1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <climits>
28 #include <cmath>
29 #include <cstdlib>
30 #include <cstring>
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "apint"
34 
35 /// A utility function for allocating memory, checking for allocation failures,
36 /// and ensuring the contents are zeroed.
37 inline static uint64_t* getClearedMemory(unsigned numWords) {
38   uint64_t *result = new uint64_t[numWords];
39   memset(result, 0, numWords * sizeof(uint64_t));
40   return result;
41 }
42 
43 /// A utility function for allocating memory and checking for allocation
44 /// failure.  The content is not zeroed.
45 inline static uint64_t* getMemory(unsigned numWords) {
46   return new uint64_t[numWords];
47 }
48 
49 /// A utility function that converts a character to a digit.
50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51   unsigned r;
52 
53   if (radix == 16 || radix == 36) {
54     r = cdigit - '0';
55     if (r <= 9)
56       return r;
57 
58     r = cdigit - 'A';
59     if (r <= radix - 11U)
60       return r + 10;
61 
62     r = cdigit - 'a';
63     if (r <= radix - 11U)
64       return r + 10;
65 
66     radix = 10;
67   }
68 
69   r = cdigit - '0';
70   if (r < radix)
71     return r;
72 
73   return -1U;
74 }
75 
76 
77 void APInt::initSlowCase(uint64_t val, bool isSigned) {
78   U.pVal = getClearedMemory(getNumWords());
79   U.pVal[0] = val;
80   if (isSigned && int64_t(val) < 0)
81     for (unsigned i = 1; i < getNumWords(); ++i)
82       U.pVal[i] = WORDTYPE_MAX;
83   clearUnusedBits();
84 }
85 
86 void APInt::initSlowCase(const APInt& that) {
87   U.pVal = getMemory(getNumWords());
88   memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
89 }
90 
91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
92   assert(bigVal.data() && "Null pointer detected!");
93   if (isSingleWord())
94     U.VAL = bigVal[0];
95   else {
96     // Get memory, cleared to 0
97     U.pVal = getClearedMemory(getNumWords());
98     // Calculate the number of words to copy
99     unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
100     // Copy the words from bigVal to pVal
101     memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
102   }
103   // Make sure unused high bits are cleared
104   clearUnusedBits();
105 }
106 
107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
108   initFromArray(bigVal);
109 }
110 
111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
112     : BitWidth(numBits) {
113   initFromArray(makeArrayRef(bigVal, numWords));
114 }
115 
116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
117     : BitWidth(numbits) {
118   fromString(numbits, Str, radix);
119 }
120 
121 void APInt::reallocate(unsigned NewBitWidth) {
122   // If the number of words is the same we can just change the width and stop.
123   if (getNumWords() == getNumWords(NewBitWidth)) {
124     BitWidth = NewBitWidth;
125     return;
126   }
127 
128   // If we have an allocation, delete it.
129   if (!isSingleWord())
130     delete [] U.pVal;
131 
132   // Update BitWidth.
133   BitWidth = NewBitWidth;
134 
135   // If we are supposed to have an allocation, create it.
136   if (!isSingleWord())
137     U.pVal = getMemory(getNumWords());
138 }
139 
140 void APInt::assignSlowCase(const APInt &RHS) {
141   // Don't do anything for X = X
142   if (this == &RHS)
143     return;
144 
145   // Adjust the bit width and handle allocations as necessary.
146   reallocate(RHS.getBitWidth());
147 
148   // Copy the data.
149   if (isSingleWord())
150     U.VAL = RHS.U.VAL;
151   else
152     memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
153 }
154 
155 /// This method 'profiles' an APInt for use with FoldingSet.
156 void APInt::Profile(FoldingSetNodeID& ID) const {
157   ID.AddInteger(BitWidth);
158 
159   if (isSingleWord()) {
160     ID.AddInteger(U.VAL);
161     return;
162   }
163 
164   unsigned NumWords = getNumWords();
165   for (unsigned i = 0; i < NumWords; ++i)
166     ID.AddInteger(U.pVal[i]);
167 }
168 
169 /// Prefix increment operator. Increments the APInt by one.
170 APInt& APInt::operator++() {
171   if (isSingleWord())
172     ++U.VAL;
173   else
174     tcIncrement(U.pVal, getNumWords());
175   return clearUnusedBits();
176 }
177 
178 /// Prefix decrement operator. Decrements the APInt by one.
179 APInt& APInt::operator--() {
180   if (isSingleWord())
181     --U.VAL;
182   else
183     tcDecrement(U.pVal, getNumWords());
184   return clearUnusedBits();
185 }
186 
187 /// Adds the RHS APInt to this APInt.
188 /// @returns this, after addition of RHS.
189 /// Addition assignment operator.
190 APInt& APInt::operator+=(const APInt& RHS) {
191   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
192   if (isSingleWord())
193     U.VAL += RHS.U.VAL;
194   else
195     tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
196   return clearUnusedBits();
197 }
198 
199 APInt& APInt::operator+=(uint64_t RHS) {
200   if (isSingleWord())
201     U.VAL += RHS;
202   else
203     tcAddPart(U.pVal, RHS, getNumWords());
204   return clearUnusedBits();
205 }
206 
207 /// Subtracts the RHS APInt from this APInt
208 /// @returns this, after subtraction
209 /// Subtraction assignment operator.
210 APInt& APInt::operator-=(const APInt& RHS) {
211   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
212   if (isSingleWord())
213     U.VAL -= RHS.U.VAL;
214   else
215     tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
216   return clearUnusedBits();
217 }
218 
219 APInt& APInt::operator-=(uint64_t RHS) {
220   if (isSingleWord())
221     U.VAL -= RHS;
222   else
223     tcSubtractPart(U.pVal, RHS, getNumWords());
224   return clearUnusedBits();
225 }
226 
227 APInt APInt::operator*(const APInt& RHS) const {
228   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
229   if (isSingleWord())
230     return APInt(BitWidth, U.VAL * RHS.U.VAL);
231 
232   APInt Result(getMemory(getNumWords()), getBitWidth());
233   tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
234   Result.clearUnusedBits();
235   return Result;
236 }
237 
238 void APInt::andAssignSlowCase(const APInt &RHS) {
239   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
240   for (size_t i = 0, e = getNumWords(); i != e; ++i)
241     dst[i] &= rhs[i];
242 }
243 
244 void APInt::orAssignSlowCase(const APInt &RHS) {
245   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
246   for (size_t i = 0, e = getNumWords(); i != e; ++i)
247     dst[i] |= rhs[i];
248 }
249 
250 void APInt::xorAssignSlowCase(const APInt &RHS) {
251   WordType *dst = U.pVal, *rhs = RHS.U.pVal;
252   for (size_t i = 0, e = getNumWords(); i != e; ++i)
253     dst[i] ^= rhs[i];
254 }
255 
256 APInt &APInt::operator*=(const APInt &RHS) {
257   *this = *this * RHS;
258   return *this;
259 }
260 
261 APInt& APInt::operator*=(uint64_t RHS) {
262   if (isSingleWord()) {
263     U.VAL *= RHS;
264   } else {
265     unsigned NumWords = getNumWords();
266     tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
267   }
268   return clearUnusedBits();
269 }
270 
271 bool APInt::equalSlowCase(const APInt &RHS) const {
272   return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
273 }
274 
275 int APInt::compare(const APInt& RHS) const {
276   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
277   if (isSingleWord())
278     return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
279 
280   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
281 }
282 
283 int APInt::compareSigned(const APInt& RHS) const {
284   assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
285   if (isSingleWord()) {
286     int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
287     int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
288     return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
289   }
290 
291   bool lhsNeg = isNegative();
292   bool rhsNeg = RHS.isNegative();
293 
294   // If the sign bits don't match, then (LHS < RHS) if LHS is negative
295   if (lhsNeg != rhsNeg)
296     return lhsNeg ? -1 : 1;
297 
298   // Otherwise we can just use an unsigned comparison, because even negative
299   // numbers compare correctly this way if both have the same signed-ness.
300   return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
301 }
302 
303 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
304   unsigned loWord = whichWord(loBit);
305   unsigned hiWord = whichWord(hiBit);
306 
307   // Create an initial mask for the low word with zeros below loBit.
308   uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
309 
310   // If hiBit is not aligned, we need a high mask.
311   unsigned hiShiftAmt = whichBit(hiBit);
312   if (hiShiftAmt != 0) {
313     // Create a high mask with zeros above hiBit.
314     uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
315     // If loWord and hiWord are equal, then we combine the masks. Otherwise,
316     // set the bits in hiWord.
317     if (hiWord == loWord)
318       loMask &= hiMask;
319     else
320       U.pVal[hiWord] |= hiMask;
321   }
322   // Apply the mask to the low word.
323   U.pVal[loWord] |= loMask;
324 
325   // Fill any words between loWord and hiWord with all ones.
326   for (unsigned word = loWord + 1; word < hiWord; ++word)
327     U.pVal[word] = WORDTYPE_MAX;
328 }
329 
330 // Complement a bignum in-place.
331 static void tcComplement(APInt::WordType *dst, unsigned parts) {
332   for (unsigned i = 0; i < parts; i++)
333     dst[i] = ~dst[i];
334 }
335 
336 /// Toggle every bit to its opposite value.
337 void APInt::flipAllBitsSlowCase() {
338   tcComplement(U.pVal, getNumWords());
339   clearUnusedBits();
340 }
341 
342 /// Concatenate the bits from "NewLSB" onto the bottom of *this.  This is
343 /// equivalent to:
344 ///   (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
345 /// In the slow case, we know the result is large.
346 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
347   unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
348   APInt Result = NewLSB.zextOrSelf(NewWidth);
349   Result.insertBits(*this, NewLSB.getBitWidth());
350   return Result;
351 }
352 
353 /// Toggle a given bit to its opposite value whose position is given
354 /// as "bitPosition".
355 /// Toggles a given bit to its opposite value.
356 void APInt::flipBit(unsigned bitPosition) {
357   assert(bitPosition < BitWidth && "Out of the bit-width range!");
358   setBitVal(bitPosition, !(*this)[bitPosition]);
359 }
360 
361 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
362   unsigned subBitWidth = subBits.getBitWidth();
363   assert(subBitWidth >= 0 && (subBitWidth + bitPosition) <= BitWidth &&
364          "Illegal bit insertion");
365 
366   // inserting no bits is a noop.
367   if (subBitWidth == 0)
368     return;
369 
370   // Insertion is a direct copy.
371   if (subBitWidth == BitWidth) {
372     *this = subBits;
373     return;
374   }
375 
376   // Single word result can be done as a direct bitmask.
377   if (isSingleWord()) {
378     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
379     U.VAL &= ~(mask << bitPosition);
380     U.VAL |= (subBits.U.VAL << bitPosition);
381     return;
382   }
383 
384   unsigned loBit = whichBit(bitPosition);
385   unsigned loWord = whichWord(bitPosition);
386   unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
387 
388   // Insertion within a single word can be done as a direct bitmask.
389   if (loWord == hi1Word) {
390     uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
391     U.pVal[loWord] &= ~(mask << loBit);
392     U.pVal[loWord] |= (subBits.U.VAL << loBit);
393     return;
394   }
395 
396   // Insert on word boundaries.
397   if (loBit == 0) {
398     // Direct copy whole words.
399     unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
400     memcpy(U.pVal + loWord, subBits.getRawData(),
401            numWholeSubWords * APINT_WORD_SIZE);
402 
403     // Mask+insert remaining bits.
404     unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
405     if (remainingBits != 0) {
406       uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
407       U.pVal[hi1Word] &= ~mask;
408       U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
409     }
410     return;
411   }
412 
413   // General case - set/clear individual bits in dst based on src.
414   // TODO - there is scope for optimization here, but at the moment this code
415   // path is barely used so prefer readability over performance.
416   for (unsigned i = 0; i != subBitWidth; ++i)
417     setBitVal(bitPosition + i, subBits[i]);
418 }
419 
420 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
421   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
422   subBits &= maskBits;
423   if (isSingleWord()) {
424     U.VAL &= ~(maskBits << bitPosition);
425     U.VAL |= subBits << bitPosition;
426     return;
427   }
428 
429   unsigned loBit = whichBit(bitPosition);
430   unsigned loWord = whichWord(bitPosition);
431   unsigned hiWord = whichWord(bitPosition + numBits - 1);
432   if (loWord == hiWord) {
433     U.pVal[loWord] &= ~(maskBits << loBit);
434     U.pVal[loWord] |= subBits << loBit;
435     return;
436   }
437 
438   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
439   unsigned wordBits = 8 * sizeof(WordType);
440   U.pVal[loWord] &= ~(maskBits << loBit);
441   U.pVal[loWord] |= subBits << loBit;
442 
443   U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
444   U.pVal[hiWord] |= subBits >> (wordBits - loBit);
445 }
446 
447 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
448   assert(numBits > 0 && "Can't extract zero bits");
449   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
450          "Illegal bit extraction");
451 
452   if (isSingleWord())
453     return APInt(numBits, U.VAL >> bitPosition);
454 
455   unsigned loBit = whichBit(bitPosition);
456   unsigned loWord = whichWord(bitPosition);
457   unsigned hiWord = whichWord(bitPosition + numBits - 1);
458 
459   // Single word result extracting bits from a single word source.
460   if (loWord == hiWord)
461     return APInt(numBits, U.pVal[loWord] >> loBit);
462 
463   // Extracting bits that start on a source word boundary can be done
464   // as a fast memory copy.
465   if (loBit == 0)
466     return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
467 
468   // General case - shift + copy source words directly into place.
469   APInt Result(numBits, 0);
470   unsigned NumSrcWords = getNumWords();
471   unsigned NumDstWords = Result.getNumWords();
472 
473   uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
474   for (unsigned word = 0; word < NumDstWords; ++word) {
475     uint64_t w0 = U.pVal[loWord + word];
476     uint64_t w1 =
477         (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
478     DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
479   }
480 
481   return Result.clearUnusedBits();
482 }
483 
484 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
485                                        unsigned bitPosition) const {
486   assert(numBits > 0 && "Can't extract zero bits");
487   assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
488          "Illegal bit extraction");
489   assert(numBits <= 64 && "Illegal bit extraction");
490 
491   uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
492   if (isSingleWord())
493     return (U.VAL >> bitPosition) & maskBits;
494 
495   unsigned loBit = whichBit(bitPosition);
496   unsigned loWord = whichWord(bitPosition);
497   unsigned hiWord = whichWord(bitPosition + numBits - 1);
498   if (loWord == hiWord)
499     return (U.pVal[loWord] >> loBit) & maskBits;
500 
501   static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
502   unsigned wordBits = 8 * sizeof(WordType);
503   uint64_t retBits = U.pVal[loWord] >> loBit;
504   retBits |= U.pVal[hiWord] << (wordBits - loBit);
505   retBits &= maskBits;
506   return retBits;
507 }
508 
509 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
510   assert(!str.empty() && "Invalid string length");
511   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
512           radix == 36) &&
513          "Radix should be 2, 8, 10, 16, or 36!");
514 
515   size_t slen = str.size();
516 
517   // Each computation below needs to know if it's negative.
518   StringRef::iterator p = str.begin();
519   unsigned isNegative = *p == '-';
520   if (*p == '-' || *p == '+') {
521     p++;
522     slen--;
523     assert(slen && "String is only a sign, needs a value.");
524   }
525 
526   // For radixes of power-of-two values, the bits required is accurately and
527   // easily computed
528   if (radix == 2)
529     return slen + isNegative;
530   if (radix == 8)
531     return slen * 3 + isNegative;
532   if (radix == 16)
533     return slen * 4 + isNegative;
534 
535   // FIXME: base 36
536 
537   // This is grossly inefficient but accurate. We could probably do something
538   // with a computation of roughly slen*64/20 and then adjust by the value of
539   // the first few digits. But, I'm not sure how accurate that could be.
540 
541   // Compute a sufficient number of bits that is always large enough but might
542   // be too large. This avoids the assertion in the constructor. This
543   // calculation doesn't work appropriately for the numbers 0-9, so just use 4
544   // bits in that case.
545   unsigned sufficient
546     = radix == 10? (slen == 1 ? 4 : slen * 64/18)
547                  : (slen == 1 ? 7 : slen * 16/3);
548 
549   // Convert to the actual binary value.
550   APInt tmp(sufficient, StringRef(p, slen), radix);
551 
552   // Compute how many bits are required. If the log is infinite, assume we need
553   // just bit. If the log is exact and value is negative, then the value is
554   // MinSignedValue with (log + 1) bits.
555   unsigned log = tmp.logBase2();
556   if (log == (unsigned)-1) {
557     return isNegative + 1;
558   } else if (isNegative && tmp.isPowerOf2()) {
559     return isNegative + log;
560   } else {
561     return isNegative + log + 1;
562   }
563 }
564 
565 hash_code llvm::hash_value(const APInt &Arg) {
566   if (Arg.isSingleWord())
567     return hash_combine(Arg.BitWidth, Arg.U.VAL);
568 
569   return hash_combine(
570       Arg.BitWidth,
571       hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
572 }
573 
574 unsigned DenseMapInfo<APInt>::getHashValue(const APInt &Key) {
575   return static_cast<unsigned>(hash_value(Key));
576 }
577 
578 bool APInt::isSplat(unsigned SplatSizeInBits) const {
579   assert(getBitWidth() % SplatSizeInBits == 0 &&
580          "SplatSizeInBits must divide width!");
581   // We can check that all parts of an integer are equal by making use of a
582   // little trick: rotate and check if it's still the same value.
583   return *this == rotl(SplatSizeInBits);
584 }
585 
586 /// This function returns the high "numBits" bits of this APInt.
587 APInt APInt::getHiBits(unsigned numBits) const {
588   return this->lshr(BitWidth - numBits);
589 }
590 
591 /// This function returns the low "numBits" bits of this APInt.
592 APInt APInt::getLoBits(unsigned numBits) const {
593   APInt Result(getLowBitsSet(BitWidth, numBits));
594   Result &= *this;
595   return Result;
596 }
597 
598 /// Return a value containing V broadcasted over NewLen bits.
599 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
600   assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
601 
602   APInt Val = V.zextOrSelf(NewLen);
603   for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
604     Val |= Val << I;
605 
606   return Val;
607 }
608 
609 unsigned APInt::countLeadingZerosSlowCase() const {
610   unsigned Count = 0;
611   for (int i = getNumWords()-1; i >= 0; --i) {
612     uint64_t V = U.pVal[i];
613     if (V == 0)
614       Count += APINT_BITS_PER_WORD;
615     else {
616       Count += llvm::countLeadingZeros(V);
617       break;
618     }
619   }
620   // Adjust for unused bits in the most significant word (they are zero).
621   unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
622   Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
623   return Count;
624 }
625 
626 unsigned APInt::countLeadingOnesSlowCase() const {
627   unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
628   unsigned shift;
629   if (!highWordBits) {
630     highWordBits = APINT_BITS_PER_WORD;
631     shift = 0;
632   } else {
633     shift = APINT_BITS_PER_WORD - highWordBits;
634   }
635   int i = getNumWords() - 1;
636   unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
637   if (Count == highWordBits) {
638     for (i--; i >= 0; --i) {
639       if (U.pVal[i] == WORDTYPE_MAX)
640         Count += APINT_BITS_PER_WORD;
641       else {
642         Count += llvm::countLeadingOnes(U.pVal[i]);
643         break;
644       }
645     }
646   }
647   return Count;
648 }
649 
650 unsigned APInt::countTrailingZerosSlowCase() const {
651   unsigned Count = 0;
652   unsigned i = 0;
653   for (; i < getNumWords() && U.pVal[i] == 0; ++i)
654     Count += APINT_BITS_PER_WORD;
655   if (i < getNumWords())
656     Count += llvm::countTrailingZeros(U.pVal[i]);
657   return std::min(Count, BitWidth);
658 }
659 
660 unsigned APInt::countTrailingOnesSlowCase() const {
661   unsigned Count = 0;
662   unsigned i = 0;
663   for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
664     Count += APINT_BITS_PER_WORD;
665   if (i < getNumWords())
666     Count += llvm::countTrailingOnes(U.pVal[i]);
667   assert(Count <= BitWidth);
668   return Count;
669 }
670 
671 unsigned APInt::countPopulationSlowCase() const {
672   unsigned Count = 0;
673   for (unsigned i = 0; i < getNumWords(); ++i)
674     Count += llvm::countPopulation(U.pVal[i]);
675   return Count;
676 }
677 
678 bool APInt::intersectsSlowCase(const APInt &RHS) const {
679   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
680     if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
681       return true;
682 
683   return false;
684 }
685 
686 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
687   for (unsigned i = 0, e = getNumWords(); i != e; ++i)
688     if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
689       return false;
690 
691   return true;
692 }
693 
694 APInt APInt::byteSwap() const {
695   assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
696   if (BitWidth == 16)
697     return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
698   if (BitWidth == 32)
699     return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
700   if (BitWidth <= 64) {
701     uint64_t Tmp1 = ByteSwap_64(U.VAL);
702     Tmp1 >>= (64 - BitWidth);
703     return APInt(BitWidth, Tmp1);
704   }
705 
706   APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
707   for (unsigned I = 0, N = getNumWords(); I != N; ++I)
708     Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
709   if (Result.BitWidth != BitWidth) {
710     Result.lshrInPlace(Result.BitWidth - BitWidth);
711     Result.BitWidth = BitWidth;
712   }
713   return Result;
714 }
715 
716 APInt APInt::reverseBits() const {
717   switch (BitWidth) {
718   case 64:
719     return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
720   case 32:
721     return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
722   case 16:
723     return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
724   case 8:
725     return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
726   case 0:
727     return *this;
728   default:
729     break;
730   }
731 
732   APInt Val(*this);
733   APInt Reversed(BitWidth, 0);
734   unsigned S = BitWidth;
735 
736   for (; Val != 0; Val.lshrInPlace(1)) {
737     Reversed <<= 1;
738     Reversed |= Val[0];
739     --S;
740   }
741 
742   Reversed <<= S;
743   return Reversed;
744 }
745 
746 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
747   // Fast-path a common case.
748   if (A == B) return A;
749 
750   // Corner cases: if either operand is zero, the other is the gcd.
751   if (!A) return B;
752   if (!B) return A;
753 
754   // Count common powers of 2 and remove all other powers of 2.
755   unsigned Pow2;
756   {
757     unsigned Pow2_A = A.countTrailingZeros();
758     unsigned Pow2_B = B.countTrailingZeros();
759     if (Pow2_A > Pow2_B) {
760       A.lshrInPlace(Pow2_A - Pow2_B);
761       Pow2 = Pow2_B;
762     } else if (Pow2_B > Pow2_A) {
763       B.lshrInPlace(Pow2_B - Pow2_A);
764       Pow2 = Pow2_A;
765     } else {
766       Pow2 = Pow2_A;
767     }
768   }
769 
770   // Both operands are odd multiples of 2^Pow_2:
771   //
772   //   gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
773   //
774   // This is a modified version of Stein's algorithm, taking advantage of
775   // efficient countTrailingZeros().
776   while (A != B) {
777     if (A.ugt(B)) {
778       A -= B;
779       A.lshrInPlace(A.countTrailingZeros() - Pow2);
780     } else {
781       B -= A;
782       B.lshrInPlace(B.countTrailingZeros() - Pow2);
783     }
784   }
785 
786   return A;
787 }
788 
789 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
790   uint64_t I = bit_cast<uint64_t>(Double);
791 
792   // Get the sign bit from the highest order bit
793   bool isNeg = I >> 63;
794 
795   // Get the 11-bit exponent and adjust for the 1023 bit bias
796   int64_t exp = ((I >> 52) & 0x7ff) - 1023;
797 
798   // If the exponent is negative, the value is < 0 so just return 0.
799   if (exp < 0)
800     return APInt(width, 0u);
801 
802   // Extract the mantissa by clearing the top 12 bits (sign + exponent).
803   uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
804 
805   // If the exponent doesn't shift all bits out of the mantissa
806   if (exp < 52)
807     return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
808                     APInt(width, mantissa >> (52 - exp));
809 
810   // If the client didn't provide enough bits for us to shift the mantissa into
811   // then the result is undefined, just return 0
812   if (width <= exp - 52)
813     return APInt(width, 0);
814 
815   // Otherwise, we have to shift the mantissa bits up to the right location
816   APInt Tmp(width, mantissa);
817   Tmp <<= (unsigned)exp - 52;
818   return isNeg ? -Tmp : Tmp;
819 }
820 
821 /// This function converts this APInt to a double.
822 /// The layout for double is as following (IEEE Standard 754):
823 ///  --------------------------------------
824 /// |  Sign    Exponent    Fraction    Bias |
825 /// |-------------------------------------- |
826 /// |  1[63]   11[62-52]   52[51-00]   1023 |
827 ///  --------------------------------------
828 double APInt::roundToDouble(bool isSigned) const {
829 
830   // Handle the simple case where the value is contained in one uint64_t.
831   // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
832   if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
833     if (isSigned) {
834       int64_t sext = SignExtend64(getWord(0), BitWidth);
835       return double(sext);
836     } else
837       return double(getWord(0));
838   }
839 
840   // Determine if the value is negative.
841   bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
842 
843   // Construct the absolute value if we're negative.
844   APInt Tmp(isNeg ? -(*this) : (*this));
845 
846   // Figure out how many bits we're using.
847   unsigned n = Tmp.getActiveBits();
848 
849   // The exponent (without bias normalization) is just the number of bits
850   // we are using. Note that the sign bit is gone since we constructed the
851   // absolute value.
852   uint64_t exp = n;
853 
854   // Return infinity for exponent overflow
855   if (exp > 1023) {
856     if (!isSigned || !isNeg)
857       return std::numeric_limits<double>::infinity();
858     else
859       return -std::numeric_limits<double>::infinity();
860   }
861   exp += 1023; // Increment for 1023 bias
862 
863   // Number of bits in mantissa is 52. To obtain the mantissa value, we must
864   // extract the high 52 bits from the correct words in pVal.
865   uint64_t mantissa;
866   unsigned hiWord = whichWord(n-1);
867   if (hiWord == 0) {
868     mantissa = Tmp.U.pVal[0];
869     if (n > 52)
870       mantissa >>= n - 52; // shift down, we want the top 52 bits.
871   } else {
872     assert(hiWord > 0 && "huh?");
873     uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
874     uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
875     mantissa = hibits | lobits;
876   }
877 
878   // The leading bit of mantissa is implicit, so get rid of it.
879   uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
880   uint64_t I = sign | (exp << 52) | mantissa;
881   return bit_cast<double>(I);
882 }
883 
884 // Truncate to new width.
885 APInt APInt::trunc(unsigned width) const {
886   assert(width < BitWidth && "Invalid APInt Truncate request");
887 
888   if (width <= APINT_BITS_PER_WORD)
889     return APInt(width, getRawData()[0]);
890 
891   APInt Result(getMemory(getNumWords(width)), width);
892 
893   // Copy full words.
894   unsigned i;
895   for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
896     Result.U.pVal[i] = U.pVal[i];
897 
898   // Truncate and copy any partial word.
899   unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
900   if (bits != 0)
901     Result.U.pVal[i] = U.pVal[i] << bits >> bits;
902 
903   return Result;
904 }
905 
906 // Truncate to new width with unsigned saturation.
907 APInt APInt::truncUSat(unsigned width) const {
908   assert(width < BitWidth && "Invalid APInt Truncate request");
909 
910   // Can we just losslessly truncate it?
911   if (isIntN(width))
912     return trunc(width);
913   // If not, then just return the new limit.
914   return APInt::getMaxValue(width);
915 }
916 
917 // Truncate to new width with signed saturation.
918 APInt APInt::truncSSat(unsigned width) const {
919   assert(width < BitWidth && "Invalid APInt Truncate request");
920 
921   // Can we just losslessly truncate it?
922   if (isSignedIntN(width))
923     return trunc(width);
924   // If not, then just return the new limits.
925   return isNegative() ? APInt::getSignedMinValue(width)
926                       : APInt::getSignedMaxValue(width);
927 }
928 
929 // Sign extend to a new width.
930 APInt APInt::sext(unsigned Width) const {
931   assert(Width > BitWidth && "Invalid APInt SignExtend request");
932 
933   if (Width <= APINT_BITS_PER_WORD)
934     return APInt(Width, SignExtend64(U.VAL, BitWidth));
935 
936   APInt Result(getMemory(getNumWords(Width)), Width);
937 
938   // Copy words.
939   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
940 
941   // Sign extend the last word since there may be unused bits in the input.
942   Result.U.pVal[getNumWords() - 1] =
943       SignExtend64(Result.U.pVal[getNumWords() - 1],
944                    ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
945 
946   // Fill with sign bits.
947   std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
948               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
949   Result.clearUnusedBits();
950   return Result;
951 }
952 
953 //  Zero extend to a new width.
954 APInt APInt::zext(unsigned width) const {
955   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
956 
957   if (width <= APINT_BITS_PER_WORD)
958     return APInt(width, U.VAL);
959 
960   APInt Result(getMemory(getNumWords(width)), width);
961 
962   // Copy words.
963   std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
964 
965   // Zero remaining words.
966   std::memset(Result.U.pVal + getNumWords(), 0,
967               (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
968 
969   return Result;
970 }
971 
972 APInt APInt::zextOrTrunc(unsigned width) const {
973   if (BitWidth < width)
974     return zext(width);
975   if (BitWidth > width)
976     return trunc(width);
977   return *this;
978 }
979 
980 APInt APInt::sextOrTrunc(unsigned width) const {
981   if (BitWidth < width)
982     return sext(width);
983   if (BitWidth > width)
984     return trunc(width);
985   return *this;
986 }
987 
988 APInt APInt::truncOrSelf(unsigned width) const {
989   if (BitWidth > width)
990     return trunc(width);
991   return *this;
992 }
993 
994 APInt APInt::zextOrSelf(unsigned width) const {
995   if (BitWidth < width)
996     return zext(width);
997   return *this;
998 }
999 
1000 APInt APInt::sextOrSelf(unsigned width) const {
1001   if (BitWidth < width)
1002     return sext(width);
1003   return *this;
1004 }
1005 
1006 /// Arithmetic right-shift this APInt by shiftAmt.
1007 /// Arithmetic right-shift function.
1008 void APInt::ashrInPlace(const APInt &shiftAmt) {
1009   ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1010 }
1011 
1012 /// Arithmetic right-shift this APInt by shiftAmt.
1013 /// Arithmetic right-shift function.
1014 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1015   // Don't bother performing a no-op shift.
1016   if (!ShiftAmt)
1017     return;
1018 
1019   // Save the original sign bit for later.
1020   bool Negative = isNegative();
1021 
1022   // WordShift is the inter-part shift; BitShift is intra-part shift.
1023   unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1024   unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1025 
1026   unsigned WordsToMove = getNumWords() - WordShift;
1027   if (WordsToMove != 0) {
1028     // Sign extend the last word to fill in the unused bits.
1029     U.pVal[getNumWords() - 1] = SignExtend64(
1030         U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1031 
1032     // Fastpath for moving by whole words.
1033     if (BitShift == 0) {
1034       std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1035     } else {
1036       // Move the words containing significant bits.
1037       for (unsigned i = 0; i != WordsToMove - 1; ++i)
1038         U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1039                     (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1040 
1041       // Handle the last word which has no high bits to copy.
1042       U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1043       // Sign extend one more time.
1044       U.pVal[WordsToMove - 1] =
1045           SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1046     }
1047   }
1048 
1049   // Fill in the remainder based on the original sign.
1050   std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1051               WordShift * APINT_WORD_SIZE);
1052   clearUnusedBits();
1053 }
1054 
1055 /// Logical right-shift this APInt by shiftAmt.
1056 /// Logical right-shift function.
1057 void APInt::lshrInPlace(const APInt &shiftAmt) {
1058   lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1059 }
1060 
1061 /// Logical right-shift this APInt by shiftAmt.
1062 /// Logical right-shift function.
1063 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1064   tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1065 }
1066 
1067 /// Left-shift this APInt by shiftAmt.
1068 /// Left-shift function.
1069 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1070   // It's undefined behavior in C to shift by BitWidth or greater.
1071   *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1072   return *this;
1073 }
1074 
1075 void APInt::shlSlowCase(unsigned ShiftAmt) {
1076   tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1077   clearUnusedBits();
1078 }
1079 
1080 // Calculate the rotate amount modulo the bit width.
1081 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1082   if (LLVM_UNLIKELY(BitWidth == 0))
1083     return 0;
1084   unsigned rotBitWidth = rotateAmt.getBitWidth();
1085   APInt rot = rotateAmt;
1086   if (rotBitWidth < BitWidth) {
1087     // Extend the rotate APInt, so that the urem doesn't divide by 0.
1088     // e.g. APInt(1, 32) would give APInt(1, 0).
1089     rot = rotateAmt.zext(BitWidth);
1090   }
1091   rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1092   return rot.getLimitedValue(BitWidth);
1093 }
1094 
1095 APInt APInt::rotl(const APInt &rotateAmt) const {
1096   return rotl(rotateModulo(BitWidth, rotateAmt));
1097 }
1098 
1099 APInt APInt::rotl(unsigned rotateAmt) const {
1100   if (LLVM_UNLIKELY(BitWidth == 0))
1101     return *this;
1102   rotateAmt %= BitWidth;
1103   if (rotateAmt == 0)
1104     return *this;
1105   return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1106 }
1107 
1108 APInt APInt::rotr(const APInt &rotateAmt) const {
1109   return rotr(rotateModulo(BitWidth, rotateAmt));
1110 }
1111 
1112 APInt APInt::rotr(unsigned rotateAmt) const {
1113   if (BitWidth == 0)
1114     return *this;
1115   rotateAmt %= BitWidth;
1116   if (rotateAmt == 0)
1117     return *this;
1118   return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1119 }
1120 
1121 /// \returns the nearest log base 2 of this APInt. Ties round up.
1122 ///
1123 /// NOTE: When we have a BitWidth of 1, we define:
1124 ///
1125 ///   log2(0) = UINT32_MAX
1126 ///   log2(1) = 0
1127 ///
1128 /// to get around any mathematical concerns resulting from
1129 /// referencing 2 in a space where 2 does no exist.
1130 unsigned APInt::nearestLogBase2() const {
1131   // Special case when we have a bitwidth of 1. If VAL is 1, then we
1132   // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1133   // UINT32_MAX.
1134   if (BitWidth == 1)
1135     return U.VAL - 1;
1136 
1137   // Handle the zero case.
1138   if (isZero())
1139     return UINT32_MAX;
1140 
1141   // The non-zero case is handled by computing:
1142   //
1143   //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1144   //
1145   // where x[i] is referring to the value of the ith bit of x.
1146   unsigned lg = logBase2();
1147   return lg + unsigned((*this)[lg - 1]);
1148 }
1149 
1150 // Square Root - this method computes and returns the square root of "this".
1151 // Three mechanisms are used for computation. For small values (<= 5 bits),
1152 // a table lookup is done. This gets some performance for common cases. For
1153 // values using less than 52 bits, the value is converted to double and then
1154 // the libc sqrt function is called. The result is rounded and then converted
1155 // back to a uint64_t which is then used to construct the result. Finally,
1156 // the Babylonian method for computing square roots is used.
1157 APInt APInt::sqrt() const {
1158 
1159   // Determine the magnitude of the value.
1160   unsigned magnitude = getActiveBits();
1161 
1162   // Use a fast table for some small values. This also gets rid of some
1163   // rounding errors in libc sqrt for small values.
1164   if (magnitude <= 5) {
1165     static const uint8_t results[32] = {
1166       /*     0 */ 0,
1167       /*  1- 2 */ 1, 1,
1168       /*  3- 6 */ 2, 2, 2, 2,
1169       /*  7-12 */ 3, 3, 3, 3, 3, 3,
1170       /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1171       /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1172       /*    31 */ 6
1173     };
1174     return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1175   }
1176 
1177   // If the magnitude of the value fits in less than 52 bits (the precision of
1178   // an IEEE double precision floating point value), then we can use the
1179   // libc sqrt function which will probably use a hardware sqrt computation.
1180   // This should be faster than the algorithm below.
1181   if (magnitude < 52) {
1182     return APInt(BitWidth,
1183                  uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1184                                                                : U.pVal[0])))));
1185   }
1186 
1187   // Okay, all the short cuts are exhausted. We must compute it. The following
1188   // is a classical Babylonian method for computing the square root. This code
1189   // was adapted to APInt from a wikipedia article on such computations.
1190   // See http://www.wikipedia.org/ and go to the page named
1191   // Calculate_an_integer_square_root.
1192   unsigned nbits = BitWidth, i = 4;
1193   APInt testy(BitWidth, 16);
1194   APInt x_old(BitWidth, 1);
1195   APInt x_new(BitWidth, 0);
1196   APInt two(BitWidth, 2);
1197 
1198   // Select a good starting value using binary logarithms.
1199   for (;; i += 2, testy = testy.shl(2))
1200     if (i >= nbits || this->ule(testy)) {
1201       x_old = x_old.shl(i / 2);
1202       break;
1203     }
1204 
1205   // Use the Babylonian method to arrive at the integer square root:
1206   for (;;) {
1207     x_new = (this->udiv(x_old) + x_old).udiv(two);
1208     if (x_old.ule(x_new))
1209       break;
1210     x_old = x_new;
1211   }
1212 
1213   // Make sure we return the closest approximation
1214   // NOTE: The rounding calculation below is correct. It will produce an
1215   // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1216   // determined to be a rounding issue with pari/gp as it begins to use a
1217   // floating point representation after 192 bits. There are no discrepancies
1218   // between this algorithm and pari/gp for bit widths < 192 bits.
1219   APInt square(x_old * x_old);
1220   APInt nextSquare((x_old + 1) * (x_old +1));
1221   if (this->ult(square))
1222     return x_old;
1223   assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1224   APInt midpoint((nextSquare - square).udiv(two));
1225   APInt offset(*this - square);
1226   if (offset.ult(midpoint))
1227     return x_old;
1228   return x_old + 1;
1229 }
1230 
1231 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1232 /// iterative extended Euclidean algorithm is used to solve for this value,
1233 /// however we simplify it to speed up calculating only the inverse, and take
1234 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1235 /// (potentially large) APInts around.
1236 /// WARNING: a value of '0' may be returned,
1237 ///          signifying that no multiplicative inverse exists!
1238 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1239   assert(ult(modulo) && "This APInt must be smaller than the modulo");
1240 
1241   // Using the properties listed at the following web page (accessed 06/21/08):
1242   //   http://www.numbertheory.org/php/euclid.html
1243   // (especially the properties numbered 3, 4 and 9) it can be proved that
1244   // BitWidth bits suffice for all the computations in the algorithm implemented
1245   // below. More precisely, this number of bits suffice if the multiplicative
1246   // inverse exists, but may not suffice for the general extended Euclidean
1247   // algorithm.
1248 
1249   APInt r[2] = { modulo, *this };
1250   APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1251   APInt q(BitWidth, 0);
1252 
1253   unsigned i;
1254   for (i = 0; r[i^1] != 0; i ^= 1) {
1255     // An overview of the math without the confusing bit-flipping:
1256     // q = r[i-2] / r[i-1]
1257     // r[i] = r[i-2] % r[i-1]
1258     // t[i] = t[i-2] - t[i-1] * q
1259     udivrem(r[i], r[i^1], q, r[i]);
1260     t[i] -= t[i^1] * q;
1261   }
1262 
1263   // If this APInt and the modulo are not coprime, there is no multiplicative
1264   // inverse, so return 0. We check this by looking at the next-to-last
1265   // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1266   // algorithm.
1267   if (r[i] != 1)
1268     return APInt(BitWidth, 0);
1269 
1270   // The next-to-last t is the multiplicative inverse.  However, we are
1271   // interested in a positive inverse. Calculate a positive one from a negative
1272   // one if necessary. A simple addition of the modulo suffices because
1273   // abs(t[i]) is known to be less than *this/2 (see the link above).
1274   if (t[i].isNegative())
1275     t[i] += modulo;
1276 
1277   return std::move(t[i]);
1278 }
1279 
1280 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1281 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1282 /// variables here have the same names as in the algorithm. Comments explain
1283 /// the algorithm and any deviation from it.
1284 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1285                      unsigned m, unsigned n) {
1286   assert(u && "Must provide dividend");
1287   assert(v && "Must provide divisor");
1288   assert(q && "Must provide quotient");
1289   assert(u != v && u != q && v != q && "Must use different memory");
1290   assert(n>1 && "n must be > 1");
1291 
1292   // b denotes the base of the number system. In our case b is 2^32.
1293   const uint64_t b = uint64_t(1) << 32;
1294 
1295 // The DEBUG macros here tend to be spam in the debug output if you're not
1296 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1297 #ifdef KNUTH_DEBUG
1298 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1299 #else
1300 #define DEBUG_KNUTH(X) do {} while(false)
1301 #endif
1302 
1303   DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1304   DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1305   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1306   DEBUG_KNUTH(dbgs() << " by");
1307   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1308   DEBUG_KNUTH(dbgs() << '\n');
1309   // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1310   // u and v by d. Note that we have taken Knuth's advice here to use a power
1311   // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1312   // 2 allows us to shift instead of multiply and it is easy to determine the
1313   // shift amount from the leading zeros.  We are basically normalizing the u
1314   // and v so that its high bits are shifted to the top of v's range without
1315   // overflow. Note that this can require an extra word in u so that u must
1316   // be of length m+n+1.
1317   unsigned shift = countLeadingZeros(v[n-1]);
1318   uint32_t v_carry = 0;
1319   uint32_t u_carry = 0;
1320   if (shift) {
1321     for (unsigned i = 0; i < m+n; ++i) {
1322       uint32_t u_tmp = u[i] >> (32 - shift);
1323       u[i] = (u[i] << shift) | u_carry;
1324       u_carry = u_tmp;
1325     }
1326     for (unsigned i = 0; i < n; ++i) {
1327       uint32_t v_tmp = v[i] >> (32 - shift);
1328       v[i] = (v[i] << shift) | v_carry;
1329       v_carry = v_tmp;
1330     }
1331   }
1332   u[m+n] = u_carry;
1333 
1334   DEBUG_KNUTH(dbgs() << "KnuthDiv:   normal:");
1335   DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1336   DEBUG_KNUTH(dbgs() << " by");
1337   DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1338   DEBUG_KNUTH(dbgs() << '\n');
1339 
1340   // D2. [Initialize j.]  Set j to m. This is the loop counter over the places.
1341   int j = m;
1342   do {
1343     DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1344     // D3. [Calculate q'.].
1345     //     Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1346     //     Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1347     // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1348     // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1349     // on v[n-2] determines at high speed most of the cases in which the trial
1350     // value qp is one too large, and it eliminates all cases where qp is two
1351     // too large.
1352     uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1353     DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1354     uint64_t qp = dividend / v[n-1];
1355     uint64_t rp = dividend % v[n-1];
1356     if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1357       qp--;
1358       rp += v[n-1];
1359       if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1360         qp--;
1361     }
1362     DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1363 
1364     // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1365     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1366     // consists of a simple multiplication by a one-place number, combined with
1367     // a subtraction.
1368     // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1369     // this step is actually negative, (u[j+n]...u[j]) should be left as the
1370     // true value plus b**(n+1), namely as the b's complement of
1371     // the true value, and a "borrow" to the left should be remembered.
1372     int64_t borrow = 0;
1373     for (unsigned i = 0; i < n; ++i) {
1374       uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1375       int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1376       u[j+i] = Lo_32(subres);
1377       borrow = Hi_32(p) - Hi_32(subres);
1378       DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1379                         << ", borrow = " << borrow << '\n');
1380     }
1381     bool isNeg = u[j+n] < borrow;
1382     u[j+n] -= Lo_32(borrow);
1383 
1384     DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1385     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1386     DEBUG_KNUTH(dbgs() << '\n');
1387 
1388     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1389     // negative, go to step D6; otherwise go on to step D7.
1390     q[j] = Lo_32(qp);
1391     if (isNeg) {
1392       // D6. [Add back]. The probability that this step is necessary is very
1393       // small, on the order of only 2/b. Make sure that test data accounts for
1394       // this possibility. Decrease q[j] by 1
1395       q[j]--;
1396       // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1397       // A carry will occur to the left of u[j+n], and it should be ignored
1398       // since it cancels with the borrow that occurred in D4.
1399       bool carry = false;
1400       for (unsigned i = 0; i < n; i++) {
1401         uint32_t limit = std::min(u[j+i],v[i]);
1402         u[j+i] += v[i] + carry;
1403         carry = u[j+i] < limit || (carry && u[j+i] == limit);
1404       }
1405       u[j+n] += carry;
1406     }
1407     DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1408     DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1409     DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1410 
1411     // D7. [Loop on j.]  Decrease j by one. Now if j >= 0, go back to D3.
1412   } while (--j >= 0);
1413 
1414   DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1415   DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1416   DEBUG_KNUTH(dbgs() << '\n');
1417 
1418   // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1419   // remainder may be obtained by dividing u[...] by d. If r is non-null we
1420   // compute the remainder (urem uses this).
1421   if (r) {
1422     // The value d is expressed by the "shift" value above since we avoided
1423     // multiplication by d by using a shift left. So, all we have to do is
1424     // shift right here.
1425     if (shift) {
1426       uint32_t carry = 0;
1427       DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1428       for (int i = n-1; i >= 0; i--) {
1429         r[i] = (u[i] >> shift) | carry;
1430         carry = u[i] << (32 - shift);
1431         DEBUG_KNUTH(dbgs() << " " << r[i]);
1432       }
1433     } else {
1434       for (int i = n-1; i >= 0; i--) {
1435         r[i] = u[i];
1436         DEBUG_KNUTH(dbgs() << " " << r[i]);
1437       }
1438     }
1439     DEBUG_KNUTH(dbgs() << '\n');
1440   }
1441   DEBUG_KNUTH(dbgs() << '\n');
1442 }
1443 
1444 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1445                    unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1446   assert(lhsWords >= rhsWords && "Fractional result");
1447 
1448   // First, compose the values into an array of 32-bit words instead of
1449   // 64-bit words. This is a necessity of both the "short division" algorithm
1450   // and the Knuth "classical algorithm" which requires there to be native
1451   // operations for +, -, and * on an m bit value with an m*2 bit result. We
1452   // can't use 64-bit operands here because we don't have native results of
1453   // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1454   // work on large-endian machines.
1455   unsigned n = rhsWords * 2;
1456   unsigned m = (lhsWords * 2) - n;
1457 
1458   // Allocate space for the temporary values we need either on the stack, if
1459   // it will fit, or on the heap if it won't.
1460   uint32_t SPACE[128];
1461   uint32_t *U = nullptr;
1462   uint32_t *V = nullptr;
1463   uint32_t *Q = nullptr;
1464   uint32_t *R = nullptr;
1465   if ((Remainder?4:3)*n+2*m+1 <= 128) {
1466     U = &SPACE[0];
1467     V = &SPACE[m+n+1];
1468     Q = &SPACE[(m+n+1) + n];
1469     if (Remainder)
1470       R = &SPACE[(m+n+1) + n + (m+n)];
1471   } else {
1472     U = new uint32_t[m + n + 1];
1473     V = new uint32_t[n];
1474     Q = new uint32_t[m+n];
1475     if (Remainder)
1476       R = new uint32_t[n];
1477   }
1478 
1479   // Initialize the dividend
1480   memset(U, 0, (m+n+1)*sizeof(uint32_t));
1481   for (unsigned i = 0; i < lhsWords; ++i) {
1482     uint64_t tmp = LHS[i];
1483     U[i * 2] = Lo_32(tmp);
1484     U[i * 2 + 1] = Hi_32(tmp);
1485   }
1486   U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1487 
1488   // Initialize the divisor
1489   memset(V, 0, (n)*sizeof(uint32_t));
1490   for (unsigned i = 0; i < rhsWords; ++i) {
1491     uint64_t tmp = RHS[i];
1492     V[i * 2] = Lo_32(tmp);
1493     V[i * 2 + 1] = Hi_32(tmp);
1494   }
1495 
1496   // initialize the quotient and remainder
1497   memset(Q, 0, (m+n) * sizeof(uint32_t));
1498   if (Remainder)
1499     memset(R, 0, n * sizeof(uint32_t));
1500 
1501   // Now, adjust m and n for the Knuth division. n is the number of words in
1502   // the divisor. m is the number of words by which the dividend exceeds the
1503   // divisor (i.e. m+n is the length of the dividend). These sizes must not
1504   // contain any zero words or the Knuth algorithm fails.
1505   for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1506     n--;
1507     m++;
1508   }
1509   for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1510     m--;
1511 
1512   // If we're left with only a single word for the divisor, Knuth doesn't work
1513   // so we implement the short division algorithm here. This is much simpler
1514   // and faster because we are certain that we can divide a 64-bit quantity
1515   // by a 32-bit quantity at hardware speed and short division is simply a
1516   // series of such operations. This is just like doing short division but we
1517   // are using base 2^32 instead of base 10.
1518   assert(n != 0 && "Divide by zero?");
1519   if (n == 1) {
1520     uint32_t divisor = V[0];
1521     uint32_t remainder = 0;
1522     for (int i = m; i >= 0; i--) {
1523       uint64_t partial_dividend = Make_64(remainder, U[i]);
1524       if (partial_dividend == 0) {
1525         Q[i] = 0;
1526         remainder = 0;
1527       } else if (partial_dividend < divisor) {
1528         Q[i] = 0;
1529         remainder = Lo_32(partial_dividend);
1530       } else if (partial_dividend == divisor) {
1531         Q[i] = 1;
1532         remainder = 0;
1533       } else {
1534         Q[i] = Lo_32(partial_dividend / divisor);
1535         remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1536       }
1537     }
1538     if (R)
1539       R[0] = remainder;
1540   } else {
1541     // Now we're ready to invoke the Knuth classical divide algorithm. In this
1542     // case n > 1.
1543     KnuthDiv(U, V, Q, R, m, n);
1544   }
1545 
1546   // If the caller wants the quotient
1547   if (Quotient) {
1548     for (unsigned i = 0; i < lhsWords; ++i)
1549       Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1550   }
1551 
1552   // If the caller wants the remainder
1553   if (Remainder) {
1554     for (unsigned i = 0; i < rhsWords; ++i)
1555       Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1556   }
1557 
1558   // Clean up the memory we allocated.
1559   if (U != &SPACE[0]) {
1560     delete [] U;
1561     delete [] V;
1562     delete [] Q;
1563     delete [] R;
1564   }
1565 }
1566 
1567 APInt APInt::udiv(const APInt &RHS) const {
1568   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1569 
1570   // First, deal with the easy case
1571   if (isSingleWord()) {
1572     assert(RHS.U.VAL != 0 && "Divide by zero?");
1573     return APInt(BitWidth, U.VAL / RHS.U.VAL);
1574   }
1575 
1576   // Get some facts about the LHS and RHS number of bits and words
1577   unsigned lhsWords = getNumWords(getActiveBits());
1578   unsigned rhsBits  = RHS.getActiveBits();
1579   unsigned rhsWords = getNumWords(rhsBits);
1580   assert(rhsWords && "Divided by zero???");
1581 
1582   // Deal with some degenerate cases
1583   if (!lhsWords)
1584     // 0 / X ===> 0
1585     return APInt(BitWidth, 0);
1586   if (rhsBits == 1)
1587     // X / 1 ===> X
1588     return *this;
1589   if (lhsWords < rhsWords || this->ult(RHS))
1590     // X / Y ===> 0, iff X < Y
1591     return APInt(BitWidth, 0);
1592   if (*this == RHS)
1593     // X / X ===> 1
1594     return APInt(BitWidth, 1);
1595   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1596     // All high words are zero, just use native divide
1597     return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1598 
1599   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1600   APInt Quotient(BitWidth, 0); // to hold result.
1601   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1602   return Quotient;
1603 }
1604 
1605 APInt APInt::udiv(uint64_t RHS) const {
1606   assert(RHS != 0 && "Divide by zero?");
1607 
1608   // First, deal with the easy case
1609   if (isSingleWord())
1610     return APInt(BitWidth, U.VAL / RHS);
1611 
1612   // Get some facts about the LHS words.
1613   unsigned lhsWords = getNumWords(getActiveBits());
1614 
1615   // Deal with some degenerate cases
1616   if (!lhsWords)
1617     // 0 / X ===> 0
1618     return APInt(BitWidth, 0);
1619   if (RHS == 1)
1620     // X / 1 ===> X
1621     return *this;
1622   if (this->ult(RHS))
1623     // X / Y ===> 0, iff X < Y
1624     return APInt(BitWidth, 0);
1625   if (*this == RHS)
1626     // X / X ===> 1
1627     return APInt(BitWidth, 1);
1628   if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1629     // All high words are zero, just use native divide
1630     return APInt(BitWidth, this->U.pVal[0] / RHS);
1631 
1632   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1633   APInt Quotient(BitWidth, 0); // to hold result.
1634   divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1635   return Quotient;
1636 }
1637 
1638 APInt APInt::sdiv(const APInt &RHS) const {
1639   if (isNegative()) {
1640     if (RHS.isNegative())
1641       return (-(*this)).udiv(-RHS);
1642     return -((-(*this)).udiv(RHS));
1643   }
1644   if (RHS.isNegative())
1645     return -(this->udiv(-RHS));
1646   return this->udiv(RHS);
1647 }
1648 
1649 APInt APInt::sdiv(int64_t RHS) const {
1650   if (isNegative()) {
1651     if (RHS < 0)
1652       return (-(*this)).udiv(-RHS);
1653     return -((-(*this)).udiv(RHS));
1654   }
1655   if (RHS < 0)
1656     return -(this->udiv(-RHS));
1657   return this->udiv(RHS);
1658 }
1659 
1660 APInt APInt::urem(const APInt &RHS) const {
1661   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1662   if (isSingleWord()) {
1663     assert(RHS.U.VAL != 0 && "Remainder by zero?");
1664     return APInt(BitWidth, U.VAL % RHS.U.VAL);
1665   }
1666 
1667   // Get some facts about the LHS
1668   unsigned lhsWords = getNumWords(getActiveBits());
1669 
1670   // Get some facts about the RHS
1671   unsigned rhsBits = RHS.getActiveBits();
1672   unsigned rhsWords = getNumWords(rhsBits);
1673   assert(rhsWords && "Performing remainder operation by zero ???");
1674 
1675   // Check the degenerate cases
1676   if (lhsWords == 0)
1677     // 0 % Y ===> 0
1678     return APInt(BitWidth, 0);
1679   if (rhsBits == 1)
1680     // X % 1 ===> 0
1681     return APInt(BitWidth, 0);
1682   if (lhsWords < rhsWords || this->ult(RHS))
1683     // X % Y ===> X, iff X < Y
1684     return *this;
1685   if (*this == RHS)
1686     // X % X == 0;
1687     return APInt(BitWidth, 0);
1688   if (lhsWords == 1)
1689     // All high words are zero, just use native remainder
1690     return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1691 
1692   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1693   APInt Remainder(BitWidth, 0);
1694   divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1695   return Remainder;
1696 }
1697 
1698 uint64_t APInt::urem(uint64_t RHS) const {
1699   assert(RHS != 0 && "Remainder by zero?");
1700 
1701   if (isSingleWord())
1702     return U.VAL % RHS;
1703 
1704   // Get some facts about the LHS
1705   unsigned lhsWords = getNumWords(getActiveBits());
1706 
1707   // Check the degenerate cases
1708   if (lhsWords == 0)
1709     // 0 % Y ===> 0
1710     return 0;
1711   if (RHS == 1)
1712     // X % 1 ===> 0
1713     return 0;
1714   if (this->ult(RHS))
1715     // X % Y ===> X, iff X < Y
1716     return getZExtValue();
1717   if (*this == RHS)
1718     // X % X == 0;
1719     return 0;
1720   if (lhsWords == 1)
1721     // All high words are zero, just use native remainder
1722     return U.pVal[0] % RHS;
1723 
1724   // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1725   uint64_t Remainder;
1726   divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1727   return Remainder;
1728 }
1729 
1730 APInt APInt::srem(const APInt &RHS) const {
1731   if (isNegative()) {
1732     if (RHS.isNegative())
1733       return -((-(*this)).urem(-RHS));
1734     return -((-(*this)).urem(RHS));
1735   }
1736   if (RHS.isNegative())
1737     return this->urem(-RHS);
1738   return this->urem(RHS);
1739 }
1740 
1741 int64_t APInt::srem(int64_t RHS) const {
1742   if (isNegative()) {
1743     if (RHS < 0)
1744       return -((-(*this)).urem(-RHS));
1745     return -((-(*this)).urem(RHS));
1746   }
1747   if (RHS < 0)
1748     return this->urem(-RHS);
1749   return this->urem(RHS);
1750 }
1751 
1752 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1753                     APInt &Quotient, APInt &Remainder) {
1754   assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1755   unsigned BitWidth = LHS.BitWidth;
1756 
1757   // First, deal with the easy case
1758   if (LHS.isSingleWord()) {
1759     assert(RHS.U.VAL != 0 && "Divide by zero?");
1760     uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1761     uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1762     Quotient = APInt(BitWidth, QuotVal);
1763     Remainder = APInt(BitWidth, RemVal);
1764     return;
1765   }
1766 
1767   // Get some size facts about the dividend and divisor
1768   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1769   unsigned rhsBits  = RHS.getActiveBits();
1770   unsigned rhsWords = getNumWords(rhsBits);
1771   assert(rhsWords && "Performing divrem operation by zero ???");
1772 
1773   // Check the degenerate cases
1774   if (lhsWords == 0) {
1775     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1776     Remainder = APInt(BitWidth, 0);   // 0 % Y ===> 0
1777     return;
1778   }
1779 
1780   if (rhsBits == 1) {
1781     Quotient = LHS;                   // X / 1 ===> X
1782     Remainder = APInt(BitWidth, 0);   // X % 1 ===> 0
1783   }
1784 
1785   if (lhsWords < rhsWords || LHS.ult(RHS)) {
1786     Remainder = LHS;                  // X % Y ===> X, iff X < Y
1787     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1788     return;
1789   }
1790 
1791   if (LHS == RHS) {
1792     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1793     Remainder = APInt(BitWidth, 0);   // X % X ===> 0;
1794     return;
1795   }
1796 
1797   // Make sure there is enough space to hold the results.
1798   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1799   // change the size. This is necessary if Quotient or Remainder is aliased
1800   // with LHS or RHS.
1801   Quotient.reallocate(BitWidth);
1802   Remainder.reallocate(BitWidth);
1803 
1804   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1805     // There is only one word to consider so use the native versions.
1806     uint64_t lhsValue = LHS.U.pVal[0];
1807     uint64_t rhsValue = RHS.U.pVal[0];
1808     Quotient = lhsValue / rhsValue;
1809     Remainder = lhsValue % rhsValue;
1810     return;
1811   }
1812 
1813   // Okay, lets do it the long way
1814   divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1815          Remainder.U.pVal);
1816   // Clear the rest of the Quotient and Remainder.
1817   std::memset(Quotient.U.pVal + lhsWords, 0,
1818               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1819   std::memset(Remainder.U.pVal + rhsWords, 0,
1820               (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1821 }
1822 
1823 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1824                     uint64_t &Remainder) {
1825   assert(RHS != 0 && "Divide by zero?");
1826   unsigned BitWidth = LHS.BitWidth;
1827 
1828   // First, deal with the easy case
1829   if (LHS.isSingleWord()) {
1830     uint64_t QuotVal = LHS.U.VAL / RHS;
1831     Remainder = LHS.U.VAL % RHS;
1832     Quotient = APInt(BitWidth, QuotVal);
1833     return;
1834   }
1835 
1836   // Get some size facts about the dividend and divisor
1837   unsigned lhsWords = getNumWords(LHS.getActiveBits());
1838 
1839   // Check the degenerate cases
1840   if (lhsWords == 0) {
1841     Quotient = APInt(BitWidth, 0);    // 0 / Y ===> 0
1842     Remainder = 0;                    // 0 % Y ===> 0
1843     return;
1844   }
1845 
1846   if (RHS == 1) {
1847     Quotient = LHS;                   // X / 1 ===> X
1848     Remainder = 0;                    // X % 1 ===> 0
1849     return;
1850   }
1851 
1852   if (LHS.ult(RHS)) {
1853     Remainder = LHS.getZExtValue();   // X % Y ===> X, iff X < Y
1854     Quotient = APInt(BitWidth, 0);    // X / Y ===> 0, iff X < Y
1855     return;
1856   }
1857 
1858   if (LHS == RHS) {
1859     Quotient  = APInt(BitWidth, 1);   // X / X ===> 1
1860     Remainder = 0;                    // X % X ===> 0;
1861     return;
1862   }
1863 
1864   // Make sure there is enough space to hold the results.
1865   // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1866   // change the size. This is necessary if Quotient is aliased with LHS.
1867   Quotient.reallocate(BitWidth);
1868 
1869   if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1870     // There is only one word to consider so use the native versions.
1871     uint64_t lhsValue = LHS.U.pVal[0];
1872     Quotient = lhsValue / RHS;
1873     Remainder = lhsValue % RHS;
1874     return;
1875   }
1876 
1877   // Okay, lets do it the long way
1878   divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1879   // Clear the rest of the Quotient.
1880   std::memset(Quotient.U.pVal + lhsWords, 0,
1881               (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1882 }
1883 
1884 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1885                     APInt &Quotient, APInt &Remainder) {
1886   if (LHS.isNegative()) {
1887     if (RHS.isNegative())
1888       APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1889     else {
1890       APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1891       Quotient.negate();
1892     }
1893     Remainder.negate();
1894   } else if (RHS.isNegative()) {
1895     APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1896     Quotient.negate();
1897   } else {
1898     APInt::udivrem(LHS, RHS, Quotient, Remainder);
1899   }
1900 }
1901 
1902 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1903                     APInt &Quotient, int64_t &Remainder) {
1904   uint64_t R = Remainder;
1905   if (LHS.isNegative()) {
1906     if (RHS < 0)
1907       APInt::udivrem(-LHS, -RHS, Quotient, R);
1908     else {
1909       APInt::udivrem(-LHS, RHS, Quotient, R);
1910       Quotient.negate();
1911     }
1912     R = -R;
1913   } else if (RHS < 0) {
1914     APInt::udivrem(LHS, -RHS, Quotient, R);
1915     Quotient.negate();
1916   } else {
1917     APInt::udivrem(LHS, RHS, Quotient, R);
1918   }
1919   Remainder = R;
1920 }
1921 
1922 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1923   APInt Res = *this+RHS;
1924   Overflow = isNonNegative() == RHS.isNonNegative() &&
1925              Res.isNonNegative() != isNonNegative();
1926   return Res;
1927 }
1928 
1929 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1930   APInt Res = *this+RHS;
1931   Overflow = Res.ult(RHS);
1932   return Res;
1933 }
1934 
1935 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1936   APInt Res = *this - RHS;
1937   Overflow = isNonNegative() != RHS.isNonNegative() &&
1938              Res.isNonNegative() != isNonNegative();
1939   return Res;
1940 }
1941 
1942 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1943   APInt Res = *this-RHS;
1944   Overflow = Res.ugt(*this);
1945   return Res;
1946 }
1947 
1948 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1949   // MININT/-1  -->  overflow.
1950   Overflow = isMinSignedValue() && RHS.isAllOnes();
1951   return sdiv(RHS);
1952 }
1953 
1954 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1955   APInt Res = *this * RHS;
1956 
1957   if (*this != 0 && RHS != 0)
1958     Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1959   else
1960     Overflow = false;
1961   return Res;
1962 }
1963 
1964 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1965   if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1966     Overflow = true;
1967     return *this * RHS;
1968   }
1969 
1970   APInt Res = lshr(1) * RHS;
1971   Overflow = Res.isNegative();
1972   Res <<= 1;
1973   if ((*this)[0]) {
1974     Res += RHS;
1975     if (Res.ult(RHS))
1976       Overflow = true;
1977   }
1978   return Res;
1979 }
1980 
1981 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1982   Overflow = ShAmt.uge(getBitWidth());
1983   if (Overflow)
1984     return APInt(BitWidth, 0);
1985 
1986   if (isNonNegative()) // Don't allow sign change.
1987     Overflow = ShAmt.uge(countLeadingZeros());
1988   else
1989     Overflow = ShAmt.uge(countLeadingOnes());
1990 
1991   return *this << ShAmt;
1992 }
1993 
1994 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1995   Overflow = ShAmt.uge(getBitWidth());
1996   if (Overflow)
1997     return APInt(BitWidth, 0);
1998 
1999   Overflow = ShAmt.ugt(countLeadingZeros());
2000 
2001   return *this << ShAmt;
2002 }
2003 
2004 APInt APInt::sadd_sat(const APInt &RHS) const {
2005   bool Overflow;
2006   APInt Res = sadd_ov(RHS, Overflow);
2007   if (!Overflow)
2008     return Res;
2009 
2010   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2011                       : APInt::getSignedMaxValue(BitWidth);
2012 }
2013 
2014 APInt APInt::uadd_sat(const APInt &RHS) const {
2015   bool Overflow;
2016   APInt Res = uadd_ov(RHS, Overflow);
2017   if (!Overflow)
2018     return Res;
2019 
2020   return APInt::getMaxValue(BitWidth);
2021 }
2022 
2023 APInt APInt::ssub_sat(const APInt &RHS) const {
2024   bool Overflow;
2025   APInt Res = ssub_ov(RHS, Overflow);
2026   if (!Overflow)
2027     return Res;
2028 
2029   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2030                       : APInt::getSignedMaxValue(BitWidth);
2031 }
2032 
2033 APInt APInt::usub_sat(const APInt &RHS) const {
2034   bool Overflow;
2035   APInt Res = usub_ov(RHS, Overflow);
2036   if (!Overflow)
2037     return Res;
2038 
2039   return APInt(BitWidth, 0);
2040 }
2041 
2042 APInt APInt::smul_sat(const APInt &RHS) const {
2043   bool Overflow;
2044   APInt Res = smul_ov(RHS, Overflow);
2045   if (!Overflow)
2046     return Res;
2047 
2048   // The result is negative if one and only one of inputs is negative.
2049   bool ResIsNegative = isNegative() ^ RHS.isNegative();
2050 
2051   return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2052                        : APInt::getSignedMaxValue(BitWidth);
2053 }
2054 
2055 APInt APInt::umul_sat(const APInt &RHS) const {
2056   bool Overflow;
2057   APInt Res = umul_ov(RHS, Overflow);
2058   if (!Overflow)
2059     return Res;
2060 
2061   return APInt::getMaxValue(BitWidth);
2062 }
2063 
2064 APInt APInt::sshl_sat(const APInt &RHS) const {
2065   bool Overflow;
2066   APInt Res = sshl_ov(RHS, Overflow);
2067   if (!Overflow)
2068     return Res;
2069 
2070   return isNegative() ? APInt::getSignedMinValue(BitWidth)
2071                       : APInt::getSignedMaxValue(BitWidth);
2072 }
2073 
2074 APInt APInt::ushl_sat(const APInt &RHS) const {
2075   bool Overflow;
2076   APInt Res = ushl_ov(RHS, Overflow);
2077   if (!Overflow)
2078     return Res;
2079 
2080   return APInt::getMaxValue(BitWidth);
2081 }
2082 
2083 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2084   // Check our assumptions here
2085   assert(!str.empty() && "Invalid string length");
2086   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2087           radix == 36) &&
2088          "Radix should be 2, 8, 10, 16, or 36!");
2089 
2090   StringRef::iterator p = str.begin();
2091   size_t slen = str.size();
2092   bool isNeg = *p == '-';
2093   if (*p == '-' || *p == '+') {
2094     p++;
2095     slen--;
2096     assert(slen && "String is only a sign, needs a value.");
2097   }
2098   assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2099   assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2100   assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2101   assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2102          "Insufficient bit width");
2103 
2104   // Allocate memory if needed
2105   if (isSingleWord())
2106     U.VAL = 0;
2107   else
2108     U.pVal = getClearedMemory(getNumWords());
2109 
2110   // Figure out if we can shift instead of multiply
2111   unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2112 
2113   // Enter digit traversal loop
2114   for (StringRef::iterator e = str.end(); p != e; ++p) {
2115     unsigned digit = getDigit(*p, radix);
2116     assert(digit < radix && "Invalid character in digit string");
2117 
2118     // Shift or multiply the value by the radix
2119     if (slen > 1) {
2120       if (shift)
2121         *this <<= shift;
2122       else
2123         *this *= radix;
2124     }
2125 
2126     // Add in the digit we just interpreted
2127     *this += digit;
2128   }
2129   // If its negative, put it in two's complement form
2130   if (isNeg)
2131     this->negate();
2132 }
2133 
2134 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2135                      bool Signed, bool formatAsCLiteral) const {
2136   assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2137           Radix == 36) &&
2138          "Radix should be 2, 8, 10, 16, or 36!");
2139 
2140   const char *Prefix = "";
2141   if (formatAsCLiteral) {
2142     switch (Radix) {
2143       case 2:
2144         // Binary literals are a non-standard extension added in gcc 4.3:
2145         // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2146         Prefix = "0b";
2147         break;
2148       case 8:
2149         Prefix = "0";
2150         break;
2151       case 10:
2152         break; // No prefix
2153       case 16:
2154         Prefix = "0x";
2155         break;
2156       default:
2157         llvm_unreachable("Invalid radix!");
2158     }
2159   }
2160 
2161   // First, check for a zero value and just short circuit the logic below.
2162   if (isZero()) {
2163     while (*Prefix) {
2164       Str.push_back(*Prefix);
2165       ++Prefix;
2166     };
2167     Str.push_back('0');
2168     return;
2169   }
2170 
2171   static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2172 
2173   if (isSingleWord()) {
2174     char Buffer[65];
2175     char *BufPtr = std::end(Buffer);
2176 
2177     uint64_t N;
2178     if (!Signed) {
2179       N = getZExtValue();
2180     } else {
2181       int64_t I = getSExtValue();
2182       if (I >= 0) {
2183         N = I;
2184       } else {
2185         Str.push_back('-');
2186         N = -(uint64_t)I;
2187       }
2188     }
2189 
2190     while (*Prefix) {
2191       Str.push_back(*Prefix);
2192       ++Prefix;
2193     };
2194 
2195     while (N) {
2196       *--BufPtr = Digits[N % Radix];
2197       N /= Radix;
2198     }
2199     Str.append(BufPtr, std::end(Buffer));
2200     return;
2201   }
2202 
2203   APInt Tmp(*this);
2204 
2205   if (Signed && isNegative()) {
2206     // They want to print the signed version and it is a negative value
2207     // Flip the bits and add one to turn it into the equivalent positive
2208     // value and put a '-' in the result.
2209     Tmp.negate();
2210     Str.push_back('-');
2211   }
2212 
2213   while (*Prefix) {
2214     Str.push_back(*Prefix);
2215     ++Prefix;
2216   };
2217 
2218   // We insert the digits backward, then reverse them to get the right order.
2219   unsigned StartDig = Str.size();
2220 
2221   // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2222   // because the number of bits per digit (1, 3 and 4 respectively) divides
2223   // equally.  We just shift until the value is zero.
2224   if (Radix == 2 || Radix == 8 || Radix == 16) {
2225     // Just shift tmp right for each digit width until it becomes zero
2226     unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2227     unsigned MaskAmt = Radix - 1;
2228 
2229     while (Tmp.getBoolValue()) {
2230       unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2231       Str.push_back(Digits[Digit]);
2232       Tmp.lshrInPlace(ShiftAmt);
2233     }
2234   } else {
2235     while (Tmp.getBoolValue()) {
2236       uint64_t Digit;
2237       udivrem(Tmp, Radix, Tmp, Digit);
2238       assert(Digit < Radix && "divide failed");
2239       Str.push_back(Digits[Digit]);
2240     }
2241   }
2242 
2243   // Reverse the digits before returning.
2244   std::reverse(Str.begin()+StartDig, Str.end());
2245 }
2246 
2247 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2248 LLVM_DUMP_METHOD void APInt::dump() const {
2249   SmallString<40> S, U;
2250   this->toStringUnsigned(U);
2251   this->toStringSigned(S);
2252   dbgs() << "APInt(" << BitWidth << "b, "
2253          << U << "u " << S << "s)\n";
2254 }
2255 #endif
2256 
2257 void APInt::print(raw_ostream &OS, bool isSigned) const {
2258   SmallString<40> S;
2259   this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2260   OS << S;
2261 }
2262 
2263 // This implements a variety of operations on a representation of
2264 // arbitrary precision, two's-complement, bignum integer values.
2265 
2266 // Assumed by lowHalf, highHalf, partMSB and partLSB.  A fairly safe
2267 // and unrestricting assumption.
2268 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2269               "Part width must be divisible by 2!");
2270 
2271 // Returns the integer part with the least significant BITS set.
2272 // BITS cannot be zero.
2273 static inline APInt::WordType lowBitMask(unsigned bits) {
2274   assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2275   return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2276 }
2277 
2278 /// Returns the value of the lower half of PART.
2279 static inline APInt::WordType lowHalf(APInt::WordType part) {
2280   return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2281 }
2282 
2283 /// Returns the value of the upper half of PART.
2284 static inline APInt::WordType highHalf(APInt::WordType part) {
2285   return part >> (APInt::APINT_BITS_PER_WORD / 2);
2286 }
2287 
2288 /// Returns the bit number of the most significant set bit of a part.
2289 /// If the input number has no bits set -1U is returned.
2290 static unsigned partMSB(APInt::WordType value) {
2291   return findLastSet(value, ZB_Max);
2292 }
2293 
2294 /// Returns the bit number of the least significant set bit of a part.  If the
2295 /// input number has no bits set -1U is returned.
2296 static unsigned partLSB(APInt::WordType value) {
2297   return findFirstSet(value, ZB_Max);
2298 }
2299 
2300 /// Sets the least significant part of a bignum to the input value, and zeroes
2301 /// out higher parts.
2302 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2303   assert(parts > 0);
2304   dst[0] = part;
2305   for (unsigned i = 1; i < parts; i++)
2306     dst[i] = 0;
2307 }
2308 
2309 /// Assign one bignum to another.
2310 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2311   for (unsigned i = 0; i < parts; i++)
2312     dst[i] = src[i];
2313 }
2314 
2315 /// Returns true if a bignum is zero, false otherwise.
2316 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2317   for (unsigned i = 0; i < parts; i++)
2318     if (src[i])
2319       return false;
2320 
2321   return true;
2322 }
2323 
2324 /// Extract the given bit of a bignum; returns 0 or 1.
2325 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2326   return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2327 }
2328 
2329 /// Set the given bit of a bignum.
2330 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2331   parts[whichWord(bit)] |= maskBit(bit);
2332 }
2333 
2334 /// Clears the given bit of a bignum.
2335 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2336   parts[whichWord(bit)] &= ~maskBit(bit);
2337 }
2338 
2339 /// Returns the bit number of the least significant set bit of a number.  If the
2340 /// input number has no bits set -1U is returned.
2341 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2342   for (unsigned i = 0; i < n; i++) {
2343     if (parts[i] != 0) {
2344       unsigned lsb = partLSB(parts[i]);
2345       return lsb + i * APINT_BITS_PER_WORD;
2346     }
2347   }
2348 
2349   return -1U;
2350 }
2351 
2352 /// Returns the bit number of the most significant set bit of a number.
2353 /// If the input number has no bits set -1U is returned.
2354 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2355   do {
2356     --n;
2357 
2358     if (parts[n] != 0) {
2359       unsigned msb = partMSB(parts[n]);
2360 
2361       return msb + n * APINT_BITS_PER_WORD;
2362     }
2363   } while (n);
2364 
2365   return -1U;
2366 }
2367 
2368 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2369 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2370 /// significant bit of DST.  All high bits above srcBITS in DST are zero-filled.
2371 /// */
2372 void
2373 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2374                  unsigned srcBits, unsigned srcLSB) {
2375   unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2376   assert(dstParts <= dstCount);
2377 
2378   unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2379   tcAssign(dst, src + firstSrcPart, dstParts);
2380 
2381   unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2382   tcShiftRight(dst, dstParts, shift);
2383 
2384   // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2385   // in DST.  If this is less that srcBits, append the rest, else
2386   // clear the high bits.
2387   unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2388   if (n < srcBits) {
2389     WordType mask = lowBitMask (srcBits - n);
2390     dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2391                           << n % APINT_BITS_PER_WORD);
2392   } else if (n > srcBits) {
2393     if (srcBits % APINT_BITS_PER_WORD)
2394       dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2395   }
2396 
2397   // Clear high parts.
2398   while (dstParts < dstCount)
2399     dst[dstParts++] = 0;
2400 }
2401 
2402 //// DST += RHS + C where C is zero or one.  Returns the carry flag.
2403 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2404                              WordType c, unsigned parts) {
2405   assert(c <= 1);
2406 
2407   for (unsigned i = 0; i < parts; i++) {
2408     WordType l = dst[i];
2409     if (c) {
2410       dst[i] += rhs[i] + 1;
2411       c = (dst[i] <= l);
2412     } else {
2413       dst[i] += rhs[i];
2414       c = (dst[i] < l);
2415     }
2416   }
2417 
2418   return c;
2419 }
2420 
2421 /// This function adds a single "word" integer, src, to the multiple
2422 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2423 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2424 /// @returns the carry of the addition.
2425 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2426                                  unsigned parts) {
2427   for (unsigned i = 0; i < parts; ++i) {
2428     dst[i] += src;
2429     if (dst[i] >= src)
2430       return 0; // No need to carry so exit early.
2431     src = 1; // Carry one to next digit.
2432   }
2433 
2434   return 1;
2435 }
2436 
2437 /// DST -= RHS + C where C is zero or one.  Returns the carry flag.
2438 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2439                                   WordType c, unsigned parts) {
2440   assert(c <= 1);
2441 
2442   for (unsigned i = 0; i < parts; i++) {
2443     WordType l = dst[i];
2444     if (c) {
2445       dst[i] -= rhs[i] + 1;
2446       c = (dst[i] >= l);
2447     } else {
2448       dst[i] -= rhs[i];
2449       c = (dst[i] > l);
2450     }
2451   }
2452 
2453   return c;
2454 }
2455 
2456 /// This function subtracts a single "word" (64-bit word), src, from
2457 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2458 /// no further borrowing is needed or it runs out of "words" in dst.  The result
2459 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2460 /// exhausted. In other words, if src > dst then this function returns 1,
2461 /// otherwise 0.
2462 /// @returns the borrow out of the subtraction
2463 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2464                                       unsigned parts) {
2465   for (unsigned i = 0; i < parts; ++i) {
2466     WordType Dst = dst[i];
2467     dst[i] -= src;
2468     if (src <= Dst)
2469       return 0; // No need to borrow so exit early.
2470     src = 1; // We have to "borrow 1" from next "word"
2471   }
2472 
2473   return 1;
2474 }
2475 
2476 /// Negate a bignum in-place.
2477 void APInt::tcNegate(WordType *dst, unsigned parts) {
2478   tcComplement(dst, parts);
2479   tcIncrement(dst, parts);
2480 }
2481 
2482 /// DST += SRC * MULTIPLIER + CARRY   if add is true
2483 /// DST  = SRC * MULTIPLIER + CARRY   if add is false
2484 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC
2485 /// they must start at the same point, i.e. DST == SRC.
2486 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2487 /// returned.  Otherwise DST is filled with the least significant
2488 /// DSTPARTS parts of the result, and if all of the omitted higher
2489 /// parts were zero return zero, otherwise overflow occurred and
2490 /// return one.
2491 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2492                           WordType multiplier, WordType carry,
2493                           unsigned srcParts, unsigned dstParts,
2494                           bool add) {
2495   // Otherwise our writes of DST kill our later reads of SRC.
2496   assert(dst <= src || dst >= src + srcParts);
2497   assert(dstParts <= srcParts + 1);
2498 
2499   // N loops; minimum of dstParts and srcParts.
2500   unsigned n = std::min(dstParts, srcParts);
2501 
2502   for (unsigned i = 0; i < n; i++) {
2503     // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2504     // This cannot overflow, because:
2505     //   (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2506     // which is less than n^2.
2507     WordType srcPart = src[i];
2508     WordType low, mid, high;
2509     if (multiplier == 0 || srcPart == 0) {
2510       low = carry;
2511       high = 0;
2512     } else {
2513       low = lowHalf(srcPart) * lowHalf(multiplier);
2514       high = highHalf(srcPart) * highHalf(multiplier);
2515 
2516       mid = lowHalf(srcPart) * highHalf(multiplier);
2517       high += highHalf(mid);
2518       mid <<= APINT_BITS_PER_WORD / 2;
2519       if (low + mid < low)
2520         high++;
2521       low += mid;
2522 
2523       mid = highHalf(srcPart) * lowHalf(multiplier);
2524       high += highHalf(mid);
2525       mid <<= APINT_BITS_PER_WORD / 2;
2526       if (low + mid < low)
2527         high++;
2528       low += mid;
2529 
2530       // Now add carry.
2531       if (low + carry < low)
2532         high++;
2533       low += carry;
2534     }
2535 
2536     if (add) {
2537       // And now DST[i], and store the new low part there.
2538       if (low + dst[i] < low)
2539         high++;
2540       dst[i] += low;
2541     } else
2542       dst[i] = low;
2543 
2544     carry = high;
2545   }
2546 
2547   if (srcParts < dstParts) {
2548     // Full multiplication, there is no overflow.
2549     assert(srcParts + 1 == dstParts);
2550     dst[srcParts] = carry;
2551     return 0;
2552   }
2553 
2554   // We overflowed if there is carry.
2555   if (carry)
2556     return 1;
2557 
2558   // We would overflow if any significant unwritten parts would be
2559   // non-zero.  This is true if any remaining src parts are non-zero
2560   // and the multiplier is non-zero.
2561   if (multiplier)
2562     for (unsigned i = dstParts; i < srcParts; i++)
2563       if (src[i])
2564         return 1;
2565 
2566   // We fitted in the narrow destination.
2567   return 0;
2568 }
2569 
2570 /// DST = LHS * RHS, where DST has the same width as the operands and
2571 /// is filled with the least significant parts of the result.  Returns
2572 /// one if overflow occurred, otherwise zero.  DST must be disjoint
2573 /// from both operands.
2574 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2575                       const WordType *rhs, unsigned parts) {
2576   assert(dst != lhs && dst != rhs);
2577 
2578   int overflow = 0;
2579   tcSet(dst, 0, parts);
2580 
2581   for (unsigned i = 0; i < parts; i++)
2582     overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2583                                parts - i, true);
2584 
2585   return overflow;
2586 }
2587 
2588 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2589 /// operands. No overflow occurs. DST must be disjoint from both operands.
2590 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2591                            const WordType *rhs, unsigned lhsParts,
2592                            unsigned rhsParts) {
2593   // Put the narrower number on the LHS for less loops below.
2594   if (lhsParts > rhsParts)
2595     return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2596 
2597   assert(dst != lhs && dst != rhs);
2598 
2599   tcSet(dst, 0, rhsParts);
2600 
2601   for (unsigned i = 0; i < lhsParts; i++)
2602     tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2603 }
2604 
2605 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2606 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2607 // set REMAINDER to the remainder, return zero.  i.e.
2608 //
2609 //   OLD_LHS = RHS * LHS + REMAINDER
2610 //
2611 // SCRATCH is a bignum of the same size as the operands and result for
2612 // use by the routine; its contents need not be initialized and are
2613 // destroyed.  LHS, REMAINDER and SCRATCH must be distinct.
2614 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2615                     WordType *remainder, WordType *srhs,
2616                     unsigned parts) {
2617   assert(lhs != remainder && lhs != srhs && remainder != srhs);
2618 
2619   unsigned shiftCount = tcMSB(rhs, parts) + 1;
2620   if (shiftCount == 0)
2621     return true;
2622 
2623   shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2624   unsigned n = shiftCount / APINT_BITS_PER_WORD;
2625   WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2626 
2627   tcAssign(srhs, rhs, parts);
2628   tcShiftLeft(srhs, parts, shiftCount);
2629   tcAssign(remainder, lhs, parts);
2630   tcSet(lhs, 0, parts);
2631 
2632   // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2633   // total.
2634   for (;;) {
2635     int compare = tcCompare(remainder, srhs, parts);
2636     if (compare >= 0) {
2637       tcSubtract(remainder, srhs, 0, parts);
2638       lhs[n] |= mask;
2639     }
2640 
2641     if (shiftCount == 0)
2642       break;
2643     shiftCount--;
2644     tcShiftRight(srhs, parts, 1);
2645     if ((mask >>= 1) == 0) {
2646       mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2647       n--;
2648     }
2649   }
2650 
2651   return false;
2652 }
2653 
2654 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2655 /// no restrictions on Count.
2656 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2657   // Don't bother performing a no-op shift.
2658   if (!Count)
2659     return;
2660 
2661   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2662   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2663   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2664 
2665   // Fastpath for moving by whole words.
2666   if (BitShift == 0) {
2667     std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2668   } else {
2669     while (Words-- > WordShift) {
2670       Dst[Words] = Dst[Words - WordShift] << BitShift;
2671       if (Words > WordShift)
2672         Dst[Words] |=
2673           Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2674     }
2675   }
2676 
2677   // Fill in the remainder with 0s.
2678   std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2679 }
2680 
2681 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2682 /// are no restrictions on Count.
2683 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2684   // Don't bother performing a no-op shift.
2685   if (!Count)
2686     return;
2687 
2688   // WordShift is the inter-part shift; BitShift is the intra-part shift.
2689   unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2690   unsigned BitShift = Count % APINT_BITS_PER_WORD;
2691 
2692   unsigned WordsToMove = Words - WordShift;
2693   // Fastpath for moving by whole words.
2694   if (BitShift == 0) {
2695     std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2696   } else {
2697     for (unsigned i = 0; i != WordsToMove; ++i) {
2698       Dst[i] = Dst[i + WordShift] >> BitShift;
2699       if (i + 1 != WordsToMove)
2700         Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2701     }
2702   }
2703 
2704   // Fill in the remainder with 0s.
2705   std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2706 }
2707 
2708 // Comparison (unsigned) of two bignums.
2709 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2710                      unsigned parts) {
2711   while (parts) {
2712     parts--;
2713     if (lhs[parts] != rhs[parts])
2714       return (lhs[parts] > rhs[parts]) ? 1 : -1;
2715   }
2716 
2717   return 0;
2718 }
2719 
2720 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2721                                    APInt::Rounding RM) {
2722   // Currently udivrem always rounds down.
2723   switch (RM) {
2724   case APInt::Rounding::DOWN:
2725   case APInt::Rounding::TOWARD_ZERO:
2726     return A.udiv(B);
2727   case APInt::Rounding::UP: {
2728     APInt Quo, Rem;
2729     APInt::udivrem(A, B, Quo, Rem);
2730     if (Rem.isZero())
2731       return Quo;
2732     return Quo + 1;
2733   }
2734   }
2735   llvm_unreachable("Unknown APInt::Rounding enum");
2736 }
2737 
2738 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2739                                    APInt::Rounding RM) {
2740   switch (RM) {
2741   case APInt::Rounding::DOWN:
2742   case APInt::Rounding::UP: {
2743     APInt Quo, Rem;
2744     APInt::sdivrem(A, B, Quo, Rem);
2745     if (Rem.isZero())
2746       return Quo;
2747     // This algorithm deals with arbitrary rounding mode used by sdivrem.
2748     // We want to check whether the non-integer part of the mathematical value
2749     // is negative or not. If the non-integer part is negative, we need to round
2750     // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2751     // already rounded down.
2752     if (RM == APInt::Rounding::DOWN) {
2753       if (Rem.isNegative() != B.isNegative())
2754         return Quo - 1;
2755       return Quo;
2756     }
2757     if (Rem.isNegative() != B.isNegative())
2758       return Quo;
2759     return Quo + 1;
2760   }
2761   // Currently sdiv rounds towards zero.
2762   case APInt::Rounding::TOWARD_ZERO:
2763     return A.sdiv(B);
2764   }
2765   llvm_unreachable("Unknown APInt::Rounding enum");
2766 }
2767 
2768 Optional<APInt>
2769 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2770                                            unsigned RangeWidth) {
2771   unsigned CoeffWidth = A.getBitWidth();
2772   assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2773   assert(RangeWidth <= CoeffWidth &&
2774          "Value range width should be less than coefficient width");
2775   assert(RangeWidth > 1 && "Value range bit width should be > 1");
2776 
2777   LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2778                     << "x + " << C << ", rw:" << RangeWidth << '\n');
2779 
2780   // Identify 0 as a (non)solution immediately.
2781   if (C.sextOrTrunc(RangeWidth).isZero()) {
2782     LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2783     return APInt(CoeffWidth, 0);
2784   }
2785 
2786   // The result of APInt arithmetic has the same bit width as the operands,
2787   // so it can actually lose high bits. A product of two n-bit integers needs
2788   // 2n-1 bits to represent the full value.
2789   // The operation done below (on quadratic coefficients) that can produce
2790   // the largest value is the evaluation of the equation during bisection,
2791   // which needs 3 times the bitwidth of the coefficient, so the total number
2792   // of required bits is 3n.
2793   //
2794   // The purpose of this extension is to simulate the set Z of all integers,
2795   // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2796   // and negative numbers (not so much in a modulo arithmetic). The method
2797   // used to solve the equation is based on the standard formula for real
2798   // numbers, and uses the concepts of "positive" and "negative" with their
2799   // usual meanings.
2800   CoeffWidth *= 3;
2801   A = A.sext(CoeffWidth);
2802   B = B.sext(CoeffWidth);
2803   C = C.sext(CoeffWidth);
2804 
2805   // Make A > 0 for simplicity. Negate cannot overflow at this point because
2806   // the bit width has increased.
2807   if (A.isNegative()) {
2808     A.negate();
2809     B.negate();
2810     C.negate();
2811   }
2812 
2813   // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2814   // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2815   // and R = 2^BitWidth.
2816   // Since we're trying not only to find exact solutions, but also values
2817   // that "wrap around", such a set will always have a solution, i.e. an x
2818   // that satisfies at least one of the equations, or such that |q(x)|
2819   // exceeds kR, while |q(x-1)| for the same k does not.
2820   //
2821   // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2822   // positive solution n (in the above sense), and also such that the n
2823   // will be the least among all solutions corresponding to k = 0, 1, ...
2824   // (more precisely, the least element in the set
2825   //   { n(k) | k is such that a solution n(k) exists }).
2826   //
2827   // Consider the parabola (over real numbers) that corresponds to the
2828   // quadratic equation. Since A > 0, the arms of the parabola will point
2829   // up. Picking different values of k will shift it up and down by R.
2830   //
2831   // We want to shift the parabola in such a way as to reduce the problem
2832   // of solving q(x) = kR to solving shifted_q(x) = 0.
2833   // (The interesting solutions are the ceilings of the real number
2834   // solutions.)
2835   APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2836   APInt TwoA = 2 * A;
2837   APInt SqrB = B * B;
2838   bool PickLow;
2839 
2840   auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2841     assert(A.isStrictlyPositive());
2842     APInt T = V.abs().urem(A);
2843     if (T.isZero())
2844       return V;
2845     return V.isNegative() ? V+T : V+(A-T);
2846   };
2847 
2848   // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2849   // iff B is positive.
2850   if (B.isNonNegative()) {
2851     // If B >= 0, the vertex it at a negative location (or at 0), so in
2852     // order to have a non-negative solution we need to pick k that makes
2853     // C-kR negative. To satisfy all the requirements for the solution
2854     // that we are looking for, it needs to be closest to 0 of all k.
2855     C = C.srem(R);
2856     if (C.isStrictlyPositive())
2857       C -= R;
2858     // Pick the greater solution.
2859     PickLow = false;
2860   } else {
2861     // If B < 0, the vertex is at a positive location. For any solution
2862     // to exist, the discriminant must be non-negative. This means that
2863     // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2864     // lower bound on values of k: kR >= C - B^2/4A.
2865     APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2866     // Round LowkR up (towards +inf) to the nearest kR.
2867     LowkR = RoundUp(LowkR, R);
2868 
2869     // If there exists k meeting the condition above, and such that
2870     // C-kR > 0, there will be two positive real number solutions of
2871     // q(x) = kR. Out of all such values of k, pick the one that makes
2872     // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2873     // In other words, find maximum k such that LowkR <= kR < C.
2874     if (C.sgt(LowkR)) {
2875       // If LowkR < C, then such a k is guaranteed to exist because
2876       // LowkR itself is a multiple of R.
2877       C -= -RoundUp(-C, R);      // C = C - RoundDown(C, R)
2878       // Pick the smaller solution.
2879       PickLow = true;
2880     } else {
2881       // If C-kR < 0 for all potential k's, it means that one solution
2882       // will be negative, while the other will be positive. The positive
2883       // solution will shift towards 0 if the parabola is moved up.
2884       // Pick the kR closest to the lower bound (i.e. make C-kR closest
2885       // to 0, or in other words, out of all parabolas that have solutions,
2886       // pick the one that is the farthest "up").
2887       // Since LowkR is itself a multiple of R, simply take C-LowkR.
2888       C -= LowkR;
2889       // Pick the greater solution.
2890       PickLow = false;
2891     }
2892   }
2893 
2894   LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2895                     << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2896 
2897   APInt D = SqrB - 4*A*C;
2898   assert(D.isNonNegative() && "Negative discriminant");
2899   APInt SQ = D.sqrt();
2900 
2901   APInt Q = SQ * SQ;
2902   bool InexactSQ = Q != D;
2903   // The calculated SQ may actually be greater than the exact (non-integer)
2904   // value. If that's the case, decrement SQ to get a value that is lower.
2905   if (Q.sgt(D))
2906     SQ -= 1;
2907 
2908   APInt X;
2909   APInt Rem;
2910 
2911   // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2912   // When using the quadratic formula directly, the calculated low root
2913   // may be greater than the exact one, since we would be subtracting SQ.
2914   // To make sure that the calculated root is not greater than the exact
2915   // one, subtract SQ+1 when calculating the low root (for inexact value
2916   // of SQ).
2917   if (PickLow)
2918     APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2919   else
2920     APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2921 
2922   // The updated coefficients should be such that the (exact) solution is
2923   // positive. Since APInt division rounds towards 0, the calculated one
2924   // can be 0, but cannot be negative.
2925   assert(X.isNonNegative() && "Solution should be non-negative");
2926 
2927   if (!InexactSQ && Rem.isZero()) {
2928     LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2929     return X;
2930   }
2931 
2932   assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2933   // The exact value of the square root of D should be between SQ and SQ+1.
2934   // This implies that the solution should be between that corresponding to
2935   // SQ (i.e. X) and that corresponding to SQ+1.
2936   //
2937   // The calculated X cannot be greater than the exact (real) solution.
2938   // Actually it must be strictly less than the exact solution, while
2939   // X+1 will be greater than or equal to it.
2940 
2941   APInt VX = (A*X + B)*X + C;
2942   APInt VY = VX + TwoA*X + A + B;
2943   bool SignChange =
2944       VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2945   // If the sign did not change between X and X+1, X is not a valid solution.
2946   // This could happen when the actual (exact) roots don't have an integer
2947   // between them, so they would both be contained between X and X+1.
2948   if (!SignChange) {
2949     LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2950     return None;
2951   }
2952 
2953   X += 1;
2954   LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2955   return X;
2956 }
2957 
2958 Optional<unsigned>
2959 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2960   assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2961   if (A == B)
2962     return llvm::None;
2963   return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
2964 }
2965 
2966 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth) {
2967   unsigned OldBitWidth = A.getBitWidth();
2968   assert((((OldBitWidth % NewBitWidth) == 0) ||
2969           ((NewBitWidth % OldBitWidth) == 0)) &&
2970          "One size should be a multiple of the other one. "
2971          "Can't do fractional scaling.");
2972 
2973   // Check for matching bitwidths.
2974   if (OldBitWidth == NewBitWidth)
2975     return A;
2976 
2977   APInt NewA = APInt::getZero(NewBitWidth);
2978 
2979   // Check for null input.
2980   if (A.isZero())
2981     return NewA;
2982 
2983   if (NewBitWidth > OldBitWidth) {
2984     // Repeat bits.
2985     unsigned Scale = NewBitWidth / OldBitWidth;
2986     for (unsigned i = 0; i != OldBitWidth; ++i)
2987       if (A[i])
2988         NewA.setBits(i * Scale, (i + 1) * Scale);
2989   } else {
2990     // Merge bits - if any old bit is set, then set scale equivalent new bit.
2991     unsigned Scale = OldBitWidth / NewBitWidth;
2992     for (unsigned i = 0; i != NewBitWidth; ++i)
2993       if (!A.extractBits(Scale, i * Scale).isZero())
2994         NewA.setBit(i);
2995   }
2996 
2997   return NewA;
2998 }
2999 
3000 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3001 /// with the integer held in IntVal.
3002 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3003                             unsigned StoreBytes) {
3004   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3005   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3006 
3007   if (sys::IsLittleEndianHost) {
3008     // Little-endian host - the source is ordered from LSB to MSB.  Order the
3009     // destination from LSB to MSB: Do a straight copy.
3010     memcpy(Dst, Src, StoreBytes);
3011   } else {
3012     // Big-endian host - the source is an array of 64 bit words ordered from
3013     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
3014     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3015     while (StoreBytes > sizeof(uint64_t)) {
3016       StoreBytes -= sizeof(uint64_t);
3017       // May not be aligned so use memcpy.
3018       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3019       Src += sizeof(uint64_t);
3020     }
3021 
3022     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3023   }
3024 }
3025 
3026 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3027 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
3028 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3029                              unsigned LoadBytes) {
3030   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3031   uint8_t *Dst = reinterpret_cast<uint8_t *>(
3032                    const_cast<uint64_t *>(IntVal.getRawData()));
3033 
3034   if (sys::IsLittleEndianHost)
3035     // Little-endian host - the destination must be ordered from LSB to MSB.
3036     // The source is ordered from LSB to MSB: Do a straight copy.
3037     memcpy(Dst, Src, LoadBytes);
3038   else {
3039     // Big-endian - the destination is an array of 64 bit words ordered from
3040     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
3041     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3042     // a word.
3043     while (LoadBytes > sizeof(uint64_t)) {
3044       LoadBytes -= sizeof(uint64_t);
3045       // May not be aligned so use memcpy.
3046       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3047       Dst += sizeof(uint64_t);
3048     }
3049 
3050     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3051   }
3052 }
3053