865 // Clear the rest of the Quotient. 1866 std::memset(Quotient.U.pVal + lhsWords, 0, 1867 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 1868 } 1869 1870 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1871 APInt &Quotient, APInt &Remainder) { 1872 if (LHS.isNegative()) { 1873 if (RHS.isNegative()) 1874 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1875 else { 1876 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1877 Quotient.negate(); 1878 } 1879 Remainder.negate(); 1880 } else if (RHS.isNegative()) { 1881 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1882 Quotient.negate(); 1883 } else { 1884 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1885 } 1886 } 1887 1888 void APInt::sdivrem(const APInt &LHS, int64_t RHS, 1889 APInt &Quotient, int64_t &Remainder) { 1890 uint64_t R = Remainder; 1891 if (LHS.isNegative()) { 1892 if (RHS < 0) 1893 APInt::udivrem(-LHS, -RHS, Quotient, R); 1894 else { 1895 APInt::udivrem(-LHS, RHS, Quotient, R); 1896 Quotient.negate(); 1897 } 1898 R = -R; 1899 } else if (RHS < 0) { 1900 APInt::udivrem(LHS, -RHS, Quotient, R); 1901 Quotient.negate(); 1902 } else { 1903 APInt::udivrem(LHS, RHS, Quotient, R); 1904 } 1905 Remainder = R; 1906 } 1907 1908 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1909 APInt Res = *this+RHS; 1910 Overflow = isNonNegative() == RHS.isNonNegative() && 1911 Res.isNonNegative() != isNonNegative(); 1912 return Res; 1913 } 1914 1915 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1916 APInt Res = *this+RHS; 1917 Overflow = Res.ult(RHS); 1918 return Res; 1919 } 1920 1921 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1922 APInt Res = *this - RHS; 1923 Overflow = isNonNegative() != RHS.isNonNegative() && 1924 Res.isNonNegative() != isNonNegative(); 1925 return Res; 1926 } 1927 1928 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 1929 APInt Res = *this-RHS; 1930 Overflow = Res.ugt(*this); 1931 return Res; 1932 } 1933 1934 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 1935 // MININT/-1 --> overflow. 1936 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 1937 return sdiv(RHS); 1938 } 1939 1940 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 1941 APInt Res = *this * RHS; 1942 1943 if (*this != 0 && RHS != 0) 1944 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 1945 else 1946 Overflow = false; 1947 return Res; 1948 } 1949 1950 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 1951 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) { 1952 Overflow = true; 1953 return *this * RHS; 1954 } 1955 1956 APInt Res = lshr(1) * RHS; 1957 Overflow = Res.isNegative(); 1958 Res <<= 1; 1959 if ((*this)[0]) { 1960 Res += RHS; 1961 if (Res.ult(RHS)) 1962 Overflow = true; 1963 } 1964 return Res; 1965 } 1966 1967 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 1968 Overflow = ShAmt.uge(getBitWidth()); 1969 if (Overflow) 1970 return APInt(BitWidth, 0); 1971 1972 if (isNonNegative()) // Don't allow sign change. 1973 Overflow = ShAmt.uge(countLeadingZeros()); 1974 else 1975 Overflow = ShAmt.uge(countLeadingOnes()); 1976 1977 return *this << ShAmt; 1978 } 1979 1980 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 1981 Overflow = ShAmt.uge(getBitWidth()); 1982 if (Overflow) 1983 return APInt(BitWidth, 0); 1984 1985 Overflow = ShAmt.ugt(countLeadingZeros()); 1986 1987 return *this << ShAmt; 1988 } 1989 1990 APInt APInt::sadd_sat(const APInt &RHS) const { 1991 bool Overflow; 1992 APInt Res = sadd_ov(RHS, Overflow); 1993 if (!Overflow) 1994 return Res; 1995 1996 return isNegative() ? APInt::getSignedMinValue(BitWidth) 1997 : APInt::getSignedMaxValue(BitWidth); 1998 } 1999 2000 APInt APInt::uadd_sat(const APInt &RHS) const { 2001 bool Overflow; 2002 APInt Res = uadd_ov(RHS, Overflow); 2003 if (!Overflow) 2004 return Res; 2005 2006 return APInt::getMaxValue(BitWidth); 2007 } 2008 2009 APInt APInt::ssub_sat(const APInt &RHS) const { 2010 bool Overflow; 2011 APInt Res = ssub_ov(RHS, Overflow); 2012 if (!Overflow) 2013 return Res; 2014 2015 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2016 : APInt::getSignedMaxValue(BitWidth); 2017 } 2018 2019 APInt APInt::usub_sat(const APInt &RHS) const { 2020 bool Overflow; 2021 APInt Res = usub_ov(RHS, Overflow); 2022 if (!Overflow) 2023 return Res; 2024 2025 return APInt(BitWidth, 0); 2026 } 2027 2028 APInt APInt::smul_sat(const APInt &RHS) const { 2029 bool Overflow; 2030 APInt Res = smul_ov(RHS, Overflow); 2031 if (!Overflow) 2032 return Res; 2033 2034 // The result is negative if one and only one of inputs is negative. 2035 bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2036 2037 return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2038 : APInt::getSignedMaxValue(BitWidth); 2039 } 2040 2041 APInt APInt::umul_sat(const APInt &RHS) const { 2042 bool Overflow; 2043 APInt Res = umul_ov(RHS, Overflow); 2044 if (!Overflow) 2045 return Res; 2046 2047 return APInt::getMaxValue(BitWidth); 2048 } 2049 2050 APInt APInt::sshl_sat(const APInt &RHS) const { 2051 bool Overflow; 2052 APInt Res = sshl_ov(RHS, Overflow); 2053 if (!Overflow) 2054 return Res; 2055 2056 return isNegative() ? APInt::getSignedMinValue(BitWidth) 2057 : APInt::getSignedMaxValue(BitWidth); 2058 } 2059 2060 APInt APInt::ushl_sat(const APInt &RHS) const { 2061 bool Overflow; 2062 APInt Res = ushl_ov(RHS, Overflow); 2063 if (!Overflow) 2064 return Res; 2065 2066 return APInt::getMaxValue(BitWidth); 2067 } 2068 2069 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2070 // Check our assumptions here 2071 assert(!str.empty() && "Invalid string length"); 2072 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2073 radix == 36) && 2074 "Radix should be 2, 8, 10, 16, or 36!"); 2075 2076 StringRef::iterator p = str.begin(); 2077 size_t slen = str.size(); 2078 bool isNeg = *p == '-'; 2079 if (*p == '-' || *p == '+') { 2080 p++; 2081 slen--; 2082 assert(slen && "String is only a sign, needs a value."); 2083 } 2084 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2085 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2086 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2087 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2088 "Insufficient bit width"); 2089 2090 // Allocate memory if needed 2091 if (isSingleWord()) 2092 U.VAL = 0; 2093 else 2094 U.pVal = getClearedMemory(getNumWords()); 2095 2096 // Figure out if we can shift instead of multiply 2097 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2098 2099 // Enter digit traversal loop 2100 for (StringRef::iterator e = str.end(); p != e; ++p) { 2101 unsigned digit = getDigit(*p, radix); 2102 assert(digit < radix && "Invalid character in digit string"); 2103 2104 // Shift or multiply the value by the radix 2105 if (slen > 1) { 2106 if (shift) 2107 *this <<= shift; 2108 else 2109 *this *= radix; 2110 } 2111 2112 // Add in the digit we just interpreted 2113 *this += digit; 2114 } 2115 // If its negative, put it in two's complement form 2116 if (isNeg) 2117 this->negate(); 2118 } 2119 2120 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2121 bool Signed, bool formatAsCLiteral) const { 2122 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2123 Radix == 36) && 2124 "Radix should be 2, 8, 10, 16, or 36!"); 2125 2126 const char *Prefix = ""; 2127 if (formatAsCLiteral) { 2128 switch (Radix) { 2129 case 2: 2130 // Binary literals are a non-standard extension added in gcc 4.3: 2131 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2132 Prefix = "0b"; 2133 break; 2134 case 8: 2135 Prefix = "0"; 2136 break; 2137 case 10: 2138 break; // No prefix 2139 case 16: 2140 Prefix = "0x"; 2141 break; 2142 default: 2143 llvm_unreachable("Invalid radix!"); 2144 } 2145 } 2146 2147 // First, check for a zero value and just short circuit the logic below. 2148 if (*this == 0) { 2149 while (*Prefix) { 2150 Str.push_back(*Prefix); 2151 ++Prefix; 2152 }; 2153 Str.push_back('0'); 2154 return; 2155 } 2156 2157 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2158 2159 if (isSingleWord()) { 2160 char Buffer[65]; 2161 char *BufPtr = std::end(Buffer); 2162 2163 uint64_t N; 2164 if (!Signed) { 2165 N = getZExtValue(); 2166 } else { 2167 int64_t I = getSExtValue(); 2168 if (I >= 0) { 2169 N = I; 2170 } else { 2171 Str.push_back('-'); 2172 N = -(uint64_t)I; 2173 } 2174 } 2175 2176 while (*Prefix) { 2177 Str.push_back(*Prefix); 2178 ++Prefix; 2179 }; 2180 2181 while (N) { 2182 *--BufPtr = Digits[N % Radix]; 2183 N /= Radix; 2184 } 2185 Str.append(BufPtr, std::end(Buffer)); 2186 return; 2187 } 2188 2189 APInt Tmp(*this); 2190 2191 if (Signed && isNegative()) { 2192 // They want to print the signed version and it is a negative value 2193 // Flip the bits and add one to turn it into the equivalent positive 2194 // value and put a '-' in the result. 2195 Tmp.negate(); 2196 Str.push_back('-'); 2197 } 2198 2199 while (*Prefix) { 2200 Str.push_back(*Prefix); 2201 ++Prefix; 2202 }; 2203 2204 // We insert the digits backward, then reverse them to get the right order. 2205 unsigned StartDig = Str.size(); 2206 2207 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2208 // because the number of bits per digit (1, 3 and 4 respectively) divides 2209 // equally. We just shift until the value is zero. 2210 if (Radix == 2 || Radix == 8 || Radix == 16) { 2211 // Just shift tmp right for each digit width until it becomes zero 2212 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2213 unsigned MaskAmt = Radix - 1; 2214 2215 while (Tmp.getBoolValue()) { 2216 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2217 Str.push_back(Digits[Digit]); 2218 Tmp.lshrInPlace(ShiftAmt); 2219 } 2220 } else { 2221 while (Tmp.getBoolValue()) { 2222 uint64_t Digit; 2223 udivrem(Tmp, Radix, Tmp, Digit); 2224 assert(Digit < Radix && "divide failed"); 2225 Str.push_back(Digits[Digit]); 2226 } 2227 } 2228 2229 // Reverse the digits before returning. 2230 std::reverse(Str.begin()+StartDig, Str.end()); 2231 } 2232 2233 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2234 LLVM_DUMP_METHOD void APInt::dump() const { 2235 SmallString<40> S, U; 2236 this->toStringUnsigned(U); 2237 this->toStringSigned(S); 2238 dbgs() << "APInt(" << BitWidth << "b, " 2239 << U << "u " << S << "s)\n"; 2240 } 2241 #endif 2242 2243 void APInt::print(raw_ostream &OS, bool isSigned) const { 2244 SmallString<40> S; 2245 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2246 OS << S; 2247 } 2248 2249 // This implements a variety of operations on a representation of 2250 // arbitrary precision, two's-complement, bignum integer values. 2251 2252 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2253 // and unrestricting assumption. 2254 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 2255 "Part width must be divisible by 2!"); 2256 2257 // Returns the integer part with the least significant BITS set. 2258 // BITS cannot be zero. 2259 static inline APInt::WordType lowBitMask(unsigned bits) { 2260 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 2261 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 2262 } 2263 2264 /// Returns the value of the lower half of PART. 2265 static inline APInt::WordType lowHalf(APInt::WordType part) { 2266 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 2267 } 2268 2269 /// Returns the value of the upper half of PART. 2270 static inline APInt::WordType highHalf(APInt::WordType part) { 2271 return part >> (APInt::APINT_BITS_PER_WORD / 2); 2272 } 2273 2274 /// Returns the bit number of the most significant set bit of a part. 2275 /// If the input number has no bits set -1U is returned. 2276 static unsigned partMSB(APInt::WordType value) { 2277 return findLastSet(value, ZB_Max); 2278 } 2279 2280 /// Returns the bit number of the least significant set bit of a part. If the 2281 /// input number has no bits set -1U is returned. 2282 static unsigned partLSB(APInt::WordType value) { 2283 return findFirstSet(value, ZB_Max); 2284 } 2285 2286 /// Sets the least significant part of a bignum to the input value, and zeroes 2287 /// out higher parts. 2288 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 2289 assert(parts > 0); 2290 dst[0] = part; 2291 for (unsigned i = 1; i < parts; i++) 2292 dst[i] = 0; 2293 } 2294 2295 /// Assign one bignum to another. 2296 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 2297 for (unsigned i = 0; i < parts; i++) 2298 dst[i] = src[i]; 2299 } 2300 2301 /// Returns true if a bignum is zero, false otherwise. 2302 bool APInt::tcIsZero(const WordType *src, unsigned parts) { 2303 for (unsigned i = 0; i < parts; i++) 2304 if (src[i]) 2305 return false; 2306 2307 return true; 2308 } 2309 2310 /// Extract the given bit of a bignum; returns 0 or 1. 2311 int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 2312 return (parts[whichWord(bit)] & maskBit(bit)) != 0; 2313 } 2314 2315 /// Set the given bit of a bignum. 2316 void APInt::tcSetBit(WordType *parts, unsigned bit) { 2317 parts[whichWord(bit)] |= maskBit(bit); 2318 } 2319 2320 /// Clears the given bit of a bignum. 2321 void APInt::tcClearBit(WordType *parts, unsigned bit) { 2322 parts[whichWord(bit)] &= ~maskBit(bit); 2323 } 2324 2325 /// Returns the bit number of the least significant set bit of a number. If the 2326 /// input number has no bits set -1U is returned. 2327 unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 2328 for (unsigned i = 0; i < n; i++) { 2329 if (parts[i] != 0) { 2330 unsigned lsb = partLSB(parts[i]); 2331 return lsb + i * APINT_BITS_PER_WORD; 2332 } 2333 } 2334 2335 return -1U; 2336 } 2337 2338 /// Returns the bit number of the most significant set bit of a number. 2339 /// If the input number has no bits set -1U is returned. 2340 unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 2341 do { 2342 --n; 2343 2344 if (parts[n] != 0) { 2345 unsigned msb = partMSB(parts[n]); 2346 2347 return msb + n * APINT_BITS_PER_WORD; 2348 } 2349 } while (n); 2350 2351 return -1U; 2352 } 2353 2354 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2355 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2356 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2357 /// */ 2358 void 2359 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 2360 unsigned srcBits, unsigned srcLSB) { 2361 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 2362 assert(dstParts <= dstCount); 2363 2364 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 2365 tcAssign(dst, src + firstSrcPart, dstParts); 2366 2367 unsigned shift = srcLSB % APINT_BITS_PER_WORD; 2368 tcShiftRight(dst, dstParts, shift); 2369 2370 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2371 // in DST. If this is less that srcBits, append the rest, else 2372 // clear the high bits. 2373 unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 2374 if (n < srcBits) { 2375 WordType mask = lowBitMask (srcBits - n); 2376 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2377 << n % APINT_BITS_PER_WORD); 2378 } else if (n > srcBits) { 2379 if (srcBits % APINT_BITS_PER_WORD) 2380 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 2381 } 2382 2383 // Clear high parts. 2384 while (dstParts < dstCount) 2385 dst[dstParts++] = 0; 2386 } 2387 2388 //// DST += RHS + C where C is zero or one. Returns the carry flag. 2389 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 2390 WordType c, unsigned parts) { 2391 assert(c <= 1); 2392 2393 for (unsigned i = 0; i < parts; i++) { 2394 WordType l = dst[i]; 2395 if (c) { 2396 dst[i] += rhs[i] + 1; 2397 c = (dst[i] <= l); 2398 } else { 2399 dst[i] += rhs[i]; 2400 c = (dst[i] < l); 2401 } 2402 } 2403 2404 return c; 2405 } 2406 2407 /// This function adds a single "word" integer, src, to the multiple 2408 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 2409 /// 1 is returned if there is a carry out, otherwise 0 is returned. 2410 /// @returns the carry of the addition. 2411 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 2412 unsigned parts) { 2413 for (unsigned i = 0; i < parts; ++i) { 2414 dst[i] += src; 2415 if (dst[i] >= src) 2416 return 0; // No need to carry so exit early. 2417 src = 1; // Carry one to next digit. 2418 } 2419 2420 return 1; 2421 } 2422 2423 /// DST -= RHS + C where C is zero or one. Returns the carry flag. 2424 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 2425 WordType c, unsigned parts) { 2426 assert(c <= 1); 2427 2428 for (unsigned i = 0; i < parts; i++) { 2429 WordType l = dst[i]; 2430 if (c) { 2431 dst[i] -= rhs[i] + 1; 2432 c = (dst[i] >= l); 2433 } else { 2434 dst[i] -= rhs[i]; 2435 c = (dst[i] > l); 2436 } 2437 } 2438 2439 return c; 2440 } 2441 2442 /// This function subtracts a single "word" (64-bit word), src, from 2443 /// the multi-word integer array, dst[], propagating the borrowed 1 value until 2444 /// no further borrowing is needed or it runs out of "words" in dst. The result 2445 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 2446 /// exhausted. In other words, if src > dst then this function returns 1, 2447 /// otherwise 0. 2448 /// @returns the borrow out of the subtraction 2449 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 2450 unsigned parts) { 2451 for (unsigned i = 0; i < parts; ++i) { 2452 WordType Dst = dst[i]; 2453 dst[i] -= src; 2454 if (src <= Dst) 2455 return 0; // No need to borrow so exit early. 2456 src = 1; // We have to "borrow 1" from next "word" 2457 } 2458 2459 return 1; 2460 } 2461 2462 /// Negate a bignum in-place. 2463 void APInt::tcNegate(WordType *dst, unsigned parts) { 2464 tcComplement(dst, parts); 2465 tcIncrement(dst, parts); 2466 } 2467 2468 /// DST += SRC * MULTIPLIER + CARRY if add is true 2469 /// DST = SRC * MULTIPLIER + CARRY if add is false 2470 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2471 /// they must start at the same point, i.e. DST == SRC. 2472 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2473 /// returned. Otherwise DST is filled with the least significant 2474 /// DSTPARTS parts of the result, and if all of the omitted higher 2475 /// parts were zero return zero, otherwise overflow occurred and 2476 /// return one. 2477 int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 2478 WordType multiplier, WordType carry, 2479 unsigned srcParts, unsigned dstParts, 2480 bool add) { 2481 // Otherwise our writes of DST kill our later reads of SRC. 2482 assert(dst <= src || dst >= src + srcParts); 2483 assert(dstParts <= srcParts + 1); 2484 2485 // N loops; minimum of dstParts and srcParts. 2486 unsigned n = std::min(dstParts, srcParts); 2487 2488 for (unsigned i = 0; i < n; i++) { 2489 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2490 // This cannot overflow, because: 2491 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2492 // which is less than n^2. 2493 WordType srcPart = src[i]; 2494 WordType low, mid, high; 2495 if (multiplier == 0 || srcPart == 0) { 2496 low = carry; 2497 high = 0; 2498 } else { 2499 low = lowHalf(srcPart) * lowHalf(multiplier); 2500 high = highHalf(srcPart) * highHalf(multiplier); 2501 2502 mid = lowHalf(srcPart) * highHalf(multiplier); 2503 high += highHalf(mid); 2504 mid <<= APINT_BITS_PER_WORD / 2; 2505 if (low + mid < low) 2506 high++; 2507 low += mid; 2508 2509 mid = highHalf(srcPart) * lowHalf(multiplier); 2510 high += highHalf(mid); 2511 mid <<= APINT_BITS_PER_WORD / 2; 2512 if (low + mid < low) 2513 high++; 2514 low += mid; 2515 2516 // Now add carry. 2517 if (low + carry < low) 2518 high++; 2519 low += carry; 2520 } 2521 2522 if (add) { 2523 // And now DST[i], and store the new low part there. 2524 if (low + dst[i] < low) 2525 high++; 2526 dst[i] += low; 2527 } else 2528 dst[i] = low; 2529 2530 carry = high; 2531 } 2532 2533 if (srcParts < dstParts) { 2534 // Full multiplication, there is no overflow. 2535 assert(srcParts + 1 == dstParts); 2536 dst[srcParts] = carry; 2537 return 0; 2538 } 2539 2540 // We overflowed if there is carry. 2541 if (carry) 2542 return 1; 2543 2544 // We would overflow if any significant unwritten parts would be 2545 // non-zero. This is true if any remaining src parts are non-zero 2546 // and the multiplier is non-zero. 2547 if (multiplier) 2548 for (unsigned i = dstParts; i < srcParts; i++) 2549 if (src[i]) 2550 return 1; 2551 2552 // We fitted in the narrow destination. 2553 return 0; 2554 } 2555 2556 /// DST = LHS * RHS, where DST has the same width as the operands and 2557 /// is filled with the least significant parts of the result. Returns 2558 /// one if overflow occurred, otherwise zero. DST must be disjoint 2559 /// from both operands. 2560 int APInt::tcMultiply(WordType *dst, const WordType *lhs, 2561 const WordType *rhs, unsigned parts) { 2562 assert(dst != lhs && dst != rhs); 2563 2564 int overflow = 0; 2565 tcSet(dst, 0, parts); 2566 2567 for (unsigned i = 0; i < parts; i++) 2568 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2569 parts - i, true); 2570 2571 return overflow; 2572 } 2573 2574 /// DST = LHS * RHS, where DST has width the sum of the widths of the 2575 /// operands. No overflow occurs. DST must be disjoint from both operands. 2576 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 2577 const WordType *rhs, unsigned lhsParts, 2578 unsigned rhsParts) { 2579 // Put the narrower number on the LHS for less loops below. 2580 if (lhsParts > rhsParts) 2581 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2582 2583 assert(dst != lhs && dst != rhs); 2584 2585 tcSet(dst, 0, rhsParts); 2586 2587 for (unsigned i = 0; i < lhsParts; i++) 2588 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); 2589 } 2590 2591 // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2592 // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2593 // set REMAINDER to the remainder, return zero. i.e. 2594 // 2595 // OLD_LHS = RHS * LHS + REMAINDER 2596 // 2597 // SCRATCH is a bignum of the same size as the operands and result for 2598 // use by the routine; its contents need not be initialized and are 2599 // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2600 int APInt::tcDivide(WordType *lhs, const WordType *rhs, 2601 WordType *remainder, WordType *srhs, 2602 unsigned parts) { 2603 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2604 2605 unsigned shiftCount = tcMSB(rhs, parts) + 1; 2606 if (shiftCount == 0) 2607 return true; 2608 2609 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 2610 unsigned n = shiftCount / APINT_BITS_PER_WORD; 2611 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 2612 2613 tcAssign(srhs, rhs, parts); 2614 tcShiftLeft(srhs, parts, shiftCount); 2615 tcAssign(remainder, lhs, parts); 2616 tcSet(lhs, 0, parts); 2617 2618 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2619 // total. 2620 for (;;) { 2621 int compare = tcCompare(remainder, srhs, parts); 2622 if (compare >= 0) { 2623 tcSubtract(remainder, srhs, 0, parts); 2624 lhs[n] |= mask; 2625 } 2626 2627 if (shiftCount == 0) 2628 break; 2629 shiftCount--; 2630 tcShiftRight(srhs, parts, 1); 2631 if ((mask >>= 1) == 0) { 2632 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 2633 n--; 2634 } 2635 } 2636 2637 return false; 2638 } 2639 2640 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are 2641 /// no restrictions on Count. 2642 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 2643 // Don't bother performing a no-op shift. 2644 if (!Count) 2645 return; 2646 2647 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2648 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2649 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2650 2651 // Fastpath for moving by whole words. 2652 if (BitShift == 0) { 2653 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 2654 } else { 2655 while (Words-- > WordShift) { 2656 Dst[Words] = Dst[Words - WordShift] << BitShift; 2657 if (Words > WordShift) 2658 Dst[Words] |= 2659 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 2660 } 2661 } 2662 2663 // Fill in the remainder with 0s. 2664 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 2665 } 2666 2667 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 2668 /// are no restrictions on Count. 2669 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 2670 // Don't bother performing a no-op shift. 2671 if (!Count) 2672 return; 2673 2674 // WordShift is the inter-part shift; BitShift is the intra-part shift. 2675 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 2676 unsigned BitShift = Count % APINT_BITS_PER_WORD; 2677 2678 unsigned WordsToMove = Words - WordShift; 2679 // Fastpath for moving by whole words. 2680 if (BitShift == 0) { 2681 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 2682 } else { 2683 for (unsigned i = 0; i != WordsToMove; ++i) { 2684 Dst[i] = Dst[i + WordShift] >> BitShift; 2685 if (i + 1 != WordsToMove) 2686 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 2687 } 2688 } 2689 2690 // Fill in the remainder with 0s. 2691 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 2692 } 2693 2694 // Comparison (unsigned) of two bignums. 2695 int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 2696 unsigned parts) { 2697 while (parts) { 2698 parts--; 2699 if (lhs[parts] != rhs[parts]) 2700 return (lhs[parts] > rhs[parts]) ? 1 : -1; 2701 } 2702 2703 return 0; 2704 } 2705 2706 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 2707 APInt::Rounding RM) { 2708 // Currently udivrem always rounds down. 2709 switch (RM) { 2710 case APInt::Rounding::DOWN: 2711 case APInt::Rounding::TOWARD_ZERO: 2712 return A.udiv(B); 2713 case APInt::Rounding::UP: { 2714 APInt Quo, Rem; 2715 APInt::udivrem(A, B, Quo, Rem); 2716 if (Rem == 0) 2717 return Quo; 2718 return Quo + 1; 2719 } 2720 } 2721 llvm_unreachable("Unknown APInt::Rounding enum"); 2722 } 2723 2724 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 2725 APInt::Rounding RM) { 2726 switch (RM) { 2727 case APInt::Rounding::DOWN: 2728 case APInt::Rounding::UP: { 2729 APInt Quo, Rem; 2730 APInt::sdivrem(A, B, Quo, Rem); 2731 if (Rem == 0) 2732 return Quo; 2733 // This algorithm deals with arbitrary rounding mode used by sdivrem. 2734 // We want to check whether the non-integer part of the mathematical value 2735 // is negative or not. If the non-integer part is negative, we need to round 2736 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 2737 // already rounded down. 2738 if (RM == APInt::Rounding::DOWN) { 2739 if (Rem.isNegative() != B.isNegative()) 2740 return Quo - 1; 2741 return Quo; 2742 } 2743 if (Rem.isNegative() != B.isNegative()) 2744 return Quo; 2745 return Quo + 1; 2746 } 2747 // Currently sdiv rounds towards zero. 2748 case APInt::Rounding::TOWARD_ZERO: 2749 return A.sdiv(B); 2750 } 2751 llvm_unreachable("Unknown APInt::Rounding enum"); 2752 } 2753 2754 Optional<APInt> 2755 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2756 unsigned RangeWidth) { 2757 unsigned CoeffWidth = A.getBitWidth(); 2758 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 2759 assert(RangeWidth <= CoeffWidth && 2760 "Value range width should be less than coefficient width"); 2761 assert(RangeWidth > 1 && "Value range bit width should be > 1"); 2762 2763 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 2764 << "x + " << C << ", rw:" << RangeWidth << '\n'); 2765 2766 // Identify 0 as a (non)solution immediately. 2767 if (C.sextOrTrunc(RangeWidth).isNullValue() ) { 2768 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 2769 return APInt(CoeffWidth, 0); 2770 } 2771 2772 // The result of APInt arithmetic has the same bit width as the operands, 2773 // so it can actually lose high bits. A product of two n-bit integers needs 2774 // 2n-1 bits to represent the full value. 2775 // The operation done below (on quadratic coefficients) that can produce 2776 // the largest value is the evaluation of the equation during bisection, 2777 // which needs 3 times the bitwidth of the coefficient, so the total number 2778 // of required bits is 3n. 2779 // 2780 // The purpose of this extension is to simulate the set Z of all integers, 2781 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 2782 // and negative numbers (not so much in a modulo arithmetic). The method 2783 // used to solve the equation is based on the standard formula for real 2784 // numbers, and uses the concepts of "positive" and "negative" with their 2785 // usual meanings. 2786 CoeffWidth *= 3; 2787 A = A.sext(CoeffWidth); 2788 B = B.sext(CoeffWidth); 2789 C = C.sext(CoeffWidth); 2790 2791 // Make A > 0 for simplicity. Negate cannot overflow at this point because 2792 // the bit width has increased. 2793 if (A.isNegative()) { 2794 A.negate(); 2795 B.negate(); 2796 C.negate(); 2797 } 2798 2799 // Solving an equation q(x) = 0 with coefficients in modular arithmetic 2800 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 2801 // and R = 2^BitWidth. 2802 // Since we're trying not only to find exact solutions, but also values 2803 // that "wrap around", such a set will always have a solution, i.e. an x 2804 // that satisfies at least one of the equations, or such that |q(x)| 2805 // exceeds kR, while |q(x-1)| for the same k does not. 2806 // 2807 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 2808 // positive solution n (in the above sense), and also such that the n 2809 // will be the least among all solutions corresponding to k = 0, 1, ... 2810 // (more precisely, the least element in the set 2811 // { n(k) | k is such that a solution n(k) exists }). 2812 // 2813 // Consider the parabola (over real numbers) that corresponds to the 2814 // quadratic equation. Since A > 0, the arms of the parabola will point 2815 // up. Picking different values of k will shift it up and down by R. 2816 // 2817 // We want to shift the parabola in such a way as to reduce the problem 2818 // of solving q(x) = kR to solving shifted_q(x) = 0. 2819 // (The interesting solutions are the ceilings of the real number 2820 // solutions.) 2821 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 2822 APInt TwoA = 2 * A; 2823 APInt SqrB = B * B; 2824 bool PickLow; 2825 2826 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 2827 assert(A.isStrictlyPositive()); 2828 APInt T = V.abs().urem(A); 2829 if (T.isNullValue()) 2830 return V; 2831 return V.isNegative() ? V+T : V+(A-T); 2832 }; 2833 2834 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 2835 // iff B is positive. 2836 if (B.isNonNegative()) { 2837 // If B >= 0, the vertex it at a negative location (or at 0), so in 2838 // order to have a non-negative solution we need to pick k that makes 2839 // C-kR negative. To satisfy all the requirements for the solution 2840 // that we are looking for, it needs to be closest to 0 of all k. 2841 C = C.srem(R); 2842 if (C.isStrictlyPositive()) 2843 C -= R; 2844 // Pick the greater solution. 2845 PickLow = false; 2846 } else { 2847 // If B < 0, the vertex is at a positive location. For any solution 2848 // to exist, the discriminant must be non-negative. This means that 2849 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 2850 // lower bound on values of k: kR >= C - B^2/4A. 2851 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 2852 // Round LowkR up (towards +inf) to the nearest kR. 2853 LowkR = RoundUp(LowkR, R); 2854 2855 // If there exists k meeting the condition above, and such that 2856 // C-kR > 0, there will be two positive real number solutions of 2857 // q(x) = kR. Out of all such values of k, pick the one that makes 2858 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 2859 // In other words, find maximum k such that LowkR <= kR < C. 2860 if (C.sgt(LowkR)) { 2861 // If LowkR < C, then such a k is guaranteed to exist because 2862 // LowkR itself is a multiple of R. 2863 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 2864 // Pick the smaller solution. 2865 PickLow = true; 2866 } else { 2867 // If C-kR < 0 for all potential k's, it means that one solution 2868 // will be negative, while the other will be positive. The positive 2869 // solution will shift towards 0 if the parabola is moved up. 2870 // Pick the kR closest to the lower bound (i.e. make C-kR closest 2871 // to 0, or in other words, out of all parabolas that have solutions, 2872 // pick the one that is the farthest "up"). 2873 // Since LowkR is itself a multiple of R, simply take C-LowkR. 2874 C -= LowkR; 2875 // Pick the greater solution. 2876 PickLow = false; 2877 } 2878 } 2879 2880 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 2881 << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 2882 2883 APInt D = SqrB - 4*A*C; 2884 assert(D.isNonNegative() && "Negative discriminant"); 2885 APInt SQ = D.sqrt(); 2886 2887 APInt Q = SQ * SQ; 2888 bool InexactSQ = Q != D; 2889 // The calculated SQ may actually be greater than the exact (non-integer) 2890 // value. If that's the case, decrement SQ to get a value that is lower. 2891 if (Q.sgt(D)) 2892 SQ -= 1; 2893 2894 APInt X; 2895 APInt Rem; 2896 2897 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 2898 // When using the quadratic formula directly, the calculated low root 2899 // may be greater than the exact one, since we would be subtracting SQ. 2900 // To make sure that the calculated root is not greater than the exact 2901 // one, subtract SQ+1 when calculating the low root (for inexact value 2902 // of SQ). 2903 if (PickLow) 2904 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 2905 else 2906 APInt::sdivrem(-B + SQ, TwoA, X, Rem); 2907 2908 // The updated coefficients should be such that the (exact) solution is 2909 // positive. Since APInt division rounds towards 0, the calculated one 2910 // can be 0, but cannot be negative. 2911 assert(X.isNonNegative() && "Solution should be non-negative"); 2912 2913 if (!InexactSQ && Rem.isNullValue()) { 2914 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 2915 return X; 2916 } 2917 2918 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 2919 // The exact value of the square root of D should be between SQ and SQ+1. 2920 // This implies that the solution should be between that corresponding to 2921 // SQ (i.e. X) and that corresponding to SQ+1. 2922 // 2923 // The calculated X cannot be greater than the exact (real) solution. 2924 // Actually it must be strictly less than the exact solution, while 2925 // X+1 will be greater than or equal to it. 2926 2927 APInt VX = (A*X + B)*X + C; 2928 APInt VY = VX + TwoA*X + A + B; 2929 bool SignChange = VX.isNegative() != VY.isNegative() || 2930 VX.isNullValue() != VY.isNullValue(); 2931 // If the sign did not change between X and X+1, X is not a valid solution. 2932 // This could happen when the actual (exact) roots don't have an integer 2933 // between them, so they would both be contained between X and X+1. 2934 if (!SignChange) { 2935 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2936 return None; 2937 } 2938 2939 X += 1; 2940 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 2941 return X; 2942 } 2943 2944 Optional<unsigned> 2945 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2946 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2947 if (A == B) 2948 return llvm::None; 2949 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1); 2950 } 2951 2952 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 2953 /// with the integer held in IntVal. 2954 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 2955 unsigned StoreBytes) { 2956 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 2957 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 2958 2959 if (sys::IsLittleEndianHost) { 2960 // Little-endian host - the source is ordered from LSB to MSB. Order the 2961 // destination from LSB to MSB: Do a straight copy. 2962 memcpy(Dst, Src, StoreBytes); 2963 } else { 2964 // Big-endian host - the source is an array of 64 bit words ordered from 2965 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 2966 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 2967 while (StoreBytes > sizeof(uint64_t)) { 2968 StoreBytes -= sizeof(uint64_t); 2969 // May not be aligned so use memcpy. 2970 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 2971 Src += sizeof(uint64_t); 2972 } 2973 2974 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 2975 } 2976 } 2977 2978 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 2979 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 2980 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 2981 unsigned LoadBytes) { 2982 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 2983 uint8_t *Dst = reinterpret_cast<uint8_t *>( 2984 const_cast<uint64_t *>(IntVal.getRawData())); 2985 2986 if (sys::IsLittleEndianHost) 2987 // Little-endian host - the destination must be ordered from LSB to MSB. 2988 // The source is ordered from LSB to MSB: Do a straight copy. 2989 memcpy(Dst, Src, LoadBytes); 2990 else { 2991 // Big-endian - the destination is an array of 64 bit words ordered from 2992 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 2993 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 2994 // a word. 2995 while (LoadBytes > sizeof(uint64_t)) { 2996 LoadBytes -= sizeof(uint64_t); 2997 // May not be aligned so use memcpy. 2998 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 2999 Dst += sizeof(uint64_t); 3000 } 3001 3002 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 3003 } 3004 } 3005